JP2005106329A - Subcool type condenser - Google Patents

Subcool type condenser Download PDF

Info

Publication number
JP2005106329A
JP2005106329A JP2003337345A JP2003337345A JP2005106329A JP 2005106329 A JP2005106329 A JP 2005106329A JP 2003337345 A JP2003337345 A JP 2003337345A JP 2003337345 A JP2003337345 A JP 2003337345A JP 2005106329 A JP2005106329 A JP 2005106329A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchange
core part
subcool
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003337345A
Other languages
Japanese (ja)
Inventor
Kenichi Wada
賢一 和田
Takenori Sakamoto
武則 坂本
Yusuke Iino
祐介 飯野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Corp
Original Assignee
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corp filed Critical Sanden Corp
Priority to JP2003337345A priority Critical patent/JP2005106329A/en
Priority to FR0410126A priority patent/FR2860285B1/en
Priority to DE200410047304 priority patent/DE102004047304A1/en
Priority to CNB2004101005583A priority patent/CN100344922C/en
Publication of JP2005106329A publication Critical patent/JP2005106329A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00321Heat exchangers for air-conditioning devices
    • B60H1/00328Heat exchangers for air-conditioning devices of the liquid-air type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05391Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/025Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements
    • F28F3/027Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements with openings, e.g. louvered corrugated fins; Assemblies of corrugated strips
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/044Condensers with an integrated receiver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0084Condensers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To remarkably reduce the passage resistance in the entire condenser without eliminating advantages of one-pass passage constitution of a refrigerant condensing core part in a subcool type condenser wherein a heat exchanging core part is divided into the refrigerant condensing core part and a subcool core part, and the refrigerant condensing core part is constituted as an one-pass passage of the refrigerant. <P>SOLUTION: In this subcool type condenser wherein two headers are connected by a plurality of heat exchanging tubes, the heat exchanging core part is divided into the refrigerant condensing core part and the subcool core part, and the refrigerant condensing core part is constituted as the one-pass passage of the refrigerant, the heat exchanging tubes in the refrigerant condensing core part and the subcool core part are different from each other, that is, the heat exchanging tube in the refrigerant condensing is composed of the heat exchanging tube incorporating an inner fin forming a three-dimensional flow, and the heat exchanging tube in the subcool core part is composed of the heat exchanging tube partitioned into a plurality of small flow channels by partitions, and the passage resistance in the entire condenser can be reduced while keeping its heat radiating performance. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、サブクールタイプコンデンサに関し、とくに、サブクールタイプコンデンサの利点を活かしつつ全体の通路抵抗を低減するようにした、車両用空調装置等用に用いて好適なサブクールタイプコンデンサに関する。   The present invention relates to a subcool type capacitor, and more particularly, to a subcool type capacitor suitable for use in a vehicle air conditioner or the like that reduces the overall passage resistance while taking advantage of the subcool type capacitor.

2本のヘッダ間を並行に延びる複数の熱交換チューブで連結し、熱交換コア部を、冷媒を凝縮する冷媒凝縮コア部と、該冷媒凝縮コア部で凝縮された冷媒をさらに過冷却するサブクールコア部とに区画し、受液器一体型に構成して冷凍システム全体の小型化、低コスト化をはかりつつ優れた冷媒凝縮性能を発揮できるサブクールタイプコンデンサが知られている(たとえば、特許文献1)。このようなサブクールタイプコンデンサにおいては、上記冷媒凝縮コア部を冷媒の1パス通路に構成することにより、構造の簡素化、小型化を実現している(同特許文献1)。   The two headers are connected by a plurality of heat exchange tubes extending in parallel, and the heat exchange core part is subcooled to further subcool the refrigerant condensed in the refrigerant condensation core part and the refrigerant condensation core part that condenses the refrigerant. A subcool type condenser is known that is divided into a core part and is configured as a liquid receiver integrated type, and can exhibit excellent refrigerant condensing performance while reducing the size and cost of the entire refrigeration system (for example, patent documents) 1). In such a subcool type capacitor, simplification of the structure and miniaturization are realized by configuring the refrigerant condensing core part in a one-pass passage of the refrigerant (Patent Document 1).

冷媒凝縮コア部を冷媒の1パス通路に構成しても、目標とする冷媒凝縮コア部における冷媒凝縮機能およびサブクールコア部における冷媒過冷却機能を維持するためには、ヘッダと熱交換チューブ間の抵抗関係を、ある特定の範囲に納める必要があると考えられている(たとえば、特許文献2)。このような抵抗関係を満たすために、特許文献1や特許文献2においては、サブクールコア部の熱交換チューブとして冷媒凝縮コア部と同一構造のものを使用しており、とくに、チューブ内に複雑な冷媒の3次元流れを形成するインナーフィンを内蔵した熱交換チューブを使用している。たとえば図11に示すように、2本のヘッダ102、103間を並行に延びる複数の熱交換チューブ104で連結するとともに隣接熱交換チューブ104間にコルゲートタイプのフィン105を配設し、熱交換コア部106を、冷媒入口パイプ109からヘッダ102に導入されてきた冷媒を凝縮する冷媒凝縮コア部107と、該冷媒凝縮コア部107で凝縮されヘッダ103の下部側から導入されてきた冷媒をさらに過冷却するサブクールコア部108とに区画し、過冷却された冷媒を出口パイプ110から排出するようにして、冷媒凝縮コア部107を冷媒の1パス通路に構成したサブクールタイプコンデンサ101において、冷媒凝縮コア部107における熱交換チューブ104とサブクールコア部108における熱交換チューブ104を、該チューブ内に冷媒の3次元流れを形成するインナーフィン111を内蔵した同一構造のものに構成した構造とされている。   In order to maintain the target refrigerant condensation function in the refrigerant condensation core part and the refrigerant subcooling function in the subcool core part even if the refrigerant condensation core part is configured as a one-pass passage of the refrigerant, It is considered that the resistance relationship needs to be within a specific range (for example, Patent Document 2). In order to satisfy such a resistance relationship, in Patent Document 1 and Patent Document 2, a heat exchange tube having the same structure as the refrigerant condensing core portion is used as the heat exchange tube of the subcool core portion. A heat exchange tube incorporating an inner fin that forms a three-dimensional flow of refrigerant is used. For example, as shown in FIG. 11, two headers 102 and 103 are connected by a plurality of heat exchange tubes 104 extending in parallel, and corrugated fins 105 are disposed between adjacent heat exchange tubes 104 to form a heat exchange core. The portion 106 is further passed through a refrigerant condensing core portion 107 that condenses the refrigerant introduced into the header 102 from the refrigerant inlet pipe 109, and a refrigerant condensed from the refrigerant condensing core portion 107 and introduced from the lower side of the header 103. In the subcool type condenser 101 in which the refrigerant condensing core portion 107 is configured as a one-pass passage of refrigerant so that it is partitioned into a subcooling core portion 108 to be cooled and the supercooled refrigerant is discharged from the outlet pipe 110. Heat exchange tube 104 in section 107 and heat exchange tube 10 in subcool core section 108 And has a configuration structure to that of the same structure with a built-in inner fins 111 to form a three-dimensional flow of the refrigerant in the tube.

ところが、このような内部に3次元流れを形成する熱交換チューブを使用すると、とくにサブクールコア部は、凝縮された液冷媒を流通させる液域であるため、その通路抵抗が大きくなり、サブクールタイプコンデンサ全体の通路抵抗が増加することとなる。コンデンサ全体の通路抵抗が増加すると、そのコンデンサを組み入れた冷凍システム全体の負荷が増大し、とくに圧縮機の消費動力が増大することとなる。たとえば車両用空調装置における冷凍システムでは、圧縮機の消費動力を極力低減することが望まれるので、上記のようなコンデンサ全体の通路抵抗の増加は極力小さく抑える必要がある。   However, when such a heat exchange tube that forms a three-dimensional flow is used, the subcool core section is a liquid region that allows the condensed liquid refrigerant to circulate. The overall passage resistance will increase. When the passage resistance of the entire condenser increases, the load on the entire refrigeration system incorporating the condenser increases, and in particular, the power consumption of the compressor increases. For example, in a refrigeration system in a vehicle air conditioner, it is desired to reduce the power consumption of the compressor as much as possible. Therefore, it is necessary to suppress the increase in the passage resistance of the capacitor as described above as much as possible.

サブクールコア部の通路抵抗を低減するのと共通する目的で、特許文献3には、R404A、R507、R407C等のHFC混合冷媒を使用したクロスファン式空冷凝縮器(熱交換流通用伝熱管としてU字管を使用したクロスファン式空冷凝縮器)において、過冷却部伝熱管径を凝縮器部伝熱管径よりも大きくした構造が開示されているが、コンデンサのタイプが全く異なり、単一の冷媒使用でもないので、本発明で目的とする技術的課題の解決にはそのまま適用することはできない。
特開2002−31436号公報 特開2000−111274号公報 特開平11−193018号公報
For the same purpose as reducing the passage resistance of the subcool core part, Patent Document 3 describes a cross-fan type air-cooled condenser using a mixed HFC refrigerant such as R404A, R507, R407C (U as a heat exchanger tube for heat exchange). (Cross-fan type air-cooled condenser using a tube), the structure in which the supercooling section heat transfer tube diameter is larger than the condenser section heat transfer tube diameter is disclosed, but the condenser type is completely different, Therefore, it cannot be applied as it is to the solution of the technical problem aimed at by the present invention.
JP 2002-31436 A Japanese Patent Laid-Open No. 2000-111274 JP-A-11-193018

そこで本発明の課題は、とくに2本のヘッダ間を並行に延びる複数の熱交換チューブで連結し、熱交換コア部を、冷媒を凝縮する冷媒凝縮コア部と、該冷媒凝縮コア部で凝縮された冷媒をさらに過冷却するサブクールコア部とに区画し、冷媒凝縮コア部を冷媒の1パス通路に構成したサブクールタイプコンデンサにおいて、冷媒凝縮コア部の1パス通路構成の利点を損なうことなく、コンデンサ全体としての通路抵抗を大幅に低減可能なサブクールタイプコンデンサを提供することにある。これによって、サブクールタイプコンデンサの構造の簡素化、小型化、車載時の入口パイプ側レイアウトの自由度等の1パス構成の利点を活かしつつ、車両用空調装置に用いた場合などの圧縮機の消費動力を低減させ、システム全体の高効率化をはかることを目的とするものである。   Accordingly, the problem of the present invention is that the two headers are connected by a plurality of heat exchange tubes extending in parallel, and the heat exchange core part is condensed by the refrigerant condensation core part for condensing the refrigerant and the refrigerant condensation core part. In the subcool type condenser in which the refrigerant is further divided into a subcool core part for supercooling, and the refrigerant condensing core part is configured as a one-pass passage of the refrigerant, without compromising the advantages of the one-pass passage structure of the refrigerant condensing core part It is an object of the present invention to provide a subcool type capacitor that can greatly reduce the passage resistance as a whole. This makes it possible to consume compressors when used in a vehicle air conditioner while taking advantage of the one-pass configuration such as simplification and downsizing of the structure of the subcool type capacitor and the degree of freedom in the layout of the inlet pipe when mounted on the vehicle. The purpose is to reduce power and increase the efficiency of the entire system.

上記課題を解決するために、本発明に係るサブクールタイプコンデンサは、2本のヘッダ間を並行に延びる複数の熱交換チューブで連結し、熱交換コア部を、冷媒を凝縮する冷媒凝縮コア部と、該冷媒凝縮コア部で凝縮された冷媒をさらに過冷却するサブクールコア部とに区画し、前記冷媒凝縮コア部を冷媒の1パス通路に構成したサブクールタイプコンデンサにおいて、前記冷媒凝縮コア部における熱交換チューブを、該チューブ内に冷媒の3次元流れを形成するインナーフィンが内蔵された熱交換チューブ、前記サブクールコア部における熱交換チューブを、該チューブ内が該チューブと一体に形成された隔壁により空気流れ方向に複数の流路に仕切られた熱交換チューブ、の互いに異なる熱交換チューブに構成したことを特徴とするものからなる(第1の形態)。   In order to solve the above-mentioned problem, a subcool type capacitor according to the present invention is connected to a plurality of heat exchange tubes extending in parallel between two headers, and the heat exchange core part is a refrigerant condensation core part that condenses the refrigerant. In the subcool type condenser in which the refrigerant condensed in the refrigerant condensing core section is further divided into a subcool core section for further supercooling, and the refrigerant condensing core section is configured as a one-pass passage of the refrigerant, the heat in the refrigerant condensing core section The exchange tube includes a heat exchange tube in which an inner fin for forming a three-dimensional flow of refrigerant is built in the tube, and a heat exchange tube in the subcool core portion by a partition wall formed integrally with the tube. A heat exchange tube divided into a plurality of flow paths in the air flow direction, which is configured as a different heat exchange tube. It consists (first embodiment).

また、本発明に係るサブクールタイプコンデンサは、2本のヘッダ間を並行に延びる複数の熱交換チューブで連結し、熱交換コア部を、冷媒を凝縮する冷媒凝縮コア部と、該冷媒凝縮コア部で凝縮された冷媒をさらに過冷却するサブクールコア部とに区画し、前記冷媒凝縮コア部を冷媒の1パス通路に構成したサブクールタイプコンデンサにおいて、前記冷媒凝縮コア部における熱交換チューブを、該チューブ内に冷媒の3次元流れを形成するインナーフィンが内蔵された熱交換チューブ、前記サブクールコア部における熱交換チューブを、該チューブ内が該チューブに内蔵されたインナーフィンにより空気流れ方向に複数の流路に仕切られた熱交換チューブ、の互いに異なる熱交換チューブに構成したことを特徴とするものからなる(第2の形態)。   The subcool type condenser according to the present invention is connected to a plurality of heat exchange tubes extending in parallel between two headers, and the heat exchange core part is composed of a refrigerant condensation core part for condensing refrigerant, and the refrigerant condensation core part. In the subcool type condenser in which the refrigerant condensed in step 1 is further divided into a subcool core part for supercooling, and the refrigerant condensation core part is configured as a one-pass passage of the refrigerant, the heat exchange tube in the refrigerant condensation core part is A heat exchange tube in which inner fins that form a three-dimensional flow of the refrigerant are incorporated, and a heat exchange tube in the subcool core portion are arranged in a plurality of directions in the air flow direction by inner fins that are incorporated in the tube. A heat exchange tube partitioned by a path is composed of different heat exchange tubes. Form).

また、本発明に係るサブクールタイプコンデンサは、2本のヘッダ間を並行に延びる複数の熱交換チューブで連結し、熱交換コア部を、冷媒を凝縮する冷媒凝縮コア部と、該冷媒凝縮コア部で凝縮された冷媒をさらに過冷却するサブクールコア部とに区画し、前記冷媒凝縮コア部を冷媒の1パス通路に構成したサブクールタイプコンデンサにおいて、前記冷媒凝縮コア部における熱交換チューブおよび前記サブクールコア部における熱交換チューブを、ともに、該チューブ内が空気流れ方向に複数の流路に仕切られた形態に構成し、かつ、同じ流体流通条件における熱交換チューブ1本当たりの圧力損失が、前記サブクールコア部における熱交換チューブの方が低くなるように、両熱交換チューブを互いに異なる熱交換チューブに構成したことを特徴とするものからなる(第3の形態)。   The subcool type condenser according to the present invention is connected to a plurality of heat exchange tubes extending in parallel between two headers, and the heat exchange core part is composed of a refrigerant condensation core part for condensing refrigerant, and the refrigerant condensation core part. In the subcool type condenser in which the refrigerant condensed in step 1 is further divided into a subcool core portion for supercooling, and the refrigerant condensation core portion is configured as a one-pass passage of the refrigerant, a heat exchange tube in the refrigerant condensation core portion and the subcool core The heat exchange tubes in the section are both configured to be partitioned into a plurality of flow paths in the air flow direction, and the pressure loss per heat exchange tube under the same fluid flow conditions is the subcool. Both heat exchange tubes were configured as different heat exchange tubes so that the heat exchange tubes at the core were lower. Consisting of those wherein (third embodiment).

この第3の形態においては、少なくとも一方の熱交換チューブが、該チューブ内が該チューブと一体に形成された隔壁により空気流れ方向に複数の流路に仕切られた熱交換チューブからなる構成とすることもできるし、少なくとも一方の熱交換チューブが、該チューブ内が該チューブに内蔵されたインナーフィンにより空気流れ方向に複数の流路に仕切られた熱交換チューブからなる構成とすることもできる。   In the third embodiment, at least one of the heat exchange tubes is configured by a heat exchange tube that is partitioned into a plurality of flow paths in the air flow direction by a partition wall formed integrally with the tube. Alternatively, at least one of the heat exchange tubes may be configured by a heat exchange tube in which the inside of the tube is partitioned into a plurality of flow paths in the air flow direction by inner fins built in the tube.

さらに、本発明に係るサブクールタイプコンデンサは、2本のヘッダ間を並行に延びる複数の熱交換チューブで連結し、熱交換コア部を、冷媒を凝縮する冷媒凝縮コア部と、該冷媒凝縮コア部で凝縮された冷媒をさらに過冷却するサブクールコア部とに区画し、前記冷媒凝縮コア部を冷媒の1パス通路に構成したサブクールタイプコンデンサにおいて、前記サブクールコア部の通路抵抗を、全体の通路抵抗の1/2以下としたことを特徴とするものからなる(第4の形態)。この第4の形態は、上記第1〜第3の形態とともに採用することもできる。   Further, the subcool type condenser according to the present invention is connected to a plurality of heat exchange tubes extending in parallel between two headers, and the heat exchange core part is composed of a refrigerant condensation core part for condensing refrigerant, and the refrigerant condensation core part. In the subcool type condenser in which the refrigerant condensed in step 1 is further divided into a subcool core portion for supercooling, and the refrigerant condensation core portion is configured as a one-pass passage of the refrigerant, the passage resistance of the subcool core portion is defined as the overall passage resistance. (Fourth embodiment). This fourth form can also be adopted together with the first to third forms.

このような本発明に係るサブクールタイプコンデンサにおいては、従来基本的に同じ構造とされていた冷媒凝縮コア部における熱交換チューブとサブクールコア部における熱交換チューブの構造が、互いに異なる構造とされ、熱交換チューブ1本当たりの圧力損失が、サブクールコア部における熱交換チューブの方が低くなるように設定される。そして、サブクールコア部の通路抵抗が、従来のサブクールタイプコンデンサにおけるサブクールコア部の通路抵抗に比べ、格段に低くなるように設定され、それによってコンデンサ全体としての通路抵抗が大幅に低減される。低減目標としては、従来サブクールコア部の通路抵抗が全体の2/3以上占めていたものを、1/2以下にすることにある。このように、とくにサブクールコア部の通路抵抗を低減することによりコンデンサ全体の通路抵抗を低減したサブクールタイプコンデンサにおいては、サブクールコア部一体型の利点を維持しつつ、該コンデンサが冷凍システムに組み込まれた場合の圧縮機の消費動力の低減が可能になる。   In such a subcool type capacitor according to the present invention, the heat exchange tube in the refrigerant condensing core portion and the heat exchange tube in the subcool core portion, which have been basically the same in the past, have different structures, and the heat The pressure loss per one exchange tube is set so that the heat exchange tube in the subcool core portion is lower. And the passage resistance of a subcool core part is set so that it may become remarkably low compared with the passage resistance of the subcool core part in the conventional subcool type capacitor, and, thereby, the passage resistance as the whole capacitor | condenser is reduced significantly. The reduction target is to reduce the passage resistance of the subcool core portion, which previously occupied 2/3 or more, to 1/2 or less. In this way, in particular, in the subcool type capacitor in which the passage resistance of the entire condenser is reduced by reducing the passage resistance of the subcool core section, the condenser is incorporated into the refrigeration system while maintaining the advantages of the integrated subcool core section. In this case, the power consumption of the compressor can be reduced.

したがって、本発明に係るサブクールタイプコンデンサによれば、冷媒凝縮コア部を1パス通路構成とすることによる、サブクールタイプコンデンサの構造の簡素化、小型化、車載時の入口パイプ側レイアウトの自由度等の利点を維持しつつ、車両用空調装置に用いた場合などの圧縮機の消費動力を低減させ、システム全体の高効率化をはかることができる。   Therefore, according to the subcool type capacitor according to the present invention, the structure of the subcool type capacitor is simplified, the size is reduced, the degree of freedom in the layout on the inlet pipe side when mounted on the vehicle, etc. While maintaining this advantage, the power consumption of the compressor when used in a vehicle air conditioner can be reduced, and the overall efficiency of the system can be improved.

以下に、本発明の望ましい実施の形態を、図面を参照して説明する。
図1〜図3は、本発明の第1実施態様に係るサブクールタイプコンデンサを示しており、前述の本発明の第1の形態に対応している。図1において、1はサブクールタイプコンデンサ全体を示している。サブクールタイプコンデンサ1においては、2本のヘッダ2、3間が、互いに並行に延びる複数の熱交換チューブ4で連結されているとともに、各隣接熱交換チューブ4間には、コルゲートタイプのフィン5が配設されている。熱交換コア部6は、冷媒入口パイプ9からヘッダ2に導入されてきた冷媒を凝縮する冷媒凝縮コア部7と、該冷媒凝縮コア部7で凝縮されヘッダ3の下部側から導入されてきた冷媒をさらに過冷却するサブクールコア部8とに区画され、過冷却された冷媒は冷媒出口パイプ10から排出されるようになっている。すなわち、冷媒凝縮コア部6が冷媒の1パス通路に構成されており、ヘッダ2は内部に設けられた仕切板11により上下に仕切られているとともに、ヘッダ3内は、液冷媒を貯留可能に上下連通されている。図1における12は、ヘッダ3内に設けられた、中央部が連通された保持板を示しており、図示を省略した乾燥剤保持構造物やストレーナ等、ヘッダ3内に着脱可能に挿入される内蔵物を、上下連通構造を維持しつつ、保持できるようになっている。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
1 to 3 show a subcool type capacitor according to a first embodiment of the present invention, which corresponds to the first embodiment of the present invention described above. In FIG. 1, 1 indicates the entire subcool type capacitor. In the subcool type capacitor 1, the two headers 2 and 3 are connected by a plurality of heat exchange tubes 4 extending in parallel with each other, and corrugated fins 5 are provided between the adjacent heat exchange tubes 4. It is arranged. The heat exchange core unit 6 includes a refrigerant condensing core unit 7 that condenses the refrigerant introduced into the header 2 from the refrigerant inlet pipe 9, and a refrigerant that is condensed from the refrigerant condensing core unit 7 and introduced from the lower side of the header 3. The subcooled core section 8 is further subcooled, and the supercooled refrigerant is discharged from the refrigerant outlet pipe 10. In other words, the refrigerant condensing core portion 6 is configured as a one-pass passage for the refrigerant, the header 2 is vertically partitioned by a partition plate 11 provided inside, and the liquid refrigerant can be stored in the header 3. It is connected vertically. Reference numeral 12 in FIG. 1 denotes a holding plate provided in the header 3 and having a central portion in communication, and is detachably inserted into the header 3 such as a desiccant holding structure or a strainer (not shown). The built-in object can be held while maintaining the vertical communication structure.

このようなサブクールタイプコンデンサ1において、本実施態様では、冷媒凝縮コア部7における熱交換チューブ4は、図2に示すように、実質的に図11に示したものと同じ構造の熱交換チューブ、つまり、チューブ本体13内に、該チューブ本体13内に冷媒の3次元流れを形成するインナーフィン14を挿入した構造の熱交換チューブ4aに構成されている。そして、サブクールコア部8における熱交換チューブ4は、図3に示すように、チューブ内が、チューブ本体と一体に形成された隔壁15により空気流れ方向Aに複数の小流路16に仕切られた熱交換チューブ4bに構成されている。このように、冷媒凝縮コア部7における熱交換チューブ4aと、サブクールコア部8における熱交換チューブ4bとは、内部構造が互いに異なるものに構成されている。   In such a subcool type capacitor 1, in this embodiment, the heat exchange tube 4 in the refrigerant condensing core portion 7 is, as shown in FIG. 2, a heat exchange tube having substantially the same structure as that shown in FIG. In other words, the heat exchanger tube 4 a is structured such that the inner fin 14 that forms the three-dimensional flow of the refrigerant is inserted into the tube body 13. As shown in FIG. 3, the heat exchange tube 4 in the subcool core portion 8 is partitioned into a plurality of small flow paths 16 in the air flow direction A by partition walls 15 formed integrally with the tube body. The heat exchange tube 4b is configured. Thus, the heat exchange tube 4a in the refrigerant | coolant condensation core part 7 and the heat exchange tube 4b in the subcool core part 8 are comprised by the mutually different internal structure.

上記のようなサブクールタイプコンデンサ1においては、サブクールコア部8における熱交換チューブ4bは、その内部が複数の小流路16に分割されるものの、各小流路16が同一のチューブ延設方向に延びる直線状の流路に形成されているので、3次元流れを形成するインナーフィン14を挿入した冷媒凝縮コア部7における熱交換チューブ4aに比べ、1本当たりの通路抵抗(圧力損失)は極めて小さくなる。その結果、サブクールコア部8全体の通路抵抗が大幅に低減され、サブクールタイプコンデンサ1全体としての通路抵抗も大幅に低減される。   In the subcool type capacitor 1 as described above, although the heat exchange tube 4b in the subcool core portion 8 is divided into a plurality of small flow paths 16, each small flow path 16 is in the same tube extending direction. Since it is formed in an extending linear flow path, compared with the heat exchange tube 4a in the refrigerant condensing core portion 7 in which the inner fins 14 that form a three-dimensional flow are inserted, the passage resistance (pressure loss) per one is extremely high. Get smaller. As a result, the passage resistance of the entire subcool core portion 8 is greatly reduced, and the passage resistance of the entire subcool type capacitor 1 is also greatly reduced.

図4と図5に、熱交換コア部への冷媒封入量が同じ条件にて、従来装置と本発明に係る上記第1実施態様の装置との通路抵抗(コンデンサの入出口の差圧)を比較して例示する。たとえば図11に示した従来のサブクールタイプコンデンサでは、図4に示すように、冷媒封入量が減ると若干比率は低下するものの、サブクールコア部の通路抵抗がコンデンサ全体の通路抵抗の2/3以上を占めており、かつ、コンデンサ全体の通路抵抗も比較的大きい。これに対し、上記第1実施態様に係るサブクールタイプコンデンサ1では、図5に示すように、冷媒封入量が変化しても、サブクールコア部の通路抵抗がコンデンサ全体の通路抵抗の1/2以下に抑えられており、かつ、コンデンサ全体の通路抵抗も図4のものに比べて大幅に低減されている。   4 and 5 show the passage resistance (differential pressure at the inlet and outlet of the condenser) between the conventional apparatus and the apparatus of the first embodiment according to the present invention under the same condition of the amount of refrigerant enclosed in the heat exchange core section. It illustrates by comparison. For example, in the conventional subcool type capacitor shown in FIG. 11, the passage resistance of the subcool core portion is 2/3 or more of the passage resistance of the entire capacitor, although the ratio slightly decreases as the refrigerant filling amount decreases as shown in FIG. And the passage resistance of the entire capacitor is relatively large. On the other hand, in the subcool type capacitor 1 according to the first embodiment, as shown in FIG. 5, the passage resistance of the subcool core part is less than or equal to 1/2 of the passage resistance of the entire capacitor even when the refrigerant charging amount changes. 4 and the passage resistance of the entire capacitor is greatly reduced as compared with that of FIG.

また、図6に、空気流れのサブクールタイプコンデンサ通過風速、つまり、サブクールタイプコンデンサの前面風速に対する放熱性能を示すが、図1に示した本発明品の放熱性能と、図11に示した従来技術品の放熱性能との間には、ほとんど差がない。   FIG. 6 shows the heat dissipation performance of the air flow with respect to the subcool type condenser, that is, the heat dissipation performance with respect to the front wind speed of the subcool type capacitor. The heat dissipation performance of the product of the present invention shown in FIG. 1 and the prior art shown in FIG. There is almost no difference between the heat dissipation performance of the products.

さらに、図7に、冷媒循環量に対するコンデンサ全体の通路抵抗の特性を示すが、図1に示した本発明品の通路抵抗は、図11に示した従来技術品の通路抵抗に比べ、大幅に低減されている。   Further, FIG. 7 shows the characteristics of the passage resistance of the entire capacitor with respect to the refrigerant circulation amount. The passage resistance of the product of the present invention shown in FIG. 1 is significantly larger than the passage resistance of the prior art product shown in FIG. Has been reduced.

すなわち、図1に示した本発明に係るサブクールタイプコンデンサ1では、熱交換性能、つまり、放熱性能を所望の性能に維持し、かつ、冷媒凝縮コア部7を1パス通路に構成したことによる、サブクールタイプコンデンサ1の構造の簡素化、小型化、車載時の入口パイプ側レイアウトの自由度等の利点を維持しつつ、コンデンサ全体の通路抵抗の大幅な低減により、車両用空調装置の冷凍システムにサブクールタイプコンデンサ1を組み込んだ場合の、該冷凍システムにおける圧縮機の消費動力を大幅に低減させるとができ、そのシステム全体の高効率化をはかることができる。   That is, in the subcool type capacitor 1 according to the present invention shown in FIG. 1, the heat exchange performance, that is, the heat dissipation performance is maintained at a desired performance, and the refrigerant condensing core portion 7 is configured as a one-pass passage. While maintaining the advantages such as simplification and downsizing of the structure of the subcool type capacitor 1 and the freedom of layout on the inlet pipe side when mounted on the vehicle, the passage resistance of the entire capacitor is greatly reduced, so that the refrigeration system of the vehicle air conditioner can be used. When the subcool type condenser 1 is incorporated, the power consumption of the compressor in the refrigeration system can be greatly reduced, and the efficiency of the entire system can be increased.

図8は、本発明の第2実施態様に係るサブクールタイプコンデンサのサブクールコア部における熱交換チューブを示している。その他の部分の構成、とくに冷媒凝縮コア部7の熱交換チューブ4aは、図1、図2に示した構成と実質的に同じである。本実施態様は、前述の本発明の第2の形態に対応しており、本実施態様においては、サブクールコア部8における熱交換チューブ21は、該チューブ21内が該チューブ21に内蔵されたインナーフィン22により空気流れ方向に複数の流路に仕切られた熱交換チューブに構成されており、インナーフィン22により仕切られた各小流路23は、熱交換チューブ延設方向に平行に直線状に延びている。   FIG. 8 shows a heat exchange tube in the subcool core portion of the subcool type capacitor according to the second embodiment of the present invention. The structure of other parts, in particular, the heat exchange tube 4a of the refrigerant condensing core part 7 is substantially the same as the structure shown in FIGS. This embodiment corresponds to the above-described second form of the present invention. In this embodiment, the heat exchange tube 21 in the subcool core portion 8 includes an inner portion in which the tube 21 is built in the tube 21. The heat exchange tube is divided into a plurality of flow paths in the air flow direction by the fins 22, and each small flow path 23 partitioned by the inner fins 22 is linearly parallel to the heat exchange tube extending direction. It extends.

このようなサブクールタイプコンデンサにおいても、冷媒凝縮コア部7の熱交換チューブ4aと、サブクールコア部8における熱交換チューブ21とは互いに異なる熱交換チューブに構成され、内部が直線状に延びる複数の小流路23に分割されたサブクールコア部8における熱交換チューブ21は、3次元流れを形成するインナーフィン14を挿入した冷媒凝縮コア部7における熱交換チューブ4aに比べ、1本当たりの通路抵抗(圧力損失)は極めて小さくなる。その結果、サブクールコア部8全体の通路抵抗が大幅に低減され、サブクールタイプコンデンサ1全体としての通路抵抗も大幅に低減される。したがって、図5〜図7に示したのと同等の性能を発揮することができる。   Also in such a subcool type condenser, the heat exchange tube 4a of the refrigerant condensing core portion 7 and the heat exchange tube 21 of the subcool core portion 8 are configured as different heat exchange tubes, and the inside is a plurality of small tubes extending linearly. The heat exchange tube 21 in the subcool core section 8 divided into the flow paths 23 has a passage resistance per line (in comparison with the heat exchange tube 4a in the refrigerant condensation core section 7 in which the inner fins 14 forming the three-dimensional flow are inserted. The pressure loss is very small. As a result, the passage resistance of the entire subcool core portion 8 is greatly reduced, and the passage resistance of the entire subcool type capacitor 1 is also greatly reduced. Therefore, performance equivalent to that shown in FIGS. 5 to 7 can be exhibited.

図9および図10は、本発明の第3実施態様に係るサブクールタイプコンデンサの熱交換チューブを示しており、図9は冷媒凝縮コア部7における熱交換チューブ31を、図10はサブクールコア部における熱交換チューブ32を、それぞれ示している。その他の部分の構成は、図1に示した構成と実質的に同じである。本実施態様は、前述の本発明の第3の形態に対応しており、冷媒凝縮コア部7における熱交換チューブ31およびサブクールコア部8における熱交換チューブ32が、ともに、チューブ内が空気流れ方向に複数の流路に仕切られた形態に構成されており、かつ、同じ流体流通条件における熱交換チューブ1本当たりの圧力損失が、サブクールコア部における熱交換チューブ32の方が低くなるように、両熱交換チューブ31、32が互いに異なる熱交換チューブに構成されている。そして少なくとも一方の熱交換チューブが、本実施態様においては両熱交換チューブ31、32が、チューブ内が、チューブ本体と一体に形成された隔壁33、34により空気流れ方向Aに複数の小流路35、36に仕切られた熱交換チューブに構成されており、各小流路35、36は、それぞれ、互いに平行にチューブ延設方向に直線状に延びている。本実施態様においては、チューブ1本当たりの小流路35と小流路36の数は同じであるが、小流路36の方が小流路35よりも流路断面積が大きく形成されており、チューブ1本当たりの通路抵抗がサブクールコア部8における熱交換チューブ32の方が小さくなるように構成されている。   9 and 10 show a heat exchange tube of a subcool type condenser according to the third embodiment of the present invention. FIG. 9 shows a heat exchange tube 31 in the refrigerant condensing core portion 7, and FIG. A heat exchange tube 32 is shown respectively. The configuration of other parts is substantially the same as the configuration shown in FIG. This embodiment corresponds to the third aspect of the present invention described above, and the heat exchange tube 31 in the refrigerant condensing core portion 7 and the heat exchange tube 32 in the subcool core portion 8 are both in the direction of air flow. And the pressure loss per one heat exchange tube under the same fluid circulation condition is lower in the heat exchange tube 32 in the subcool core part, Both heat exchange tubes 31 and 32 are configured as different heat exchange tubes. And at least one heat exchange tube, in this embodiment, both heat exchange tubes 31 and 32 are a plurality of small flow paths in the air flow direction A by partition walls 33 and 34 formed integrally with the tube body. The small flow paths 35 and 36 are linearly extended in the tube extending direction in parallel with each other. In this embodiment, the number of the small flow paths 35 and the small flow paths 36 per tube is the same, but the small flow path 36 has a larger flow path cross-sectional area than the small flow path 35. The heat exchange tube 32 in the subcool core portion 8 has a smaller passage resistance per tube.

このようなサブクールタイプコンデンサにおいても、冷媒凝縮コア部7の熱交換チューブ31と、サブクールコア部8における熱交換チューブ32とは互いに異なる熱交換チューブに構成され、流路断面積がより大きく形成されたサブクールコア部8における熱交換チューブ32は、流路断面積がより小さく形成された冷媒凝縮コア部7における熱交換チューブ31に比べ、1本当たりの通路抵抗(圧力損失)は極めて小さくなり、サブクールコア部8全体の通路抵抗が大幅に低減され、サブクールタイプコンデンサ1全体としての通路抵抗も大幅に低減される。したがって、実質的に、図5〜図7に示したのと同等の性能を発揮することが可能となる。   Also in such a subcool type condenser, the heat exchange tube 31 of the refrigerant condensing core portion 7 and the heat exchange tube 32 of the subcool core portion 8 are configured as different heat exchange tubes, and the flow passage cross-sectional area is formed larger. In addition, the heat exchange tube 32 in the subcool core portion 8 has a very small passage resistance (pressure loss) per tube compared to the heat exchange tube 31 in the refrigerant condensation core portion 7 formed with a smaller flow path cross-sectional area, The passage resistance of the entire subcool core portion 8 is greatly reduced, and the passage resistance of the entire subcool type capacitor 1 is also greatly reduced. Therefore, substantially the same performance as shown in FIGS. 5 to 7 can be exhibited.

なお、上記実施態様では、両熱交換チューブ31、32を、チューブ本体と一体に形成された隔壁33、34により複数の小流路35、36に仕切った構成としたが、少なくとも一方の熱交換チューブを、図8に示したような、チューブ内が該チューブに内蔵されたインナーフィンにより空気流れ方向に複数の流路に仕切られた熱交換チューブからなる構成とすることもできる。   In the above embodiment, the heat exchange tubes 31 and 32 are divided into the plurality of small flow paths 35 and 36 by the partition walls 33 and 34 formed integrally with the tube main body. However, at least one of the heat exchange tubes is exchanged. As shown in FIG. 8, the tube may be configured by a heat exchange tube in which the inside of the tube is partitioned into a plurality of flow paths in the air flow direction by inner fins built in the tube.

上述の各実施態様においては、サブクールコア部8の通路抵抗を、コンデンサ全体の通路抵抗の1/2以下とすることが好ましい。、このような通路抵抗関係は、冷媒凝縮コア部7の熱交換チューブおよびサブクールコア部8の熱交換チューブの構造にかかわらず成立させることが好ましく、それによって、サブクールタイプコンデンサ1全体としての通路抵抗を大幅に低減させることが可能となる。すなわち、図面による例示は省略するが、このような通路抵抗関係を満足させることにより、前述の本発明の第4の形態に係るサブクールタイプコンデンサが構成される。   In each of the above-described embodiments, it is preferable that the passage resistance of the subcool core portion 8 is set to ½ or less of the passage resistance of the entire capacitor. Such a passage resistance relationship is preferably established regardless of the structure of the heat exchange tube of the refrigerant condensing core portion 7 and the heat exchange tube of the subcool core portion 8, whereby the passage resistance of the subcool type capacitor 1 as a whole is established. Can be greatly reduced. That is, although illustration by drawing is abbreviate | omitted, the subcool type | mold capacitor | condenser which concerns on the above-mentioned 4th form of this invention is comprised by satisfying such a passage resistance relationship.

本発明は、2本のヘッダ間を並行に延びる複数の熱交換チューブで連結し、熱交換コア部を冷媒凝縮コア部とサブクールコア部とに区画するとともに、冷媒凝縮コア部を冷媒の1パス通路に構成したあらゆるサブクールタイプコンデンサに適用でき、とくに、車両用空調装置における冷凍システムに組み込まれるコンデンサとして好適なものである。   The present invention connects two headers with a plurality of heat exchange tubes extending in parallel, partitions the heat exchange core part into a refrigerant condensation core part and a subcool core part, and makes the refrigerant condensation core part one pass of the refrigerant. The present invention can be applied to any subcool type condenser configured in a passage, and is particularly suitable as a condenser incorporated in a refrigeration system in a vehicle air conditioner.

本発明の第1実施態様に係るサブクールタイプコンデンサの全体斜視図である。1 is an overall perspective view of a subcool type capacitor according to a first embodiment of the present invention. 図1のサブクールタイプコンデンサの冷媒凝縮コア部における熱交換チューブの拡大部分斜視図である。It is an expansion partial perspective view of the heat exchange tube in the refrigerant | coolant condensation core part of the subcool type capacitor | condenser of FIG. 図1のサブクールタイプコンデンサのサブクールコア部における熱交換チューブの拡大部分斜視図である。It is an expansion partial perspective view of the heat exchange tube in the subcool core part of the subcool type capacitor | condenser of FIG. 図11に示した従来のサブクールタイプコンデンサの冷媒封入量と通路抵抗との関係図である。FIG. 12 is a relationship diagram between the refrigerant filling amount and passage resistance of the conventional subcool type capacitor shown in FIG. 11. 図1のサブクールタイプコンデンサの冷媒封入量と通路抵抗との関係図である。FIG. 2 is a relationship diagram between a refrigerant filling amount and passage resistance of the subcool type capacitor of FIG. 1. 本発明品と従来技術品の前面風速と放熱性能との関係図である。It is a related figure of the front wind speed and heat dissipation performance of this invention product and a prior art product. 本発明品と従来技術品の冷媒循環量と通路抵抗との関係図である。It is a related figure of the refrigerant | coolant circulation amount and channel | path resistance of this invention product and a prior art product. 本発明の第2実施態様に係るサブクールタイプコンデンサのサブクールコア部における熱交換チューブの部分斜視図である。It is a fragmentary perspective view of the heat exchange tube in the subcool core part of the subcool type capacitor concerning the 2nd embodiment of the present invention. 本発明の第3実施態様に係るサブクールタイプコンデンサの冷媒凝縮コア部における熱交換チューブの部分斜視図である。It is a fragmentary perspective view of the heat exchange tube in the refrigerant | coolant condensation core part of the subcool type capacitor which concerns on the 3rd embodiment of this invention. 本発明の第3実施態様に係るサブクールタイプコンデンサのサブクールコア部における熱交換チューブの部分斜視図である。It is a fragmentary perspective view of the heat exchange tube in the subcool core part of the subcool type capacitor concerning the 3rd embodiment of the present invention. 従来のサブクールタイプコンデンサの全体構成を示す説明図である。It is explanatory drawing which shows the whole structure of the conventional subcool type capacitor.

符号の説明Explanation of symbols

1 サブクールタイプコンデンサ
2、3 ヘッダ
4 熱交換チューブ
4a、31 冷媒凝縮コア部における熱交換チューブ
4b、21、32 サブクールコア部における熱交換チューブ
5 フィン
6 熱交換コア部
7 冷媒凝縮コア部
8 サブクールコア部
9 冷媒入口パイプ
10 冷媒出口パイプ
11 仕切板
12 保持板
13 チューブ本体
14 冷媒の3次元流れを形成するインナーフィン
15、33、34 チューブ本体と一体に形成された隔壁
16、23、35、36 小流路
22 チューブに内蔵された複数の流路形成用のインナーフィン
A 空気流れ方向
DESCRIPTION OF SYMBOLS 1 Subcool type capacitor | condenser 2, 3 Header 4 Heat exchange tube 4a, 31 Heat exchange tube in refrigerant | coolant condensation core part 4b, 21, 32 Heat exchange tube in subcool core part 5 Fin 6 Heat exchange core part 7 Refrigerant condensation core part 8 Subcool core Part 9 Refrigerant inlet pipe 10 Refrigerant outlet pipe 11 Partition plate 12 Holding plate 13 Tube main body 14 Inner fins forming a three-dimensional flow of refrigerant 15, 33, 34 Partitions 16, 23, 35, 36 integrally formed with the tube main body Small flow path 22 Inner fins for forming multiple flow paths built into the tube A Air flow direction

Claims (7)

2本のヘッダ間を並行に延びる複数の熱交換チューブで連結し、熱交換コア部を、冷媒を凝縮する冷媒凝縮コア部と、該冷媒凝縮コア部で凝縮された冷媒をさらに過冷却するサブクールコア部とに区画し、前記冷媒凝縮コア部を冷媒の1パス通路に構成したサブクールタイプコンデンサにおいて、前記冷媒凝縮コア部における熱交換チューブを、該チューブ内に冷媒の3次元流れを形成するインナーフィンが内蔵された熱交換チューブ、前記サブクールコア部における熱交換チューブを、該チューブ内が該チューブと一体に形成された隔壁により空気流れ方向に複数の流路に仕切られた熱交換チューブ、の互いに異なる熱交換チューブに構成したことを特徴とするサブクールタイプコンデンサ。   The two headers are connected by a plurality of heat exchange tubes extending in parallel, and the heat exchange core part is subcooled to further subcool the refrigerant condensed in the refrigerant condensation core part and the refrigerant condensation core part that condenses the refrigerant. In a subcool type condenser which is divided into a core part and the refrigerant condensing core part is configured as a one-pass passage of the refrigerant, a heat exchange tube in the refrigerant condensing core part is formed into an inner part which forms a three-dimensional flow of the refrigerant in the tube. A heat exchange tube with a built-in fin, a heat exchange tube in the subcool core portion, and a heat exchange tube in which the inside of the tube is partitioned into a plurality of flow paths in the air flow direction by a partition wall formed integrally with the tube. A subcool type condenser, characterized in that it is configured with different heat exchange tubes. 2本のヘッダ間を並行に延びる複数の熱交換チューブで連結し、熱交換コア部を、冷媒を凝縮する冷媒凝縮コア部と、該冷媒凝縮コア部で凝縮された冷媒をさらに過冷却するサブクールコア部とに区画し、前記冷媒凝縮コア部を冷媒の1パス通路に構成したサブクールタイプコンデンサにおいて、前記冷媒凝縮コア部における熱交換チューブを、該チューブ内に冷媒の3次元流れを形成するインナーフィンが内蔵された熱交換チューブ、前記サブクールコア部における熱交換チューブを、該チューブ内が該チューブに内蔵されたインナーフィンにより空気流れ方向に複数の流路に仕切られた熱交換チューブ、の互いに異なる熱交換チューブに構成したことを特徴とするサブクールタイプコンデンサ。   The two headers are connected by a plurality of heat exchange tubes extending in parallel, and the heat exchange core part is subcooled to further subcool the refrigerant condensed in the refrigerant condensation core part and the refrigerant condensation core part that condenses the refrigerant. In a subcool type condenser which is divided into a core part and the refrigerant condensing core part is configured as a one-pass passage of the refrigerant, a heat exchange tube in the refrigerant condensing core part is formed into an inner part which forms a three-dimensional flow of the refrigerant in the tube. A heat exchange tube in which fins are built in, and a heat exchange tube in the subcool core part, the heat exchange tubes in which the inside of the tube is partitioned into a plurality of flow paths in the air flow direction by inner fins built in the tube Sub-cooled type condenser, characterized in that it is configured with different heat exchange tubes. 2本のヘッダ間を並行に延びる複数の熱交換チューブで連結し、熱交換コア部を、冷媒を凝縮する冷媒凝縮コア部と、該冷媒凝縮コア部で凝縮された冷媒をさらに過冷却するサブクールコア部とに区画し、前記冷媒凝縮コア部を冷媒の1パス通路に構成したサブクールタイプコンデンサにおいて、前記冷媒凝縮コア部における熱交換チューブおよび前記サブクールコア部における熱交換チューブを、ともに、該チューブ内が空気流れ方向に複数の流路に仕切られた形態に構成し、かつ、同じ流体流通条件における熱交換チューブ1本当たりの圧力損失が、前記サブクールコア部における熱交換チューブの方が低くなるように、両熱交換チューブを互いに異なる熱交換チューブに構成したことを特徴とするサブクールタイプコンデンサ。   The two headers are connected by a plurality of heat exchange tubes extending in parallel, and the heat exchange core part is subcooled to further subcool the refrigerant condensed in the refrigerant condensation core part and the refrigerant condensation core part that condenses the refrigerant. In the subcool type condenser which is divided into a core part and the refrigerant condensing core part is configured as a one-pass passage of the refrigerant, the heat exchanging tube in the refrigerant condensing core part and the heat exchanging tube in the subcooled core part are both The inside is divided into a plurality of flow paths in the air flow direction, and the pressure loss per heat exchange tube under the same fluid circulation condition is lower in the heat exchange tube in the subcool core section. Thus, a subcool type capacitor characterized in that both heat exchange tubes are configured as different heat exchange tubes. 少なくとも一方の熱交換チューブが、該チューブ内が該チューブと一体に形成された隔壁により空気流れ方向に複数の流路に仕切られた熱交換チューブからなる、請求項3のサブクールタイプコンデンサ。   The subcool type condenser according to claim 3, wherein at least one of the heat exchange tubes includes a heat exchange tube partitioned into a plurality of flow paths in the air flow direction by a partition wall formed integrally with the tube. 少なくとも一方の熱交換チューブが、該チューブ内が該チューブに内蔵されたインナーフィンにより空気流れ方向に複数の流路に仕切られた熱交換チューブからなる、請求項3のサブクールタイプコンデンサ。   The subcool type condenser according to claim 3, wherein at least one of the heat exchange tubes includes a heat exchange tube in which the inside of the tube is partitioned into a plurality of flow paths in an air flow direction by inner fins built in the tube. 前記サブクールコア部の通路抵抗が、全体の通路抵抗の1/2以下とされている、請求項1〜5のいずれかに記載のサブクールタイプコンデンサ。   The subcool type capacitor according to any one of claims 1 to 5, wherein a passage resistance of the subcool core portion is set to ½ or less of a whole passage resistance. 2本のヘッダ間を並行に延びる複数の熱交換チューブで連結し、熱交換コア部を、冷媒を凝縮する冷媒凝縮コア部と、該冷媒凝縮コア部で凝縮された冷媒をさらに過冷却するサブクールコア部とに区画し、前記冷媒凝縮コア部を冷媒の1パス通路に構成したサブクールタイプコンデンサにおいて、前記サブクールコア部の通路抵抗を、全体の通路抵抗の1/2以下としたことを特徴とするサブクールタイプコンデンサ。   The two headers are connected by a plurality of heat exchange tubes extending in parallel, and the heat exchange core part is subcooled to further subcool the refrigerant condensed in the refrigerant condensation core part and the refrigerant condensation core part that condenses the refrigerant. In the subcool type capacitor which is divided into a core portion and the refrigerant condensing core portion is configured as a one-pass passage of the refrigerant, the passage resistance of the subcool core portion is set to 1/2 or less of the entire passage resistance. Subcool type capacitor.
JP2003337345A 2003-09-29 2003-09-29 Subcool type condenser Pending JP2005106329A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003337345A JP2005106329A (en) 2003-09-29 2003-09-29 Subcool type condenser
FR0410126A FR2860285B1 (en) 2003-09-29 2004-09-24 CONDENSER OF SUB-COOLING.
DE200410047304 DE102004047304A1 (en) 2003-09-29 2004-09-28 Subcooling condenser
CNB2004101005583A CN100344922C (en) 2003-09-29 2004-09-29 Overcold condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003337345A JP2005106329A (en) 2003-09-29 2003-09-29 Subcool type condenser

Publications (1)

Publication Number Publication Date
JP2005106329A true JP2005106329A (en) 2005-04-21

Family

ID=34308997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003337345A Pending JP2005106329A (en) 2003-09-29 2003-09-29 Subcool type condenser

Country Status (4)

Country Link
JP (1) JP2005106329A (en)
CN (1) CN100344922C (en)
DE (1) DE102004047304A1 (en)
FR (1) FR2860285B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010532859A (en) * 2007-07-09 2010-10-14 アー − ヒート アライド ヒート イクスチェンジ テクノロジー アクチェンゲゼルシャフト HEAT EXCHANGE DEVICE HAVING HEAT EXCHANGER AND METHOD FOR PRODUCING HEAT EXCHANGE DEVICE
WO2012098912A1 (en) * 2011-01-21 2012-07-26 ダイキン工業株式会社 Heat exchanger and air conditioner
CN104567509A (en) * 2015-01-23 2015-04-29 杭州沈氏节能科技股份有限公司 Fin type heat exchange unit, fin type heat exchange unit manufacturing method and heat exchanger with fin type heat exchange unit
WO2021255790A1 (en) * 2020-06-15 2021-12-23 三菱電機株式会社 Refrigeration cycle device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101672553B (en) * 2009-09-25 2012-03-28 华南理工大学 Parallel stream heat exchanger integrated with microchannel and outer fin
CN103851838B (en) * 2012-11-30 2016-06-15 苏州必信空调有限公司 Board-like integration system cryogen heat-recovery circulating system
CN103225934B (en) * 2013-04-09 2015-11-11 顺德职业技术学院 Become profile of tooth internal thread enhanced tube condenser
CN105318612A (en) * 2015-12-05 2016-02-10 广东志高空调有限公司 Thermoelectric cooling system for super-cooling section of air-conditioner condenser
US10563890B2 (en) * 2017-05-26 2020-02-18 Denso International America, Inc. Modulator for sub-cool condenser
CN113701544B (en) * 2020-05-22 2024-01-26 北京机械设备研究所 Flat tube radiator and processing method of flat tube of radiator

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2268260A (en) * 1992-06-24 1994-01-05 Llanelli Radiators Ltd Heat exchange tubes formed from a unitary portion of sheet or strip material
JPH08178568A (en) * 1994-12-26 1996-07-12 Showa Alum Corp Metal tube material for heat exchanger and manufacture thereof
TW487797B (en) * 1998-07-31 2002-05-21 Sanden Corp Heat exchanger
JP2002031436A (en) * 2000-05-09 2002-01-31 Sanden Corp Sub-cooling type condenser
JP2003021432A (en) * 2001-07-09 2003-01-24 Zexel Valeo Climate Control Corp Condenser

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010532859A (en) * 2007-07-09 2010-10-14 アー − ヒート アライド ヒート イクスチェンジ テクノロジー アクチェンゲゼルシャフト HEAT EXCHANGE DEVICE HAVING HEAT EXCHANGER AND METHOD FOR PRODUCING HEAT EXCHANGE DEVICE
WO2012098912A1 (en) * 2011-01-21 2012-07-26 ダイキン工業株式会社 Heat exchanger and air conditioner
KR101451057B1 (en) * 2011-01-21 2014-10-15 다이킨 고교 가부시키가이샤 Heat exchanger and air conditioner
JP5617935B2 (en) * 2011-01-21 2014-11-05 ダイキン工業株式会社 Heat exchanger and air conditioner
CN104567509A (en) * 2015-01-23 2015-04-29 杭州沈氏节能科技股份有限公司 Fin type heat exchange unit, fin type heat exchange unit manufacturing method and heat exchanger with fin type heat exchange unit
CN104567509B (en) * 2015-01-23 2016-06-22 杭州沈氏节能科技股份有限公司 A kind of fin-type heat exchange unit and manufacture method and the heat exchanger containing this unit
WO2021255790A1 (en) * 2020-06-15 2021-12-23 三菱電機株式会社 Refrigeration cycle device
JP7341340B2 (en) 2020-06-15 2023-09-08 三菱電機株式会社 Refrigeration cycle equipment

Also Published As

Publication number Publication date
CN100344922C (en) 2007-10-24
CN1616905A (en) 2005-05-18
FR2860285B1 (en) 2009-05-01
FR2860285A1 (en) 2005-04-01
DE102004047304A1 (en) 2005-06-16

Similar Documents

Publication Publication Date Title
US6470703B2 (en) Subcooling-type condenser
JP3988889B2 (en) Automotive heat exchanger
JP6041424B2 (en) Vehicle capacitors
US20110056667A1 (en) Integrated multi-circuit microchannel heat exchanger
JP2008503705A (en) Integrated heat exchanger for use in cooling systems
JP2008180486A (en) Heat exchanger
US20070131393A1 (en) Heat exchanger
US10041710B2 (en) Heat exchanger and air conditioner
JP2006071270A (en) Heat exchanger, intermediate heat exchanger, and refrigeration cycle
WO2017073715A1 (en) Aluminum extruded flat perforated tube and heat exchanger
JPH109713A (en) Refrigerant condensing device and refrigerant condenser
US10337808B2 (en) Condenser
JP2005106329A (en) Subcool type condenser
JP2010203748A (en) Evaporator with cold storage function
JP4207333B2 (en) Condenser with integrated receiver
JP2005049049A (en) Heat exchanger
JP2007078292A (en) Heat exchanger, and dual type heat exchanger
JP2001174103A (en) Refrigerant condenser
JP2005321151A (en) Heat exchanger
KR20070102172A (en) Heat exchanger having condenser and oil cooler installed therein
WO2017150221A1 (en) Heat exchanger and air conditioner
JP2001215096A (en) Heat exchanger
KR100723810B1 (en) Heat exchanger
JP2006153437A (en) Heat exchanger
JP2008256234A (en) Evaporator