JP2006054281A - 電気化学素子の製造方法および装置 - Google Patents

電気化学素子の製造方法および装置 Download PDF

Info

Publication number
JP2006054281A
JP2006054281A JP2004234075A JP2004234075A JP2006054281A JP 2006054281 A JP2006054281 A JP 2006054281A JP 2004234075 A JP2004234075 A JP 2004234075A JP 2004234075 A JP2004234075 A JP 2004234075A JP 2006054281 A JP2006054281 A JP 2006054281A
Authority
JP
Japan
Prior art keywords
laminate
light source
laser light
laser
laminated body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004234075A
Other languages
English (en)
Inventor
Katsuo Naoi
克夫 直井
Yuji Ishikawa
裕二 石川
Satoru Maruyama
哲 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2004234075A priority Critical patent/JP2006054281A/ja
Publication of JP2006054281A publication Critical patent/JP2006054281A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

【課題】 陽極と、絶縁体層と、陰極とを含む積層体を、所望のように切断して、所定のサイズを有する積層体部品を作製することができ、信頼性が高い電気化学素子を、効率的に、かつ、高い歩留まりで製造することができる電気化学素子の製造方法を提供する。
【解決手段】 陽極2と、絶縁体層4と、陰極3とを含む積層体7に、レーザ光源22から発せられるYVOレーザ21を照射し、積層体とYVOレーザを相対的に移動させて、積層体を切断し、所定のサイズを有する積層体部品5を製造する電気化学素子の製造方法であって、レーザ光源と積層体との相対的な位置関係を、積層体の厚さ方向に変化させて、積層体を切断し、所定のサイズを有する積層体部品を製造することを特徴とする電気化学素子の製造方法。
【選択図】 図6

Description

本発明は、電気化学素子の製造方法および装置に関するものであり、さらに詳細には、少なくとも、陽極と、絶縁体層または誘電体層と、陰極とを含む積層体を、所望のように切断して、所定のサイズを有する積層体部品を作製することができ、信頼性が高い電気化学素子を、効率的に、かつ、高い歩留まりで製造することができる電気化学素子の製造方法および装置に関するものである。
電気化学素子は、小型化、軽量化が容易であるため、携帯機器(小型電子機器)などのバックアップ用電源、電気自動車やハイブリッド自動車向けの補助電源などとしての利用が期待されており、その性能向上のため、種々の試みがなされている。
このような電気化学素子のうち、電気二重層キャパシタは、アルミニウムなどからなる集電体シート、アンダーコート層および陽極層が積層された陽極と、アルミニウムなどからなる集電体シート、アンダーコート層および陰極層が積層された陰極が、セパレータを介して、積層された積層体ユニットを、構成要素として含み、単一の積層体ユニットよりなる積層体部品あるいは複数の積層体ユニットが、セパレータを介して、積層された構造を有する積層体を、金型を用いた打抜き加工によって、カットし、フィルムで包んだり、金属缶に収納したりして、製造されている。
しかしながら、電気二重層キャパシタを作製するための積層体は、単一の積層体ユニットよりなる場合でも、500μm以上の厚さを有していることがあり、複数の積層体ユニットが、セパレータを介して、積層された構造を有している場合には、積層体の厚さが1mmを超えることもあるため、金型を用いた打抜き加工によって、積層体をカットして、所定のサイズを有する積層体部品を作製するときは、金型から、積層体に大きな剪断力を加えることが必要になるため、切断面にばりや歪みが発生し、電気二重層キャパシタを生成したときに、短絡の原因になって、電気二重層キャパシタとしての電気的特性を得ることができなくなるという問題があった。
一方、レーザビームを用いて、積層体をカットして、所定のサイズを有する積層体部品を作製することも考えられるが、従来、レーザ切断に用いられているYAGレーザは、そのパワーが大きすぎるため、積層体のレーザビームが照射された部分が過度に熱せられて、溶けてしまい、電気二重層キャパシタを生成したときに、短絡の原因になって、電気二重層キャパシタとしての電気的特性を得ることができなくなるという問題があった。
陽極と、誘電体層と、陰極が、積層された積層体ユニットを、構成要素として含み、単一の積層体ユニットよりなる積層体部品あるいは複数の積層体ユニットが、陽極および/または陰極を共通にして、積層された構造を有する積層体を備えた固体電解コンデンサを作製するために、積層体を切断して、所定のサイズを有する積層体部品を製造する場合にも、同様の問題があった。
したがって、本発明は、少なくとも、陽極と、絶縁体層または誘電体層と、陰極とを含む積層体を、所望のように切断して、所定のサイズを有する積層体部品を作製することができ、信頼性が高い電気化学素子を、効率的に、かつ、高い歩留まりで製造することができる電気化学素子の製造方法および装置を提供することを目的とするものである。
本発明者は、本発明のかかる目的を達成するため、鋭意研究を重ねた結果、少なくとも、陽極と、絶縁体層と、陰極とを含む電気二重層キャパシタ用の積層体に、レーザ光源から発せられるYVOレーザを照射し、積層体とYVOレーザを相対的に移動させて、積層体を切断する際に、レーザ光源と積層体との相対的な位置関係を、積層体の厚さ方向に変化させた場合には、積層体のYVOレーザが照射された部分が過度に熱せられることを防止しつつ、積層体を、所望のように切断して、所定のサイズを有する積層体部品を製造し、信頼性が高い電気二重層キャパシタを、効率的に、かつ、高い歩留まりで製造することが可能になることを見出した。
本発明者のさらなる研究によれば、少なくとも、陽極と、誘電体層と、陰極とを含む固体電解コンデンサ用の積層体に、レーザ光源から発せられるYVOレーザを照射し、積層体とYVOレーザを相対的に移動させて、積層体を切断する際に、レーザ光源と積層体との相対的な位置関係を、積層体の厚さ方向に変化させた場合にも、積層体のYVOレーザが照射された部分が過度に熱せられることを防止しつつ、積層体を、所望のように切断して、所定のサイズを有する積層体部品を製造し、信頼性が高い固体電解コンデンサを、効率的に、かつ、高い歩留まりで製造することが可能になることを見出した。
本発明は、かかる知見に基づくものであり、本発明によれば、本発明の前記目的は、少なくとも、陽極と、絶縁体層または誘電体層と、陰極とを含む積層体に、レーザ光源から発せられるYVOレーザを照射し、前記積層体と前記YVOレーザを相対的に移動させて、前記積層体を切断し、所定のサイズを有する積層体部品を製造する電気化学素子の製造方法であって、前記レーザ光源と前記積層体との相対的な位置関係を、前記積層体の厚さ方向に変化させて、前記積層体を切断し、所定のサイズを有する積層体部品を製造することを特徴とする電気化学素子の製造方法によって達成される。
本発明によれば、パワーが小さいYVOレーザを用いて、積層体を切断するように構成されているから、積層体のYVOレーザが照射された部分が過度に熱せられることを防止することができ、アブレーション効果が大きく、加工部分以外への熱的影響を低減することができる。さらに、YVOレーザを用いて、積層体を切断する際、YVOレーザを発するレーザ光源と積層体との相対的な位置関係を、積層体の厚さ方向に変化させて、積層体を切断するように構成されているから、パワーが小さいYVOレーザを用いる場合でも、積層体を、所望のように切断して、所定のサイズを有する積層体部品を作製することができ、信頼性が高い電気化学素子を、効率的に、かつ、高い歩留まりで製造することが可能になる。
本発明の好ましい実施態様においては、前記レーザ光源と前記積層体との相対的な位置関係を、100μmないし500μmづつ、前記積層体の厚さ方向に間欠的に変化させて、前記積層体を切断するように構成されている。
本発明のさらに好ましい実施態様においては、前記レーザ光源と前記積層体との相対的な位置関係を、100μmないし300μmづつ、前記積層体の厚さ方向に間欠的に変化させて、前記積層体を切断するように構成されている。
本発明の好ましい実施態様においては、前記積層体の位置を、前記積層体の厚さ方向に変化させるように構成されている。
本発明の別の好ましい実施態様においては、前記レーザ光源の位置を、前記積層体の厚さ方向に変化させるように構成されている。
本発明の好ましい実施態様においては、前記レーザ光源に対して、前記積層体を二次元的に移動させて、前記積層体を切断するように構成されている。
本発明の好ましい実施態様においては、前記積層体が、それぞれが、少なくとも、陽極と、絶縁体層または誘電体層と、陰極とを含む複数の積層体ユニットが積層されて構成されている。
本明細書において、積層体ユニットとは、少なくとも、陽極と、絶縁体層または誘電体層と、陰極とを含む積層体を指し、機能的な最小単位をいう。
本発明の好ましい実施態様によれば、複数の積層体ユニットが積層された構造を有する積層体を、同時に切断して、所定のサイズを有する積層体部品を製造することができるから、効率的に、複数の積層体ユニットが積層された構造を有する電気化学素子を製造することが可能になる。
本発明のさらに好ましい実施態様においては、前記積層体が、それぞれが、少なくとも、陽極と、絶縁体層と、陰極とを含む複数の積層体ユニットが、セパレータを介して、積層されて構成されている。
本発明のさらに好ましい実施態様によれば、複数の積層体ユニットが、セパレータを介して、積層された構造を有する積層体を、同時に切断して、所定のサイズを有する積層体部品を製造することができるから、効率的に、複数の積層体ユニットが積層された構造を有する電気二重層キャパシタを製造することが可能になる。
本発明の前記目的はまた、YVOレーザを発するレーザ光源と、少なくとも、陽極と、絶縁体層または誘電体層と、陰極とを含む積層体と前記レーザ光源とを、前記積層体の表面に沿って、相対的に移動させる第一の移動機構と、前記積層体と前記レーザ光源とを、前記積層体の厚さ方向に、相対的に移動させる第二の移動機構と、前記YVOレーザが、前記積層体に照射される位置の近傍に配置された集塵装置および/またはエアブロー装置とを備えたことを特徴とする電気化学素子の製造装置によって達成される。
本発明によれば、電気化学素子の製造装置は、パワーが小さいYVOレーザを発するレーザ光源と、少なくとも、陽極と、絶縁体層または誘電体層と、陰極とを含む積層体とレーザ光源とを、積層体の厚さ方向に、相対的に移動させる第二の移動機構を備えているから、積層体のYVOレーザが照射された部分が過度に熱せられることを防止することができ、さらに、YVOレーザを発するレーザ光源と積層体との相対的な位置関係を、積層体の厚さ方向に変化させて、YVOレーザを積層体に照射することができ、したがって、YVOレーザを用いて、積層体を、所望のように切断することが可能になる。
また、本発明によれば、電気化学素子の製造装置は、レーザ光源と積層体とを、積層体の表面に沿って、相対的に移動させる第一の移動機構を備えているから、YVOレーザを用いて、積層体を、所望のように切断して、所定のサイズを有する積層体部品を作製することができ、信頼性が高い電気化学素子を、効率的に、かつ、高い歩留まりで製造することが可能になる。
さらに、本発明によれば、電気化学素子の製造装置は、YVOレーザが、積層体に照射される位置の近傍に配置された集塵装置および/またはエアブロー装置を備えているから、YVOレーザによって、積層体を切断したときに生じる微粉やガスを、積層体の切断部から速やかに除去することができ、したがって、積層体の切断によって発生した微粉が、電気化学素子に短絡を生じさせることを確実に防止して、信頼性が高い電気化学素子を、高い歩留まりで製造することが可能になる。
本発明の好ましい実施態様においては、前記第二の移動機構が、前記レーザ光源と前記積層体との相対的な位置関係を、100μmないし500μmづつ、前記積層体の厚さ方向に間欠的に変化させるように構成されている。
本発明のさらに好ましい実施態様においては、前記第二の移動機構が、前記レーザ光源と前記積層体との相対的な位置関係を、100μmないし300μmづつ、前記積層体の厚さ方向に間欠的に変化させるように構成されている。
本発明のさらに好ましい実施態様においては、前記第二の移動機構が、前記積層体の位置を、前記積層体の厚さ方向に変化させるように構成されている。
本発明の別の好ましい実施態様においては、前記第二の移動機構が、前記レーザ光源の位置を、前記積層体の厚さ方向に変化させるように構成されている。
本発明の好ましい実施態様においては、前記積層体が長尺状をなし、前記移動機構が、長尺状の前記積層体を搬送する積層体搬送機構と、前記YVOレーザの走査機構とによって構成されている。
本発明の別の好ましい実施態様においては、前記積層体が所定のサイズを有するシート状をなし、電気化学素子の製造装置が、さらに、前記積層体を支持する支持テーブルを備え、前記移動機構が、前記支持テーブルを三次元的に移動させるテーブル移動機構によって構成されている。
本発明によれば、少なくとも、陽極と、絶縁体層または誘電体層と、陰極とを含む積層体を、所望のように切断して、所定のサイズを有する積層体部品を作製することができ、信頼性が高い電気化学素子を、効率的に、かつ、高い歩留まりで製造することができる電気化学素子の製造方法および装置を提供することが可能になる。
以下、添付図面に基づいて、本発明の好ましい実施態様につき、詳細に説明を加える。
図1は、本発明の好ましい実施態様にかかる電気二重層キャパシタの製造装置によって製造される電気二重層キャパシタが構成要素して含む積層体ユニットの略断面図である。
積層体ユニット1は長尺状をなし、図1に示されるように、アノード電極用シート2と、カソード電極用シート3が、セパレータ4を介して、貼り合わされている。
アノード電極用シート2は、アルミニウムによって形成された集電体シート10と、集電体シート10の両面に塗布されたアンダーコート層11a、11bと、アンダーコート層11aの表面に塗布されたカーボン材料を含む多孔質層12aと、アンダーコート層11bの表面に塗布されたカーボン材料を含む多孔質層12bとを含んでいる。
アノード電極用シート2は、たとえば、200μmないし300μmの厚さを有している。
図1に示されるように、カソード電極用シート3は、アノード電極用シート2と同様に構成され、アルミニウムによって形成された集電体シート15と、集電体シート15の両面に塗布されたアンダーコート層16a、16bと、一方のアンダーコート層16aの表面に塗布されたカーボン材料を含む多孔質層17aと、他方のアンダーコート層16bの表面に塗布されたカーボン材料を含む多孔質層17bとを含んでいる。
カソード電極用シート3は、たとえば、200μmないし300μmの厚さを有している。
セパレータ4は、たとえば、20μmないし30μmの厚さを有している。
したがって、積層体ユニット1は、たとえば、420μmないし630μmの厚さを有している。
図2は、図1に示された積層体ユニット1の矢印Aの方向から見た略平面図であり、図3は、図1に示された積層体ユニット1の矢印Bの方向から見た略平面図である。
図2に示されるように、アノード電極用シート2の集電体シート10の一方の表面には、長手方向一縁部近傍を除き、アンダーコート層11aおよび多孔質層12aが形成され、図2には図示されていないが、アノード電極用シート2の集電体シート10の他方の表面にも、長手方向一縁部近傍を除き、アンダーコート層11bおよび多孔質層12bが形成されている。
図3に示されるように、カソード電極用シート3の集電体シート15の一方の表面には、長手方向一縁部近傍を除き、アンダーコート層16aおよび多孔質層17aが形成され、図3には図示されていないが、カソード電極用シート3の集電体シート15の他方の表面にも、長手方向一縁部近傍を除き、アンダーコート層16bおよび多孔質層17bが形成されている。
図2に示されるように、アノード電極用シート2には、規則的に、開口部13が形成され、図3に示されるように、カソード電極用シート3には、規則的に、開口部18が形成されている。
図2および図3に示されるように、アノード電極用シート2の開口部13と、カソード電極用シート3の開口部18は、それぞれのリードに相当する部分の幅だけ、オフセットされた位置に形成されている。
アノード電極用シート2の開口部13およびカソード電極用シート3の開口部18は、打抜き加工によって、形成されてもよいが、後述する電気化学キャパシタの製造装置を用いて、YVOレーザによって、形成されることが好ましい。
また、図2および図3には示されていないが、セパレータ4の一縁部は、アノード電極用シート2の開口部13およびカソード電極用シート3の開口部18内に位置しており、アノード電極用シート2とカソード電極用シート3とが、セパレータ4によって、絶縁されている。
図4は、本発明の好ましい実施態様にかかる電気二重層キャパシタの製造装置によって、作製されるべき電気二重層キャパシタ用の積層体部品の略断面図であり、図5は、その略平面図である。
図4に示されるように、本発明の好ましい実施態様にかかる電気二重層キャパシタの製造装置によって、作製されるべき電気二重層キャパシタ用の積層体部品5は、3枚の積層体ユニット1が、セパレータ4を介して、互いに積層された構造を有し、図5に示されるように、各積層体ユニット1を構成するアノード電極用シート2の集電体シート10の多孔質層12が形成されていない部分が、リード6として機能する略矩形状の部分を残して、切断され、カソード電極用シート3の集電体シート15の多孔質層17が形成されていない部分が、リード6として機能する略矩形状の部分を残して、切断されて、積層体部品5が作製される。
図6は、本発明の好ましい実施態様にかかる電気二重層キャパシタの製造装置の略断面図である。
本実施態様にかかる電気二重層キャパシタの製造装置は、セパレータ4を介して、3枚の長尺状の積層体ユニット1が積層された構造を有する積層体7を切断して、所定の形状を有する電気二重層キャパシタ用の積層体部品5を作製可能に構成されており、図6に示されるように、その上面で、積層体ユニット1を支持する支持テーブル20と、支持テーブル20の上方に配置され、支持テーブル20に向けて、YVOレーザ21を発するレーザ光源22と、fθレンズ23と、支持テーブル20に向けて、エアを放出するエアブロー装置24とを備えている。本実施態様において、fθレンズ23は、その角度が制御可能に構成されている。
本実施態様においては、セパレータ4を介して、3枚の長尺状の積層体ユニット1が積層された構造を有する積層体7の切断にあたり、積層体7は静止状態に保持され、YVOレーザ21が、作製すべき積層体部品5の縁部に対応する部分に沿って、積層体7に照射されるように、レーザ光源22が走査機構(図示せず)によって走査されるように構成されている。
支持テーブル20のYVOレーザ21が照射される部分には、YVOレーザ21が透過する空隙部が形成されている。図6においては、空隙部は、参照番号25aおよび25bによって示されているが、本実施態様においては、作製すべき積層体部品5の縁部に対応する積層体7の部分に沿って、YVOレーザ21が照射されるから、空隙部25a、25bは、支持テーブル20に、枠状に形成されている。
また、図6に示されるように、支持テーブル20に形成された空隙部25a、25b内には、それぞれ、集塵装置(図示せず)の集塵ノズル26a、26bが配置されている。図6においては、2つの集塵ノズル26a、26bのみが図示されているが、前述のように、支持テーブル20には、空隙部25a、25bが枠状に形成されているから、作製すべき積層体部品5の縁部に対応して形成された空隙部内に、それぞれ、1つの集塵ノズル26a、26bが配置されている。
積層体7は、たとえば、カソード電極用シート3上に、、セパレータ4、アノード電極用シート2、セパレータ4、カソード電極用シート3、セパレータ4、アノード電極用シート2、セパレータ4、カソード電極用シート3、セパレータ4およびアノード電極用シート2を、順次、積層して、作製されている。
図7は、図6に示された電気二重層キャパシタの製造装置の制御系、駆動系および入力系を示すブロックダイアグラムである。
図7に示されるように、本実施態様にかかる電気二重層キャパシタの製造装置の制御系は、電気二重層キャパシタの製造装置全体の動作を制御するコントローラ40を備えている。
また、電気二重層キャパシタの製造装置の駆動系は、YVOレーザ21が、作製すべき積層体部品5の縁部に対応する部分に沿って、セパレータ4を介して、3枚の長尺状の積層体ユニット1が積層された構造を有する積層体7に照射されるように、レーザ光源22を走査する走査機構41と、支持テーブル20を、レーザ光源22に対して、昇降させるテーブル昇降機構42と、長尺状の積層体7を繰り出す繰り出しローラ27と、長尺状の積層体7を巻き取る巻き取りローラ30とを備え、電気二重層キャパシタの製造装置の入力系は、キーボード43を備えている。
以上のように構成された本実施態様にかかる電気二重層キャパシタの製造装置は、以下のようにして、セパレータ4を介して、3枚の長尺状の積層体ユニット1が積層された構造を有する積層体7を切断して、所定のサイズを有する積層体部品5を作製する。
まず、ユーザーによって、セパレータ4を介して、3枚の長尺状の積層体ユニット1が積層された構造を有する積層体7が、多孔質層12aが上を向くように、繰り出しローラ27から繰り出され、積層体7の切断されるべき部分が、支持テーブル20の空隙部25a、25b上に位置するまで、積層体7が、巻き取りローラ30によって巻き取られる。
次いで、ユーザーによって、キーボード43に、作製すべき積層体部品5のサイズおよび厚さを示す切断データが入力され、スタート信号が入力される。
キーボード43に入力された切断データとスタート信号は、コントローラ40に出力され、コントローラ40は、切断データとスタート信号が入力されると、切断データにしたがって、テーブル昇降機構42に第一の位置決め信号を出力する。
第一の位置決め信号を受けると、テーブル昇降機構42は、レーザ光源22から発せられたYVOレーザ21が、セパレータ4を介して、3枚の長尺状の積層体ユニット1が積層された構造を有する積層体7の上表面からの距離が第一の距離に等しい位置、たとえば、積層体7の上表面からの距離が100μmに等しい第一のフォーカス位置にフォーカスされるように、支持テーブル20を、レーザ光源22に対して昇降させて、位置決めする。
次いで、コントローラ40は、レーザ光源22に駆動信号を出力して、レーザ光源22をオンさせるとともに、走査機構41に、走査信号を出力して、第一のフォーカス位置にフォーカスされたYVOレーザ21を、初期位置から、作製すべき積層体部品5の縁部に沿って、積層体7上を移動させる。
ここに、積層体部品5の縁部が、積層体7の表面に対して、ほぼ90°の角度を有するように切断されるように、積層体7に照射されたYVOレーザ21のビーム断面と、作製すべき積層体部品5の縁部に対応する積層体7の部分とが交わる角度がほぼ90°になるように、fθレンズ23の角度が調整されることが好ましい。
その結果、セパレータ4を介して、3枚の長尺状の積層体ユニット1が積層された構造を有する積層体7の第一のフォーカス位置にフォーカスされたYVOレーザ21が照射された部分が加熱されて、溶融される。
本実施態様においては、パワーの小さいYVOレーザ21が用いられているため、第一のフォーカス位置から、セパレータ4を介して、3枚の長尺状の積層体ユニット1が積層された構造を有する積層体7の厚さ方向に±100μmないし250μmの範囲に位置する部分のみが溶融され、YVOレーザ21によって、切断される。
この際、積層体7の切断にともなって、微粉やガスが発生するが、本実施態様においては、エアブロアー装置34が設けられているから、YVOレーザ21によって、積層体7を切断したときに発生した微粉やガスを、積層体7の切断部から速やかに除去することができ、また、支持テーブル20の各空隙部内に、それぞれ、1つの集塵ノズル26a、26bが配置されているから、YVOレーザ21によって、積層体7を切断したときに発生した微粉やガスを、積層体7の切断部から速やかに除去することができ、したがって、積層体7を切断した際に発生した微粉によって、電気二重層キャパシタに短絡が生じることを、確実に防止することが可能になる。
作製すべき積層体部品5の縁部に沿って、セパレータ4を介して、3枚の長尺状の積層体ユニット1が積層された構造を有する積層体7上を、第一のフォーカス位置にフォーカスされたYVOレーザ21が移動された結果、YVOレーザ21が初期位置に復帰すると、コントローラ40は、レーザ光源22に駆動停止信号を出力して、レーザ光源22をオフさせるとともに、テーブル昇降機構42に、第二の位置決め信号を出力する。
第二の位置決め信号を受けると、テーブル昇降機構42は、レーザ光源22から発せられたYVOレーザ21が、セパレータ4を介して、3枚の長尺状の積層体ユニット1が積層された構造を有する積層体7の厚さ方向に、第一のフォーカス位置からの距離が単位移動距離、たとえば、200μmに等しい第二のフォーカス位置に、フォーカスされるように、すなわち、積層体7の上表面からの距離が300μmに等しい第二のフォーカス位置に、フォーカスされるように、支持テーブル20を、レーザ光源22に対して昇降させて、位置決めする。
次いで、コントローラ40は、レーザ光源22に駆動信号を出力して、レーザ光源22をオンさせるとともに、走査機構41に、走査信号を出力して、作製すべき積層体部品5の縁部に沿って、積層体7上を、第二のフォーカス位置にフォーカスされたYVOレーザ21を移動させる。
その結果、第二のフォーカス位置から、セパレータ4を介して、3枚の長尺状の積層体ユニット1が積層された構造を有する積層体7の厚さ方向に±100μmないし250μmの範囲に位置する部分のみが溶融され、YVOレーザ21によって、切断される。
作製すべき積層体部品5の縁部に沿って、積層体7上を、第二のフォーカス位置にフォーカスされたYVOレーザ21が移動された結果、YVOレーザ21が初期位置に復帰すると、コントローラ40は、レーザ光源22に駆動停止信号を出力して、レーザ光源22をオフさせるとともに、テーブル昇降機構42に、第三の位置決め信号を出力する。
第三の位置決め信号を受けると、テーブル昇降機構42は、レーザ光源22から発せられたYVOレーザ21が、セパレータ4を介して、3枚の長尺状の積層体ユニット1が積層された構造を有する積層体7の厚さ方向に、第二のフォーカス位置からの距離が単位移動距離、たとえば、200μmに等しい第三のフォーカス位置に、フォーカスされるように、すなわち、積層体7の上表面からの距離が500μmに等しい第三のフォーカス位置に、フォーカスされるように、支持テーブル20を、レーザ光源22に対して昇降させて、位置決めする。
次いで、コントローラ40は、レーザ光源22に駆動信号を出力して、レーザ光源22をオンさせるとともに、走査機構41に、走査信号を出力して、作製すべき積層体部品5の縁部に沿って、積層体7上を、YVOレーザ21を移動させる。
その結果、第三のフォーカス位置から、セパレータ4を介して、3枚の長尺状の積層体ユニット1が積層された構造を有する積層体7の厚さ方向に±100μmないし250μmの範囲に位置する部分のみが溶融され、YVOレーザ21によって、切断される。
同様にして、作製すべき積層体部品5の縁部に沿って、積層体7上を、YVOレーザ21が移動され、YVOレーザ21が初期位置に復帰するたびに、レーザ光源22から発せられたYVOレーザ21が、セパレータ4を介して、3枚の長尺状の積層体ユニット1が積層された構造を有する積層体7の厚さ方向に、単位移動距離、たとえば、200μmづつ、レーザ光源22から離れた位置に、フォーカスされるように、テーブル昇降機構42によって、支持テーブル20が位置決めされて、YVOレーザ21が、作製すべき積層体部品5の縁部に沿って、積層体7上を走査され、セパレータ4を介して、3枚の長尺状の積層体ユニット1が積層された構造を有する積層体7がその厚さ方向に、少しづつ、切断される。
こうして、セパレータ4を介して、3枚の長尺状の積層体ユニット1が積層された構造を有する積層体7が、所定のサイズに切断されて、積層体部品5が作製されると、コントローラ40は、繰り出しローラ27および巻き取りローラ30に、それぞれ、駆動信号を出力して、積層体7を、支持テーブル20上で、1ピッチに相当する距離だけ、移動させる。
その結果、次の積層体部品5が切り出されるべき積層体7の部分が、支持テーブル20の空隙部25a、25b上に位置決めされる。
ここに、1ピッチの長さは、積層体7の搬送方向における積層体部品5の長さよりもわずかに大きくなるように設定される。
セパレータ4を介して、長尺状の積層体ユニット1が積層された構造を有する積層体7の厚さがある厚さを越えると、打抜き加工によって、切断するためには、金型から、積層体7に大きな剪断力を加えることが必要になるため、切断面にばりや歪みが発生し、電気二重層キャパシタを作製したときに、短絡の原因になって、電気二重層キャパシタとしての電気的特性を得ることができなくなるという問題があり、その一方で、従来、レーザ切断に広く用いられているYAGレーザは、そのパワーが大きすぎるため、セパレータ4を介して、長尺状の積層体ユニット1が積層された構造を有する積層体7のレーザビームが照射された部分が過度に熱せられて、溶けてしまい、電気二重層キャパシタを作製したときに、短絡の原因になって、電気二重層キャパシタとしての電気的特性を得ることができなくなるという問題があったが、本実施態様によれば、重ね合わされた3枚の積層体ユニット1は、パワーの低いYVOレーザ21によって、セパレータ4を介して、長尺状の積層体ユニット1が積層された構造を有する積層体7がその厚さ方向に、少しづつ、切断されるように構成されているから、セパレータ4を介して、長尺状の積層体ユニット1が積層された構造を有する積層体7の厚さが、たとえば、3mm程度になっても、所望のように、セパレータ4を介して、長尺状の積層体ユニット1が積層された構造を有する積層体7を切断して、積層体部品5を作製することができ、したがって、信頼性が高い電気二重層キャパシタを、高い歩留まりで製造することが可能になる。
また、本実施態様によれば、支持テーブル20の各空隙部内に、それぞれ、1つの集塵ノズル26a、26bが配置されているから、YVOレーザ21によって、積層体7を切断したときに発生した微粉やガスを、集塵ノズル26a、26bによって回収することができ、したがって、YVOレーザ21によって、積層体7を切断したときに発生した微粉やガスを、積層体7の切断部から速やかに除去することが可能になるから、YVOレーザ21によって、積層体7を切断したときに発生した微粉によって、電気二重層キャパシタに短絡が生じることを、確実に防止することが可能になる。
さらに、本実施態様によれば、次の積層体部品5を作製するために、セパレータ4を介して、3枚の長尺状の積層体ユニット1が積層された構造を有する積層体7を移動させる距離を、積層体7の搬送方向における積層体部品5の長さよりもわずかに大きくなるように設定すればよく、材料の歩留まりを向上させることが可能になる。
図8は、本発明の別の好ましい実施態様にかかる電気二重層キャパシタの製造装置の略断面図である。
本実施態様にかかる電気二重層キャパシタの製造装置は、セパレータ4を介して、3枚の長尺状の積層体ユニット1が積層された構造を有する積層体7を、所定の長さを有するように裁断して作製したセパレータ4を介して、3枚の積層体ユニット1が積層された構造を有するシート状の積層体7を切断して、所定の形状の積層体部品5を作製可能に構成されており、図8に示されるように、その上面で、セパレータ4を介して、3枚の積層体ユニット1が積層された構造を有するシート状の積層体7を支持する支持テーブル50と、支持テーブル50の上方に配置され、支持テーブル50に向けて、YVOレーザ51を発するレーザ光源52と、fθレンズ53と、支持テーブル50に向けて、エアを放出するエアブロー装置54とを備えている。本実施態様において、fθレンズ53は、その角度が制御可能に構成されている。
本実施態様においては、支持テーブル50は、数値制御されたテーブル移動機構(図示せず)により、略水平面内において、移動可能に構成されており、一方、レーザ光源52は静止状態に保持されている。
上述のように、本実施態様にかかる電気二重層キャパシタの製造装置は、セパレータ4を介して、3枚の積層体ユニット1が積層された構造を有するシート状の積層体7を、所定のサイズに切断して、図4および図5に示される積層体部品5を作製可能に構成されており、したがって、支持テーブル50は、YVOレーザ51が、図4および図5に示される作製すべき積層体部品5の縁部に対応する部分に沿って、セパレータ4を介して、3枚の積層体ユニット1が積層された構造を有するシート状の積層体7に照射される。
支持テーブル50のYVOレーザ51が照射される部分には、YVOレーザ51が透過する空隙部が形成されている。図8においては、空隙部は、参照番号55aおよび55bによって示されているが、本実施態様においては、図4および図5に示される作製すべき積層体部品5の縁部に対応する部分に沿って、YVOレーザ51が照射されるから、空隙部55a、55bは、支持テーブル50に、枠状に形成されている。
また、図8に示されるように、支持テーブル50に形成された空隙部55a、55b内には、それぞれ、集塵装置(図示せず)の集塵ノズル56a、56bが配置されている。図8においては、2つの集塵ノズル56a、56bのみが図示されているが、前述のように、支持テーブル50には、空隙部55a、55bが枠状に形成されているから、作製すべき積層体部品5の各縁部に対応して形成された空隙部内に、それぞれ、1つの集塵ノズル56a、56bが配置されている。
図9は、図8に示された電気二重層キャパシタの製造装置の制御系、駆動系および入力系を示すブロックダイアグラムである。
図9に示されるように、本実施態様にかかる電気二重層キャパシタの製造装置の制御系は、電気二重層キャパシタの製造装置全体の動作を制御するコントローラ60を備えている。
また、電気二重層キャパシタの製造装置の駆動系は、支持テーブル50を、略水平面内において、二次元的に移動させるテーブル移動機構61と、支持テーブル50を、レーザ光源52に対して、昇降させるテーブル昇降機構62を備え、電気二重層キャパシタの製造装置の入力系は、キーボード63を備えている。
以上のように構成された本実施態様にかかる電気二重層キャパシタの製造装置は、以下のようにして、セパレータ4を介して、3枚の積層体ユニット1が積層された構造を有するシート状の積層体7を切断して、所定のサイズを有する積層体部品5を作製する。
まず、ユーザーによって、多孔質層12aが上を向くように、セパレータ4を介して、3枚の積層体ユニット1が積層された構造を有するシート状の積層体7が、支持テーブル50上にセットされる。
次いで、ユーザーによって、キーボード63に、作製すべき積層体部品5のサイズおよび厚さを示す切断データが入力され、スタート信号が入力される。
キーボード63に入力された切断データとスタート信号は、コントローラ60に出力され、コントローラ60は、切断データとスタート信号が入力されると、切断データにしたがって、テーブル昇降機構62に第一の位置決め信号を出力する
第一の位置決め信号を受けると、テーブル昇降機構62は、レーザ光源52から発せられたYVOレーザ51が、セパレータ4を介して、3枚の積層体ユニット1が積層された構造を有するシート状の積層体7の上表面からの距離が第一の距離に等しい位置、たとえば、積層体7の上表面からの距離が100μmに等しい第一のフォーカス位置にフォーカスされるように、支持テーブル50を、レーザ光源52に対して昇降させて、位置決めする。
次いで、コントローラ60は、レーザ光源52に駆動信号を出力して、レーザ光源52をオンさせるとともに、テーブル移動機構61に、駆動信号を出力して、第一のフォーカス位置にフォーカスされたYVOレーザ51が、積層体7の作製すべき積層体部品5の縁部に対応する部分に沿って、相対的に移動するように、支持テーブル50を、初期位置から、移動させる。
ここに、積層体部品5の縁部が、積層体7の表面に対して、ほぼ90°の角度を有するように切断されるように、積層体7に照射されたYVOレーザ51のビーム断面と、作製すべき積層体部品5の縁部に対応する積層体7の部分とが交わる角度がほぼ90°になるように、fθレンズ53の角度が調整されることが好ましい。
その結果、セパレータ4を介して、3枚の積層体ユニット1が積層された構造を有するシート状の積層体7の第一のフォーカス位置にフォーカスされたYVOレーザ21が照射された部分が加熱されて、溶融される。
本実施態様においては、パワーの小さいYVOレーザ21が用いられているため、第一のフォーカス位置から、セパレータ4を介して、3枚の積層体ユニット1が積層された構造を有するシート状の積層体7の厚さ方向に±100μmないし250μmの範囲に位置する部分のみが溶融され、YVOレーザ51によって、切断される。
この際、積層体7の切断にともなって、微粉やガスが発生するが、本実施態様においては、エアブロアー装置54が設けられているから、YVOレーザ51によって、積層体7を切断したときに発生した微粉やガスを、積層体7の切断部から速やかに除去することができ、また、支持テーブル50の各空隙部内に、それぞれ、1つの集塵ノズル56a、56bが配置されているから、YVOレーザ51によって、積層体7を切断したときに発生した微粉やガスを、積層体7の切断部から速やかに除去することができ、したがって、積層体7を切断した際に発生した微粉によって、電気二重層キャパシタに短絡が生じることを、確実に防止することが可能になる。
作製すべき積層体部品5の縁部に沿って、積層体7上を、第一のフォーカス位置にフォーカスされたYVOレーザ51が移動するように、支持テーブル50を移動させた結果、支持テーブル50が初期位置に復帰すると、コントローラ60は、テーブル移動機構61およびレーザ光源52に駆動停止信号を出力して、支持テーブル50を停止させ、レーザ光源52をオフさせるとともに、テーブル昇降機構42に、第二の位置決め信号を出力する。
第二の位置決め信号を受けると、テーブル昇降機構62は、レーザ光源52から発せられたYVOレーザ51が、セパレータ4を介して、3枚の積層体ユニット1が積層された構造を有するシート状の積層体7の厚さ方向に、第一のフォーカス位置からの距離が単位移動距離、たとえば、200μmに等しい第二のフォーカス位置に、フォーカスされるように、すなわち、積層体7の上表面からの距離が300μmに等しい第二のフォーカス位置に、フォーカスされるように、支持テーブル50を、レーザ光源52に対して昇降させて、位置決めする。
次いで、コントローラ60は、レーザ光源52に駆動信号を出力して、レーザ光源52をオンさせるとともに、テーブル移動機構61に、駆動信号を出力して、第二のフォーカス位置にフォーカスされたYVOレーザ51が、積層体7の作製すべき積層体部品5の縁部に対応する部分に沿って、相対的に移動するように、支持テーブル50を、初期位置から、移動させる。
その結果、第二のフォーカス位置から、セパレータ4を介して、3枚の積層体ユニット1が積層された構造を有するシート状の積層体7の厚さ方向に±100μmないし250μmの範囲に位置する部分のみが溶融され、YVOレーザ51によって、切断される。
作製すべき積層体部品5の縁部に沿って、積層体7上を、第一のフォーカス位置にフォーカスされたYVOレーザ51が移動するように、支持テーブル50を移動させた結果、支持テーブル50が初期位置に復帰すると、コントローラ60は、テーブル移動機構61およびレーザ光源52に駆動停止信号を出力して、支持テーブル50を停止させ、レーザ光源52をオフさせるとともに、テーブル昇降機構42に、第三の位置決め信号を出力する。
第三の位置決め信号を受けると、テーブル昇降機構62は、レーザ光源52から発せられたYVOレーザ51が、セパレータ4を介して、3枚の積層体ユニット1が積層された構造を有するシート状の積層体7の厚さ方向に、第二のフォーカス位置からの距離が単位移動距離、たとえば、200μmに等しい第三のフォーカス位置に、フォーカスされるように、すなわち、積層体7の上表面からの距離が500μmに等しい第三のフォーカス位置に、フォーカスされるように、支持テーブル50を、レーザ光源52に対して昇降させて、位置決めする。
次いで、コントローラ60は、レーザ光源52に駆動信号を出力して、レーザ光源52をオンさせるとともに、テーブル移動機構61に、駆動信号を出力して、第三のフォーカス位置にフォーカスされたYVOレーザ51が、積層体7の作製すべき積層体部品5の縁部に対応する部分に沿って、相対的に移動するように、支持テーブル50を、初期位置から、移動させる。
その結果、第三のフォーカス位置から、セパレータ4を介して、3枚の積層体ユニット1が積層された構造を有するシート状の積層体7の厚さ方向に±100μmないし250μmの範囲に位置する部分のみが溶融され、YVOレーザ51によって、切断される。
同様にして、作製すべき積層体部品5の縁部に沿って、積層体7上を、YVOレーザ51が移動され、支持テーブル50が初期位置に復帰するたびに、レーザ光源52から発せられたYVOレーザ51が、セパレータ4を介して、3枚の積層体ユニット1が積層された構造を有するシート状の積層体7の厚さ方向に、単位移動距離、たとえば、200μmづつ、レーザ光源22から離れた位置に、フォーカスされるように、テーブル昇降機構62によって、支持テーブル50が位置決めされて、YVOレーザ51が、作製すべき積層体部品5の縁部に沿って、積層体7上を走査され、セパレータ4を介して、3枚の積層体ユニット1が積層された構造を有するシート状の積層体7がその厚さ方向に、少しづつ、切断される。
その結果、セパレータ4を介して、3枚の積層体ユニット1が積層された構造を有するシート状の積層体7が、所定のサイズに切断されて、積層体部品5が作製されると、コントローラ60は、レーザ光源52に駆動停止信号を出力して、レーザ光源52をオフするとともに、テーブル移動機構61に駆動停止信号を出力して、支持テーブル50の作動を停止させ、積層体7の切断操作を完了させる。
セパレータ4を介して、積層体ユニット1が積層された構造を有するシート状の積層体7の厚さがある厚さを越えると、打抜き加工によって、切断するためには、金型から、積層体7に大きな剪断力を加えることが必要になるため、切断面にばりや歪みが発生し、電気二重層キャパシタを作製したときに、短絡の原因になって、電気二重層キャパシタとしての電気的特性を得ることができなくなるという問題があり、その一方で、従来、レーザ切断に広く用いられているYAGレーザは、そのパワーが大きすぎるため、セパレータ4を介して、積層体ユニット1が積層された構造を有するシート状の積層体7のレーザビームが照射された部分が過度に熱せられて、溶けてしまい、電気二重層キャパシタを作製したときに、短絡の原因になって、電気二重層キャパシタとしての電気的特性を得ることができなくなるという問題があったが、本実施態様によれば、積層体7は、パワーの低いYVOレーザ51によって、セパレータ4を介して、積層体ユニット1が積層された構造を有するシート状の積層体7がその厚さ方向に、少しづつ、切断されるように構成されているから、セパレータ4を介して、積層体ユニット1が積層された構造を有するシート状の積層体7の厚さが、たとえば、3mm程度になっても、所望のように、積層体7を切断して、積層体部品5を作製することができ、したがって、信頼性が高い電気二重層キャパシタを、高い歩留まりで製造することが可能になる。
また、本実施態様によれば、支持テーブル50の各空隙部内に、それぞれ、1つの集塵ノズル56a、56bが配置されているから、YVOレーザ51によって、積層体7を切断したときに発生した微粉やガスを、集塵ノズル56a、56bによって回収することができ、したがって、YVOレーザ51によって、積層体7を切断したときに発生した微粉やガスを、積層体7の切断部から速やかに除去することが可能になるから、YVOレーザ51によって、積層体7を切断したときに発生した微粉によって、電気二重層キャパシタに短絡が生じることを、確実に防止することが可能になる。
本発明は、以上の実施態様に限定されることなく、特許請求の範囲に記載された発明の範囲内で種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることはいうまでもない。
たとえば、前記実施態様においては、電気二重層キャパシタの製造装置は、エアブロー装置24、54および集塵ノズル26a、26b、56a、56bを備えているが、エアブロー装置24、54および集塵ノズル26a、26b、56a、56bの双方を備えていることは必ずしも必要でなく、エアブロー装置24、54あるいは集塵ノズル26a、26b、56a、56bを備えていればよい。
さらに、図6および図7に示された実施態様においては、YVOレーザ21が初期位置に復帰するたびに、レーザ光源22をオフさせ、図8および図9に示された実施態様においては、支持テーブル50が初期位置に復帰するたびに、レーザ光源52をオフさせているが、レーザ光源22、52をオフさせることは必ずしも必要でない。
また、図6および図7に示された実施態様においては、1ピッチの長さが、積層体7の搬送方向における積層体部品5の長さよりもわずかに大きくなるように設定されているが、1ピッチの長さは、積層体7の搬送方向における積層体部品5の長さ以上に設定されていればよい。
さらに、前記実施態様においては、レーザ光源22、52に対して、支持テーブル20、50を昇降させて、YVOレーザ21、51のフォーカス位置を調整しているが、支持テーブル20、50に対して、レーザ光源22、52を昇降させて、YVOレーザ21、51のフォーカス位置を調整するようにしてもよい。
また、前記実施態様においては、YVOレーザ21、51のフォーカス位置の単位移動距離が、200μmに設定されているが、YVOレーザ21、51のフォーカス位置を、200μmづつ、移動させることは必ずしも必要でなく、100μmないし500μm、好ましくは、100μmないし300μmを単位移動距離として、YVOレーザ21、51のフォーカス位置を移動させればよい。
さらに、前記実施態様においては、アノード電極用シート2は、アルミニウムによって形成された集電体シート10と、集電体シート10の両面に塗布されたアンダーコート層11a、11bと、アンダーコート層11aの表面に塗布されたカーボン材料を含む多孔質層12aと、アンダーコート層11bの表面に塗布されたカーボン材料を含む多孔質層12bとを含み、カソード電極用シート3は、アルミニウムによって形成された集電体シート15と、集電体シート15の両面に塗布されたアンダーコート層16a、16bと、アンダーコート層16aの表面に塗布されたカーボン材料を含む多孔質層17aと、アンダーコート層16bの表面に塗布されたカーボン材料を含む多孔質層17bとを含んでいるが、アノード電極用シート2およびカソード電極用シート3が、それぞれ、集電体シート10、15の両面に、多孔質層12a、12b、17a、17bを備えていることは必ずしも必要でなく、少なくとも集電体シート10、15の一方の面に、多孔質層を備えていればよい。
また、図4および図5に示された積層体部品5は一例であり、積層体部品の形状はとくに限定されるものではない。
さらに、前記実施態様においては、セパレータ4を介して、3枚の積層体ユニット1が積層された構造を有する積層体7を切断するように構成されているが、積層体7が、3枚の積層体ユニット1が積層された構造を有していることは必ずしも必要でなく、積層体7は単一の積層体ユニット1によって構成されていても、積層体7は2枚あるいは4枚以上の積層体ユニット1が積層された構造を有していてもよい。
また、図6および図7に示された実施態様においては、たとえば、カソード電極用シート3上に、セパレータ4、アノード電極用シート2、セパレータ4、カソード電極用シート3、セパレータ4、アノード電極用シート2、セパレータ4、カソード電極用シート3、セパレータ4およびアノード電極用シート2を、順次、積層して、作製された積層体7が、繰り出しローラ27から、支持テーブル20上に、繰り出されるように構成されているが、あらかじめ、セパレータ4を介して、3枚の長尺状の積層体ユニット1を積層して、積層体7を作製しておき、積層体7を、繰り出しローラ27から、支持テーブル20上に、繰り出すことは必ずしも必要でなく、カソード電極用シート3、セパレータ4、アノード電極用シート2、セパレータ4、カソード電極用シート3、セパレータ4、アノード電極用シート2、セパレータ4、カソード電極用シート3、セパレータ4およびアノード電極用シート2を、それぞれ、別の繰り出しローラから、順次、繰り出し、これらを積層して、セパレータ4を介して、3枚の長尺状の積層体ユニット1が積層された構造を有する積層体7を作製し、支持テーブル20上に供給して、切断するように、構成することもできる。
さらに、前記実施態様においては、アノード電極用シート2と、カソード電極用シート3が、セパレータ4を介して、貼り合わされた積層体ユニット1を構成要素として含む電気二重層キャパシタ用の積層体7が切断されているが、電気二重層キャパシタ用の積層体7に代えて、少なくとも、陽極、誘電体層および陰極を含む積層体ユニットを構成要素として含む固体電解コンデンサ用の積層体を切断することもでき、本発明は、電気二重層キャパシタを製造する場合だけでなく、固体電解コンデンサ、電解コンデンサ、二次電池などの電気化学素子を製造する場合に、広く適用することができる。
図1は、本発明の好ましい実施態様にかかる電気二重層キャパシタの製造装置によって製造される電気二重層キャパシタが構成要素して含む積層体ユニットの略断面図である。 図2は、図1に示された積層体ユニットの矢印Aの方向から見た略平面図である。 図3は、図1に示された積層ユニットの矢印Bの方向から見た略平面図である。 図4は、本発明の好ましい実施態様にかかる電気二重層キャパシタの製造装置によって、作製されるべき積層体部品の略平面図である。 図5は、本発明の好ましい実施態様にかかる電気二重層キャパシタの製造装置によって、作製されるべき積層体部品の略平面図である。 図6は、本発明の好ましい実施態様にかかる電気二重層キャパシタの製造装置の略断面図である。 図7は、図6に示された電気二重層キャパシタの製造装置の制御系、駆動系および入力系を示すブロックダイアグラムである。 図8は、本発明の別の好ましい実施態様にかかる電気二重層キャパシタの製造装置の略断面図である。 図9は、図8に示された電気二重層キャパシタの製造装置の制御系、駆動系および入力系を示すブロックダイアグラムである。
符号の説明
1 積層体ユニット
2 アノード電極用シート
3 カソード電極用シート
4 セパレータ
5 積層体部品
6 リード
7 積層体
10 集電体シート
11a、11b アンダーコート層
12a、12b 多孔質層
13 開口部
15 集電体シート
16a、16b アンダーコート層
17a、17b 多孔質層
18 開口部
20 支持テーブル
21 YVOレーザ
22 レーザ光源
23 fθレンズ
24 エアブロー装置
25a、25b 空隙部
26a、26b 集塵ノズル
27 繰り出しローラ
30 巻き取りローラ
40 コントローラ
41 走査機構
42 テーブル昇降機構
43 キーボード
50 支持テーブル
51 YVOレーザ
52 レーザ光源
53 fθレンズ
54 エアブロー装置54
55a、55b 空隙部
56a、56b 集塵ノズル
60 コントローラ
61 テーブル移動機構
62 テーブル昇降機構
63 キーボード

Claims (6)

  1. 少なくとも、陽極と、絶縁体層または誘電体層と、陰極とを含む積層体に、レーザ光源から発せられるYVOレーザを照射し、前記積層体と前記YVOレーザを相対的に移動させて、前記積層体を切断し、所定のサイズを有する積層体部品を製造する電気化学素子の製造方法であって、前記レーザ光源と前記積層体との相対的な位置関係を、前記積層体の厚さ方向に変化させて、前記積層体を切断し、所定のサイズを有する積層体部品を製造することを特徴とする電気化学素子の製造方法。
  2. 前記レーザ光源と前記積層体との相対的な位置関係を、100μmないし500μmづつ、前記積層体の厚さ方向に間欠的に変化させて、前記積層体を切断し、所定のサイズを有する積層体部品を製造することを特徴とする請求項1に記載の電気化学素子の製造方法。
  3. 前記積層体が、それぞれが、少なくとも、陽極と、絶縁体層または誘電体層と、陰極とを含む複数の積層体ユニットが積層されて構成されたことを特徴とする請求項1または2に記載の電気化学素子の製造方法。
  4. 前記積層体が、それぞれが、少なくとも、陽極と、絶縁体層と、陰極とを含む複数の積層体ユニットが、セパレータを介して、積層されて構成されたことを特徴とする請求項3に記載の電気化学素子の製造方法。
  5. YVOレーザを発するレーザ光源と、少なくとも、陽極と、絶縁体層または誘電体層と、陰極とを含む積層体と前記レーザ光源とを、前記積層体の表面に沿って、相対的に移動させる第一の移動機構と、前記積層体と前記レーザ光源とを、前記積層体の厚さ方向に、相対的に移動させる第二の移動機構と、前記YVOレーザが、前記積層体に照射される位置の近傍に配置された集塵装置および/またはエアブロー装置とを備えたことを特徴とする電気化学素子の製造装置。
  6. 前記第二の移動機構が、前記レーザ光源と前記積層体との相対的な位置関係を、100μmないし500μmづつ、前記積層体の厚さ方向に間欠的に変化させるように構成されたことを特徴とする請求項5に記載の電気化学素子の製造装置。
JP2004234075A 2004-08-11 2004-08-11 電気化学素子の製造方法および装置 Withdrawn JP2006054281A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004234075A JP2006054281A (ja) 2004-08-11 2004-08-11 電気化学素子の製造方法および装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004234075A JP2006054281A (ja) 2004-08-11 2004-08-11 電気化学素子の製造方法および装置

Publications (1)

Publication Number Publication Date
JP2006054281A true JP2006054281A (ja) 2006-02-23

Family

ID=36031566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004234075A Withdrawn JP2006054281A (ja) 2004-08-11 2004-08-11 電気化学素子の製造方法および装置

Country Status (1)

Country Link
JP (1) JP2006054281A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101363816B1 (ko) 2011-04-14 2014-02-17 닛산 지도우샤 가부시키가이샤 전극 제조 방법 및 레이저 컷트 장치
JP2020098788A (ja) * 2011-09-30 2020-06-25 コーニング インコーポレイテッド リン酸リチウム金属を含んでなる微細加工電解質シート

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101363816B1 (ko) 2011-04-14 2014-02-17 닛산 지도우샤 가부시키가이샤 전극 제조 방법 및 레이저 컷트 장치
JP2020098788A (ja) * 2011-09-30 2020-06-25 コーニング インコーポレイテッド リン酸リチウム金属を含んでなる微細加工電解質シート
US11469446B2 (en) 2011-09-30 2022-10-11 Corning Incorporated Micromachined electrolyte sheet

Similar Documents

Publication Publication Date Title
US9227269B2 (en) Method for producing an energy cell and apparatus for carrying out same
CN112133881A (zh) 用于制造电池电极的方法
JP6297073B2 (ja) タブ形成方法とその装置
JP5685347B2 (ja) 電子部品の電極帯のレーザー光線による切断装置
JP2001053443A (ja) 電子回路基板の製造方法,電子回路基板の製造装置及び電子回路基板
JP6690486B2 (ja) 電極製造装置
JP2017098266A (ja) 電極体を製造する装置および方法
TWI626102B (zh) 原料卷之分割方法與其分割機構以及分割裝置
JP2014226706A (ja) レーザ切断装置およびレーザ切断方法
KR101586121B1 (ko) 전극 가이드를 포함하는 라미네이션 장치
WO2012053452A1 (ja) レーザ切断方法
JP2010528863A (ja) Ppシートのダイシング装置及びその方法
JP2020524081A (ja) 具体的にはバッテリの電極のための、リボンタイプの基体を別個の部片へと高スループットで切断するための方法およびデバイス
WO2017110246A1 (ja) 電極組立体及び蓄電装置の製造方法
JP2005340228A (ja) 電気化学素子の製造方法および装置
JP2006054281A (ja) 電気化学素子の製造方法および装置
JP2019139961A (ja) 積層電極体の製造装置
JP6848876B2 (ja) 電極シート製造装置、及び電極シートの製造方法
JP6834982B2 (ja) 電極組立体の製造方法
CN115483367A (zh) 用于制造电池电极的方法
JP2005199381A (ja) 打ち抜き加工方法及び打ち抜き装置
JP2008147470A (ja) 電子部品の製造方法とそれに用いる製造装置
JP2012114398A (ja) 薄膜太陽電池の製造方法、レーザ加工機、薄膜太陽電池製造装置
JP6841227B2 (ja) 電極組立体の製造方法及び電極組立体
KR102522756B1 (ko) 복수 레이저를 이용한 가공장치 및 방법

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071106