JP2006049703A - 荷電粒子線レンズアレイ、及び該荷電粒子線レンズアレイを用いた荷電粒子線露光装置 - Google Patents

荷電粒子線レンズアレイ、及び該荷電粒子線レンズアレイを用いた荷電粒子線露光装置 Download PDF

Info

Publication number
JP2006049703A
JP2006049703A JP2004230958A JP2004230958A JP2006049703A JP 2006049703 A JP2006049703 A JP 2006049703A JP 2004230958 A JP2004230958 A JP 2004230958A JP 2004230958 A JP2004230958 A JP 2004230958A JP 2006049703 A JP2006049703 A JP 2006049703A
Authority
JP
Japan
Prior art keywords
electrode
charged particle
particle beam
lens array
electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004230958A
Other languages
English (en)
Inventor
Futoshi Hirose
太 廣瀬
Haruto Ono
治人 小野
Kenichi Osanaga
兼一 長永
Yasuhiro Someta
恭宏 染田
Masato Muraki
真人 村木
Hiroya Ota
洋也 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Canon Inc
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Canon Inc, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2004230958A priority Critical patent/JP2006049703A/ja
Publication of JP2006049703A publication Critical patent/JP2006049703A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electron Beam Exposure (AREA)

Abstract

【課題】 クロストークが少なく、高電圧が印加可能な電子レンズアレイ及びその作製方法を提供する。
【解決手段】 複数の開口をそれぞれ有する上電極521、中電極522および下電極523を順に配置してなる荷電粒子線レンズアレイにおいて、上電極521と下電極523との間に複数の開口を有するシールド電極524,525が配置されている。前記シールド電極が電気的にフローティングであり、中電極522に電圧印加手段515が接続されている。
【選択図】 図1

Description

本発明は、電子ビーム等の荷電粒子線を用いた露光装置に用いられる荷電粒子線レンズの技術分野に属し、特に電子レンズをアレイ化した電子レンズアレイに関するものである。
半導体デバイスの生産において、電子ビーム露光技術は0.1μm以下の微細パターンの露光を可能とするリソグラフィの有力候補として脚光を浴びており、いくつかの方式がある。
その方式の一つに、マスクを用いずに複数本の電子ビームで同時にパターンを描画するマルチビーム型露光装置が有り、物理的なマスク作製や交換をなくし、実用化に向けて多くの利点を備えるものである。電子ビームをマルチ化する上で重要となるのが、これに使用する電子レンズのアレイ数である。マルチビーム型露光装置の内部に配置できる電子レンズのアレイ数によりビーム数が決まり、スループットを決定する大きな要因となる。このため電子レンズの性能を高めながら、かつ、如何に小型化できるかが、マルチビーム型露光装置の性能向上におけるカギのひとつとなる。
マルチビーム型露光装置に用いられる電子レンズアレイの例を示す特許文献として、特開2004−55166号公報(特許文献1)がある。図12はその電子レンズアレイ300の断面図である。ここで電子レンズアレイ300は、3枚の電極301をファイバ302とSi基板に形成された溝304とを用いてアライメントすることにより、アインツェルレンズのアレイとして開示している。ファイバ302と電子ビーム通過領域の間には導電性のシールド電極303が設けられ、ファイバ302のチャージアップを防ぐ構造となっている。作製はマイクロメカトロニクス技術を用いて行われる。また、該電子レンズアレイ300を用いたマルチビーム型露光装置を開示している。
また、他の電子レンズアレイの例を示す特許文献として、特開2001−345259号公報(特許文献2)がある。図13はその電子レンズアレイ400の断面図であり、401は電極、403はシールド電極を示している。ここでは電子レンズアレイ400は、各電子レンズ間に光軸に平行な方向にシールド電極403を設け、各ビーム間のクロストークを防ぐ構造を開示している。ここでも作製はマイクロメカトロニクス技術を用いて行われる。
特開2004−55166号公報 特開2001−345259号公報
しかしながら、従来の電子レンズアレイは以下の点で不十分であった。
ファイバとSi基板に形成された溝とによってアライメントを行うため、3枚の電極を近づけるには限界があった。そのため、印加する電圧が高くなり、装置が大掛かりになっていた。
従来例の後者に関しては、クロストークを防ぐためのシールドを設けているが、各電極間の電位勾配を均一にするものではなく、クロストークの低減には限界があると考えられる。
本発明は、マルチビーム型露光装置用の電子レンズアレイにおいて、従来のものにおける課題を解決し、クロストークが少なく、高電圧が印加可能な電子レンズアレイをより簡単な構成で提供することを目的とするものである。
上記目的を達成するために、本発明は、複数の開口をそれぞれ有する上電極、中電極および下電極を順に配置してなる荷電粒子線レンズアレイにおいて、複数の開口を有するシールド電極を、前記上電極と前記中電極の間および前記中電極と前記下電極の間のうち少なくとも一方に配置し、前記シールド電極は前記中電極と略同一形状をしていることを特徴としている。
本発明は、例えば、前記シールド電極が電気的にフローティングであることを特徴としてもよく、前記シールド電極に電圧印加手段が接続されていることを特徴としてもよく、前記中電極に電圧印加手段が接続されていることを特徴としてもよく、前記中電極が前記開口の列ごとに電気的に独立であることを特徴としてもよい。
また、本発明は、前記中電極と前記シールド電極との間隔が、前記中電極の開口のピッチの1/10以下であることを特徴としてもよく、前記上電極と前記中電極の間及び前記中電極と前記下電極の間のうち少なくとも一方に複数のシールド電極が配置されていることを特徴としてもよく、前記上電極と前記中電極と前記下電極と前記シールド電極とのいずれか2つの電極の間隔の中で、前記中電極と前記シールド電極の間隔が最も小さいことを特徴とすることもできる。
また、本発明に係る露光装置は、荷電粒子線を放射する荷電粒子源と、前記荷電粒子源の中間像を複数形成する上記記載の荷電粒子線レンズアレイを含む補正電子光学系と、前記複数の中間像を露光対象に縮小投影する投影電子光学系と、前記露光対象に投影される前記複数の中間像が露光対象上で移動するように偏向する偏向器とを有することを特徴としている。
また、本発明は、複数の開口をそれぞれ有する上電極、中電極および下電極を順に配置してなる荷電粒子線レンズアレイの作製方法において、複数の開口を有するシールド電極が、前記上電極と前記中電極の間および前記中電極と前記下電極の間のうち少なくとも一方に配置されており、前記上電極と前記中電極と前記下電極と前記シールド電極のうちのいずれか1つの電極をメッキ又は化学気相成長法を用いて形成する工程と、犠牲層エッチングを用いて複数の前記開口を形成する工程と、を含むことを特徴としてもよい。
また、本発明に係るデバイス製造方法は、前記荷電粒子線露光装置を用いて、露光対象に露光を行う工程と、露光された前記露光対象を現像する工程と、を具備することを特徴とする。
本発明によれば、クロストークが少なく、高電圧が印加可能な電子レンズアレイをより簡単な構成で提供することが可能となる。
本発明を実施するための最良の形態につき、実施例を挙げ図面を参照しながら詳細に説明する。
<電子レンズアレイ>
本発明の実施例に係る電子レンズアレイ500について図面を用いて説明する。図1は電子レンズアレイ500の概念図であり、3×3のアレイについて示している。図中、電子レンズアレイ500は、大きくは、それぞれに複数の開口が形成された上電極521、上シールド電極524、中電極522、下シールド電極525、及び下電極523が順に積層された構造を有する。上電極521は導電体で形成された薄膜構造であって、開口528が格子状に(縦横の仮想直線の各交点に中心を合わせて)複数配列されている。また下電極523も同様の構成を有し、上電極521の開口528と同一位置(対応する位置)に複数の開口514が形成されている。中電極522は、列(y軸方向)ごとに電気的に独立した(絶縁された)電極群である。また、中電極522は上電極521の開口528と同一位置(対応する位置)に複数の開口510が形成されている。また上下シールド電極524,525も中電極522と同様の構成を有する。各電極の開口を平面状で一致させることで、各開口に電子ビームEBを通すことができる。
上記荷電粒子線レンズアレイにおいて、中電極が前記開口の列ごとに電気的に独立であり、中電極に電圧印加手段を接続することで、
列ごとに各粒子線ごとの焦点距離を制御することができる。
図中、上下シールド電極524,525はそれぞれ簡単のため2つずつを図示したが、要求される仕様によって、積層するシールド電極の数を変更し、具体的には2〜10層程度である。また、上シールド電極524及び下シールド電極525は同数、積層することが望ましい。また、積層する間隔は各開口のピッチに対して十分に小さいことが望ましく、等間隔であっても不等間隔で有っても良い。特に中電極522と該中電極522の最も近傍に設置されるシールド電極との間隔を小さくすることは、クロストーク低減に対して効果的である。上電極521と下電極523とは電気的に接地される。また、中電極522は、A列、B列、及びC列の各列ごとに独立にそれぞれの電圧印加手段515を有する。さらに、上下シールド電極524,525は電気的にフローティングになっている(絶縁状態になっている)ことを特徴としている。
それぞれが複数の開口を有する上電極と中電極と下電極とを順に積層してなる荷電粒子線レンズアレイにおいて、複数の開口を有するシールド電極が上電極と下電極との間に積層されていることで、隣接する列との間のクロストークを低減することができる。
上記荷電粒子線レンズアレイにおいて、シールド電極が電気的にフローティングであることで、シールド電極の電位が、上電極と中電極と下電極の電位によって決定されるため、簡単な構成でクロストークを低減することができる。
上記荷電粒子線レンズアレイにおいて、上電極と中電極の間及び中電極と下電極の間の少なくともいずれかに複数のシールド電極が積層されていることで、各電極間の電位の勾配がほぼ均一になり、クロストークを小さくしやすくなる。
次に、上記構成の電子レンズアレイ500の動作について説明する。電子レンズアレイ500において、上電極521と下電極523とに0Vの電位を与え、中電極522のA列及びB列には−1000Vの電位を、中電極522のC列には−950Vを印加して、B列とC列との隣接電位差が50Vであるとする。このとき、各シールド電極の電位は上電極521と下電極523と各列の中電極522の電位によって規定される。各シールド電極内での電位は均一になると考えられるため、各列ごとに、各電極間の電位の勾配がほぼ均一となり、クロストークの少ない電子レンズアレイ500を実現することができる。
上記にシールド電極をフローティングにした例を説明したが、シールド電極に電圧印加手段を接続し、シールド電極を所望の電位になるように構成してもよい。
つまり、(1)上電極521と各列の中電極522との間及び(2)下電極523と各列の中電極522との間の位置に平面状のシールド電極を配置することで、隣接する列の電界の影響を抑えることができ、良好にクロストークを抑えることができる。
荷電粒子線レンズアレイにおいて、シールド電極に電圧印加手段が接続されていることで、シールド電極を任意の電位に規定でき、各粒子線毎の焦点距離等を細かく制御することができる。
次に、本発明の実施例に係る電子レンズアレイ500を実際に形成される構造に従って詳しく述べる。図2-1は斜視図、図2-2の(a)は図2-1におけるA−A’断面図、その(b)は(a)に示した四角形内の拡大図、図2-3は図2-1におけるB−B’断面図であり、簡単のため1×2のアレイについて示しているが、実際には、数十×数十のアレイを形成する。図中、電子レンズアレイ500は、それぞれに複数の開口528が形成された上電極521、上シールド電極524、中電極522、下シールド電極525、及び下電極523が順に積層された構造を有する。下電極523は基板501上に作製されている。基板501の下面にはシールド電極529が設置されている。また、基板501の上面には二酸化シリコン507が成膜されており、基板501と下電極523とは電気的に絶縁されている。開口528の大きさは直径80μm、ピッチは200μmである。各電極の構造は上記説明したとおりである。また、各電極は表面が導電性であればよく、絶縁体に導電体を成膜した物でも良い。各電極間は壁状の絶縁体526を介して、電気的に絶縁されている。絶縁体526は二酸化シリコン等から成る。また、各電極間が絶縁され、各電極間の間隔が保てれば、絶縁体526は必ずしも必要ない。また、詳細な寸法は図2-2に示した。特に、電極間隔及びシールド電極の数は電子レンズアレイ500の性能に直接関わるので、重要な要素であり、所望の仕様によって決定される。本実施例の場合、電極間隔(離間)寸法は10μm、各電極の厚さ寸法は5μm、隣り合う電極の端面間寸法は20μm、開口の内面から電極の端面までの最短寸法は50μm、開口の内面から絶縁層526の内壁面までの最短寸法は40μmである。
上記荷電粒子線レンズアレイにおいて、中電極とシールド電極との間隔が、中電極の開口のピッチの1/10以下であることで、クロストークが十分に小さくすることができる。
上記荷電粒子線レンズアレイにおいて、各電極間の間隔の中で、中電極とシールド電極との間隔を最も小さくすることで、電位の勾配が均一になり難いのは中電極付近であるため、少ないシールド電極の数で各電極間の電位の勾配をほぼ均一にすることができ、クロストークを小さくしやすくなる。
次に、上記構造の電子レンズアレイ500の作製方法について図2-1におけるA−A’断面図である図3-1(a)〜(f)、図3-2(g)〜(i)、図3-3(j)〜(k)及び図3-4(l)〜(m)を用いて説明する。ここでも簡単のため1×2のアレイについて説明する。例えば、以下の(1)〜(13)に示す工程を行うことにより作製する。
(1)基板501を用意する。基板501は単結晶シリコンより成り、厚さは例えば200μmのものを用いる。厚さは、構造体を機械的に支持していればよい。次に、熱酸化法を用いて、基板501の表裏面に膜厚1.5μmの二酸化シリコン507を形成する(図3-1(a))。
(2)基板501の上面に、チタン/金をそれぞれ5nm/100nmの厚さで連続蒸着してシード層502を形成する。また、チタンの膜厚は密着促進の働きをすればよく、数nm〜数百nmの範囲で使用される。また、導電層となる金は数十nm〜数百nmの範囲で使用される(図3-1(b))。
(3)ノボラック系のレジスト508を厚さ10μm程度塗布して、フォトリソグラフィを行い、電気メッキのマスクを形成する。その後、硫酸銅メッキ液を用いて、銅の電気メッキを、厚さ5μm程度になるまで行い、下電極523を形成する(図3-1(c))。
(4)基板501をアセトン等の有機溶媒に浸し、超音波洗浄を行い、レジスト508の除去を行う。次に、塩素やアルゴン等のガスを用いた反応性イオンエッチングを行い、チタン/金をエッチングしてシード層502の不要な部分を除去する(図3-1(d))。
(5)常圧CVD等を用いてPSG(燐ガラス)を10μm程度成膜して、絶縁体526とする。その後、フォトリソグラフィを用いて絶縁体526をパターニングする(図3-1(e))。
(6)フィルム又はレジンのポリイミドを15μm程度形成し、犠牲層511とする。その後、表面を機械的に研磨して、平坦化し、絶縁体526が露出するまで行う(図3-1(f))。
(7)(2)〜(6)と同様の工程を5回繰り返して下シールド電極525と中電極522と上シールド電極524とを順に積層する(図3-2(g))。
(8)(2)〜(4)と同様の工程を行い上電極521を形成する(図3-2(h))。
(9)基板501の下面にノボラック系のレジストを用いて、フォトリソグラフィを行い、エッチングのマスクを形成する(不図示)。次に、CFやCHF等のガスを用いた反応性イオンエッチング(RIE)を行い、二酸化シリコン507をエッチングし、エッチングマスクとする。その後、レジストを除去する(図3-2(i))。
(10)シリコンである基板501に下面から誘導結合型プラズマおよびBOSCHプロセスを用いたRIEを行い、エッチングストッパーである上面の二酸化シリコン507を露出させ、開口531を形成する(図3-3(j))。ここで、BOSCHプロセスとは、エッチングガスと側壁保護用ガスを交互に供給し、エッチングと側壁保護を切換えることにより、シリコンを選択的にかつ異方性良くエッチングする方式である。本方式のRIEを用いることで、アスペクト比の高い開口531を形成することができる。具体的には、エッチングガスにSF(六弗化硫黄)を、側壁保護用ガスにはC(八弗化四炭素)を使用し、RFパワー:1800W、バイアスパワー:30W、ガス流量:SF=300sccm(Standard Cubic Centimeter)、C=150sccm、SF/Cガス切替時間:7秒/2秒、基板温度:10℃、エッチング時間:40分という条件でエッチングを行うと良い。
(11)加熱したTMAH(テトラメチルアンモニウムハイドロオキサイド)を用いて、犠牲層511を上面からウェットエッチングする(図3-3(k))。
(12)下面から、CF等のガスを用いた反応性イオンエッチングを行い、上下面の二酸化シリコン507をエッチングして、貫通口530を形成する(図3-4(l))。
(13)下面から、チタン/金をそれぞれ5nm/100nmの厚さで連続蒸着してシールド電極529を形成する。その後、無電解金メッキを行い各電極表面に金(不図示)を0.5μm程度成膜する。(図3-4(m))。
ここでは、メッキを用いて各電極を作製する方法について説明したが、CVD(化学気相成長法)を用いて、銅からなる各電極を作製しても良い。
それぞれが複数の開口を有する上電極と中電極と下電極とを順に積層してなり、複数の開口を有するシールド電極が前記上電極と前記下電極との間に積層されている荷電粒子線レンズアレイの作製方法において、前記上電極と前記中電極と前記下電極と前記シールド電極とのいずれかをメッキ技術又は化学気相成長法を用いて形成する工程と、犠牲層エッチングを用いて複数の前記開口を形成する工程とを有することで、半導体プロセスを基本とするマイクロメカトロニクス技術によって作製することができ、作製精度の高い荷電粒子線レンズアレイを実現できる。
<電子ビーム露光装置の構成要素説明>
本発明の実施例2として、実施例1に係る電子レンズアレイを適用可能な電子ビーム露光装置について説明する。
図4は本実施例に係る電子ビーム露光装置の要部概略図である。図4において、1は電子銃であり、カソード1a、グリッド1b、アノード1cを含んで構成される。電子銃1において、カソード1aから放射された電子はグリッド1bとアノード1cの間でクロスオーバ像を形成する(以下、このクロスオーバ像を電子源ESと記す)。
この電子銃1から放射される電子は、その前側焦点位置が電子源ESの位置にあるコンデンサーレンズ2によって略平行の電子ビームとなる。本実施例のコンデンサーレンズ2は、3枚の開口電極で構成されるユニポテンシャルレンズを2組(21、22)有する。コンデンサーレンズ2によって得られた略平行な電子ビームは、補正電子光学系3に入射する。補正電子光学系3は、アパーチャアレイ、ブランカーアレイ、マルチ荷電ビームレンズ、上記説明した電子レンズアレイを用いた要素電子光学系アレイユニット、及びストッパーアレイで構成される。なお、補正電子光学系3の詳細については後述する。
補正電子光学系3は、光源の中間像を複数形成し、各中間像は後述する縮小電子光学系4によって縮小投影され、ウエハ5上に光源像を形成する。その際、ウエハ5上の光源像の間隔が光源像の大きさの整数倍になるように、補正電子光学系3は複数の中間像を形成する。更に、補正電子光学系3は、各中間像の光軸方向の位置を縮小電子光学系4の像面湾曲に応じて異ならせるとともに、各中間像が縮小電子光学系4によってウエハ5に縮小投影される際に発生する収差を予め補正している。
縮小電子光学系4は、2組の対称磁気タブレットを含んで構成され、各対称磁気タブレットは第1投影レンズ41(43)と第2投影レンズ42(44)とからなる。第1投影レンズ41(43)の焦点距離をf1、第2投影レンズ42(44)の焦点距離をf2とすると、この2つのレンズ間距離はf1+f2になっている。光軸上AXの物点は第1投影レンズ41(43)の焦点位置にあり、その像点は第2投影レンズ42(44)の焦点に結ぶ。この像は−f2/f1に縮小される。また、2つのレンズ磁界が互いに逆方向に作用する様に決定されているので、理論上は、球面収差、等方性非点収差、等方性コマ収差、像面湾曲収差、軸上色収差の5つの収差を除いて他のザイデル収差および回転と倍率に関する色収差が打ち消される。
6は、偏向器であり、補正電子光学系3からの複数の電子ビームを偏向させて、複数の光源像をウエハ5上でX,Y方向に略同一の変位量だけ変位させる。偏向器6は、図示はされていないが、偏向幅が広い場合に用いられる主偏向器と偏向幅が狭い場合に用いられる副偏向器とで構成されている。なお、主偏向器は電磁型偏向器であり、副偏向器は静電型偏向器である。
7はダイナミックフォーカスコイルであり、偏向器6を作動させた際に発生する偏向収差による光源像のフォーカス位置のずれを補正する。また、8はダイナミックスティグコイルであり、ダイナミックフォーカスコイル7と同様に、偏向により発生する偏向収差の非点収差を補正する。
9は、ウエハを載置し、光軸AX(Z軸)方向とZ軸回りの回転方向に移動可能なθ−Zステージである。θ−Zステージ9には、ステージ基準板10とファラデーカップ13が固設されている。このファラデーカップ13は補正電子光学系3からの電子ビームが形成する光源像の電荷量を検出する。11はXYステージであり、θ−Zステージ9を載置し、光軸AX(Z軸)と直交するXY方向に移動可能なステージである。12は、電子ビームによってステージ基準板10上のマークが照射された際に生じる反射電子を検出する反射電子検出器である。
次に、図5を用いて補正電子光学系3について説明する。図5(a)は、電子銃1側から補正電子光学系3を見た図であり、図5(b)は図5(a)のAA’断面図である。
前述したように、補正電子光学系3は、光軸AXに沿って、電子銃1側から順に配置されたアパーチャアレイAA、ブランカーアレイBA、マルチ荷電ビームレンズML、要素電子光学系アレイユニットLAU(LA1〜LA4)、及びストッパーアレイSAで構成される。
アパーチャアレイAAは、基板に複数の開口が形成されており、コンデンサーレンズ2から略平行な電子ビームを複数の電子ビームに分割する。ブランカーアレイBAは、アパーチャアレイAAで分割された複数の電子ビームを個別に偏向する偏向手段を一枚の基板上に複数形成したものである。そのひとつの偏向手段の詳細を図6に示す。基板31は開口APを有する。また、32は開口APを挟んだ一対の電極で構成され、偏向機能を有するブランキング電極である。また、基板上31にはブランキング電極32を個別にon/offするための配線(W)が形成されている。
図5に戻り、マルチ荷電ビームレンズMLは補正電子光学系3の中で荷電ビーム収束作用を大きくするために用いられる。
要素電子光学系アレイユニットLAUは、同一平面内に複数の電子レンズを2次元配列して形成した上記の通り説明した本発明に係る電子レンズアレイである、第1電子光学系アレイLA1、第2電子光学系アレイLA2、第3電子光学系アレイLA3、及び第4電子光学系アレイLA4で構成される。
図7は、第1電子光学系アレイLA1を説明するための図である。第1電子光学系アレイLA1は、開口が複数配列された上部電極UE、中間電極CE、及び下部電極LEの3枚から成るマルチ静電レンズであり、光軸AX方向に並ぶ上・中・下電極で一つの電子レンズEL1、いわゆるユニポテンシャルレンズを構成している。各電子光学系の上部・下部の電極の全てを同一電位で接続して同一の電位に設定している(本実施例では、電子ビームの加速電位にしている)。そして、y方向に並ぶ各電子レンズの中間電極は配線(W)で列ごとに独立に接続されている。その結果、後述するLAU制御回路112によりy方向に並ぶ各電子レンズの中間電極毎の電位を個別に設定することができ、これにより、y方向に並ぶ電子レンズの光学特性は略同一に設定され、y方向に並ぶ電子レンズ群毎の光学特性(焦点距離)をそれぞれ個別に設定している。言い換えれば、y方向に並び同一の光学特性(焦点距離)に設定される電子レンズを一つのグループとし、y方向と直交するx方向に並ぶグループの光学特性(焦点距離)をそれぞれ個別に設定している。
図8は、第2電子光学系アレイLA2を説明するための図である。第2電子光学系アレイLA2が第1電子光学系アレイLA1と異なる点は、x方向に並ぶ各電子レンズの中間電極が配線(W)で列ごとに独立に接続されている点である。その結果、後述するLAU制御回路112により、x方向に並ぶ各電子レンズの中間電極毎の電位を個別に設定することができ、x方向に並ぶ電子レンズの光学特性は略同一に設定され、x方向に並ぶ電子レンズ群毎の光学特性(焦点距離)を個別に設定している。言い換えれば、x方向に並び同一の光学特性(焦点距離)に設定される電子レンズを一つのグループとし、y方向に並ぶグループの光学特性(焦点距離)をそれぞれ個別に設定している。
第3電子光学系アレイLA3は、第1電子光学系アレイLA1と同じであり、また、第4電子光学系アレイLA4は、第2電子光学系アレイLA2と同じであるので、それらの説明は省略する。
次に、電子ビームが上記の通り説明した補正電子光学系3によって受ける作用に関して、図9を用いて説明する。
アパーチャアレイAAによって分割された電子ビームEB1,EB2は、互いに異なるブランキング電極を介して、要素電子光学系アレイユニットLAUに入射する。電子ビームEB1は第1電子レンズアレイLA1の電子レンズEL11、第2電子レンズアレイLA2の電子レンズEL21、第3電子レンズアレイLA3の電子レンズEL31、第4電子レンズアレイLA4の電子レンズEL41を介して、電子源の中間像img1を形成する。一方、電子ビームEB2は、第1電子レンズアレイLA1の電子レンズEL12、第2電子レンズアレイLA2の電子レンズEL22、第3電子レンズアレイLA3の電子レンズEL32、第4電子レンズアレイLA4の電子レンズEL42を介して、電子源の中間像img2を形成する。
その際、前述したように、第1、3電子レンズアレイLA1、LA3のx方向に並ぶ電子レンズは、互いに異なる焦点距離になるように設定されていて、第2、4電子レンズアレイLA2,LA4のx方向に並ぶ電子レンズは同一の焦点距離になるように設定されている。更に、電子ビームEB1が通過する電子レンズEL11、電子レンズEL21、電子レンズEL31、及び電子レンズEL41の合成焦点距離と、電子ビームEB2が通過する電子レンズEL12、電子レンズEL22、電子レンズEL32、及び電子レンズEL42の合成焦点距離が略等しくなるように、各電子レンズの焦点距離を設定している。それにより、電子源の中間像img1とimg2とは略同一の倍率で形成される。また、各中間像が縮小電子光学系4を介してウエハ5に縮小投影される際に発生する像面湾曲を補正するために、その像面湾曲に応じて、電子源の中間像img1とimg2が形成される光軸AX方向の位置を異ならせしめている。
また、電子ビームEB1、EB2は、通過するブランキング電極に電界が印加されると、図中破線のようにその軌道を変え、ストッパーアレイSAの各電子ビームに対応した開口を通過できず、電子ビームEB1,EB2が遮断される。
次に本実施例のシステム構成図を図10に示す。BA制御回路111は、ブランカーアレイBAのブランキング電極のon/offを個別に制御する制御回路であり、LAU制御回路112は、レンズアレイユニットLAUの電子光学特性(焦点距離)を制御する制御回路である。
D_STIG制御回路113は、ダイナミックスティグコイル8を制御して縮小電子光学系4の非点収差を制御する制御回路である。D_FOCUS制御回路114は、ダイナミックフォーカスコイル7を制御して縮小電子光学系4のフォーカスを制御する制御回路である。偏向制御回路115は偏向器6を制御する制御回路である。光学特性制御回路116は、縮小電子光学系4の光学特性(倍率、歪曲、回転収差、光軸等)を調整する制御回路である。
ステージ駆動制御回路118は、θ−Zステージ9を駆動制御し、かつXYステージ11の位置を検出するレーザ干渉計LIMと共同してXYステージ11を駆動制御する制御回路である。
制御系120は、描画パターンが記憶されたメモリ121からのデータに基づいて、上述した各制御回路を制御する。制御系120は、インターフェース122を介して電子ビーム露光装置全体をコントロールするCPU123によって制御されている。
<露光動作の説明>
次に、図10及び図11を参照して、上述した本実施例に係る電子ビーム露光装置の露光動作について説明する。
制御系120は、メモリ121からの露光制御データに基づいて、偏向制御回路115に命じ、偏向器6によって複数の電子ビームを偏向させるとともに、BA制御回路111に命じ、ウエハ5に露光すべきパターンに応じてブランカーアレイBAのブランキング電極を個別にon/offさせる。このとき、XYステージ11はy方向に連続移動しており、XYステージの移動に複数の電子ビームが追従するように、偏向器6によって複数の電子ビームを偏向する。
そして、各電子ビームは、図11に示すようにウエハ5上の対応する要素露光領域(EF)を走査露光する。各電子ビームの要素露光領域(EF)は、2次元に隣接するように設定されているので、その結果、同時に露光される複数の要素露光領域(EF)で構成されるサブフィールド(SF)が露光される。
制御系120は、サブフィールド(SF1)を露光後、次のサブフィールド(SF2)を露光する為に、偏向制御回路115に命じ、偏向器6によって、ステージ走査方向(y方向)と直交する方向(x方向)に複数の電子ビームを偏向させる。このとき、偏向によってサブフィールドが変わることにより、各電子ビームが縮小電子光学系4を介して縮小投影される際の収差も変わる。そこで、制御系120は、 LAU制御回路112、D_STIG制御回路113、及びD_FOCUS制御回路114に命じ、変化した収差を補正するように、レンズアレイユニットLAU、ダイナミックスティグコイル8、およびダイナミックフォーカスコイル7を調整する。そして、再度、前述したように、各電子ビームが対応する要素露光領域(EF)を露光することにより、サブフィールド(SF2)を露光する。そして、図11に示すように、サブフィールド(SF1〜SF6)を順次露光して、ウエハ5にパターンを露光する。その結果、ウエハ5上において、ステージ走査方向(y方向)と直交する方向(x方向)に並ぶサブフィールド(SF1〜SF6)で構成されるメインフィールド(MF)が露光される。
さらに、制御系122は、図11に示すメインフィールド1(MF1)を露光後、偏向制御回路115に命じ、順次、ステージ走査方向(y方向)に並ぶメインフィールド(MF2、MF3、MF4…)に複数の電子ビームを偏向させると共に露光していく。その結果、図11に示すように、メインフィールド(MF2、MF3、MF4…)で構成されるストライプ(STRIPE1)を露光する。
そして、 XYステージ11をx方向にステップさせ、次のストライプ(STRIPE2)を露光する。
荷電粒子線露光装置において、荷電粒子線を放射する荷電粒子源と、荷電粒子源の中間像を複数形成する上記荷電粒子線レンズアレイを含む補正電子光学系と、複数の中間像を露光対象に縮小投影する投影電子光学系と、露光対象に投影される複数の中間像が露光対象上で移動するように偏向する偏向器とを有することで、各粒子線毎のクロストークを小さくすることができる。
次に、上記実施例2に係る荷電粒子線露光装置を利用した半導体デバイスの製造プロセスを説明する。図14は半導体デバイスの全体的な製造プロセスのフローを示す図である。ステップ1(回路設計)では半導体デバイスの回路設計を行う。ステップ2(EBデータ変換)では設計した回路パターンに基づいて露光装置の露光制御データを作成する。
一方、ステップ3(ウエハ製造)ではシリコン等の材料を用いてウエハを製造する。ステップ4(ウエハプロセス)は前工程と呼ばれ、上記露光制御データが入力された露光装置とウエハを用い、リソグラフィ技術を利用してウエハ上に実際の回路を形成する。次のステップ5(組み立て)は後工程と呼ばれ、ステップ4によって作製されたウエハを用いて半導体チップ化する工程であり、アッセンブリ工程(ダイシング、ボンディング)、パッケージング工程(チップ封入)等の組み立て工程を含む。ステップ6(検査)ではステップ5で作製された半導体デバイスの動作確認テスト、耐久性テスト等の検査を行う。こうした工程を経て半導体デバイスが完成し、ステップ7でこれを出荷する。
上記ステップ4のウエハプロセスは以下のステップを有する。ウエハの表面を酸化させる酸化ステップ、ウエハ表面に絶縁膜を成膜するCVDステップ、ウエハ上に電極を蒸着によって形成する電極形成ステップ、ウエハにイオンを打ち込むイオン打ち込みステップ、ウエハに感光剤を塗布するレジスト処理ステップ、上記の露光装置によって回路パターンをレジスト処理ステップ後のウエハに焼付け露光する露光ステップ、露光ステップで露光したウエハを現像する現像ステップ、現像ステップで現像したレジスト像以外の部分を削り取るエッチングステップ、エッチングが済んで不要となったレジストを取り除くレジスト剥離ステップ。これらのステップを繰り返し行うことによって、ウエハ上に多重に回路パターンを形成する。
本発明の実施例に係る電子レンズアレイの概念を示す斜視図である。 本発明の実施例に係る電子レンズアレイを説明するための図である。 本発明の実施例に係る電子レンズアレイを説明するための図である。 本発明の実施例に係る電子レンズアレイを説明するための図である。 本発明の実施例に係る電子レンズアレイの作製方法を説明するための図である。 本発明の実施例に係る電子レンズアレイの作製方法を説明するための図である。 本発明の実施例に係る電子レンズアレイの作製方法を説明するための図である。 本発明の実施例に係る電子レンズアレイの作製方法を説明するための図である。 本発明の実施例に係る電子ビーム露光装置の光学系を説明するための図である。 本発明の実施例に係る電子ビーム露光装置の補正電子光学系を示す図である。 本発明の実施例に係る電子ビーム露光装置のブランカーアレイを説明するための図である。 本発明の実施例に係る電子ビーム露光装置の電子光学系アレイを説明するための図である。 本発明の実施例に係る電子ビーム露光装置の電子光学系アレイを説明するための図である。 本発明の実施例に係る電子ビーム露光装置の補正電子光学系によって受ける作用を説明するための図である。 本発明の実施例に係る電子ビーム露光装置のシステム構成を説明するための図である。 本発明の実施例に係る電子ビーム露光装置の露光動作を説明するための図である。 背景技術を説明するための図である。 背景技術を説明するための図である。 半導体デバイスの全体的な製造プロセスのフローを示す図である。
符号の説明
AA:アパーチャアレイ、BA:ブランカーアレイ、ML:マルチ荷電ビームレンズ
LAU:要素電子光学系アレイユニット、LA(LA1〜LA4):電子光学系アレイ、SA:ストッパーアレイ、UE:上部電極、CE:中間電極、LE:下部電極、EL:電子レンズ、EB:電子ビーム、LIM:レーザ干渉計、AP:開口、W:配線。
1:電子銃、2:コンデンサーレンズ、3:補正電子光学系、4:縮小電子光学系、5:ウエハ、6:偏向器、7:ダイナミックフォーカスコイル、8:ダイナミックスティグコイル、9:θ−Zステージ、10:ステージ基準板、11:XYステージ、12:反射電子検出器、13:ファラデーカップ、21,22:ユニポテンシャルレンズ、31:基板、32:ブランキング電極、41,43:第1投影レンズ、42,44:第2投影レンズ。
111:BA制御回路、112:LAU制御回路、113:D_STIG制御回路、114:D_FOCUS制御回路、115:偏向制御回路、116:光学特性制御回路、117:ステージ駆動制御回路、120:制御系、121:メモリ、122:インターフェース、123:CPU、300:電子レンズアレイ、301:電極、302:ファイバ、303:シールド電極、400:電子レンズアレイ、401:電極、403:シールド電極、500:電子レンズアレイ、501:基板、502:シード層、507:二酸化シリコン、508:レジスト、509:レジスト、510:開口、511:犠牲層、514:開口、515:電圧印加手段、521:上電極、522:中電極、523:下電極、524:上シールド電極、525:下シールド電極、526:絶縁層、527:開口、528:開口、529:シールド電極、530:貫通口、531:開口。

Claims (11)

  1. 複数の開口をそれぞれ有する上電極、中電極および下電極を順に配置してなる荷電粒子線レンズアレイにおいて、
    複数の開口を有するシールド電極を、前記上電極と前記中電極の間および前記中電極と前記下電極の間のうち少なくとも一方に配置し、
    前記シールド電極は前記中電極と略同一形状をしていることを特徴とする荷電粒子線レンズアレイ。
  2. 前記シールド電極が電気的にフローティングであることを特徴とする請求項1に記載の荷電粒子線レンズアレイ。
  3. 前記シールド電極に電圧印加手段が接続されていることを特徴とする請求項1または2に記載の荷電粒子線レンズアレイ。
  4. 前記中電極に電圧印加手段が接続されていることを特徴とする請求項1または2に記載の荷電粒子線レンズアレイ。
  5. 前記中電極が前記開口の列ごとに電気的に独立であることを特徴とする請求項1〜4のいずれか1つに記載の荷電粒子線レンズアレイ。
  6. 前記中電極と前記シールド電極との間隔が前記中電極の開口のピッチの1/10以下であることを特徴とする請求項1〜5のいずれか1つに記載の荷電粒子線レンズアレイ。
  7. 前記上電極と前記中電極の間及び前記中電極と前記下電極の間のうち少なくとも一方に複数のシールド電極が配置されていることを特徴とする請求項1〜6のいずれか1つに記載の荷電粒子線レンズアレイ。
  8. 前記上電極と前記中電極と前記下電極と前記シールド電極のうちのいずれか2つの電極の間隔の中で、前記中電極と前記シールド電極の間隔が最も小さいことを特徴とする請求項1〜7のいずれか1つに記載の荷電粒子線レンズアレイ。
  9. 荷電粒子線を放射する荷電粒子源と、
    前記荷電粒子源の中間像を複数形成する請求項1〜8のいずれか1つに記載の荷電粒子線レンズアレイを含む補正電子光学系と、
    前記複数の中間像を露光対象に縮小投影する投影電子光学系と、
    前記露光対象に投影される前記複数の中間像が露光対象上で移動するように偏向する偏向器と、
    を有することを特徴とする荷電粒子線露光装置。
  10. 複数の開口をそれぞれ有する上電極、中電極および下電極を順に配置してなる荷電粒子線レンズアレイの作製方法において、
    複数の開口を有するシールド電極が、前記上電極と前記中電極の間および前記中電極と前記下電極の間のうち少なくとも一方に配置されており、
    前記上電極と前記中電極と前記下電極と前記シールド電極のうちのいずれか1つの電極をメッキ又は化学気相成長法を用いて形成する工程と、
    犠牲層エッチングを用いて複数の前記開口を形成する工程と、を含むことを特徴とする荷電粒子線レンズアレイの作製方法。
  11. 請求項9に記載の荷電粒子線露光装置を用いて、露光対象に露光を行う工程と、露光された前記露光対象を現像する工程と、を具備することを特徴とするデバイス製造方法。
JP2004230958A 2004-08-06 2004-08-06 荷電粒子線レンズアレイ、及び該荷電粒子線レンズアレイを用いた荷電粒子線露光装置 Pending JP2006049703A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004230958A JP2006049703A (ja) 2004-08-06 2004-08-06 荷電粒子線レンズアレイ、及び該荷電粒子線レンズアレイを用いた荷電粒子線露光装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004230958A JP2006049703A (ja) 2004-08-06 2004-08-06 荷電粒子線レンズアレイ、及び該荷電粒子線レンズアレイを用いた荷電粒子線露光装置

Publications (1)

Publication Number Publication Date
JP2006049703A true JP2006049703A (ja) 2006-02-16

Family

ID=36027891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004230958A Pending JP2006049703A (ja) 2004-08-06 2004-08-06 荷電粒子線レンズアレイ、及び該荷電粒子線レンズアレイを用いた荷電粒子線露光装置

Country Status (1)

Country Link
JP (1) JP2006049703A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2050118A1 (en) * 2006-07-25 2009-04-22 Mapper Lithography IP B.V. A multiple beam charged particle optical system
JP2012195369A (ja) * 2011-03-15 2012-10-11 Canon Inc 荷電粒子線レンズおよびそれを用いた露光装置
JP2012195368A (ja) * 2011-03-15 2012-10-11 Canon Inc 荷電粒子線レンズおよびそれを用いた露光装置
US8598545B2 (en) 2006-07-25 2013-12-03 Mapper Lithography Ip B.V Multiple beam charged particle optical system
JP2015511069A (ja) * 2012-03-19 2015-04-13 ケーエルエー−テンカー コーポレイション 柱で支持されたマイクロ電子レンズアレイ
JP2017534168A (ja) * 2014-10-30 2017-11-16 ヴァリアン セミコンダクター イクイップメント アソシエイツ インコーポレイテッド 基板をパターニングするシステム及び方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2050118A1 (en) * 2006-07-25 2009-04-22 Mapper Lithography IP B.V. A multiple beam charged particle optical system
JP2009545118A (ja) * 2006-07-25 2009-12-17 マッパー・リソグラフィー・アイピー・ビー.ブイ. マルチビーム荷電粒子光学システム
US8598545B2 (en) 2006-07-25 2013-12-03 Mapper Lithography Ip B.V Multiple beam charged particle optical system
US8648318B2 (en) 2006-07-25 2014-02-11 Mapper Lithography Ip B.V. Multiple beam charged particle optical system
JP2012195369A (ja) * 2011-03-15 2012-10-11 Canon Inc 荷電粒子線レンズおよびそれを用いた露光装置
JP2012195368A (ja) * 2011-03-15 2012-10-11 Canon Inc 荷電粒子線レンズおよびそれを用いた露光装置
JP2015511069A (ja) * 2012-03-19 2015-04-13 ケーエルエー−テンカー コーポレイション 柱で支持されたマイクロ電子レンズアレイ
JP2017534168A (ja) * 2014-10-30 2017-11-16 ヴァリアン セミコンダクター イクイップメント アソシエイツ インコーポレイテッド 基板をパターニングするシステム及び方法

Similar Documents

Publication Publication Date Title
EP1505629B1 (en) Electrostatic lens and charged beam exposure apparatus using the same
JP4647820B2 (ja) 荷電粒子線描画装置、および、デバイスの製造方法
US7038226B2 (en) Electrooptic system array, charged-particle beam exposure apparatus using the same, and device manufacturing method
TWI691998B (zh) 靜電多極元件、靜電多極裝置及製造靜電多極元件的方法
US20170309438A1 (en) Electrostatic lens structure
US6946662B2 (en) Multi-charged beam lens, charged-particle beam exposure apparatus using the same, and device manufacturing method
US6872952B2 (en) Electron optical system array, method of manufacturing the same, charged-particle beam exposure apparatus, and device manufacturing method
JP2007266525A (ja) 荷電粒子線レンズアレイ、該荷電粒子線レンズアレイを用いた荷電粒子線露光装置
JP4615816B2 (ja) 電子レンズ、その電子レンズを用いた荷電粒子線露光装置、デバイス製造方法
JP4541798B2 (ja) 荷電粒子線レンズアレイ、及び該荷電粒子線レンズアレイを用いた荷電粒子線露光装置
JP3834271B2 (ja) マルチ荷電ビームレンズ及びこれを用いた荷電粒子線露光装置ならびにデバイス製造方法
JP5159035B2 (ja) レンズアレイ及び該レンズアレイを含む荷電粒子線露光装置
US8071955B2 (en) Magnetic deflector for an electron column
JP2006049703A (ja) 荷電粒子線レンズアレイ、及び該荷電粒子線レンズアレイを用いた荷電粒子線露光装置
JP2008066359A (ja) 荷電ビームレンズアレイ、露光装置及びデバイス製造方法
JP4252813B2 (ja) 荷電ビーム用レンズ、荷電ビーム露光装置及びデバイス製造方法
JP4143204B2 (ja) 荷電粒子線露光装置及び該装置を用いたデバイス製造方法
JP4402077B2 (ja) 荷電粒子線レンズアレイ、露光装置及びデバイス製造方法
JP2001332473A (ja) 荷電粒子線露光装置及び該装置を用いたデバイス製造方法
JP2005136114A (ja) 電極基板およびその製造方法、ならびに該電極基板を用いた荷電ビーム露光装置
JP2014033077A (ja) 貫通孔の形成方法
JP4532184B2 (ja) 電極およびその製造方法ならびに偏向器アレイ構造体の製造方法
WO2012124320A1 (en) Charged particle beam lens and exposure apparatus using the same
JP2007019192A (ja) 荷電ビームレンズ、及び荷電ビーム露光装置
JP2007019250A (ja) 偏向器、荷電ビーム露光装置およびデバイス製造方法