JPH10101471A - Graphite crucible for pulling up monocrystal - Google Patents

Graphite crucible for pulling up monocrystal

Info

Publication number
JPH10101471A
JPH10101471A JP8277472A JP27747296A JPH10101471A JP H10101471 A JPH10101471 A JP H10101471A JP 8277472 A JP8277472 A JP 8277472A JP 27747296 A JP27747296 A JP 27747296A JP H10101471 A JPH10101471 A JP H10101471A
Authority
JP
Japan
Prior art keywords
pulling
graphite crucible
single crystal
crucible
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8277472A
Other languages
Japanese (ja)
Inventor
Masato Kano
正人 鹿野
Kiyoshi Sutani
潔 酢谷
Takeshi Jo
毅 城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP8277472A priority Critical patent/JPH10101471A/en
Publication of JPH10101471A publication Critical patent/JPH10101471A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce a graphite crucible composed of a carbon fiber-reinforced carbon material by a filament winding method, so that cracks and surface exfoliation in bonding between carbon fibers by repeated use of the crucible can be prevented by making members, excluding carbon fibers and voids, contain a predetermined quantity of specific powder. SOLUTION: This graphite crucible contains 5-40vol.% of powder for shrinkage control, for example, carbon powder, such as fine graphite powder, and ceramic powder, such as SiC powder, in average particle size of 30μm or less. This graphite crucible is produced by winding continuous carbon fiber 13 to which a bonding agent (for example, coal tar pitch) containing a shrinkage control agent has been applied, around a mandrel, and carbonizing the continuous carbon fiber 13, preferably in such a way that the continuous carbon fiber 13 is arranged at an angle of -45 deg. to +45 deg. to the vertical direction on the inside circumference 11a of the straight cylindrical part 11, and at an angle of -45 deg. or less or +45 deg. or more to the vertical direction.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は単結晶引き上げ用黒
鉛ルツボに関し、より詳細にはチョクラルスキー法(以
下、CZ法と記す)等により単結晶を引き上げる際、石
英ルツボを支持するために用いられる単結晶引き上げ用
黒鉛ルツボに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a graphite crucible for pulling a single crystal, and more particularly to a graphite crucible used for pulling a single crystal by the Czochralski method (hereinafter referred to as CZ method) or the like. To a single crystal pulling graphite crucible.

【0002】[0002]

【従来の技術】結晶成長法には種々の方法があるが、そ
の一つに、例えばCZ法に代表される回転引き上げ法が
ある。
2. Description of the Related Art There are various crystal growth methods, one of which is a rotation pulling method represented by, for example, a CZ method.

【0003】図3は、CZ法に用いられる従来の単結晶
引き上げ装置を模式的に示した断面図であり、図中、3
1はチャンバ42内に配置された単結晶引き上げ用黒鉛
ルツボを示している。
FIG. 3 is a cross-sectional view schematically showing a conventional single crystal pulling apparatus used for the CZ method.
Reference numeral 1 denotes a graphite crucible for pulling a single crystal arranged in the chamber 42.

【0004】単結晶引き上げ用ルツボ31は、ルツボ受
け台32a上に設置された有底円筒形状の黒鉛ルツボ3
2とこの黒鉛ルツボ32の内側に嵌合された石英ルツボ
33とにより構成されており、ルツボ受け台32aは所
定の速度で回転する支持軸34に支持されている。単結
晶引き上げ用ルツボ31の外側には抵抗加熱式のヒータ
35が、さらにその外側には黒鉛製の保温筒36が同心
円状に配設されており、石英ルツボ33の内部には所定
量の結晶用原料をヒータ35により溶融させた溶融液3
7が充填されるようになっている。黒鉛ルツボ32の中
心軸上には、図中矢印方向に所定速度で回転する引き上
げ棒又はワイヤーからなる引き上げ軸38が吊設されて
おり、この引き上げ軸38の先端にシードチャック39
を介して種結晶40が取り付けられるようになってい
る。
A single crystal pulling crucible 31 is a graphite crucible 3 having a bottomed cylindrical shape and set on a crucible receiving table 32a.
2 and a quartz crucible 33 fitted inside the graphite crucible 32, and the crucible support 32a is supported by a support shaft 34 that rotates at a predetermined speed. A heater 35 of a resistance heating type is provided outside the single crystal pulling crucible 31, and a heating cylinder 36 made of graphite is provided concentrically outside the crucible 31. A predetermined amount of crystal is provided inside the quartz crucible 33. Melt 3 obtained by melting raw materials by heater 35
7 is filled. On the central axis of the graphite crucible 32, a lifting shaft 38 made of a lifting rod or a wire that rotates at a predetermined speed in the direction of the arrow in the figure is suspended.
The seed crystal 40 is attached via the.

【0005】単結晶41を引き上げる際には、引き上げ
軸38の先に取り付けられた種結晶40を溶融液37の
表面に接触させ、支持軸34と同一軸心で逆方向あるい
は同方向に所定の速度で回転させながら引き上げ軸38
を引き上げることにより、溶融液37を凝固させて単結
晶41を成長させてゆく。
When the single crystal 41 is pulled, the seed crystal 40 attached to the tip of the pulling shaft 38 is brought into contact with the surface of the melt 37, and the predetermined axis is set in the same direction as the supporting shaft 34 in the opposite direction or the same direction. Pulling shaft 38 while rotating at speed
By pulling up, the melt 37 is solidified and the single crystal 41 grows.

【0006】上記単結晶引き上げ装置において、黒鉛ル
ツボ32内に嵌合された石英ルツボ33は、単結晶41
の引き上げ途中において高温に加熱されるため軟化し、
黒鉛ルツボ32と密着する。黒鉛の熱膨張係数は石英の
熱膨張係数の約10倍あるため、冷却時における半径方
向への収縮は石英ルツボ33よりも黒鉛ルツボ32の方
がはるかに大きい。この両者の収縮量の差に起因し、冷
却時に黒鉛ルツボ32は収縮量の少ない石英ルツボ33
より内圧を受け、黒鉛ルツボ32に引っ張り応力が作用
する。
In the above single crystal pulling apparatus, the quartz crucible 33 fitted in the graphite crucible 32 is made of a single crystal 41.
Is heated to a high temperature during the lifting process,
It adheres closely to the graphite crucible 32. Since the coefficient of thermal expansion of graphite is about 10 times that of quartz, the contraction in the radial direction during cooling is much greater in the graphite crucible 32 than in the quartz crucible 33. Due to the difference in the amount of shrinkage between the two, the graphite crucible 32 during cooling cools the quartz crucible 33 with a small amount of shrinkage.
Further receiving the internal pressure, a tensile stress acts on the graphite crucible 32.

【0007】近年、半導体単結晶製造の効率化のために
単結晶41の直径は大きくなってきており、それに伴い
石英ルツボ33や黒鉛ルツボ32の大型化が進んでい
る。この黒鉛ルツボ32等の大型化により、単結晶41
引き上げ後の冷却時における石英ルツボ33と黒鉛ルツ
ボ32との半径方向の収縮量の差が大きくなり、黒鉛ル
ツボ32に作用する引っ張り応力が増大し、変形、割れ
又は欠損等(以下、破損とも記す)が発生し易くなり、
同一の黒鉛ルツボ32を繰り返して使用し得る回数が減
少してきている。
In recent years, the diameter of the single crystal 41 has been increased in order to increase the efficiency of semiconductor single crystal production, and accordingly, the size of the quartz crucible 33 and the graphite crucible 32 has been increased. By increasing the size of the graphite crucible 32 and the like, the single crystal 41
During cooling after lifting, the difference in the radial shrinkage amount between the quartz crucible 33 and the graphite crucible 32 increases, the tensile stress acting on the graphite crucible 32 increases, and deformation, cracking or chipping (hereinafter also referred to as breakage) occurs. ) Is more likely to occur,
The number of times the same graphite crucible 32 can be used repeatedly has been reduced.

【0008】上記問題に対処するため、最近では縦割り
に2分割あるいはそれ以上に分割された黒鉛ルツボで種
々の形状を有するものが使用されている。
In order to cope with the above problem, recently, graphite crucibles having various shapes which are divided into two or more vertically are used.

【0009】また、上記問題に対処するための別の構成
のルツボとして、一部に炭素繊維強化炭素複合材が使用
された単結晶引き上げ用黒鉛ルツボが開示されている
(実公平3−43250号公報、登録実用新案第301
2299号公報)。図4は前記実公平3−43250号
公報に開示された単結晶引き上げ用黒鉛ルツボを模式的
に示した断面図である。
As another crucible for solving the above problem, there is disclosed a graphite crucible for pulling a single crystal in which a carbon fiber reinforced carbon composite material is partially used (Japanese Utility Model Publication No. 3-43250). Gazette, Registered Utility Model 301
2299). FIG. 4 is a sectional view schematically showing a graphite crucible for pulling a single crystal disclosed in Japanese Utility Model Publication No. 3-43250.

【0010】この単結晶引き上げ用黒鉛ルツボ50は、
直胴部51と直胴部51から連続するR部52とが一体
となった炭素繊維強化炭素複合材(以下、C/C材とも
記す)により形成されており、等方性黒鉛材からなる底
部53がR部52に嵌合されている。
The graphite crucible 50 for pulling a single crystal is
The straight body portion 51 and the R portion 52 continuous from the straight body portion 51 are formed of an integrated carbon fiber reinforced carbon composite material (hereinafter, also referred to as C / C material), and are made of isotropic graphite material. The bottom part 53 is fitted to the R part 52.

【0011】しかし、図4に示した単結晶引き上げ用黒
鉛ルツボ50においては、繰り返し使用するうちにR部
52付近の石英ルツボ(図示せず)との嵌合面52aで
表面層に剥離が発生するという問題があった。この剥離
の発生は嵌合面52aでC/C材と石英とが反応してS
iOが発生し、このSiOにより内表面のC/C材がS
iC化することに起因する。すなわち、SiCの熱膨張
係数はC/C材の熱膨張係数の約10倍あるため、R部
52付近の嵌合面52aでSiC化が進行すると、単結
晶引き上げ後の冷却時にSiC転化層と該SiC転化層
の外側に位置するC/C材層との間に熱歪が発生する。
C/C材は繊維方向への強度は大きいが、繊維層間方向
すなわち単結晶引き上げ用黒鉛ルツボ50の半径方向の
強度は小さく、熱歪が生じると繊維層間で剥離が発生し
てしまうのである。
However, in the graphite crucible 50 for pulling a single crystal shown in FIG. 4, peeling occurs on the surface layer at the fitting surface 52a with the quartz crucible (not shown) near the R portion 52 during repeated use. There was a problem of doing. The occurrence of this peeling is caused by the reaction between the C / C material and the quartz on the fitting surface 52a, and
iO is generated, and this SiO causes the C / C material on the inner surface to become S
This is due to iC conversion. That is, since the thermal expansion coefficient of SiC is about 10 times the thermal expansion coefficient of the C / C material, when the formation of SiC proceeds at the fitting surface 52a near the R portion 52, the SiC conversion layer and the SiC conversion layer at the time of cooling after pulling the single crystal. Thermal distortion occurs between the SiC conversion layer and the C / C material layer located outside the SiC conversion layer.
The strength of the C / C material in the fiber direction is large, but the strength in the fiber layer direction, that is, in the radial direction of the single crystal pulling graphite crucible 50, is small. If thermal strain occurs, separation occurs between the fiber layers.

【0012】また、この単結晶引き上げ用黒鉛ルツボ5
0はR部52と底部53との間に嵌合面53aを有する
ため、炭素材と石英ルツボとの反応により発生したSi
Oが嵌合面53aに入り込んで底部53の黒鉛と反応
し、嵌合面53a付近において底部53が局部的に減耗
するという問題があった。
The single crystal pulling graphite crucible 5
No. 0 has a fitting surface 53a between the R portion 52 and the bottom portion 53, so that Si generated by the reaction between the carbon material and the quartz crucible is formed.
There is a problem that O enters the fitting surface 53a and reacts with the graphite on the bottom 53, and the bottom 53 is locally worn near the fitting surface 53a.

【0013】また、単結晶引上げ後に石英ルツボの底部
に残留した溶融液37は、冷却時に固化して膨張し、そ
れに伴い石英ルツボも膨張するため、単結晶引き上げ用
黒鉛ルツボ50の底部53に大きな圧力が作用する。こ
のため、底部53が強度の小さい黒鉛で構成されている
と破損が発生し易くなる。
Further, the molten liquid 37 remaining at the bottom of the quartz crucible after pulling the single crystal is solidified and expanded at the time of cooling, and the quartz crucible expands accordingly. Pressure acts. For this reason, if the bottom 53 is made of graphite having a low strength, breakage is likely to occur.

【0014】以上のように、単結晶引き上げ用黒鉛ルツ
ボ50をC/C材と黒鉛とを組み合わせた構成とする
と、上記した種々の問題が生じる。これらの問題を解決
する方法として、単結晶引き上げ用黒鉛ルツボの全体を
C/C材で構成することが考えられる。しかし、その場
合にも以下のような問題が生ずる。
As described above, when the graphite crucible 50 for pulling a single crystal is formed by combining a C / C material and graphite, the above-described various problems occur. As a method of solving these problems, it is conceivable that the entire graphite crucible for pulling a single crystal is made of a C / C material. However, in this case, the following problem occurs.

【0015】[0015]

【発明が解決しようとする課題】ルツボ全体をC/C材
で構成した単結晶引き上げ用黒鉛ルツボの製造方法とし
て、下記の二つの方法が挙げられる。第1の方法は以下
の通りである。まず、連続炭素繊維を数百本〜数千本束
ねたストランド(以下、単に連続炭素繊維と記す)を、
熱硬化性樹脂に代表される樹脂を溶剤で溶かした低粘度
の結合材に浸漬した後、ルツボ形状のマンドレルに巻き
付け、その後熱硬化させる。次に、この硬化体に切削加
工等を施してルツボ形状の成形体を作製する(フィラメ
ントワインディング法)。次に、この成形体を一度不活
性ガス中、1000℃程度に加熱して炭化し、さらに必
要によりコールタールピッチ等を含浸させた後、200
0℃以上の高温で加熱処理して全体を炭化(黒鉛化)さ
せる。次に、炭化したルツボに高純度化処理等を施すこ
とにより単結晶引き上げ用黒鉛ルツボの製造を完了す
る。上記高温による炭化(黒鉛化)処理は必要により複
数回行う。
There are the following two methods for producing a graphite crucible for pulling a single crystal in which the whole crucible is made of a C / C material. The first method is as follows. First, a strand (hereinafter simply referred to as a continuous carbon fiber) in which hundreds to thousands of continuous carbon fibers are bundled,
After a resin represented by a thermosetting resin is immersed in a low-viscosity binder dissolved in a solvent, it is wound around a crucible-shaped mandrel, and then thermally cured. Next, the hardened body is subjected to a cutting process or the like to produce a crucible-shaped formed body (filament winding method). Next, the molded body is once heated to about 1000 ° C. in an inert gas and carbonized, and if necessary, impregnated with coal tar pitch or the like.
The whole is carbonized (graphitized) by heat treatment at a high temperature of 0 ° C. or higher. Next, by subjecting the carbonized crucible to a purification treatment or the like, the production of the graphite crucible for pulling a single crystal is completed. The carbonization (graphitization) treatment at a high temperature is performed a plurality of times as necessary.

【0016】また第2の方法は、樹脂等の結合材を含浸
させた炭素繊維クロスをルツボ型に張り付けて成形体を
作製し、その後第1の方法と同様にしてルツボを製造す
る方法である。
The second method is a method in which a carbon fiber cloth impregnated with a binder such as a resin is stuck to a crucible mold to produce a molded body, and then a crucible is manufactured in the same manner as the first method. .

【0017】しかし、上記第2の方法は、炭素繊維クロ
ス自体が高価であること、及び成形工程を自動化するこ
とが困難であること等の理由から、単結晶引き上げ用黒
鉛ルツボのコストが非常に高くなるという問題があっ
た。
However, the cost of the graphite crucible for pulling a single crystal is extremely low in the second method because the carbon fiber cloth itself is expensive and it is difficult to automate the molding process. There was a problem of getting high.

【0018】上記第1の方法は、連続炭素繊維クロスと
比較して安価な連続炭素繊維を用い、かつ自動巻き付け
により成形体を作製することができるため、効率よく安
価なC/C材製の単結晶引き上げ用黒鉛ルツボを製造す
ることができる。
The first method uses an inexpensive continuous carbon fiber as compared with a continuous carbon fiber cloth and can produce a compact by automatic winding, so that an inexpensive C / C material can be efficiently produced. A graphite crucible for pulling a single crystal can be manufactured.

【0019】図5は、フィラメントワインディング法に
よりマンドレルに連続炭素繊維の巻き付けを行っている
状態を模式的に示した正面図であり、ルツボの水平方向
と連続炭素繊維フィラメントの巻き付け方向とのなす角
度(以下、単に巻き付け角度とも記す)をθとしてい
る。
FIG. 5 is a front view schematically showing a state in which continuous carbon fibers are wound around a mandrel by the filament winding method, and shows the angle between the horizontal direction of the crucible and the winding direction of the continuous carbon fiber filaments. (Hereinafter, also simply referred to as a winding angle) is represented by θ.

【0020】マンドレル60は中央部61が単結晶引き
上げルツボの直胴部の内壁と同様の形状となっており、
その右端部62は底部の内壁とほぼ同様の形状となって
いる。また、左端部63の中央にマンドレル60の回転
を支持するための回転棒64が取り付けられている。連
続炭素繊維13を巻き付ける際には、この回転棒64を
回転チャック(図示せず)でつかみ、片持ちはりの形で
回転させながら、結合材が付着した連続炭素繊維13を
その位置を少しずつ変えながら送り出し、マンドレル6
0に巻き付ける。
The central part 61 of the mandrel 60 has the same shape as the inner wall of the straight body of the single crystal pulling crucible.
The right end 62 has substantially the same shape as the bottom inner wall. Further, a rotating rod 64 for supporting the rotation of the mandrel 60 is attached to the center of the left end 63. When winding the continuous carbon fiber 13, the rotating rod 64 is gripped by a rotary chuck (not shown), and the continuous carbon fiber 13 to which the binder is attached is gradually moved while rotating in a cantilever form. Sending out while changing, mandrel 6
Wrap around 0.

【0021】単結晶引き上げ用黒鉛ルツボは、通常短い
直胴部と鏡板状の平坦な底部とにより構成されているた
め、連続炭素繊維13をルツボ形状のマンドレル60の
全体に巻き付けるためには、図5に示したように巻き付
け角度θが約90°になるように巻き付ける、いわゆる
ヘリカル巻きを入れる必要がある。しかし、単純に前記
ヘリカル巻きのみにより成形体を作製したルツボでは、
炭化工程においてルツボが半径方向に収縮し、ルツボの
直径が小さくなってしまうという課題があった。これは
炭化工程において連続炭素繊維13の繊維方向への収縮
は殆ど発生しないが、連続炭素繊維13と垂直方向(円
周方向)には樹脂等のマトリックスの収縮の影響を受
け、ルツボが半径方向に大きく収縮するためである。上
記収縮により、製造されたルツボの直径が設定した寸法
より小さくなると、石英ルツボを挿入することができな
くなってしまう。
Since a graphite crucible for pulling a single crystal is usually composed of a short straight body and a flat bottom in the shape of a mirror plate, it is necessary to wind the continuous carbon fiber 13 around the entire crucible-shaped mandrel 60 as shown in FIG. As shown in FIG. 5, it is necessary to insert a so-called helical winding which is wound so that the winding angle θ is about 90 °. However, in a crucible in which a molded body is simply made only by the helical winding,
There has been a problem that the crucible shrinks in the radial direction in the carbonization step, and the diameter of the crucible decreases. This is because while the carbonization process hardly causes the continuous carbon fiber 13 to shrink in the fiber direction, the crucible is affected by the shrinkage of the matrix such as resin in the direction perpendicular to the continuous carbon fiber 13 (circumferential direction), and This is due to the large shrinkage. If the diameter of the manufactured crucible becomes smaller than the set size due to the shrinkage, it becomes impossible to insert the quartz crucible.

【0022】上記収縮現象を防止するため、前記ヘリカ
ル巻のみでなく、巻き付け角度θが90°より小さくな
るような連続炭素繊維13の巻き付けを採用した成形体
を使用する。また、巻き付け角度θがほぼ0°なるよう
に連続炭素繊維13を巻き付ける、いわゆるパラレル巻
を併用した成形体を使用する場合もある。しかし、この
場合にも巻き付け角度θにより炭化工程における収縮量
が異なるため、炭素繊維間にひび割れが発生したり、繊
維層間で剥離が発生する。ひび割れや剥離が小さい場合
には、コールタールピッチ等の含浸、炭化を繰り返すこ
とにより、ひび割れ部分や剥離部分に炭素が充填される
が、ひび割れや剥離部分が大きいとそのまま欠陥として
残ってしまい、単結晶引き上げ工程における前記欠陥部
分でのSiC化が進行すると、割れ等が発生する原因と
なるという課題があった。
In order to prevent the above-mentioned shrinkage phenomenon, not only the helical winding but also a formed body employing winding of the continuous carbon fibers 13 so that the winding angle θ is smaller than 90 ° is used. Further, there is a case where a formed body using a so-called parallel winding together, in which the continuous carbon fiber 13 is wound so that the winding angle θ is almost 0 °, may be used. However, also in this case, since the amount of shrinkage in the carbonization step differs depending on the winding angle θ, cracks occur between the carbon fibers and separation occurs between the fiber layers. When cracking or peeling is small, carbon is filled into cracked or peeled portions by repeating impregnation and carbonization of coal tar pitch or the like, but if cracks or peeled portions are large, they remain as defects as they are. There has been a problem in that the progress of SiC in the defect portion in the crystal pulling step causes a crack or the like to occur.

【0023】[0023]

【課題を解決するための手段及びその効果】本発明者は
上記課題に鑑み、フィラメントワインディング法を用い
て製造された、繊維層間で剥離等が発生しにくい単結晶
引き上げ用黒鉛ルツボとして、先に、炭素繊維強化炭素
材よりなる単結晶引き上げ用黒鉛ルツボにおいて、少な
くとも直胴部の内周部に水平方向に対して−45〜+4
5°の角度を有する連続炭素繊維が配され、その他の部
分に水平方向に対して−45°以下、又は+45°以上
の角度を有する連続炭素繊維が配されている単結晶引き
上げ用黒鉛ルツボ、及びその製造方法として、少なくと
もルツボ直胴部の内周部に相当する部分に水平方向に対
して−45〜+45°の角度に連続炭素繊維を巻き付け
た後、その他の部分に水平方向に対して−45°以下、
又は+45°以上の角度に連続炭素繊維を巻き付ける単
結晶引き上げ用黒鉛ルツボの製造方法を提案した。
In view of the above problems, the present inventor has previously described a graphite crucible for pulling a single crystal, which is manufactured by using a filament winding method and is unlikely to cause separation between fiber layers. In a single crystal pulling graphite crucible made of carbon fiber reinforced carbon material, at least -45 to +4 with respect to the horizontal direction at the inner peripheral portion of the straight body portion.
A graphite crucible for pulling a single crystal, wherein continuous carbon fibers having an angle of 5 ° are arranged, and continuous carbon fibers having an angle of -45 ° or less or + 45 ° or more with respect to the horizontal direction are arranged in other portions; And as a method for producing the same, after winding continuous carbon fibers at an angle of -45 to + 45 ° with respect to the horizontal direction at least on a portion corresponding to the inner peripheral portion of the crucible straight body portion, and then wrapping the other portions with respect to the horizontal direction -45 ° or less,
Alternatively, a method of manufacturing a graphite crucible for pulling a single crystal in which continuous carbon fibers are wound at an angle of + 45 ° or more was proposed.

【0024】本発明者は、その後検討を重ね、連続炭素
繊維を巻き付ける際に該連続炭素繊維に付着させる結合
剤中に炭素粉末やセラミックス粉末等の収縮抑制用粉末
を添加しておくことにより、炭化工程における結合剤の
収縮が抑制され、その結果、連続炭素繊維と垂直方向の
過度の収縮が抑制され、炭化工程における炭素繊維間の
ひび割れや繊維層間の剥離を一層確実に防止することが
できることを見い出し本発明を完成させるに至った。
[0024] The present inventor has studied repeatedly thereafter, and by adding a powder for suppressing shrinkage such as carbon powder or ceramic powder to a binder to be attached to the continuous carbon fiber when winding the continuous carbon fiber, Shrinkage of the binder in the carbonization step is suppressed, and as a result, excessive shrinkage in the vertical direction with the continuous carbon fibers is suppressed, and cracks between carbon fibers and peeling between fiber layers in the carbonization step can be more reliably prevented. And completed the present invention.

【0025】すなわち本発明に係る単結晶引き上げ用黒
鉛ルツボ(1)は、フィラメントワインディング法を用
いて製造された、炭素繊維強化炭素材よりなる単結晶引
き上げ用黒鉛ルツボにおいて、炭素繊維と気孔とを除く
部材中に平均粒径が30μm以下の収縮抑制用粉末を5
〜40体積%の割合で含有していることを特徴としてい
る。
That is, the graphite crucible for pulling a single crystal according to the present invention (1) is a graphite crucible for pulling a single crystal made of carbon fiber reinforced carbon material manufactured by a filament winding method. Add 5 parts of shrinkage suppressing powder having an average particle size of 30 μm or less
It is characterized in that it is contained at a ratio of 4040% by volume.

【0026】上記単結晶引き上げ用黒鉛ルツボ(1)に
よれば、結合材中に収縮抑制用粉末が配合されているた
め、従来の場合と比べて炭化工程における結合材の過度
の収縮を抑制することができ、炭素繊維間のひび割れや
繊維層間の剥離が発生せず、安価で寸法精度が高く、耐
久性に優れた単結晶引き上げ用黒鉛ルツボとすることが
できる。
According to the graphite crucible for pulling a single crystal (1), since the shrinkage suppressing powder is blended in the binder, excessive shrinkage of the binder in the carbonization step is suppressed as compared with the conventional case. Thus, a graphite crucible for pulling a single crystal which is inexpensive, has high dimensional accuracy, and has excellent durability can be obtained without causing cracks between carbon fibers or peeling between fiber layers.

【0027】また本発明に係る単結晶引き上げ用黒鉛ル
ツボ(2)は、上記単結晶引き上げ用黒鉛ルツボ(1)
において、少なくとも直胴部の内周部に水平方向に対し
て−45〜+45°の角度を有する連続炭素繊維が配さ
れ、その他の部分に水平方向に対して−45°以下、又
は+45°以上の角度を有する連続炭素繊維が配されて
いることを特徴としている。
Further, the graphite crucible for pulling a single crystal according to the present invention (2) is a graphite crucible for pulling a single crystal (1).
In the above, continuous carbon fibers having an angle of -45 to + 45 ° with respect to the horizontal direction are arranged at least on the inner peripheral portion of the straight body portion, and the other portions are equal to or less than -45 ° or equal to or more than + 45 ° with respect to the horizontal direction. Characterized in that continuous carbon fibers having an angle of?

【0028】上記単結晶引き上げ用黒鉛ルツボ(2)に
よれば、少なくとも直胴部の内周部に水平方向に対して
−45〜+45°の角度を有する連続炭素繊維が配され
ているので、殆ど収縮による変形がなく、外周部には水
平方向に対して−45°以下、又は+45°以上の角度
を有する連続炭素繊維が配されているので、外周部の半
径方向への適度の収縮により繊維層間が密着し易く、炭
素繊維間のひび割れや繊維層間の剥離を一層確実に防止
することができる。
According to the graphite crucible for pulling a single crystal (2), continuous carbon fibers having an angle of -45 to + 45 ° with respect to the horizontal direction are arranged at least on the inner peripheral portion of the straight body. Since there is almost no deformation due to shrinkage, continuous carbon fibers having an angle of -45 ° or less or + 45 ° or more with respect to the horizontal direction are arranged on the outer peripheral portion. Fiber layers are easily adhered to each other, so that cracks between carbon fibers and peeling between fiber layers can be more reliably prevented.

【0029】[0029]

【発明の実施の形態】以下、本発明に係る単結晶引き上
げ用黒鉛ルツボの実施の形態を図面に基づいて説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a graphite crucible for pulling a single crystal according to the present invention will be described below with reference to the drawings.

【0030】図1(a)は望ましい実施の形態に係る単
結晶引き上げ用黒鉛ルツボを模式的に示した平面図であ
り、(b)は一部切欠き正面図であり、左側の部分が断
面となっている。
FIG. 1 (a) is a plan view schematically showing a graphite crucible for pulling a single crystal according to a preferred embodiment, and FIG. 1 (b) is a partially cutaway front view, in which the left part is a cross section. It has become.

【0031】この単結晶引き上げ用黒鉛ルツボ10の直
胴部11の内周部11aには巻き付け角度θが−45≦
θ≦+45°になるように連続炭素繊維13が配されて
いる。また、直胴部11の外周部11b及び底部12に
は巻き付け角度θがθ≦−45°、又はθ≧45°にな
るように連続炭素繊維13が配されている。ただし、直
胴部11の外周部11bの一部に、巻き付け角度θが−
45≦θ≦+45°になるように連続炭素繊維13が配
されていてもよい。また、連続炭素繊維13以外の部分
は、樹脂等の結合材が加熱処理により炭化して生成した
炭素(黒鉛)により構成されており、前記炭素中には、
粒径が30μm以下の収縮抑制用粉末が5〜40体積%
含まれている。前記収縮抑制用粉末の機能については、
以下の単結晶引き上げ用黒鉛ルツボ10の製造方法にお
いて説明する。
The winding angle θ of the single crystal pulling graphite crucible 10 on the inner peripheral portion 11a of the straight body portion 11 is -45 ≦
The continuous carbon fibers 13 are arranged so that θ ≦ + 45 °. In addition, continuous carbon fibers 13 are arranged on the outer peripheral portion 11b and the bottom portion 12 of the straight body portion 11 such that the winding angle θ is θ ≦ −45 ° or θ ≧ 45 °. However, a part of the outer peripheral part 11b of the straight body part 11 has a winding angle θ of −
The continuous carbon fibers 13 may be arranged such that 45 ≦ θ ≦ + 45 °. The portion other than the continuous carbon fibers 13 is made of carbon (graphite) generated by carbonizing a binder such as a resin by a heat treatment.
5 to 40% by volume of shrinkage suppressing powder having a particle size of 30 μm or less
include. Regarding the function of the shrinkage suppressing powder,
A method for manufacturing the graphite crucible 10 for pulling a single crystal will be described below.

【0032】上記構成の単結晶引き上げ用黒鉛ルツボ1
0を製造する場合、まず、粒径が30μm以下の収縮抑
制用粉末が所定の体積%配合された結合材中に浸漬した
連続炭素繊維13をマンドレルに巻き付けるが、最初に
直胴部11の内周部11aに相当する部分に、巻き付け
角度θが−45≦θ≦+45°になるように連続炭素繊
維13を巻き付ける。この巻き付けが終了した後、外周
部11bに相当する部分、及び底部12に相当する部分
に巻き付け角度θがθ≦−45°、又はθ≧45°にな
るように連続炭素繊維13を巻き付ける。この場合、直
胴部11の外周部11bの一部に、巻き付け角度θが−
45≦θ≦+45°になるように連続炭素繊維13を巻
き付けてもよい。巻き付け角度θが約−10°≦θ≦約
+10°の場合には、連続炭素繊維13が直胴部11と
底部12との境界部分ですべってしまうため、前記境界
部分に多数のピンを立て、連続炭素繊維13のすべりを
防止する。次に、連続炭素繊維13が巻き付けられたマ
ンドレルを加熱して硬化体を作製し、ピンを除去した
後、切削加工等を行ってルツボ形状の成形体を作製す
る。次に、この成形体を一度不活性ガス中、1000℃
程度に加熱して炭化し、さらに必要により収縮抑制用粉
末を含有するコールタールピッチ等の結合材を含浸させ
た後、2000℃以上の高温で加熱処理して全体を炭化
(黒鉛化)させる。上記高温による炭化(黒鉛化)処理
は必要により複数回行う。次に、炭化工程が終了したル
ツボに高純度化処理等を施すことにより単結晶引き上げ
用黒鉛ルツボ10の製造を完了する。上記炭化工程によ
り、結合材の一部が炭化(黒鉛化)するが、収縮抑制用
粉末はそのままの状態で結合材中に残留する。
A graphite crucible 1 for pulling a single crystal having the above structure
In the case of manufacturing the carbon fiber No. 0, first, the continuous carbon fiber 13 immersed in a binder mixed with a predetermined volume% of a shrinkage suppressing powder having a particle size of 30 μm or less is wound around a mandrel. The continuous carbon fibers 13 are wound around a portion corresponding to the peripheral portion 11a such that the winding angle θ is −45 ≦ θ ≦ + 45 °. After this winding is completed, the continuous carbon fibers 13 are wound around the portion corresponding to the outer peripheral portion 11b and the portion corresponding to the bottom portion 12 such that the winding angle θ is θ ≦ −45 ° or θ ≧ 45 °. In this case, the wrapping angle θ is set to − on a part of the outer peripheral portion 11 b of the straight body portion 11.
The continuous carbon fibers 13 may be wound so that 45 ≦ θ ≦ + 45 °. When the winding angle θ is approximately −10 ° ≦ θ ≦ approximately + 10 °, the continuous carbon fiber 13 slips at the boundary between the straight body portion 11 and the bottom portion 12, so that a large number of pins are set up at the boundary portion. In addition, the continuous carbon fiber 13 is prevented from slipping. Next, the mandrel around which the continuous carbon fiber 13 is wound is heated to produce a cured body, and after removing the pins, cutting and the like are performed to produce a crucible-shaped molded body. Next, the molded body is once put in an inert gas at 1000 ° C.
After heating to a certain degree and carbonizing, and if necessary, impregnating with a binder such as coal tar pitch containing shrinkage suppressing powder, heat treatment is performed at a high temperature of 2000 ° C. or more to carbonize (graphitize) the whole. The carbonization (graphitization) treatment at a high temperature is performed a plurality of times as necessary. Next, the production of the graphite crucible 10 for pulling a single crystal is completed by subjecting the crucible after the carbonization step to a purification treatment or the like. In the carbonization step, a part of the binder is carbonized (graphitized), but the shrinkage suppressing powder remains in the binder as it is.

【0033】上記単結晶引き上げ用黒鉛ルツボ10を製
造において使用する連続炭素繊維の種類は特に限定され
るものでなく、PAN系、ピッチ系等の種々の炭素繊維
を使用することができる。前記結合材としては、例えば
フェノール樹脂、フラン樹脂等の熱硬化性樹脂、コール
タールピッチ等が挙げられる。前記結合材に含まれる収
縮抑制用粉末としては、炭化工程において収縮がなく、
かつ結合材と反応することがないものが好ましく、前記
収縮抑制用粉末としては、例えば黒鉛を粉砕することに
より製造した黒鉛微粉末、カーボンブラック等の炭素粉
末、炭化ケイ素粉末、窒化ケイ素粉末、窒化アルミニウ
ム粉末等のセラミック粉末が挙げられる。
The type of continuous carbon fiber used in manufacturing the graphite crucible 10 for pulling a single crystal is not particularly limited, and various carbon fibers such as PAN-based and pitch-based carbon fibers can be used. Examples of the binder include a thermosetting resin such as a phenol resin and a furan resin, and a coal tar pitch. As the shrinkage suppressing powder contained in the binder, there is no shrinkage in the carbonization step,
And those which do not react with the binder are preferable. Examples of the shrinkage suppressing powder include graphite fine powder produced by pulverizing graphite, carbon powder such as carbon black, silicon carbide powder, silicon nitride powder, and nitrided powder. Ceramic powder such as aluminum powder can be used.

【0034】前記収縮抑制用粉末を含んだ結合材を使用
すると、炭化工程における結合材の過度の収縮を抑制す
ることができ、前記結合材の過度の収縮に起因する巻き
付け角度が異なる炭素繊維間のひび割れや繊維層間での
剥離を防止することができ、特に炭素繊維間のひび割れ
防止に顕著な効果を奏する。前記収縮抑制用粉末の平均
粒径は30μm以下が好ましい。前記収縮抑制用粉末の
平均粒径が30μmを超えると、炭化工程において、前
記収縮抑制用粉末とマトリックスである炭素材との間に
微細なき裂が生じ易くなり、単結晶引き上げ用黒鉛ルツ
ボ10の強度が低下する傾向が生ずる。また、製造され
た単結晶引き上げ用黒鉛ルツボ10の連続炭素繊維13
以外の炭素材中の前記収縮抑制用粉末の含有量が5体積
%未満であると、収縮抑制の効果が上がらず、単結晶引
き上げ用黒鉛ルツボ10にひび割れや繊維層間の剥離が
発生し易くなり、他方、前記炭素材中の前記収縮抑制用
粉末の含有量が40体積%を超えると、相対的に結合材
の量が少なくなるため、結合材が連続炭素繊維13同士
を結合させる機能を発揮しにくくなり、強度が低下する
傾向が生ずる。炭化工程において炭素となる割合は、結
合材の種類、又は結合材を溶かす溶剤の量により異なる
が、例えばフェノール樹脂の場合には溶剤を除いた樹脂
の炭化収率は約60%である。このような結合材の炭化
収率を考慮して、炭化工程の後において、連続炭素繊維
13以外の炭素材料中の収縮抑制用粉末の含有量が5〜
40体積%となるように、前記結合材中に前記収縮抑制
材を添加する必要がある。
When a binder containing the shrinkage-suppressing powder is used, excessive shrinkage of the binder in the carbonization step can be suppressed, and carbon fibers having different winding angles due to the excessive shrinkage of the binder are used. Cracks and peeling between fiber layers can be prevented, and it is particularly effective in preventing cracks between carbon fibers. The average particle size of the shrinkage suppressing powder is preferably 30 μm or less. When the average particle diameter of the shrinkage suppressing powder exceeds 30 μm, fine cracks are easily generated between the shrinkage suppressing powder and the carbon material serving as a matrix in the carbonization step, and the graphite crucible 10 for pulling a single crystal is formed. There is a tendency for the strength to decrease. In addition, the continuous carbon fibers 13 of the manufactured graphite crucible 10 for pulling a single crystal are manufactured.
If the content of the powder for suppressing shrinkage in the carbon material other than the above is less than 5% by volume, the effect of suppressing shrinkage does not increase, and the single crystal pulling graphite crucible 10 is liable to crack and peel between fiber layers. On the other hand, when the content of the shrinkage-suppressing powder in the carbon material exceeds 40% by volume, the amount of the binder is relatively reduced, and the binder exerts a function of binding the continuous carbon fibers 13 to each other. And the strength tends to decrease. The ratio of carbon in the carbonization step varies depending on the type of the binder or the amount of the solvent dissolving the binder. For example, in the case of a phenol resin, the carbonization yield of the resin excluding the solvent is about 60%. In consideration of the carbonization yield of such a binder, after the carbonization step, the content of the shrinkage suppressing powder in the carbon material other than the continuous carbon fibers 13 is 5 to 5.
It is necessary to add the shrinkage-suppressing material to the binder so as to be 40% by volume.

【0035】上記単結晶引き上げ用黒鉛ルツボ10の製
造において、内周部11aにおける連続炭素繊維13の
巻き付け角度θは小さい程、炭化工程において変形しに
くく、外周部11bの収縮による変形を防止する効果が
高い。従って、連続炭素繊維13の巻き付け角度θは−
45〜+45°の範囲が好ましく、−15〜+15°の
範囲がより好ましい。さらに、連続炭素繊維13の巻き
付け角度θが0°、すなわち水平方向にパラレルに連続
炭素繊維13を巻き付けたものが、連続炭素繊維13を
巻き付ける容易さから最も好ましい。しかし、底部12
に巻き付け角度θが0°又はそれに近い角度で連続炭素
繊維13を巻き付けようとしても、連続炭素繊維13が
すべってしまうため巻き付けが困難である。そこで、底
部12に相当する部分には、外周部11bに相当する部
分に巻き付ける場合と同様に、巻き付け角度θがθ≦−
45°、又はθ≧45°になるように連続炭素繊維13
を巻き付ける。
In the production of the graphite crucible 10 for pulling a single crystal, the smaller the winding angle θ of the continuous carbon fiber 13 in the inner peripheral portion 11a, the less the deformation is caused in the carbonization step, and the effect of preventing the deformation due to the contraction of the outer peripheral portion 11b is prevented. Is high. Therefore, the winding angle θ of the continuous carbon fiber 13 is −
A range of 45 to + 45 ° is preferred, and a range of -15 to + 15 ° is more preferred. Furthermore, it is most preferable that the winding angle θ of the continuous carbon fibers 13 is 0 °, that is, the continuous carbon fibers 13 are wound in parallel in the horizontal direction because of the ease of winding the continuous carbon fibers 13. However, the bottom 12
Even if the continuous carbon fiber 13 is to be wound at a winding angle θ of 0 ° or an angle close thereto, the winding is difficult because the continuous carbon fiber 13 slips. Therefore, as in the case where the portion corresponding to the bottom portion 12 is wound around the portion corresponding to the outer peripheral portion 11b, the winding angle θ is θ ≦ −.
45 ° or continuous carbon fiber 13 so that θ ≧ 45 °
Wrap.

【0036】外周部11bについては、すべての連続炭
素繊維13を巻き付け角度θがθ≦−45°、又はθ≧
45°になるように巻き付ける必要はなく、内周部11
aの場合と同様に、巻き付け角度θが−45〜45°の
範囲の連続炭素繊維13層を複数層、巻き付け角度θが
θ≦−45°、又はθ≧45°になるように巻き付けた
層の間に配してもよい。
As for the outer peripheral portion 11b, the winding angle θ of all the continuous carbon fibers 13 is θ ≦ −45 ° or θ ≧
It is not necessary to wind it to 45 °.
Similarly to the case of a, the winding angle θ is a plurality of layers of continuous carbon fibers 13 in the range of −45 to 45 °, and the layer is wound such that the winding angle θ is θ ≦ −45 ° or θ ≧ 45 °. It may be arranged between.

【0037】図2は別の実施の形態に係る単結晶引き上
げ用黒鉛ルツボを模式的に示した断面図である。
FIG. 2 is a cross-sectional view schematically showing a graphite crucible for pulling a single crystal according to another embodiment.

【0038】本実施の形態においては、単結晶引き上げ
用黒鉛ルツボ20の直胴部21の内周部21aには巻き
付け角度θが0°、すなわち水平になるように連続炭素
繊維13が配されており、直胴部21の外周部21b及
び底部22には巻き付け角度θがθ≦−45°、又はθ
≧45°になるように連続炭素繊維13が配されてい
る。
In this embodiment, continuous carbon fibers 13 are arranged on the inner peripheral portion 21a of the straight body portion 21 of the graphite crucible 20 for pulling a single crystal so that the winding angle θ is 0 °, that is, horizontal. And the winding angle θ is θ ≦ −45 ° or θ around the outer peripheral portion 21b and the bottom portion 22 of the straight body portion 21.
The continuous carbon fibers 13 are arranged so as to satisfy ≧ 45 °.

【0039】単結晶引き上げ用黒鉛ルツボ20の製造
は、直胴部21の内周部21aに相当する部分に、巻き
付け角度θが0°になるように連続炭素繊維13を巻き
付ける他は、図1に示した単結晶引き上げ用黒鉛ルツボ
10を製造する場合と同様に行う。上記単結晶引き上げ
用黒鉛ルツボ20の製造方法においては、内周部21a
に水平に連続炭素繊維13を巻き付けるので、炭化工程
において半径方向に収縮が生じない。また、図1に示し
た単結晶引き上げ用黒鉛ルツボの場合と同様に、繊維層
間が密着し易い。
The graphite crucible 20 for pulling a single crystal is manufactured by winding the continuous carbon fiber 13 around the portion corresponding to the inner peripheral portion 21a of the straight body portion 21 so that the winding angle θ becomes 0 ° in FIG. Is performed in the same manner as in the case of manufacturing the graphite crucible 10 for pulling a single crystal shown in FIG. In the method of manufacturing the graphite crucible 20 for pulling a single crystal, the inner peripheral portion 21 a
Since the continuous carbon fibers 13 are wound horizontally, no shrinkage occurs in the radial direction in the carbonization step. Further, as in the case of the graphite crucible for pulling a single crystal shown in FIG. 1, the fiber layers are easily adhered to each other.

【0040】[0040]

【実施例及び比較例】以下、本発明に係る単結晶引き上
げ用黒鉛ルツボの実施例を説明する。また、比較例とし
て 連続炭素繊維13に付着させる結合材に収縮抑制用
粉末を添加していない場合、前記収縮抑制用粉末の粒径
が大きすぎる場合、前記収縮抑制用粉末の配合量が適切
な範囲にない場合についても説明する。
Examples and Comparative Examples Examples of a graphite crucible for pulling a single crystal according to the present invention will be described below. Further, as a comparative example, when the shrinkage suppressing powder is not added to the binder adhered to the continuous carbon fiber 13, when the particle diameter of the shrinkage suppressing powder is too large, the compounding amount of the shrinkage suppressing powder is appropriate. A case outside the range will also be described.

【0041】(1)製造する単結晶引き上げ用黒鉛ルツ
ボ、及びその寸法 製造する単結晶引き上げ用黒鉛ルツボ10、20:表
1に示す 単結晶引き上げ用黒鉛ルツボ10、20の寸法(図2
に部材の寸法を記号で記載、図1に示したものは図2に
示したものと同様の寸法を有する) 内径(D):309mm、深さ(H):220mm、 底部22内側の半径(R):309mm、 直胴部21の厚さ(d1 ):10mm、 内周部21aの厚さ:1mm 直胴部21下の底部22の厚さ(d2 ):約8mm、 底部22中央の厚さ(d3 ):15mm ルツボ受け台 ルツボ受け台25の直径:260mm (2)原料及び製造条件 連続炭素繊維 PAN系高強度連続炭素繊維のストランド(フィラメン
ト数:6000本) 結合材 高純度フェノール樹脂 収縮抑制用粉末 黒鉛粉砕粉末(平均粒径:8〜40μm):平均粒径を
表1に示す カーボンブラック(平均粒径:0.2μm) SiC粉末(平均粒径:0.3μm) 配合量(炭化後の炭素繊維以外の炭素材中の割合):表
1に示す 結合材の硬化温度:200℃ 炭化条件 炭化炉:コークスを詰めた焼成炉 雰囲気:窒素雰囲気 第1回目、2回目の加熱温度:1000℃ 第3回目の加熱温度:1000℃加熱後、Ar雰囲気下
で2000℃処理 なお、第2回目と第3回目の加熱前に、減圧雰囲気でル
ツボ成形体及びコールタールピッチを200℃に加熱
し、ルツボ成形体をコールタールピッチに浸漬した後、
加圧してルツボ成形体の内部にコールタールピッチを含
浸させた。
(1) Single crystal pulling graphite crucibles to be manufactured and their dimensions: Single crystal pulling graphite crucibles 10 and 20 to be manufactured: Dimensions of single crystal pulling graphite crucibles 10 and 20 shown in Table 1 (FIG. 2)
1 has the same dimensions as those shown in FIG. 2) Inner diameter (D): 309 mm, depth (H): 220 mm, radius inside bottom 22 ( R): 309 mm, thickness of straight body 21 (d 1 ): 10 mm, thickness of inner peripheral part 21 a: 1 mm thickness of bottom 22 under straight body 21 (d 2 ): about 8 mm, center of bottom 22 Thickness (d 3 ): 15 mm Crucible holder Diameter of crucible holder 25: 260 mm (2) Raw materials and manufacturing conditions Continuous carbon fiber PAN-based high-strength continuous carbon fiber strand (number of filaments: 6000) Binder High purity Phenol resin Shrinkage control powder Graphite ground powder (average particle size: 8 to 40 μm): Average particle size is shown in Table 1. Carbon black (average particle size: 0.2 μm) SiC powder (average particle size: 0.3 μm) Amount (carbon after carbonization Ratio of carbon material other than fiber): Curing temperature of binder shown in Table 1: 200 ° C Carbonization conditions Carbonization furnace: Firing furnace filled with coke Atmosphere: Nitrogen atmosphere First and second heating temperature: 1000 ° C Third heating temperature: After heating at 1000 ° C, 2,000 ° C treatment in an Ar atmosphere. Before the second and third heating, the crucible molding and the coal tar pitch were heated to 200 ° C in a reduced pressure atmosphere, and the crucible was heated. After immersing the molded body in the coal tar pitch,
Pressure was applied to impregnate the crucible molded body with coal tar pitch.

【0042】高純度化処理:高温ハロゲンガス (3)製造した単結晶引き上げ用黒鉛ルツボの評価方
法、及び評価結果 炭素繊維及び収縮抑制用粉末の含有率 (i) 測定方法:まず、単結晶引き上げ用黒鉛ルツボの製
造前、炭素繊維及び収縮抑制用粉末の真密度をJIS
R 7222の方法に準じて測定する。前記測定により
得られた炭素繊維の真密度をρ1 、収縮抑制用粉末の真
密度をρ3 とする。また、結合材を調製する際、結合材
中に添加した収縮抑制用粉末の重量を測定しておく。樹
脂と収縮抑制用粉末とをよく混合した結合材を用いるの
で、実際に前記ルツボの製造に使用した結合材の量を測
定すれば、結合材使用量と混合率とから、前記黒鉛ルツ
ボの製造時に使用した収縮抑制用粉末の重量W3 を求め
ることができる。
Purification treatment: high-temperature halogen gas (3) Evaluation method of produced graphite crucible for pulling single crystal and evaluation result Content of carbon fiber and shrinkage suppressing powder (i) Measuring method: First, single crystal pulling Density of carbon fiber and shrinkage control powder before manufacturing graphite crucible for JIS
It is measured according to the method of R7222. The true density of the carbon fiber obtained by the above measurement is ρ 1 , and the true density of the shrinkage suppressing powder is ρ 3 . In preparing the binder, the weight of the shrinkage suppressing powder added to the binder is measured. Since a binder is used in which a resin and a shrinkage-suppressing powder are well mixed, the amount of the binder used in the production of the crucible is actually measured. From the amount of the binder used and the mixing ratio, the production of the graphite crucible is performed. sometimes it is possible to determine the weight W 3 of the shrinkage inhibiting powder used.

【0043】使用した炭素繊維の重量をW1 とすると、
前記黒鉛ルツボ中の炭素繊維の体積V1 及び収縮抑制用
粉末の体積V3 を下記の数1式及び数2式より求めるこ
とができる。なお、炭素繊維及び収縮抑制用粉末は、予
め熱処理されているため、炭化から黒鉛化までの重量及
び密度の変化は小さく、下記の数1式及び数2式より、
炭素繊維及び収縮抑制用粉末の体積を誤差が殆どない状
態で求めることができる。炭素繊維及び収縮抑制用粉末
の体積をより正確に求める場合には、これらを黒鉛化
し、黒鉛化による重量、真密度の変化を測定し、補正す
ることが望ましい。
Assuming that the weight of the carbon fiber used is W 1 ,
The volume V 1 of the carbon fiber and the volume V 3 of the powder for suppressing shrinkage in the graphite crucible can be obtained from the following equations (1) and (2). Since the carbon fiber and the powder for suppressing shrinkage are heat-treated in advance, changes in weight and density from carbonization to graphitization are small, and from the following equations (1) and (2),
The volumes of the carbon fiber and the shrinkage-suppressing powder can be determined with little error. In order to more accurately determine the volume of the carbon fiber and the shrinkage suppressing powder, it is desirable to graphitize these and to measure and correct changes in weight and true density due to the graphitization.

【0044】[0044]

【数1】V1 =W1 /ρ1 ## EQU1 ## V 1 = W 1 / ρ 1

【0045】[0045]

【数2】V3 =W3 /ρ3 一方、3次元測定機等で求めた前記黒鉛ルツボの断面形
状を積分することにより、前記黒鉛ルツボの体積Vを求
めれば、下記の数3式より炭素繊維の含有率を求めるこ
とができる。
V 3 = W 3 / ρ 3 On the other hand, if the volume V of the graphite crucible is obtained by integrating the cross-sectional shape of the graphite crucible obtained by a three-dimensional measuring device or the like, the following equation 3 is obtained. The carbon fiber content can be determined.

【0046】[0046]

【数3】 炭素繊維含有率=(V1 /V)×100 (%) 収縮抑制用粉末の含有率を求めるためには、結合材(黒
鉛化後)の体積V2 を求める必要があるが、この結合材
の体積V2 は下記の数4式より求めることができる。
[Formula 3] Carbon fiber content = (V 1 / V) × 100 (%) In order to determine the content of the shrinkage-suppressing powder, it is necessary to determine the volume V 2 of the binder (after graphitization). , the volume V 2 of the binder can be obtained from equation (4) below.

【0047】[0047]

【数4】V2 =V123 −(V1 +V3 ) ここで、V123 は黒鉛ルツボの体積Vから気孔の体積を
除いたものであり、単結晶引き上げ用黒鉛ルツボの乾燥
重量Wと水中重量W’とがわかれば、下記の数5式より
求められる。
V 2 = V 123 − (V 1 + V 3 ) where V 123 is the volume V of the graphite crucible minus the volume of the pores, and the dry weight W of the graphite crucible for pulling a single crystal and the water If the weight W 'is known, it can be obtained from the following equation (5).

【0048】[0048]

【数5】V123 =W−W’ なお、水中重量W’は、水を入れた容器中に前記黒鉛ル
ツボを入れ、徐々に排気して、2.0〜2.7kPa程
度とし、この圧力を20分間保持して前記黒鉛ルツボの
気孔中に水を十分に侵入させた後常圧に戻し、前記黒鉛
ルツボを容器に触れないように水中でつるし、つるした
前記黒鉛ルツボの水中重量を精密バネ秤等で測定するこ
とにより得られる。前記黒鉛ルツボ中に存在する気孔は
殆ど開気孔とみなせるため、上記の手法でV123 を求め
ても問題ない。なお、前記黒鉛ルツボの気孔率は収縮抑
制用粉末の量とは余り関係せず、全て約14%であっ
た。
V 123 = W−W ′ The underwater weight W ′ was adjusted to about 2.0 to 2.7 kPa by placing the graphite crucible in a container filled with water and gradually exhausting the same. For 20 minutes, allowing enough water to penetrate into the pores of the graphite crucible and then returning to normal pressure, suspending the graphite crucible in water without touching the container, and accurately measuring the weight of the suspended graphite crucible in water. It can be obtained by measuring with a spring balance or the like. Since the pores existing in the graphite crucible can be almost regarded as open pores, there is no problem even if V123 is determined by the above method. The porosity of the graphite crucible was not significantly related to the amount of the shrinkage-suppressing powder, and was all about 14%.

【0049】上記データより、前記黒鉛ルツボにおける
炭素繊維と気孔とを除く部材中の収縮抑制用粉末の含有
率は、下記の数6式を用いて計算することができる。
From the above data, the content of the shrinkage-suppressing powder in the member excluding the carbon fibers and the pores in the graphite crucible can be calculated using the following equation (6).

【0050】[0050]

【数6】収縮抑制用粉末の含有率={V3 /(V2 +V
3 )}×100 (%) (ii)測定結果 炭素繊維含有率:約55体積%、 収縮抑制用粉末の含有率:表1に示す 表面状態(ひび割れ、剥離)の観察 観察方法:目視、及び走査型電子顕微鏡(SEM)によ
り観察 観察結果:表1に示す かさ密度の測定 測定方法:(ルツボ乾燥重量W/ルツボ体積V) 測定結果:表1に示す 曲げ強度の測定 測定方法:内壁を含むように直胴部11、21から、厚
さ3mm、幅15mm、長さ100mmの試験片を切り
出し、スパン80mmの3点曲げ試験から求めた。な
お、試験片の長さ方向は、単結晶引き上げ用黒鉛ルツボ
10、20の高さ方向と一致するように試験片を切り出
した。測定結果を表1に示す。
## EQU6 ## Content of powder for suppressing shrinkage = 粉末 V 3 / (V 2 + V)
3 )} × 100 (%) (ii) Measurement result Carbon fiber content: about 55% by volume, content of shrinkage suppressing powder: Observation of surface condition (crack, peeling) shown in Table 1 Observation method: visual observation, and Observation by scanning electron microscope (SEM) Observation result: Measurement of bulk density shown in Table 1 Measurement method: (crucible dry weight W / crucible volume V) Measurement result: Measurement of bending strength shown in Table 1 Measurement method: including inner wall As described above, test pieces having a thickness of 3 mm, a width of 15 mm, and a length of 100 mm were cut out from the straight body portions 11 and 21 and determined by a three-point bending test with a span of 80 mm. The test piece was cut out so that the length direction of the test piece coincided with the height direction of the graphite crucibles 10 and 20 for pulling a single crystal. Table 1 shows the measurement results.

【0051】 耐久性試験 図3に示した単結晶引き上げ装置を用い、実施例1〜1
1、及び比較例1〜4に係る単結晶引き上げ用黒鉛ルツ
ボ10、20を単結晶引き上げ装置内のルツボ受け台2
5に設置し、石英ルツボ33を嵌合させた後、高純度の
Si塊からなる結晶用原料を充填し、さらに、直径が数
mmの石英粒子を1kg充填した。Si塊に石英粒子を
加えることにより、Si溶液と石英との接触面積を増大
させ、発生するSiOガスの量を増加させた。従って、
単結晶引き上げ用黒鉛ルツボ表面のSiC化は加速され
ることになる。
Durability Test Examples 1 to 1 were performed using the single crystal pulling apparatus shown in FIG.
1 and the crucibles 10 and 20 for pulling single crystals according to Comparative Examples 1 to 4 were placed in a crucible cradle 2 in a single crystal pulling apparatus.
5 and fitted with a quartz crucible 33, filled with a crystal material made of high-purity Si chunks, and further filled with 1 kg of quartz particles having a diameter of several mm. By adding quartz particles to the Si mass, the contact area between the Si solution and quartz was increased, and the amount of generated SiO gas was increased. Therefore,
The formation of SiC on the surface of the graphite crucible for pulling a single crystal is accelerated.

【0052】次に、結晶用原料を高温に加熱して溶融液
37とした。
Next, the raw material for crystallization was heated to a high temperature to form a molten liquid 37.

【0053】結晶用原料の量は溶融液37とした時、液
面が石英ルツボ33の深さの1/3となる量とした。そ
して、単結晶41の引き上げは行わず、単結晶引き上げ
に要する時間と同じ時間保持する試験を5回繰り返し
た。また、溶融液37の温度は、単結晶引き上げのとき
よりも約50℃高い約1470℃とし、単結晶引き上げ
用黒鉛ルツボ10、20の表面のSiC化を加速するこ
ととし、試験後にルツボの表面状態を再び観察した。観
察結果を表1に示す。
The amount of the raw material for crystallization was such that the liquid level was 1/3 of the depth of the quartz crucible 33 when the melt 37 was used. Then, a test in which the single crystal 41 was not pulled up and the test was held for the same time as the time required for pulling up the single crystal was repeated five times. The temperature of the melt 37 is set to about 1470 ° C., which is about 50 ° C. higher than that for single crystal pulling, to accelerate the SiC conversion of the surfaces of the single crystal pulling graphite crucibles 10 and 20. The condition was observed again. Table 1 shows the observation results.

【0054】[0054]

【表1】 [Table 1]

【0055】上記表1に示した結果より明らかなよう
に、炭化後における連続炭素繊維13及び気孔以外の炭
素材に対して、5〜40体積%になるように平均粒径が
30μm以下の収縮抑制用粉末を配合して製造した単結
晶引き上げ用黒鉛ルツボ10、20は、耐久性試験の前
後においてもひび割れや剥離が発生しておらず、かさ密
度や曲げ強度も大きく、十分に耐久性に優れた単結晶引
き上げ用黒鉛ルツボ10、20となっている。
As is evident from the results shown in Table 1, shrinkage with an average particle size of 30 μm or less is made so that the carbon material other than the continuous carbon fibers 13 and the pores after carbonization is 5 to 40% by volume. The graphite crucibles 10 and 20 for pulling a single crystal, which were produced by mixing the suppressing powder, did not crack or peel off before and after the durability test, had a large bulk density and bending strength, and had sufficient durability. The graphite crucibles 10 and 20 for pulling a single crystal are excellent.

【0056】一方、収縮抑制用粉末を配合せず、かつ内
周部を同じ角度でフィラメントワインディングした比較
例1に係る単結晶引き上げ用黒鉛ルツボでは、炭化時に
直径が収縮したことにより、耐久試験前に目視で確認で
きる表面の微細な剥離が発生した。また、耐久性試験で
は、1回で表面に剥離が発生した。
On the other hand, in the graphite crucible for pulling a single crystal according to Comparative Example 1 in which the shrinkage suppressing powder was not blended and the inner periphery was filament-wound at the same angle, the diameter shrunk during carbonization. In addition, fine peeling of the surface, which can be visually confirmed, occurred. In the durability test, the surface was peeled off once.

【0057】また、収縮抑制用粉末を配合しなかった比
較例2に係る単結晶引き上げ用黒鉛ルツボ、及び収縮抑
制用粉末含有量が5体積%未満の比較例3に係る単結晶
引き上げ用黒鉛ルツボでは、かさ密度、曲げ強度とも低
く、ルツボ表面をルーペで拡大して観察すると、ルツボ
表面には炭素繊維方向にひび割れが残り、低密度なため
に耐久性試験においてSiCが表面から500μm以上
浸透し、特に内表面で表面炭素繊維層が浮き上がるよう
な剥離が発生していた。これは、炭素がSiCに転化す
る反応は体積膨張を伴うので、繊維層間にひずみが発生
し、接着強度の低い炭素繊維層間で剥離が発生したと考
えられる。
Further, the graphite crucible for pulling a single crystal according to Comparative Example 2 in which no shrinkage suppressing powder was blended, and the graphite crucible for pulling a single crystal according to Comparative Example 3 having a shrinkage suppressing powder content of less than 5% by volume. Then, when the crucible surface is magnified and observed with a magnifying glass, cracks remain in the direction of carbon fibers on the crucible surface.Since the low density, SiC has penetrated 500 μm or more from the surface in the durability test. In particular, peeling occurred such that the surface carbon fiber layer floated on the inner surface. This is presumably because the reaction of converting carbon to SiC involves volume expansion, so that strain was generated between the fiber layers and separation occurred between the carbon fiber layers having low adhesive strength.

【0058】また、収縮抑制用粉末の含有量が40体積
%を超えた比較例4に係る単結晶引き上げ用黒鉛ルツ
ボ、及び収縮抑制用粉末の平均粒径が30μmを超えた
比較例5に係る単結晶引き上げ用黒鉛ルツボでは、耐久
性試験前にひび割れは観察されなかったが、耐久性試験
後に表面に微細な剥離が観察された。これは比較例4の
場合には、収縮抑制用粉末の配合量が多いため結合材の
量が相対的に少なくなり、かさ密度や曲げ強度が低下
し、また繊維層間の強度が低下したため、表面のSiC
化による剥離が発生しやすくなった結果と考えられる。
比較例5の場合には、配合した収縮抑制用粉末の粒径が
大きすぎるため、炭素化工程での焼結を阻害する結果と
なり、比較例4の場合と同様の結果が生じたと考えられ
る。
The graphite crucible for pulling a single crystal according to Comparative Example 4 in which the content of the shrinkage suppressing powder exceeds 40% by volume, and Comparative Example 5 in which the average particle size of the shrinkage suppressing powder exceeds 30 μm. In the graphite crucible for pulling a single crystal, no crack was observed before the durability test, but fine peeling was observed on the surface after the durability test. This is because, in the case of Comparative Example 4, the amount of the binder was relatively reduced due to the large amount of the shrinkage-suppressing powder, and the bulk density and flexural strength were reduced. SiC
This is considered to be the result that the peeling due to the formation became easy to occur.
In the case of Comparative Example 5, since the particle size of the compounded shrinkage-suppressing powder was too large, sintering in the carbonization step was hindered, and it is considered that the same result as in Comparative Example 4 was produced.

【0059】なお、内周部の巻き付け角度θを±50°
とした実施例11では、ルツボを黒鉛化した後に、内径
がやや小さくなり、表面に微細なひび割れが発生した。
しかし、耐久試験後には表面SiC化による剥離は発生
しておらず、続けて使用可能な状態であり、収縮抑制用
粉末を20%配合した効果が認められた。
Note that the winding angle θ of the inner peripheral portion is ± 50 °
In Example 11, the inner diameter was slightly reduced after the crucible was graphitized, and fine cracks were generated on the surface.
However, after the durability test, peeling due to surface SiC did not occur, and it was in a state where it could be used continuously, and the effect of blending 20% of the powder for suppressing shrinkage was recognized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)は本発明の実施の形態に係る単結晶引き
上げ用黒鉛ルツボを模式的に示した平面図であり、
(b)は一部切欠き正面図である。
FIG. 1A is a plan view schematically showing a single crystal pulling graphite crucible according to an embodiment of the present invention,
(B) is a partially cutaway front view.

【図2】別の実施の形態に係る単結晶引き上げ用黒鉛ル
ツボを模式的に示した断面図である。
FIG. 2 is a cross-sectional view schematically showing a single crystal pulling graphite crucible according to another embodiment.

【図3】CZ法に用いられる従来の単結晶引上げ装置を
模式的に示した断面図である。
FIG. 3 is a cross-sectional view schematically showing a conventional single crystal pulling apparatus used for the CZ method.

【図4】従来の単結晶引き上げ用黒鉛ルツボを模式的に
示した断面図である。
FIG. 4 is a cross-sectional view schematically showing a conventional graphite crucible for pulling a single crystal.

【図5】フィラメントワインディング法によりマンドレ
ルに連続炭素繊維の巻き付けを行っている状態を模式的
に示した正面図である。
FIG. 5 is a front view schematically showing a state in which continuous carbon fibers are wound around a mandrel by a filament winding method.

【符号の説明】[Explanation of symbols]

10、20 単結晶引上げ用黒鉛ルツボ 11、21 直胴部 11a、21a 内周部 11b、21b 外周部 12、22 底部 13 連続炭素繊維 10, 20 Graphite crucible for pulling single crystal 11, 21 Straight body 11a, 21a Inner circumference 11b, 21b Outer circumference 12, 22 Bottom 13 Continuous carbon fiber

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 フィラメントワインディング法を用いて
製造された、炭素繊維強化炭素材よりなる単結晶引き上
げ用黒鉛ルツボにおいて、炭素繊維と気孔とを除く部材
中に平均粒径が30μm以下の収縮抑制用粉末を5〜4
0体積%の割合で含有していることを特徴とする単結晶
引き上げ用黒鉛ルツボ。
1. A graphite crucible for pulling a single crystal made of carbon fiber reinforced carbon material manufactured by using a filament winding method, wherein a member excluding carbon fibers and pores has a mean particle size of 30 μm or less for suppressing shrinkage. 5-4 powder
A graphite crucible for pulling a single crystal, wherein the graphite crucible is contained at a ratio of 0% by volume.
【請求項2】 少なくとも直胴部の内周部に水平方向に
対して−45〜+45°の角度を有する連続炭素繊維が
配され、その他の部分に水平方向に対して−45°以
下、又は+45°以上の角度を有する連続炭素繊維が配
されていることを特徴とする請求項1記載の単結晶引き
上げ用黒鉛ルツボ。
2. A continuous carbon fiber having an angle of −45 ° to + 45 ° with respect to the horizontal direction is disposed at least on an inner peripheral portion of the straight body portion, and −45 ° or less with respect to the horizontal direction in other portions, or The graphite crucible for pulling a single crystal according to claim 1, wherein continuous carbon fibers having an angle of + 45 ° or more are arranged.
JP8277472A 1996-09-27 1996-09-27 Graphite crucible for pulling up monocrystal Pending JPH10101471A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8277472A JPH10101471A (en) 1996-09-27 1996-09-27 Graphite crucible for pulling up monocrystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8277472A JPH10101471A (en) 1996-09-27 1996-09-27 Graphite crucible for pulling up monocrystal

Publications (1)

Publication Number Publication Date
JPH10101471A true JPH10101471A (en) 1998-04-21

Family

ID=17584076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8277472A Pending JPH10101471A (en) 1996-09-27 1996-09-27 Graphite crucible for pulling up monocrystal

Country Status (1)

Country Link
JP (1) JPH10101471A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6755911B2 (en) * 2001-05-02 2004-06-29 Toyo Tanso Co., Ltd. Crucible made of carbon fiber-reinforced carbon composite material for single crystal pulling apparatus
JP2006045442A (en) * 2004-08-09 2006-02-16 Toho Tenax Co Ltd Preform for heat-resistant carbon fiber-reinforced composite material and method for producing heat-resistant carbon fiber-reinforced composite material
JP2009203092A (en) * 2008-02-26 2009-09-10 Ibiden Co Ltd Vessel holding member
JP2009203091A (en) * 2008-02-26 2009-09-10 Ibiden Co Ltd Crucible holding member
JP2009203093A (en) * 2008-02-26 2009-09-10 Ibiden Co Ltd Crucible holding member
JP2009269777A (en) * 2008-05-01 2009-11-19 Ibiden Co Ltd Crucible holding member and its manufacturing method
JP2009280434A (en) * 2008-05-21 2009-12-03 Ibiden Co Ltd Crucible holding member and method for producing the same
US20090308306A1 (en) * 2008-06-17 2009-12-17 Ibiden Co., Ltd. Crucible holding member and method for producing the same
WO2013113445A1 (en) * 2012-02-03 2013-08-08 Sgl Carbon Se Heat shield with outer fibre winding

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6755911B2 (en) * 2001-05-02 2004-06-29 Toyo Tanso Co., Ltd. Crucible made of carbon fiber-reinforced carbon composite material for single crystal pulling apparatus
DE10219387B4 (en) * 2001-05-02 2011-04-21 Toyo Tanso Co., Ltd. Carbon fiber reinforced carbon composite crucible for a single crystal puller
JP2006045442A (en) * 2004-08-09 2006-02-16 Toho Tenax Co Ltd Preform for heat-resistant carbon fiber-reinforced composite material and method for producing heat-resistant carbon fiber-reinforced composite material
JP2009203091A (en) * 2008-02-26 2009-09-10 Ibiden Co Ltd Crucible holding member
JP2009203093A (en) * 2008-02-26 2009-09-10 Ibiden Co Ltd Crucible holding member
JP2009203092A (en) * 2008-02-26 2009-09-10 Ibiden Co Ltd Vessel holding member
JP2009269777A (en) * 2008-05-01 2009-11-19 Ibiden Co Ltd Crucible holding member and its manufacturing method
JP2009280434A (en) * 2008-05-21 2009-12-03 Ibiden Co Ltd Crucible holding member and method for producing the same
US20090308306A1 (en) * 2008-06-17 2009-12-17 Ibiden Co., Ltd. Crucible holding member and method for producing the same
JP2009298681A (en) * 2008-06-17 2009-12-24 Ibiden Co Ltd Crucible holding member and method for manufacturing the same
US8257495B2 (en) * 2008-06-17 2012-09-04 Ibiden Co., Ltd. Crucible holding member and method for producing the same
WO2013113445A1 (en) * 2012-02-03 2013-08-08 Sgl Carbon Se Heat shield with outer fibre winding
US11333290B2 (en) 2012-02-03 2022-05-17 Sgl Carbon Se Heat shield with outer fiber winding and high-temperature furnace and gas converter having a heat shield

Similar Documents

Publication Publication Date Title
EP2123800B1 (en) Crucible holding member and method for producing the same
US6808744B2 (en) Method for preparing and regenerating a composite crucible
JPH10101471A (en) Graphite crucible for pulling up monocrystal
JP3198914B2 (en) Graphite crucible for pulling single crystal and method for producing the same
US11371160B2 (en) Seed crystal holder for pulling up single crystal and method of manufacturing silicon single crystal using the same
WO2018037617A1 (en) Ceramic base composite material and method for producing same
CN112552063A (en) Preparation method of carbon fiber reinforced silicon carbide composite material
JP4700218B2 (en) A crucible made of carbon fiber reinforced carbon composite material for single crystal pulling
JP4077601B2 (en) Method for producing C / C crucible for pulling single crystal
JPH1059795A (en) Carbon fiber reinforced carbon composite material crucible for pulling up semiconductor single crystal
JP2000351689A (en) Carbon fiber-reinforced carbon composite material coated with pyrolyzed carbon and part for single crystal-pulling device
JPH11255587A (en) Carbon-fiber reinforced carbonaceous material crucible for pulling single crystal and its production
JP2006131451A (en) Crucible for drawing-up single crystal and its manufacturing method
JPH10158090A (en) Manufacture of c/c material (carbon fiber-carbon composite material) crucible for pulling up semiconductor single crystal
JP2000143359A (en) Production of silicon carbide sintered product
JPH10167879A (en) Crucible for pulling up single crystal
JP4018503B2 (en) Single crystal pulling crucible
JPH10245275A (en) Production of carbon fiber-reinforced raw material using graphite mold
JP4358313B2 (en) Seed chuck for semiconductor single crystal pulling equipment
JP4673459B2 (en) Thermal insulation cylinder for single crystal pulling apparatus and single crystal pulling apparatus
US5494865A (en) Crystalline ceramic fiber and method of manufacturing same
JP4170426B2 (en) High temperature member for single crystal pulling apparatus and manufacturing method thereof
JP2000239079A (en) Carbon material having denified surface
JP4529158B2 (en) Single crystal pulling crucible
JP2000185995A (en) Crucible for pulling up single crystal made of carbon- fiber reinforced carbon composite material