JP2006043554A - Apparatus for disintegrating cell - Google Patents

Apparatus for disintegrating cell Download PDF

Info

Publication number
JP2006043554A
JP2006043554A JP2004226606A JP2004226606A JP2006043554A JP 2006043554 A JP2006043554 A JP 2006043554A JP 2004226606 A JP2004226606 A JP 2004226606A JP 2004226606 A JP2004226606 A JP 2004226606A JP 2006043554 A JP2006043554 A JP 2006043554A
Authority
JP
Japan
Prior art keywords
crushing
refrigerant
container
rotation
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004226606A
Other languages
Japanese (ja)
Other versions
JP4773072B2 (en
Inventor
Shuji Yasui
修二 安井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YASUI KIKAI KK
Original Assignee
YASUI KIKAI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YASUI KIKAI KK filed Critical YASUI KIKAI KK
Priority to JP2004226606A priority Critical patent/JP4773072B2/en
Publication of JP2006043554A publication Critical patent/JP2006043554A/en
Application granted granted Critical
Publication of JP4773072B2 publication Critical patent/JP4773072B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/06Hydrolysis; Cell lysis; Extraction of intracellular or cell wall material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/08Homogenizing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/20Heating or cooling

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Sustainable Development (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Crushing And Grinding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for disintegrating a cell, the height of which is lowered so that this apparatus can be placed on a table and in which the cell can be disintegrated while being cooled. <P>SOLUTION: The height of this apparatus for disintegrating the cell can be lowered since a disintegration-functional part 51 is arranged in parallel with a driving means 5 for driving the disintegration-functional part 51 and driven by a belt. The disintegration-functional part 51 is constituted so that a cooling medium is circulated through a rotary shaft 8 having a hollow structure from a cooling medium supplying part 42 arranged on the bottom end side of the rotary shaft 8 to a cooling holder 41 fit to a circular body 15 and a disintegration vessel in which the object to be disintegrated and a disintegrating medium are housed is held by the cooling holder 41. The object to be disintegrated is disintegrated while cooling the disintegration vessel by vibrating the disintegration vessel so as to reciprocate so that the disintegration vessel is made to draw figure 8 repeatedly. Even when the object to be disintegrated is an animal tissue apt to be deteriorated owing to the temperature rising caused by disintegration, the animal tissue can be disintegrated while being cooled and prevented from being deteriorated. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、微生物、植物の組織や種子類、動物の組織、鉱物材料などの被破砕物を化学的に分析・分画分離するために、被破砕物と破砕媒体とを収容した破砕容器に振動を加えて被破砕物を破砕する細胞破砕装置に関するものである。   The present invention provides a crushing container containing a material to be crushed and a crushing medium in order to chemically analyze and fractionate the material to be crushed, such as microorganisms, plant tissues and seeds, animal tissues, and mineral materials. The present invention relates to a cell crushing device for crushing an object to be crushed by applying vibration.

上記のような被破砕物を化学的に分析・分画するためには、被破砕物を均一に破砕する必要がある。被破砕物を破砕するために破砕装置が用いられ、被破砕物と破砕媒体とを収容した破砕容器に振動を加えることにより、被破砕物に破砕媒体が衝突することによる圧縮と回転による磨砕とによって被破砕物を破砕する。   In order to chemically analyze and fractionate the material to be crushed as described above, the material to be crushed needs to be uniformly crushed. A crushing device is used to crush the material to be crushed, and vibration is applied to the crushing container containing the material to be crushed and the crushing medium, so that the crushing medium collides with the material to be crushed and grinding by compression and rotation. Crush the material to be crushed.

このような破砕装置として、被破砕物と破砕媒体とを収容した破砕容器に8の字状の振動を加えて効率的且つ安定した被破砕物の破砕を行うことができる破砕装置を本願出願人は先に提案している(特許文献1参照)。この破砕装置は、モータとこれによって回転駆動される回転軸とを水平方向に配置しているため、被破砕物を収容した多数の破砕容器を水平方向に保持する必要があり、その着脱が困難となる課題があった。そこで、後述するように回転軸を垂直方向に配置して多数の破砕容器を回転軸の周囲に垂直方向にして保持する構造により、破砕容器の着脱を容易にした破砕装置を本願出願人は提案した(特許文献2参照)。   As such a crushing apparatus, the applicant of the present application is a crushing apparatus capable of efficiently and stably crushing a crushing object by applying an 8-shaped vibration to a crushing container containing a crushing object and a crushing medium. Has been proposed previously (see Patent Document 1). In this crushing apparatus, since a motor and a rotary shaft driven to rotate by the motor are arranged in the horizontal direction, it is necessary to hold a number of crushing containers containing the objects to be crushed in the horizontal direction, and it is difficult to attach and detach them. There was a problem. Accordingly, the applicant of the present invention has proposed a crushing apparatus that facilitates the attachment and detachment of the crushing container by arranging the rotating shaft in the vertical direction and holding a number of crushing containers in the vertical direction around the rotating shaft as will be described later. (See Patent Document 2).

図15は、上記破砕装置の構成を示すもので、回転軸8にその軸芯に対して軸芯が傾斜した傾斜軸体11を設け、傾斜軸体11に相対回転自在に環状体15を外嵌させると共に、この環状体15に取り付けられた磁石16と、これに対極する固定磁石18とにより環状体15の回転を弾性的に拘束し、環状体15に取り付けられた環状保持体20の外周部に破砕媒体32と被破砕物とを収容した細長い破砕容器30を環状保持体20の軸芯と平行な姿勢で保持できるように構成したものである。前記回転軸8を図外のモータにより回転駆動すると、破砕容器30にはその軸芯方向の比較的長い行程の主往復移動とそれに直交する方向の比較的短い行程の副往復移動とが組み合わされた8の字状の往復振動が加わり、破砕媒体32が相対回転しながら破砕容器30の底部に衝突することにより、破砕容器30が乳鉢、破砕媒体32が乳棒にように作用して、被破砕物が植物組織や動物組織、あるいはプラスチック材料や鉱物材料であっても効率的に破砕することができる。
特開2000−023660号公報(第3〜5頁、図1) 特開2001−178444号公報(第3〜5頁、図2)
FIG. 15 shows the configuration of the crushing device, wherein the rotary shaft 8 is provided with an inclined shaft body 11 whose axis is inclined with respect to the axis, and the annular body 15 is attached to the inclined shaft body 11 so as to be relatively rotatable. At the same time, the rotation of the annular body 15 is elastically constrained by the magnet 16 attached to the annular body 15 and the fixed magnet 18 opposite thereto, and the outer periphery of the annular holding body 20 attached to the annular body 15 The slender crushing container 30 containing the crushing medium 32 and the object to be crushed is configured to be held in a posture parallel to the axis of the annular holder 20. When the rotary shaft 8 is rotationally driven by a motor (not shown), the crushing container 30 is combined with a main reciprocating movement with a relatively long stroke in the axial direction and a sub-reciprocating movement with a relatively short stroke in the direction orthogonal thereto. When the crushing medium 32 collides with the bottom of the crushing container 30 while rotating relatively, the crushing container 30 acts like a mortar and the crushing medium 32 acts as a pestle. Even if the object is plant tissue or animal tissue, or plastic material or mineral material, it can be efficiently crushed.
JP 2000-023660 (pages 3 to 5, FIG. 1) Japanese Patent Laid-Open No. 2001-178444 (pages 3 to 5, FIG. 2)

しかしながら、モータによって回転駆動される回転軸を垂直方向に配置すると、回転軸の下方にはモータなどの回転駆動構造を配置することになるため、破砕装置は縦長の構造となり、卓上に置いて使用する場合に取り扱いが不便となる課題があった。   However, if the rotating shaft that is driven to rotate by the motor is arranged in the vertical direction, a rotating drive structure such as a motor is arranged below the rotating shaft, so the crushing device has a vertically long structure and is used on a desktop. There is a problem that handling becomes inconvenient.

また、破砕容器に破砕媒体と共に収容した被破砕物に振動を加えると、破砕に伴う熱の発生や装置の温度上昇などによって被破砕物が温度上昇し、被破砕物の種類によっては熱による変質が生じて細胞分析等の作業に支障を来たす課題があった。被破砕物の温度上昇を抑えるために、本願出願人は破砕容器を冷却する機能を備えた破砕装置を特開2000−202314号として提案しているが、振動が加えられている破砕容器に外部から冷媒を循環させるために配管を設ける必要があり、配管接続が複雑になり、破砕時の振動による配管の劣化や破砕容器の着脱が困難になる課題があった。   In addition, if vibration is applied to the object to be crushed stored in the crushing container together with the crushing medium, the object to be crushed will rise in temperature due to heat generated by crushing or the temperature rise of the device. As a result, there has been a problem that interferes with work such as cell analysis. In order to suppress the temperature rise of the object to be crushed, the applicant of the present application has proposed a crushing device having a function of cooling the crushing container as Japanese Patent Application Laid-Open No. 2000-202314. In order to circulate the refrigerant, it is necessary to provide piping, and piping connection becomes complicated, and there is a problem that piping is deteriorated due to vibration during crushing and it is difficult to attach and detach the crushing container.

本発明は上記従来技術に係る課題に鑑みて創案されたもので、その目的とするところは、高さを抑えて机上配置を可能にすると共に、冷却機能を破砕装置内に組み込んで随時冷却しながら破砕することを可能にした細胞破砕装置を提供することにある。   The present invention was devised in view of the problems associated with the prior art described above, and the object of the present invention is to enable the placement on a desk while suppressing the height, and to incorporate a cooling function into the crushing device and cool it as needed. An object of the present invention is to provide a cell crushing apparatus that enables crushing.

上記目的を達成するための本願第1発明に係る細胞破砕装置は、回転軸にその軸心に対して軸心の傾斜した傾斜軸部を設け、この傾斜軸部に相対回転自在に環状体を外嵌させると共に、この環状体の回転を拘束する回転拘束手段を設け、前記環状体に被破砕物と破砕媒体とを収容した破砕容器を周方向に保持する環状保持体を取り付けた破砕機能部と、この破砕機能部と並列配置された回転駆動手段と前記回転軸との間を回転伝達手段によって連結する破砕駆動部とを備えてなることを特徴とするものである。   In order to achieve the above object, the cell disruption apparatus according to the first invention of the present application is provided with an inclined shaft portion whose axis is inclined with respect to the axial center of the rotating shaft, and an annular body is rotatably provided on the inclined shaft portion. A crushing function unit in which a rotation restraining means for restraining the rotation of the annular body is provided, and an annular holding body for holding a crushing container containing a material to be crushed and a crushing medium in the circumferential direction is attached to the annular body. And a crushing drive section that connects the rotation driving means arranged in parallel with the crushing function section and the rotation shaft by a rotation transmitting means.

上記構成によれば、破砕機能部の回転軸を回転駆動する破砕駆動部は、破砕機能部と並列配置されて回転駆動手段と前記回転軸の間は回転伝達手段により連結しているので、回転軸の下方に回転駆動手段が位置した直列配置とならないため、装置の高さ寸法を抑制することができ、机上設置が可能な細胞破砕装置に構成することが可能となる。細胞破砕はその前の準備作業や破砕後の遠心分離作業など一連の作業を伴うので、細胞破砕装置を机上設置できるようにすると、一連の作業を能率よく行うことができる。   According to the above configuration, the crushing drive unit that rotationally drives the rotation shaft of the crushing function unit is arranged in parallel with the crushing function unit, and the rotation driving unit and the rotation shaft are connected by the rotation transmission unit, Since it does not become the serial arrangement | positioning in which the rotation drive means was located under the axis | shaft, the height dimension of an apparatus can be suppressed and it becomes possible to comprise in the cell crushing apparatus which can be installed on a desk. Since cell crushing involves a series of operations such as preparatory work before that and centrifugation after crushing, a series of operations can be performed efficiently if the cell crushing apparatus can be installed on a desk.

また、上記目的を達成するための本願第2発明に係る細胞破砕装置は、回転軸にその軸心に対して軸心の傾斜した傾斜軸部を設け、この傾斜軸部に相対回転自在に環状体を外嵌させると共に、この環状体の回転を拘束する回転拘束手段を設け、被破砕物と破砕媒体とを投入した細長い破砕容器を冷媒を循環させる容器ホルダ内に保持する冷却保持体を前記環状体に取り付けた破砕機能部と、この破砕機能部と並列配置された回転駆動手段と前記回転軸との間を回転伝達手段によって連結する破砕駆動部と、前記容器ホルダに冷媒を循環させる冷媒供給部とを備えてなることを特徴とするものである。   In addition, the cell disruption apparatus according to the second invention of the present application for achieving the above object is provided with an inclined shaft portion having an inclined axis with respect to the axis of the rotating shaft, and an annularly rotatable relative to the inclined shaft portion. A cooling holding body that holds a slender crushing container into which a material to be crushed and a crushing medium are charged is held in a container holder that circulates a refrigerant. A crushing function unit attached to the annular body, a crushing drive unit that connects between the rotation driving unit arranged in parallel with the crushing function unit and the rotation shaft by a rotation transmission unit, and a refrigerant that circulates the refrigerant in the container holder And a supply unit.

上記構成によれば、破砕機能部とそれを駆動する破砕駆動部とは並列配置されているので装置の高さ寸法を抑えて卓上設置でも取り扱いが容易な細胞破砕装置に構成することができる。また、破砕容器を保持する容器ホルダは冷媒の循環により冷却されるので、破砕に伴う温度上昇により変質が生じやすい被破砕物であっても変質を防止して破砕処理することができる。   According to the said structure, since the crushing function part and the crushing drive part which drives it are arranged in parallel, the height dimension of an apparatus can be restrained and it can comprise in the cell crushing apparatus which is easy to handle even if it installs on a table. In addition, since the container holder that holds the crushing container is cooled by the circulation of the refrigerant, even if the object to be crushed is likely to be altered due to a temperature rise accompanying crushing, the crushing process can be performed while preventing the alteration.

また、上記目的を達成するための本願第3発明に係る細胞破砕装置は、中空構造に形成された回転軸にその軸心に対して軸心の傾斜した傾斜軸部を設け、この傾斜軸部に相対回転自在に環状体を外嵌させると共に、この環状体の回転を拘束する回転拘束手段を設け、被破砕物と破砕媒体とを投入した細長い破砕容器を冷媒を循環させる容器ホルダ内に保持する冷却保持体を前記環状体に取り付けた破砕機能部と、この破砕機能部と並列配置された回転駆動手段と前記回転軸との間を回転伝達手段によって連結する破砕駆動部と、回転軸の中空空洞内を通して前記容器ホルダに冷媒を循環させる冷媒供給部とを備えてなることを特徴とするものである。   In addition, a cell disruption apparatus according to the third invention of the present application for achieving the above object is provided with an inclined shaft portion having an inclined axis with respect to the axial center of the rotating shaft formed in the hollow structure, and the inclined shaft portion The ring body is externally fitted on the ring body, and a rotation restraining means for restraining the rotation of the ring body is provided, and an elongated crushing container charged with the material to be crushed and the crushing medium is held in a container holder for circulating the refrigerant. A crushing function unit that attaches the cooling holding body to the annular body, a crushing drive unit that connects between the rotation drive unit and the rotation shaft arranged in parallel with the crushing function unit, and a rotation transmission unit; And a refrigerant supply part for circulating a refrigerant through the hollow cavity to the container holder.

上記構成によれば、破砕機能部の中心に上下に配設された回転軸は、破砕駆動部を破砕機能部と並列に配置することにより、その上下端が開放されるので、回転軸を中空構造に形成すると、中空空洞内を通じてその下方から上方に冷媒を送給することができ、回転軸の上方に配設される冷却保持体に冷媒を供給することができる。従って、往復振動する冷却保持体に冷媒を供給し、容器ホルダ内を循環させて排出するためにチューブ接続することなく冷却保持体を冷却し、破砕容器を冷却しながら被破砕物を破砕処理する細胞破砕装置に構成することができる。   According to the above configuration, the rotation shaft disposed vertically at the center of the crushing function unit is opened at the upper and lower ends by arranging the crushing drive unit in parallel with the crushing function unit. When formed in the structure, the refrigerant can be fed from the lower side to the upper side through the hollow cavity, and the refrigerant can be supplied to the cooling holder disposed above the rotating shaft. Therefore, the coolant is supplied to the cooling holder that reciprocally vibrates, the cooling holder is cooled without connecting the tube to circulate and discharge the container holder, and the object to be crushed is crushed while cooling the crushing container. It can be configured in a cell disruption device.

上記第3発明の構成において、回転軸は、中空空洞内に回転軸の軸心と同心に中心パイプが配設され、中心パイプが冷媒の供給流路に、回転軸の中空空洞が冷媒の排出流路になるように二重構造に構成することにより、回転軸を通じて冷媒の供給及び排出を行うことができる。   In the configuration of the third aspect of the invention, the rotation shaft has a central pipe disposed concentrically with the axis of the rotation shaft in the hollow cavity, the center pipe is in the refrigerant supply flow path, and the hollow cavity in the rotation shaft is the refrigerant discharge. By constituting a double structure so as to form a flow path, the refrigerant can be supplied and discharged through the rotating shaft.

また、回転軸内に中心パイプを配して二重構造に形成して、前記中心パイプ内から回転軸の半径方向に回転軸又は傾斜軸体の周面に開口する冷媒供給管路を形成し、前記周面に摺動接触するシール構造を通じて冷媒供給流路を形成することにより、回転軸から冷却保持体に冷媒を供給することができ、回転軸の中空空洞内から回転軸の半径方向に回転軸又は傾斜軸体の周面に開口する冷媒供給管路を形成し、前記周面に摺動接触するシール構造を通じて冷媒排出流路を形成することにより、冷却保持体を循環した冷媒を回転軸に排出することができ、冷媒流路とするチューブ接続を伴うことなく冷媒供給が可能となる。   In addition, a central pipe is arranged in the rotation shaft to form a double structure, and a refrigerant supply pipe that opens from the center pipe in the radial direction of the rotation shaft to the peripheral surface of the rotation shaft or the inclined shaft body is formed. By forming the coolant supply passage through the seal structure that is in sliding contact with the peripheral surface, the coolant can be supplied from the rotating shaft to the cooling holder, and from the hollow cavity of the rotating shaft to the radial direction of the rotating shaft. A refrigerant supply passage that opens on the peripheral surface of the rotating shaft or the inclined shaft body is formed, and a refrigerant discharge passage is formed through a seal structure that is in sliding contact with the peripheral surface, thereby rotating the refrigerant circulating through the cooling holder. The refrigerant can be discharged to the shaft, and the refrigerant can be supplied without a tube connection as a refrigerant flow path.

また、容器ホルダは、冷却保持体の周方向に多数の破砕容器を収容する円環状に形成することにより、比較的小型の破砕容器を多数保持して、それらを冷却しながら同時に破砕処理することができる。   In addition, the container holder is formed in an annular shape that accommodates many crushing containers in the circumferential direction of the cooling holder, thereby holding a large number of relatively small crushing containers and simultaneously crushing them while cooling them. Can do.

また、容器ホルダは、冷却保持体の周方向に複数の破砕容器を個別に収容する冷却容器として配設され、冷却保持体上に設けられた冷媒分配部と各冷却容器との間を冷媒供給チューブ及び冷媒排出チューブで接続して構成することにより、比較的大形の破砕容器をもちいて冷却しながら破砕処理する場合に有効となる。   In addition, the container holder is disposed as a cooling container that individually accommodates a plurality of crushing containers in the circumferential direction of the cooling holder, and supplies refrigerant between the refrigerant distribution unit provided on the cooling holder and each cooling container. By connecting with a tube and a refrigerant discharge tube, it is effective when a relatively large crushing container is used for crushing while cooling.

上記冷却容器は、破砕容器を収容する内筒と、この内筒を所定間隔を隔てて収容する外筒とにより形成され、外筒と内筒との間の空間内に冷媒を循環させ、破砕容器は内筒に投入された熱伝導物を介して冷却されるように構成することにより、破砕容器は冷媒と隔離された状態で冷却されるので、破砕容器に収容した被破砕物や破砕容器に付着した物質が冷媒に混入することが防止でき、被破砕物が病原体を含むものであったり有害なものであったりしても、それを冷媒を介して外部に飛散させることがなく、バイオハザード対策がなされた冷却及び破砕を行うことができる。   The cooling container is formed by an inner cylinder that accommodates the crushing container and an outer cylinder that accommodates the inner cylinder at a predetermined interval, and the refrigerant is circulated in a space between the outer cylinder and the inner cylinder to crush the cooling container. By configuring the container to be cooled via the heat conductive material put into the inner cylinder, the crushing container is cooled in a state isolated from the refrigerant, so the object to be crushed and the crushing container contained in the crushing container Even if the material to be crushed contains a pathogen or is harmful, it can be prevented from being scattered outside through the refrigerant. Cooling and crushing can be performed with hazard countermeasures.

本発明によれば、破砕機能部とそれを駆動する駆動手段とは並列位置に配列されているので装置の高さを抑えて机上配置することができる細胞破砕装置に構成することができ、破砕処理前の準備作業や破砕後の遠心分離など机上で行われる一連の作業を能率よく実施することができる。また、被破砕物が破砕に伴う温度上昇により変成が生じやすいものであるときには、破砕容器を冷却しながら破砕処理することができ、特に動物組織の細胞分析などのための細胞破砕に有効な細胞破砕装置を提供することができる。   According to the present invention, since the crushing function unit and the drive means for driving it are arranged in parallel, it can be configured as a cell crushing device that can be placed on a desk while suppressing the height of the device. A series of operations performed on the desk such as preparatory work before treatment and centrifugal separation after crushing can be efficiently performed. In addition, when the material to be crushed is prone to degeneration due to the temperature rise accompanying crushing, it can be crushed while cooling the crushing vessel, and is particularly effective for cell crushing for cell analysis of animal tissues. A crushing device can be provided.

以下、添付図面を参照して本発明の実施の形態について説明し、本発明の理解に供する。尚、以下に示す実施の形態は本発明を具体化した一例であって、本発明の技術的範囲を限定するものではない。また、従来構成と共通する構成要素には同一の符号を付している。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings to provide an understanding of the present invention. The following embodiment is an example embodying the present invention, and does not limit the technical scope of the present invention. In addition, the same reference numerals are given to components common to the conventional configuration.

図1は、第1の実施形態に係る細胞破砕装置1の全体構成を示すもので、外装体10内に配置されたケーシング29に防振コイル4を介して吊設されたベース板40上には、ケーシング29内に配設された破砕機能部50を支持する軸受部7が取り付けられ、この軸受部7に回転自在に回転軸8が支持されている。回転軸8のケーシング29内に位置する部分には前記破砕機能部50が取り付けられ、ベース板40より下方に延出する部分には従動ベルト車21が固定されている。前記回転軸8と回転軸心を平行にして並列配置されたモータ5aや減速機5bからなる駆動手段5の回転軸5cには駆動ベルト車22が固定され、両ベルト車21,22の間にVベルト23が架設されることにより、モータ5aによって回転軸8を回転駆動することができ、回転軸8の回転により破砕機能部50に細胞破砕のための往復振動が加えられるように構成されている。外装体2の上方に開口するケーシング29の開口部は取手9aによって開閉可能に扉9によって閉じられている。また、外装体10の正面部には操作部10aが配設され、細胞破砕装置1の運転を操作することができる。   FIG. 1 shows the overall configuration of the cell disruption apparatus 1 according to the first embodiment. On the base plate 40 suspended from the casing 29 disposed in the outer package 10 via the vibration-proof coil 4. The bearing part 7 which supports the crushing function part 50 arrange | positioned in the casing 29 is attached, and the rotating shaft 8 is supported by this bearing part 7 rotatably. The crushing function portion 50 is attached to a portion of the rotary shaft 8 located in the casing 29, and a driven belt wheel 21 is fixed to a portion extending downward from the base plate 40. A driving belt wheel 22 is fixed to the rotating shaft 5c of the driving means 5 including the motor 5a and the speed reducer 5b arranged in parallel with the rotating shaft 8 and the rotating shaft being parallel to each other. When the V belt 23 is installed, the rotating shaft 8 can be driven to rotate by the motor 5a, and the reciprocating vibration for cell crushing is applied to the crushing function unit 50 by the rotation of the rotating shaft 8. Yes. The opening part of the casing 29 opened above the exterior body 2 is closed by a door 9 so as to be opened and closed by a handle 9a. In addition, an operation unit 10 a is disposed on the front surface of the exterior body 10, and the operation of the cell crushing apparatus 1 can be operated.

図2は、前記破砕機能部50の構成を断面図として示すもので、回転軸8の上部には、その軸心に対して軸心が角度θに傾斜した状態で傾斜軸体11が嵌合され、傾斜リング12を介して回転軸8の上端部に螺合したナット13にて押圧固定されている。傾斜軸体11の外周には軸受14を介して相対回転自在に環状体15が装着されている。回転軸8及びそれに固定された傾斜軸体11の回転に伴って前記環状体15が共回転しようとするが、環状体15に固定された磁石16と、これに異極対向させて配設されている対極磁石18との磁気吸引力により環状体15の回転は弾性拘束される。また、環状体15の外形は円形に形成され、下端側周面に形成された周溝15aに一端を嵌合させ、他端を軸受部7の周面に形成された周溝7aに嵌合させてゴム筒27が取り付けられている。このゴム筒27は、可動部分をカバーしてケーシング29内の洗浄時等において可動部分に洗浄液や異物が侵入することを防止する作用に加え、磁石16及び対極磁石18による環状体15の回転を弾性拘束する作用を補う機能をも併せ有している。また、ゴム筒27は、複数の襞を設けた蛇腹状に形成され、周面の位置で異なる伸縮状態に柔軟に対応できるように構成されている。   FIG. 2 shows the structure of the crushing function unit 50 as a cross-sectional view. The inclined shaft body 11 is fitted to the upper portion of the rotating shaft 8 with the axis inclined at an angle θ relative to the axis. Then, it is pressed and fixed by a nut 13 screwed into the upper end portion of the rotary shaft 8 via the inclined ring 12. An annular body 15 is attached to the outer periphery of the inclined shaft body 11 via a bearing 14 so as to be relatively rotatable. The annular body 15 tries to co-rotate with the rotation of the rotating shaft 8 and the inclined shaft body 11 fixed to the rotating shaft 8, but the magnet 16 fixed to the annular body 15 is arranged opposite to the magnet 16. The rotation of the annular body 15 is elastically restricted by the magnetic attractive force with the counter electrode magnet 18. Further, the outer shape of the annular body 15 is formed in a circular shape, one end is fitted into the circumferential groove 15a formed on the lower end side circumferential surface, and the other end is fitted to the circumferential groove 7a formed on the circumferential surface of the bearing portion 7. A rubber cylinder 27 is attached. The rubber cylinder 27 covers the movable part to prevent the cleaning liquid and foreign matter from entering the movable part during cleaning of the casing 29 and the like, and also rotates the annular body 15 by the magnet 16 and the counter electrode magnet 18. It also has a function to supplement the effect of elastic restraint. Further, the rubber cylinder 27 is formed in a bellows shape having a plurality of flanges, and is configured so as to be able to flexibly cope with different stretched states at different positions on the peripheral surface.

前記環状体15には破砕容器30を保持する環状保持体20が着脱交換可能に取り付けられている。この環状保持体20の円周上に形成された容器収容穴から容器ホルダ19内に、被破砕物及び破砕媒体32を収容した多数の破砕容器30を挿入し、押圧板38を破砕容器30の蓋体31上に配し、固定ノブ25を環状保持体20に設けられた取付ボス24に螺入することにより、多数の破砕容器30は環状保持体20に固定される。   An annular holding body 20 for holding the crushing container 30 is attached to the annular body 15 so as to be attachable / detachable. A number of crushing containers 30 containing the material to be crushed and the crushing medium 32 are inserted into the container holder 19 from the container receiving holes formed on the circumference of the annular holder 20, and the pressing plate 38 is attached to the crushing container 30. Many crushing containers 30 are fixed to the annular holder 20 by being placed on the lid 31 and screwing the fixing knob 25 into the mounting boss 24 provided on the annular holder 20.

上記破砕容器30は、図11に示すように、細長い円筒容器から成り、その開口部外周にねじ30aが形成され、開口部に蓋体31を螺合して密閉できるように構成されている。破砕容器30は、被破砕物の材質や量に応じて2ml〜50mlの容積のものが用いられ、環状保持体20もこの破砕容器30の大きさに応じた容器ホルダ19が装着できるように構成される。   As shown in FIG. 11, the crushing container 30 is formed of an elongated cylindrical container. A screw 30 a is formed on the outer periphery of the opening, and the lid 31 can be screwed into the opening to be sealed. The crushing container 30 has a capacity of 2 ml to 50 ml depending on the material and amount of the material to be crushed, and the annular holder 20 is also configured so that a container holder 19 corresponding to the size of the crushing container 30 can be mounted. Is done.

また、破砕容器30内に被破砕物とともに収容される破砕媒体32は、図12に示すように、破砕容器30の内径Dより大きい長さLの単一部材にて構成されたものが使用でき、その一端部に破砕容器30の底部形状に対応して同様の載頭円球状の突出端部32aが形成されている。また、他端部は、蓋体32の内周の環状シール部31aと干渉したり、嵌まり込むことがないように小径部32bに形成されている。また、破砕媒体32の外径dは、破砕容器30の内径Dに対して2mm以下、内径dが小さい場合には1mm以下程度小さく設定されている。例えば、破砕容器30の容量が2mlの場合で、その内径Dは8mm、破砕媒体32の外径dは7mmに設定されている。また、図12及び図13(b)(c)に示すように、破砕媒体32の突出端部32aには必要に応じて放射状又は螺旋状に1又は複数の溝34が形成されたものを用いると、植物繊維などのように破砕され難い被破砕物を切断しながら破砕することができる。   Further, as shown in FIG. 12, the crushing medium 32 accommodated in the crushing container 30 together with the material to be crushed can be formed of a single member having a length L larger than the inner diameter D of the crushing container 30. In addition, a similar rounded projecting end portion 32a corresponding to the shape of the bottom of the crushing container 30 is formed at one end thereof. The other end portion is formed in the small diameter portion 32b so as not to interfere with or fit into the annular seal portion 31a on the inner periphery of the lid body 32. Further, the outer diameter d of the crushing medium 32 is set to be 2 mm or less with respect to the inner diameter D of the crushing container 30, and about 1 mm or less when the inner diameter d is small. For example, when the capacity of the crushing container 30 is 2 ml, the inner diameter D is set to 8 mm, and the outer diameter d of the crushing medium 32 is set to 7 mm. Also, as shown in FIGS. 12 and 13B and 13C, the protruding end portion 32a of the crushing medium 32 is used in which one or a plurality of grooves 34 are formed radially or spirally as necessary. Then, it can be crushed while cutting an object to be crushed, such as a plant fiber.

被破砕物が微生物の場合においては、破砕媒体32は上記のごとき単一部材のものでなく、グラスビーズ、ジルコニアビーズなど多数の小球を用いるのが好適で、微生物とビーズとが効率よく混合されて良好な破砕を得ることができる。   When the object to be crushed is a microorganism, the crushing medium 32 is not a single member as described above, and it is preferable to use a large number of small spheres such as glass beads and zirconia beads, and the microorganisms and beads are mixed efficiently. And good crushing can be obtained.

環状保持体20に被破砕物と破砕媒体32とを収容した破砕容器30を装着して細胞破砕装置1を運転させ、回転軸8を例えば1200〜2800rpmで高速回転させると、回転する傾斜軸体11に相対回転自在に外嵌された環状体15は傾斜軸体11と共に回転しようとするが、磁石16と対極磁石18との間の磁気吸引力により共回転が拘束されているので、回転軸8が1回転する毎に環状体15は軸心方向両側に振れ運動する。   When the crushing container 30 containing the material to be crushed and the crushing medium 32 is attached to the annular holder 20 and the cell crushing apparatus 1 is operated and the rotating shaft 8 is rotated at a high speed of, for example, 1200 to 2800 rpm, the inclined shaft body rotates. Although the annular body 15 externally fitted to 11 is intended to rotate together with the inclined shaft body 11, the co-rotation is constrained by the magnetic attractive force between the magnet 16 and the counter electrode magnet 18. The annular body 15 swings and moves on both sides in the axial direction every time the 8 rotates once.

このとき、環状体15の任意の点は、図14(a)(b)に示すように、8の字状に移動することになる。即ち、図14(a)に実線で示すように、環状体15が紙面の上下方向に傾斜した状態を基準位置として、そのときの環状体15の外周上におけるa点位置の挙動を見てみると、実線位置から回転軸8が矢印方向に90度回転すると、環状体15は仮想線で示すように紙面の表裏方向に傾斜した状態に移行し、その間a点に対応していた位置は経路bを経てc点に移動する。回転軸8が更に90度回転すると、環状体15は図14(b)に実線で示すように、紙面の上下方向で且つ逆向きに傾斜した状態に移行し、a点に対応していた位置はc点から経路dを経て元のa点に戻る。更に回転軸8が90度回転すると、環状体15は仮想線で示すように紙面の表裏方向に逆向きに傾斜した状態に移行し、a点に対応していた位置は経路eを経てf点に移動し、更に回転軸8が元の回転位置まで90度回転すると、a点に対応していた位置はf点から経路gを経て元のa点に戻る。   At this time, an arbitrary point of the annular body 15 moves in the shape of figure 8, as shown in FIGS. 14 (a) and 14 (b). That is, as shown by a solid line in FIG. 14A, the state of the annular body 15 inclined in the vertical direction on the paper surface is taken as a reference position, and the behavior of the point a position on the outer periphery of the annular body 15 at that time is examined. When the rotary shaft 8 rotates 90 degrees in the direction of the arrow from the solid line position, the annular body 15 shifts to a state inclined in the front and back direction of the paper surface as indicated by the phantom line, while the position corresponding to the point a is the path Move to point c via b. When the rotary shaft 8 further rotates 90 degrees, the annular body 15 shifts to a state inclined in the vertical direction and in the opposite direction on the paper surface as shown by a solid line in FIG. 14B, and the position corresponding to the point a. Returns from the point c through the path d to the original point a. When the rotating shaft 8 further rotates 90 degrees, the annular body 15 shifts to a state inclined in the opposite direction to the front and back of the paper surface as shown by the phantom line, and the position corresponding to the point a passes through the path e to the point f. When the rotary shaft 8 further rotates 90 degrees to the original rotational position, the position corresponding to the point a returns from the point f through the path g to the original point a.

従って、環状体15に取り付けられた環状保持体20に保持された破砕容器30は、回転軸8の回転に伴って8の字状の振動形態により振動が加えられ、破砕容器30内では被破砕物に破砕媒体32が効果的に衝突し、その衝撃によって被破砕物は速やかに且つ均一に細胞破砕される。特に、図12、図13に示した破砕容器30の底部形状に対応する先端形状を備えた破砕媒体32では、破砕容器30の軸心にほぼ沿った姿勢を保持したまま相対回転しながら破砕容器30の底部に衝突する動きを繰り返し、破砕容器30が乳鉢、破砕媒体32が乳棒のように作用するので、被破砕物が大型の植物細胞や動物組織などであっても効率的に破砕がなされる。   Therefore, the crushing container 30 held by the annular holding body 20 attached to the annular body 15 is vibrated in an 8-shaped vibration form with the rotation of the rotary shaft 8, and the crushing container 30 is shattered. The crushing medium 32 effectively collides with an object, and the object to be crushed is rapidly and uniformly crushed by the impact. In particular, in the crushing medium 32 having the tip shape corresponding to the bottom shape of the crushing container 30 shown in FIGS. 12 and 13, the crushing container is rotated while being relatively rotated while maintaining the posture substantially along the axis of the crushing container 30. Since the crushing container 30 acts like a mortar and the crushing medium 32 acts like a pestle, the crushing container 30 acts like a mortar, and the crushing object is efficiently crushed even if it is a large plant cell or animal tissue. The

上記構成になる細胞破砕装置1は、環状体15の上部開口部分は封止キャップ43によって閉じられ、環状体15と軸受部7との間はゴム筒17によって被覆され、更にはケーシング29の底面に回転軸8及び軸受部7を通すために形成された開口部は遮蔽ゴム28によって閉じられているので、ケーシング29の中に位置する軸受14などの可動部分は全て被覆される。従って、ケーシング29の内部は蒸気洗浄、薬品洗浄等によって洗浄することができる。破砕処理の繰り返しによってケーシング29の内部が塵埃等によって汚れることは勿論のこと、被破砕物を飛散させてしまうこともあり得る。特に被破砕物が有害なものであったり、病原菌などを含むものであった場合には、ケーシング29の内部を滅菌消毒して洗浄する必要がある。このときにも蒸気や薬品類が噴射されても、可動部分に侵入することはなく、完全に洗浄することができる。また、洗浄時にケーシング29の内部に溜まった液体は、図1、図2に示すように、ケーシング29の底面に設けられた排水栓53を開くと、液体は排水ホース54から外部に排出することができる。   In the cell disruption apparatus 1 configured as described above, the upper opening portion of the annular body 15 is closed by the sealing cap 43, the space between the annular body 15 and the bearing portion 7 is covered by the rubber cylinder 17, and further the bottom surface of the casing 29. Since the opening formed through the rotary shaft 8 and the bearing portion 7 is closed by the shielding rubber 28, all the movable parts such as the bearing 14 located in the casing 29 are covered. Therefore, the inside of the casing 29 can be cleaned by steam cleaning, chemical cleaning, or the like. Of course, the inside of the casing 29 may be contaminated by dust or the like due to repetition of the crushing process, and the object to be crushed may be scattered. In particular, when the object to be crushed is harmful or contains pathogenic bacteria, the inside of the casing 29 needs to be sterilized and cleaned. Even at this time, even if steam or chemicals are injected, the movable part does not enter and can be completely cleaned. Further, as shown in FIGS. 1 and 2, the liquid accumulated in the casing 29 at the time of cleaning is discharged from the drain hose 54 to the outside when the drain plug 53 provided on the bottom surface of the casing 29 is opened. Can do.

また、ケーシング29の内角部分や排水栓53の表面形状、各構成要素の内角部分などは全てアール形成され、ゴム筒27及び遮蔽ゴム28の取り付け部分は、周溝7a,15aに嵌入させた後、コーキング材で隙間を埋めて表面を滑らかな状態に仕上げられるので、窪み部分に塵埃や洗浄残滓が残ることがなく、それらから細菌や微生物が発生増殖することが防止できる。   Further, the inner corner portion of the casing 29, the surface shape of the drain plug 53, the inner corner portion of each component, etc. are all rounded, and the mounting portions of the rubber cylinder 27 and the shielding rubber 28 are fitted into the circumferential grooves 7a and 15a. Since the surface is finished in a smooth state by filling the gap with caulking material, dust and washing residue do not remain in the depression, and bacteria and microorganisms can be prevented from being generated and proliferated from them.

上記構成になる細胞破砕装置1は、駆動手段5を破砕機能部50と並列位置に配置しているので、装置の高さを抑えることはでき、机上に設置することができる細胞破砕装置1に構成することができ、細胞分析等の一連の作業を行うための作業能率の向上を図ることができる。   Since the cell disruption apparatus 1 having the above-described configuration has the driving means 5 arranged in parallel with the disruption function unit 50, the height of the apparatus can be suppressed, and the cell disruption apparatus 1 that can be installed on a desk is used. Thus, it is possible to improve work efficiency for performing a series of work such as cell analysis.

次に、第2の実施形態に係る細胞破砕装置2について、図3〜図10を参照して説明する。本実施形態に係る細胞破砕装置2は、破砕に伴う温度上昇により被破砕物に変質が生じるのを防止するために冷却機能を設けたものである。尚、第1の実施形態の構成と共通する構成要素には同一の符号を付し、その説明は省略する。   Next, the cell crushing apparatus 2 according to the second embodiment will be described with reference to FIGS. The cell crushing apparatus 2 according to the present embodiment is provided with a cooling function in order to prevent alteration of a material to be crushed due to a temperature increase accompanying crushing. In addition, the same code | symbol is attached | subjected to the component which is common in the structure of 1st Embodiment, and the description is abbreviate | omitted.

図3は、第2の実施形態に係る細胞破砕装置2の全体構成を示すもので、外装体10内に配置されたケーシング29には、冷却機能を備えた破砕機能部51が配設され、これと並列配置された駆動手段5によって駆動される。駆動構造は第1の実施形態の構成と同一である。破砕機能部51を構成する環状体15には冷却保持体41が取り付けられ、この冷却保持体41に、被破砕物と破砕媒体32とを収容した多数の破砕容器30を保持し、冷媒供給部42から供給される冷媒を冷却保持体41内に循環させ、破砕容器30を冷却しながら被破砕物を破砕処理できるように構成されている。   FIG. 3 shows the overall configuration of the cell disruption apparatus 2 according to the second embodiment. In the casing 29 disposed in the exterior body 10, a disruption function unit 51 having a cooling function is disposed. It is driven by driving means 5 arranged in parallel with this. The drive structure is the same as that of the first embodiment. A cooling holding body 41 is attached to the annular body 15 constituting the crushing function unit 51, and the cooling holding body 41 holds a number of crushing containers 30 containing the material to be crushed and the crushing medium 32, and a refrigerant supply unit The refrigerant supplied from 42 is circulated in the cooling holder 41 so that the object to be crushed can be crushed while cooling the crushing container 30.

図4は、前記破砕機能部51の構成を断面図として示すものである。尚、図4においては冷媒が流れる管路の接続部分に設けられる摺動シール構造やOリング等のシール構造の記載は図面を明解にするため記載省略している。   FIG. 4 shows the structure of the crushing function unit 51 as a cross-sectional view. In FIG. 4, description of a seal structure such as a sliding seal structure or an O-ring provided at the connection portion of the conduit through which the refrigerant flows is omitted for the sake of clarity.

図4において、回転軸8は中空パイプに形成され、中空空洞内に中心パイプ6が同心に配設され、回転軸8の上端に装着された上封口体57によって中心パイプ6の回転軸8内の上端位置が保持されると共に、回転軸8及び中心パイプ6の上端開口部が封口され、回転軸8の下端に装着された下封口体58によって中心パイプ6の回転軸8内の下端位置が保持されると共に、回転軸8の下端開口部が封口されている。この回転軸8はベース板40上に固定された軸受部7によって回転自在に支持され、その下端側はベース板40に吊設された下部支持板48に取り付けられた冷媒供給部42に軸受37を介して回転自在に支持されている。前記中心パイプ6は冷媒の供給流路に、回転軸8の中空空洞は冷媒の排出流路として機能する。   In FIG. 4, the rotary shaft 8 is formed as a hollow pipe, the central pipe 6 is concentrically disposed in the hollow cavity, and the upper sealing body 57 attached to the upper end of the rotary shaft 8 is arranged in the rotary shaft 8 of the central pipe 6. The upper end position of the central pipe 6 is sealed, the upper end openings of the rotary shaft 8 and the center pipe 6 are sealed, and the lower end position in the rotary shaft 8 of the central pipe 6 is set by the lower sealing body 58 attached to the lower end of the rotary shaft 8. While being held, the lower end opening of the rotating shaft 8 is sealed. The rotating shaft 8 is rotatably supported by a bearing portion 7 fixed on the base plate 40, and a lower end side of the rotating shaft 8 is supported by a refrigerant supply portion 42 attached to a lower support plate 48 suspended from the base plate 40. It is supported so that it can rotate freely. The central pipe 6 functions as a refrigerant supply flow path, and the hollow cavity of the rotating shaft 8 functions as a refrigerant discharge flow path.

回転軸8の下端側を支持する冷媒供給部42には、中心パイプ6の下端開口部に向けて冷媒供給管路76が開口しており、図示しない冷媒供給装置から所要圧力で供給される冷媒が冷媒供給口76aから冷媒供給部42に供給され、前記冷媒供給管路76から図示しない摺動シール構造を介して中心パイプ6内に送給される。中心パイプ6内に送給された冷媒は中心パイプ6内を上昇し、回転軸8の傾斜軸体11が嵌合固定された位置に回転軸8の半径方向に中心パイプ6を穿つ長さに形成された冷媒取出管路77aから中心パイプ6外に出て、冷媒取出管路77aの開口部に連接させて傾斜軸体11の半径方向に穿かれた冷媒流出管路77bに流れる。傾斜軸体11の周面に開口する冷媒流出管路77bの開口部には、環状体15内に形成された冷媒送出管路78の開口部がオイルシール等の液体漏出防止機能を備えた摺動接触構造によって連接し、送給されてきた冷媒は環状体15の冷却保持体41が装着される面上に導かれる。   The refrigerant supply section 42 that supports the lower end side of the rotating shaft 8 has a refrigerant supply pipe 76 that opens toward the lower end opening of the center pipe 6, and is supplied at a required pressure from a refrigerant supply apparatus (not shown). Is supplied from the refrigerant supply port 76a to the refrigerant supply unit 42, and is fed into the center pipe 6 from the refrigerant supply conduit 76 through a sliding seal structure (not shown). The refrigerant fed into the center pipe 6 rises in the center pipe 6 and has a length that pierces the center pipe 6 in the radial direction of the rotation shaft 8 at a position where the inclined shaft body 11 of the rotation shaft 8 is fitted and fixed. It flows out of the center pipe 6 from the formed refrigerant take-out pipe 77a and flows into a refrigerant outflow pipe 77b that is connected to the opening of the refrigerant take-out pipe 77a and drilled in the radial direction of the inclined shaft body 11. At the opening of the refrigerant outflow pipe 77b that opens to the peripheral surface of the inclined shaft body 11, the opening of the refrigerant delivery pipe 78 formed in the annular body 15 is a slide provided with a liquid leakage prevention function such as an oil seal. The refrigerant that is connected and fed by the dynamic contact structure is guided onto the surface of the annular body 15 on which the cooling holding body 41 is mounted.

前記冷却保持体41は、図5に示すように、円形に形成された環状体15に鍔状に張り出し形成された鍔状部15aの上面に装着するための装着面73の周囲に有底円環状に形成された容器ホルダ74を設けて構成されている。前記容器ホルダ74は、その内部は1箇所に半径方向に設けられた仕切り74a仕切られ、この仕切り74aから白抜き矢印で示す方向に冷媒が容器ホルダ74内に流され、仕切り74aの反対側が冷媒の流れる下流側となるように構成されている。また、容器ホルダ74の上面には、多数の容器投入口75が等間隔に形成されている。前述したように環状体15に形成された冷媒送出管路78の下流側は鍔状部15aの上面に開口しているので、その開口位置に対応する装着面73上には冷媒供給ターミナル81が取り付けられ、図4に示すように、冷媒送出管路78に管路接続がなされている。前記冷媒供給ターミナル81には仮想線で示すように供給チューブ79が接続され、供給チューブ79は装着面73に形成された供給チューブ穴83から下方に導かれて容器ホルダ74の仕切り74aの冷媒供給最上流側の下面に取り付けられた冷媒送出ターミナル85に配管接続される。   As shown in FIG. 5, the cooling holding body 41 has a bottomed circle around a mounting surface 73 for mounting on a top surface of a bowl-shaped portion 15a formed in a bowl shape on an annular body 15 formed in a circular shape. An annular container holder 74 is provided. The container holder 74 is partitioned into a partition 74a provided in the radial direction at one location, and a refrigerant is flowed from the partition 74a into the container holder 74 in a direction indicated by a white arrow, and the opposite side of the partition 74a is a coolant. It is comprised so that it may become the downstream which the flows. A large number of container inlets 75 are formed at equal intervals on the upper surface of the container holder 74. As described above, since the downstream side of the refrigerant delivery pipe 78 formed in the annular body 15 is open on the upper surface of the bowl-shaped portion 15a, the refrigerant supply terminal 81 is provided on the mounting surface 73 corresponding to the opening position. As shown in FIG. 4, a pipe connection is made to the refrigerant delivery pipe 78. A supply tube 79 is connected to the refrigerant supply terminal 81 as indicated by an imaginary line, and the supply tube 79 is guided downward from a supply tube hole 83 formed in the mounting surface 73 to supply the refrigerant to the partition 74 a of the container holder 74. A pipe is connected to the refrigerant delivery terminal 85 attached to the lowermost surface on the most upstream side.

前記容器ホルダ74に設けられた仕切り74aの冷媒供給最下流側の下面には冷媒取出ターミナル86が取り付けられており、容器ホルダ74内に嵌入する排出筒90により容器ホルダ74内を流れて破砕容器30を冷却して温度上昇した冷媒は容器ホルダ74内の上方から吸入されて冷媒取出ターミナル86に排出される。冷媒取出ターミナル86には排出チューブ80が接続され、排出チューブ80は装着面73に形成された排出チューブ穴84から装着面74の上方に導いて冷媒排出ターミナル82に配管接続されているので、容器ホルダ74から排出された冷媒は環状体15に形成された冷媒排出管路87から図示しない摺動シール構造を介して傾斜軸体11に形成された冷媒放出管路88に入り、冷媒放出管路88に対向して回転軸8に形成された排出口89から回転軸8の中空空洞内に排出される。回転軸8内を流下した冷媒は回転軸の下方の形成された吐出口91から図示しない摺動シール構造を介して冷媒供給部42に形成された冷媒吐出管路92に出て、冷媒排出口92aから図示しない冷媒供給装置に戻される。   A refrigerant take-out terminal 86 is attached to the lower surface of the refrigerant supply downstream side of the partition 74 a provided in the container holder 74, and flows through the container holder 74 by a discharge cylinder 90 fitted into the container holder 74, thereby crushing the container. The refrigerant whose temperature has risen by cooling 30 is sucked from above in the container holder 74 and discharged to the refrigerant take-out terminal 86. A discharge tube 80 is connected to the refrigerant take-out terminal 86, and the discharge tube 80 is led from the discharge tube hole 84 formed in the mounting surface 73 to the upper side of the mounting surface 74 and connected to the refrigerant discharge terminal 82 by piping. The refrigerant discharged from the holder 74 enters the refrigerant discharge pipe 88 formed in the inclined shaft body 11 from the refrigerant discharge pipe 87 formed in the annular body 15 through a sliding seal structure (not shown), and the refrigerant discharge pipe It is discharged into a hollow cavity of the rotary shaft 8 from a discharge port 89 formed in the rotary shaft 8 so as to face the surface 88. The refrigerant that has flowed down the rotary shaft 8 is discharged from a discharge port 91 formed below the rotary shaft to a refrigerant discharge line 92 formed in the refrigerant supply unit 42 via a sliding seal structure (not shown). It returns to the refrigerant | coolant supply apparatus which is not shown in figure from 92a.

上記構成における冷却保持体41は、装着面73に形成された締結穴93から締結ボルトを環状体15に形成されたネジ穴に螺入することにより装着することができ、使用する破砕容器30のサイズや冷却の要不要に応じて冷却保持体41や先に示した環状保持体20に着脱交換することができる。   The cooling holding body 41 in the above configuration can be mounted by screwing a fastening bolt into a screw hole formed in the annular body 15 from a fastening hole 93 formed in the mounting surface 73. Depending on the size and necessity of cooling, the cooling holder 41 or the annular holder 20 shown above can be attached and detached.

冷却保持体41を用いて破砕を行うときには、環状体15に冷却保持体41を装着すると、冷却保持体41に設けられた冷媒供給ターミナル81は冷媒送出管路78に管路接続され、冷媒排出ターミナル82は冷媒排出管路87に管路接続される。装着された冷却保持体41に対し、容器投入口75から破砕媒体32と被破砕物とを収容した破砕容器30を容器ホルダ74内に投入する。次に、図6に示すように、冷却保持体41の装着面73上に設けられた取付ボス24上に押圧板38を載せ、固定ノブ25を取付ボス24に螺入することにより、押圧板38は容器ホルダ74に投入された破砕容器30の蓋体31を押圧するので、蓋体31によって容器投入口75の隙間は塞がれて容器ホルダ74内を循環する冷媒の外部漏出を防止することができる。この状態で冷媒供給装置を稼動させ、細胞破砕装置2の運転を開始すると、回転軸8の回転により第1の実施形態において説明したように、破砕容器30には8の字状の往復振動が加えられ、破砕媒体32による圧縮及び衝突の作用により被破砕物は破砕される。この破砕に伴う発熱や装置の温度上昇によって破砕容器30にも温度上昇が生じるが、前述した冷媒の循環により破砕容器30は冷却されるので、被破砕物が温度上昇によって変質しやすい物質であっても所要の温度条件下で破砕を行うことができる。   When crushing using the cooling holding body 41, when the cooling holding body 41 is mounted on the annular body 15, the refrigerant supply terminal 81 provided on the cooling holding body 41 is connected to the refrigerant delivery pipe 78 to discharge the refrigerant. The terminal 82 is connected to the refrigerant discharge pipe 87 by a pipe. The crushing container 30 containing the crushing medium 32 and the material to be crushed is fed into the container holder 74 from the container loading port 75 with respect to the mounted cooling holder 41. Next, as shown in FIG. 6, the pressing plate 38 is placed on the mounting boss 24 provided on the mounting surface 73 of the cooling holder 41, and the fixing knob 25 is screwed into the mounting boss 24. 38 presses the lid 31 of the crushing container 30 charged into the container holder 74, so that the gap between the container loading ports 75 is closed by the lid 31, thereby preventing external leakage of the refrigerant circulating in the container holder 74. be able to. When the refrigerant supply apparatus is operated in this state and the operation of the cell crushing apparatus 2 is started, as described in the first embodiment due to the rotation of the rotating shaft 8, the crushing container 30 undergoes a reciprocal vibration in the shape of figure 8. In addition, the object to be crushed is crushed by the action of compression and collision by the crushing medium 32. Although the temperature rises in the crushing container 30 due to the heat generated by the crushing and the temperature rise of the apparatus, the crushing container 30 is cooled by the circulation of the refrigerant described above. However, crushing can be performed under the required temperature conditions.

所要時間の破砕が終了したときには、細胞破砕装置2の運転を停止し、冷媒供給装置の稼動を停止すると、容器ホルダ74から破砕容器30を取り出すことができる。破砕容器30の取り出しは、固定ノブ25を緩めて押圧板38による蓋体31の押圧を開放した状態で行う。押圧板38は冷却保持体41から逐一取り外すのでなく、図7及び図8に示すように、固定ノブ25を緩めると押圧板38が回動できるように構成するのが破砕容器30の出し入れが簡単になって好適である。   When crushing for the required time is completed, the crushing container 30 can be taken out from the container holder 74 by stopping the operation of the cell crushing apparatus 2 and stopping the operation of the refrigerant supply apparatus. The crushing container 30 is taken out in a state where the fixing knob 25 is loosened and the pressing of the lid 31 by the pressing plate 38 is released. The pressing plate 38 is not removed from the cooling holder 41 one by one, but as shown in FIGS. 7 and 8, it is easy to put in and out the crushing container 30 so that the pressing plate 38 can be rotated when the fixing knob 25 is loosened. It is suitable.

図7、図8に示すように、固定ノブ25のネジ軸が貫通するように押圧板38に形成される貫通穴96は円弧状の長穴に形成し、長穴の一方中心を取付ボス24の中心に合わせると、図7に示すように、押圧板38に周囲に形成された押圧舌片38aが容器投入口75に投入された破砕容器30の蓋体31上に位置するので、その状態で固定ノブ25を締め付けると押圧舌片38aで蓋体31を押圧した破砕処理状態が得られる。破砕処理が終了した後、固定ノブ25を緩めると押圧板38は回動可能になるので、図8に示すように、押圧板38をその押圧舌片38aが容器投入口75の間に位置するように回動させる。容器投入口75の上方が開放されるので、容器投入口75から破砕処理が終了した破砕容器30を取り出すことができる。   As shown in FIGS. 7 and 8, the through hole 96 formed in the pressing plate 38 so as to penetrate the screw shaft of the fixing knob 25 is formed as an arc-shaped elongated hole, and one center of the elongated hole is formed in the mounting boss 24. 7, the pressing tongue 38 a formed around the pressing plate 38 is positioned on the lid 31 of the crushing container 30 charged into the container loading port 75, as shown in FIG. When the fixing knob 25 is tightened, a crushing state in which the lid 31 is pressed by the pressing tongue 38a is obtained. When the fixing knob 25 is loosened after the crushing process is completed, the pressing plate 38 can be rotated. Therefore, as shown in FIG. 8, the pressing tongue 38 a is positioned between the container insertion port 75. Rotate as follows. Since the upper part of the container charging port 75 is opened, the crushing container 30 that has been crushed can be taken out from the container charging port 75.

以上説明した冷却保持体41は、比較的小型の破砕容器30を多数保持して冷却しながら破砕処理するためのものであるが、比較的大型の破砕容器30を用いて破砕処理を行うためには、図9及び図10に示すように構成された冷却保持体52を環状体15に取り付けると、冷却しながら破砕処理を行うことができる。   The cooling holder 41 described above is for holding a large number of relatively small crushing containers 30 and crushing them while cooling, but for performing crushing processing using a relatively large crushing container 30. If the cooling holding body 52 comprised as shown in FIG.9 and FIG.10 is attached to the annular body 15, a crushing process can be performed, cooling.

図9において、冷却保持体52は、締結穴93により環状体15に取り付けられる装着板97には、3個の冷却容器61及び冷媒分配部59が設けられ、冷媒供給ターミナル81から送給されてきた冷媒を冷媒分配部59で3個の冷却容器61に分配供給し、3個の冷却容器61から排出された冷媒を冷媒分配部59に集めて冷媒排出ターミナル82に排出できるように構成されている。   In FIG. 9, the cooling holding body 52 is provided with three cooling containers 61 and a refrigerant distributor 59 on the mounting plate 97 attached to the annular body 15 by the fastening holes 93, and is supplied from the refrigerant supply terminal 81. The refrigerant distribution unit 59 distributes and supplies the refrigerant to the three cooling containers 61, collects the refrigerant discharged from the three cooling containers 61 in the refrigerant distribution unit 59, and discharges the refrigerant to the refrigerant discharge terminal 82. Yes.

前記冷却容器61は、図10(a)に示すように、外筒62内に所定間隔を隔てて内筒63を配設し、外筒62に設けられた冷媒供給口64から冷媒を送給して外筒62と内筒63の間に冷媒を循環させて冷媒排出口65から冷媒を排出し、内筒63内に収容した破砕容器30は内筒63内に投入された純水等の冷却媒体を介して冷却されるように構成されている。冷却媒体を投入した内筒63に被破砕物と破砕媒体32とを収容した破砕容器30を収容し、容器投入口にキャップ60を螺合させると、蓋体31により内筒63の開口部は封じられるので、冷媒を循環させながら破砕機能部51により破砕容器30に往復振動を加えると、被破砕物の温度上昇を抑えて破砕処理を行うことができる。この冷却容器61では、破砕容器30は冷媒に直接触れないので、被破砕物が病原体を含むものであったり、有害なものであったりした場合でも、冷媒を通じて外部に漏れることがなく、バイオハザード対策上で好適な構成となる。   As shown in FIG. 10A, the cooling container 61 has an inner cylinder 63 disposed at a predetermined interval in the outer cylinder 62, and supplies refrigerant from a refrigerant supply port 64 provided in the outer cylinder 62. Then, the refrigerant is circulated between the outer cylinder 62 and the inner cylinder 63 to discharge the refrigerant from the refrigerant outlet 65, and the crushing container 30 accommodated in the inner cylinder 63 is made of pure water or the like charged into the inner cylinder 63. It is comprised so that it may cool via a cooling medium. When the crushing container 30 containing the material to be crushed and the crushing medium 32 is accommodated in the inner cylinder 63 charged with the cooling medium, and the cap 60 is screwed into the container inlet, the opening of the inner cylinder 63 is opened by the lid 31. Since it is sealed, when a reciprocating vibration is applied to the crushing container 30 by the crushing function unit 51 while circulating the refrigerant, the temperature rise of the object to be crushed can be suppressed and the crushing process can be performed. In this cooling container 61, since the crushing container 30 does not touch the refrigerant directly, even if the object to be crushed contains a pathogen or is harmful, the biohazard does not leak outside through the refrigerant. This is a suitable configuration in terms of countermeasures.

バイオハザード対策の必要がない場合では、図10(b)に示すように、冷媒供給口64から送給される冷媒を循環させて冷媒排出口65から排出する冷却筒100に形成した冷却容器61aに破砕容器30を収容するように構成することができる。この構成では破砕容器30は冷媒によって直接冷却されるので冷却効率がよく、より簡易に構成することができる。   When there is no need for biohazard countermeasures, as shown in FIG. 10B, a cooling container 61 a formed in the cooling cylinder 100 that circulates the refrigerant fed from the refrigerant supply port 64 and discharges it from the refrigerant discharge port 65. It can comprise so that the crushing container 30 may be accommodated. In this configuration, the crushing container 30 is directly cooled by the refrigerant, so that the cooling efficiency is good and the configuration can be simplified.

以上説明した第2の実施形態に係る細胞破砕装置2は、破砕処理に用いる破砕容器の種類やサイズに応じて冷却保持体41,52を交換するとき、環状体15に冷却保持体41,52を取り付けることにより、冷媒の供給及び排出の管路接続が自動的になされるので、冷却しながら破砕処理する細胞破砕装置2の取り扱いを作業性よく行うことができる。しかし、冷却保持体41,52の交換を頻繁に行うことは少ないので、冷媒供給及び排出のための管路接続を手動で行うようにすると、装置構成の簡略化を図ることができる。   The cell crushing apparatus 2 according to the second embodiment described above has the cooling holders 41 and 52 in the annular body 15 when the cooling holders 41 and 52 are exchanged according to the type and size of the crushing container used for the crushing process. Since the pipe connection for supplying and discharging the refrigerant is automatically performed, the cell crushing apparatus 2 that performs the crushing process while cooling can be handled with good workability. However, since the cooling holders 41 and 52 are rarely exchanged, the apparatus configuration can be simplified by manually connecting the pipes for supplying and discharging the refrigerant.

細胞破砕装置2では破砕機能部51を駆動する駆動手段5を破砕機能部51と並列配置してベルト駆動する基本構造を採用することにより、上下端が開放される回転軸8を中空構造に形成し、中空空洞内を冷媒の供給管路及び排出管路として利用しているが、冷却保持体41,52が取り付けられる環状体15は振れ運動はするが回転軸8と共回転しないので、回転軸8の中空空洞は冷媒の供給管路又は排出管路だけに利用することもできる。   In the cell crushing device 2, by adopting a basic structure in which the driving means 5 for driving the crushing function part 51 is arranged in parallel with the crushing function part 51 and the belt is driven, the rotating shaft 8 whose upper and lower ends are opened is formed in a hollow structure. Although the hollow cavity is used as a refrigerant supply line and a discharge line, the annular body 15 to which the cooling holders 41 and 52 are attached swings but does not rotate together with the rotary shaft 8, The hollow cavity of the shaft 8 can be used only for the supply line or the discharge line of the refrigerant.

即ち、回転軸8の中空空洞を冷媒の供給管路とする場合には、回転軸8の中空空洞から冷却保持体41,52に冷媒を供給して破砕容器30を冷却した冷媒は、冷却保持体41,52に接続した可撓性のチューブによって冷媒供給装置に戻すように構成することができる。また、回転軸8の中空空洞を冷媒の排出管路とする場合には、冷媒供給装置から可撓性チューブを通じて冷却保持体41,52に供給された冷媒は、破砕容器30を冷却した後、回転軸8の中空空洞を通じて排出し、冷媒供給装置に戻すように構成することができる。   That is, when the hollow cavity of the rotating shaft 8 is used as a refrigerant supply line, the refrigerant that has cooled the crushing container 30 by supplying the cooling holders 41 and 52 from the hollow cavity of the rotating shaft 8 is cooled and held. It can comprise so that it may return to a refrigerant | coolant supply apparatus by the flexible tube connected to the bodies 41 and 52. FIG. Further, when the hollow cavity of the rotating shaft 8 is used as the refrigerant discharge pipe, the refrigerant supplied from the refrigerant supply device to the cooling holders 41 and 52 through the flexible tube cools the crushing container 30. It can discharge | emit through the hollow cavity of the rotating shaft 8, and can be comprised so that it may return to a refrigerant | coolant supply apparatus.

より簡易には、第1の実施形態に示した細胞破砕装置1に冷却保持体41,52を取り付け、冷媒供給装置と冷却保持体41,52との間を可撓性チューブで接続することによっても冷媒の供給及び排出を行うことができる。   More simply, the cooling holders 41 and 52 are attached to the cell disruption apparatus 1 shown in the first embodiment, and the refrigerant supply device and the cooling holders 41 and 52 are connected by a flexible tube. Also, the refrigerant can be supplied and discharged.

上記第2の実施形態に係る細胞破砕装置2は、破砕容器30を冷却する機能を備えているが、冷却が不要な被破砕物を破砕処理するときには、環状体15に第1の実施形態に示した環状保持体20を取り付け、冷媒供給を停止して環状保持体20に破砕容器30を保持して破砕処理を行うことができる。   The cell crushing apparatus 2 according to the second embodiment has a function of cooling the crushing container 30. However, when crushing a crushing object that does not require cooling, the cell 15 is applied to the annular body 15 according to the first embodiment. The illustrated annular holder 20 can be attached, the supply of refrigerant can be stopped, and the crushing container 30 can be held on the annular holder 20 to perform the crushing process.

以上説明した通り本発明によれば、破砕機能部とそれを駆動する駆動手段とは並列位置に配列されているので装置の高さを抑えて卓上配置することができる細胞破砕装置に構成することができ、破砕処理前の準備作業や破砕後の遠心分離など机上で行われる一連の作業を能率よく実施することができる。また、被破砕物が破砕に伴う温度上昇により変質が生じやすいものであるときには、破砕容器を冷却しながら破砕処理することができ、特に動物組織の細胞分析などのための細胞破砕に有効な細胞破砕装置を提供することができる。   As described above, according to the present invention, since the crushing function unit and the driving means for driving the crushing function unit are arranged in parallel, the cell crushing device can be configured to be placed on a table while suppressing the height of the device. Therefore, a series of operations performed on the desk, such as preparatory work before crushing treatment and centrifugation after crushing, can be efficiently performed. In addition, when the material to be crushed is likely to be altered due to the temperature rise accompanying crushing, it can be crushed while cooling the crushing vessel, and is particularly effective for cell crushing for cell analysis of animal tissues. A crushing device can be provided.

第1の実施形態に係る細胞破砕装置の全体構成を示す側面図。The side view which shows the whole structure of the cell crushing apparatus which concerns on 1st Embodiment. 同上構成における破砕機能部の構成を示す断面図。Sectional drawing which shows the structure of the crushing function part in a structure same as the above. 第2の実施形態に係る細胞破砕装置の構成を示す側面図。The side view which shows the structure of the cell crushing apparatus which concerns on 2nd Embodiment. 同上構成における破砕機能部の構成を示す断面図。Sectional drawing which shows the structure of the crushing function part in a structure same as the above. 冷却保持体の構成を示す(a)は平面図、(b)は断面図。(A) which shows the structure of a cooling holding body is a top view, (b) is sectional drawing. 押圧板の取り付け構造を示す部分断面図。The fragmentary sectional view which shows the attachment structure of a press plate. 押圧板の破砕時の位置を示す平面図。The top view which shows the position at the time of the crushing of a press board. 押圧板の容器出し入れ時の位置を示す平面図。The top view which shows the position at the time of the container taking in / out of a press plate. 冷却保持体の構成を示す(a)は平面図、(b)は側面図。(A) which shows the structure of a cooling holding body is a top view, (b) is a side view. 冷却容器の構成を示す断面図。Sectional drawing which shows the structure of a cooling container. 破砕容器の構成を示す断面図。Sectional drawing which shows the structure of a crushing container. 破砕媒体の構成を示す側面図。The side view which shows the structure of a crushing medium. 破砕媒体の構成を示す断面図。Sectional drawing which shows the structure of a crushing medium. 環状体の振動形態を説明する説明図。Explanatory drawing explaining the vibration form of an annular body. 従来技術に係る破砕装置の構成を示す断面図。Sectional drawing which shows the structure of the crushing apparatus which concerns on a prior art.

符号の説明Explanation of symbols

1、2細胞破砕装置
5 駆動手段
6 中心パイプ
7 軸受部
8 回転軸
11 傾斜軸体
14 軸受部
15 環状体
16 磁石(回転拘束手段)
18 対極磁石(回転拘束手段)
19、 74 容器ホルダ
20 環状保持体
21 従動ベルト車(回転伝達手段)
22 駆動ベルト車(回転伝達手段)
23 Vベルト(回転伝達手段)
29 ケーシング
30 破砕容器
31 蓋体
32 破砕媒体
38 押圧板
41、52 冷却保持体
42 冷媒供給部
50、51 破砕機能部
59 冷媒分配部
61 冷却容器
62 外筒
63 内筒
75 容器投入口
95 破砕駆動部
DESCRIPTION OF SYMBOLS 1, 2 Cell crushing device 5 Drive means 6 Center pipe 7 Bearing part 8 Rotating shaft 11 Inclined shaft body 14 Bearing part 15 Annular body 16 Magnet (rotation restraint means)
18 Counter-pole magnet (rotation restraint means)
19, 74 Container holder 20 Annular holder 21 Drive belt wheel (rotation transmission means)
22 Drive belt wheel (rotation transmission means)
23 V belt (rotation transmission means)
DESCRIPTION OF SYMBOLS 29 Casing 30 Crushing container 31 Cover body 32 Crushing medium 38 Press plate 41, 52 Cooling holding body 42 Refrigerant supply part 50, 51 Crushing function part 59 Refrigerant distribution part 61 Cooling container 62 Outer cylinder 63 Inner cylinder 75 Container inlet 95 Crush drive Part

Claims (8)

回転軸にその軸心に対して軸心の傾斜した傾斜軸部を設け、この傾斜軸部に相対回転自在に環状体を外嵌させると共に、この環状体の回転を拘束する回転拘束手段を設け、前記環状体に被破砕物と破砕媒体とを収容した破砕容器を周方向に保持する環状保持体を取り付けた破砕機能部と、
この破砕機能部と並列配置された回転駆動手段と前記回転軸との間を回転伝達手段によって連結する破砕駆動部とを備えてなることを特徴とする細胞破砕装置。
The rotating shaft is provided with an inclined shaft portion whose axis is inclined with respect to the shaft center, and an annular body is externally fitted to the inclined shaft portion so as to be relatively rotatable, and a rotation restricting means for restricting the rotation of the annular body is provided. A crushing function unit provided with an annular holding body for holding a crushing container containing the object to be crushed and a crushing medium in the annular direction in the circumferential direction;
A cell crushing apparatus comprising: a rotation driving unit arranged in parallel with the crushing function unit; and a crushing driving unit that connects the rotation shaft with a rotation transmission unit.
回転軸にその軸心に対して軸心の傾斜した傾斜軸部を設け、この傾斜軸部に相対回転自在に環状体を外嵌させると共に、この環状体の回転を拘束する回転拘束手段を設け、被破砕物と破砕媒体とを投入した細長い破砕容器を冷媒を循環させる容器ホルダ内に保持する冷却保持体を前記環状体に取り付けた破砕機能部と、
この破砕機能部と並列配置された回転駆動手段と前記回転軸との間を回転伝達手段によって連結する破砕駆動部と、
前記容器ホルダに冷媒を循環させる冷媒供給部とを備えてなることを特徴とする細胞破砕装置。
The rotating shaft is provided with an inclined shaft portion whose axis is inclined with respect to the shaft center, and an annular body is externally fitted to the inclined shaft portion so as to be relatively rotatable, and a rotation restricting means for restricting the rotation of the annular body is provided. A crushing function unit in which a cooling holding body for holding a slender crushing container charged with a material to be crushed and a crushing medium in a container holder for circulating a refrigerant is attached to the annular body;
A crushing drive unit that connects between the rotation driving means arranged in parallel with the crushing function unit and the rotation shaft by a rotation transmission means,
A cell disruption apparatus comprising: a refrigerant supply unit configured to circulate refrigerant in the container holder.
中空構造に形成された回転軸にその軸心に対して軸心の傾斜した傾斜軸部を設け、この傾斜軸部に相対回転自在に環状体を外嵌させると共に、この環状体の回転を拘束する回転拘束手段を設け、被破砕物と破砕媒体とを投入した細長い破砕容器を冷媒を循環させる容器ホルダ内に保持する冷却保持体を前記環状体に取り付けた破砕機能部と、
この破砕機能部と並列配置された回転駆動手段と前記回転軸との間を回転伝達手段によって連結する破砕駆動部と、
回転軸の中空空洞内を通して前記容器ホルダに冷媒を循環させる冷媒供給部とを備えてなることを特徴とする細胞破砕装置。
A rotating shaft formed in a hollow structure is provided with an inclined shaft portion whose axis is inclined with respect to the shaft center, and an annular body is fitted on the inclined shaft portion so as to be relatively rotatable, and the rotation of the annular body is restricted. A crushing function unit that is provided with a rotation holding means for attaching a cooling holding body that holds an elongated crushing container into which a material to be crushed and a crushing medium are charged in a container holder that circulates a refrigerant, to the annular body;
A crushing drive unit that connects between the rotation driving means arranged in parallel with the crushing function unit and the rotation shaft by a rotation transmission means,
A cell disruption apparatus comprising: a refrigerant supply unit that circulates a refrigerant through the hollow cavity of the rotation shaft to the container holder.
回転軸は、中空空洞内に回転軸の軸心と同心に中心パイプが配設され、中心パイプが冷媒の供給流路に、回転軸の中空空洞が冷媒の排出流路になるように構成されてなる請求項3に記載の細胞破砕装置。 The rotation shaft is configured such that a center pipe is disposed concentrically with the axis of the rotation shaft in the hollow cavity, the center pipe serves as a refrigerant supply flow path, and the hollow hollow of the rotation shaft serves as a refrigerant discharge flow path. The cell disruption apparatus according to claim 3. 中心パイプ内から回転軸の半径方向に回転軸又は傾斜軸体の周面に開口する冷媒供給管路を形成し、前記周面に摺動接触するシール構造を通じて冷媒供給流路が形成され、回転軸の中空空洞内から回転軸の半径方向に回転軸又は傾斜軸体の周面に開口する冷媒供給管路を形成し、前記周面に摺動接触するシール構造を通じて冷媒排出流路が形成されてなる請求項3又は4に記載の細胞破砕装置。 A refrigerant supply passage is formed in the radial direction of the rotary shaft from the center pipe and opens to the peripheral surface of the rotary shaft or the inclined shaft body, and the refrigerant supply flow path is formed through a seal structure that is in sliding contact with the peripheral surface. A refrigerant supply passage is formed that opens from the hollow cavity of the shaft to the peripheral surface of the rotary shaft or the inclined shaft body in the radial direction of the rotary shaft, and a refrigerant discharge passage is formed through a seal structure that is in sliding contact with the peripheral surface. The cell disruption apparatus according to claim 3 or 4. 容器ホルダは、冷却保持体の周方向に多数の破砕容器を収容する円環状に形成されてなる請求項2〜5いずれか一項に記載の細胞破砕装置。 The cell crusher according to any one of claims 2 to 5, wherein the container holder is formed in an annular shape that accommodates a number of crushing containers in the circumferential direction of the cooling holder. 容器ホルダは、冷却保持体の周方向に複数の破砕容器を個別に収容する冷却容器として配設され、冷却保持体上に設けられた冷媒分配部と各冷却容器との間が冷媒供給チューブ及び冷媒排出チューブで接続されてなる請求項2〜5いずれか一項に記載の細胞破砕装置。 The container holder is disposed as a cooling container that individually accommodates a plurality of crushing containers in the circumferential direction of the cooling holding body, and a refrigerant supply tube and a refrigerant supply tube provided between the cooling distributor provided on the cooling holding body and each cooling container The cell disruption apparatus according to any one of claims 2 to 5, which is connected by a refrigerant discharge tube. 冷却容器は、破砕容器を収容する内筒と、この内筒を所定間隔を隔てて収容する外筒とにより形成され、外筒と内筒との間の空間内に冷媒を循環させ、破砕容器は内筒に投入された熱伝導物を介して冷却されるように構成されてなる請求項7に記載の細胞破砕装置。 The cooling container is formed by an inner cylinder that accommodates the crushing container and an outer cylinder that accommodates the inner cylinder at a predetermined interval, and circulates a refrigerant in a space between the outer cylinder and the inner cylinder, The cell disruption device according to claim 7, wherein the cell disruption device is configured to be cooled through a heat conductive material charged in the inner cylinder.
JP2004226606A 2004-08-03 2004-08-03 Cell disruption device Active JP4773072B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004226606A JP4773072B2 (en) 2004-08-03 2004-08-03 Cell disruption device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004226606A JP4773072B2 (en) 2004-08-03 2004-08-03 Cell disruption device

Publications (2)

Publication Number Publication Date
JP2006043554A true JP2006043554A (en) 2006-02-16
JP4773072B2 JP4773072B2 (en) 2011-09-14

Family

ID=36022722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004226606A Active JP4773072B2 (en) 2004-08-03 2004-08-03 Cell disruption device

Country Status (1)

Country Link
JP (1) JP4773072B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010533577A (en) * 2007-07-14 2010-10-28 レツチユ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Laboratory vibratory crusher with inclined crushing cup
JP2011117814A (en) * 2009-12-03 2011-06-16 Yasui Kikai Kk Specimen inspection preparation method and device
CN102824943A (en) * 2012-08-23 2012-12-19 中国人民解放军军事医学科学院卫生装备研究所 Universal cell rapid breaker using bead vibrating and grinding
KR101359695B1 (en) * 2012-01-09 2014-02-24 (주) 메디컬그룹베스티안 Homogenizer for cell processing and delivery system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5645751A (en) * 1979-09-22 1981-04-25 Bibun Corp Vacuum heat/cool mixer
JPH0440245A (en) * 1990-06-01 1992-02-10 Kurimoto Ltd Planetary ball mill having temperature adjusting function
JPH0674304A (en) * 1991-07-24 1994-03-15 Zenjiro Nakayama Differential limiting-device
JP2000202314A (en) * 1999-01-18 2000-07-25 Yasui Kikai Kk Cell-crushing apparatus
JP2001178444A (en) * 1999-10-13 2001-07-03 Yasui Kikai Kk Method for crushing and apparatus therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5645751A (en) * 1979-09-22 1981-04-25 Bibun Corp Vacuum heat/cool mixer
JPH0440245A (en) * 1990-06-01 1992-02-10 Kurimoto Ltd Planetary ball mill having temperature adjusting function
JPH0674304A (en) * 1991-07-24 1994-03-15 Zenjiro Nakayama Differential limiting-device
JP2000202314A (en) * 1999-01-18 2000-07-25 Yasui Kikai Kk Cell-crushing apparatus
JP2001178444A (en) * 1999-10-13 2001-07-03 Yasui Kikai Kk Method for crushing and apparatus therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010533577A (en) * 2007-07-14 2010-10-28 レツチユ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Laboratory vibratory crusher with inclined crushing cup
JP2011117814A (en) * 2009-12-03 2011-06-16 Yasui Kikai Kk Specimen inspection preparation method and device
KR101359695B1 (en) * 2012-01-09 2014-02-24 (주) 메디컬그룹베스티안 Homogenizer for cell processing and delivery system
CN102824943A (en) * 2012-08-23 2012-12-19 中国人民解放军军事医学科学院卫生装备研究所 Universal cell rapid breaker using bead vibrating and grinding

Also Published As

Publication number Publication date
JP4773072B2 (en) 2011-09-14

Similar Documents

Publication Publication Date Title
US7547135B2 (en) Disposable sanitary mixing apparatus and method
US7001063B1 (en) Cleanable mixer driver apparatus and method
KR101049350B1 (en) Grinding Furnace Of Food Processor
JP4773072B2 (en) Cell disruption device
EP2728060A1 (en) Wall-mounted drum type washing machine
US5626824A (en) Autoclave
JP2007152262A (en) Processing apparatus
JP3793472B2 (en) Crusher
JP6132953B2 (en) Stir crusher
JP3571950B2 (en) Cell crushing device and cell crushing method
JP4651987B2 (en) Cell disruption apparatus and temperature control method thereof
JP4731659B2 (en) Magnetic coupling substrate roller
JP2004313966A (en) Cell disintegrator
CN113776300A (en) Drying machine suitable for powder mixing and drying method thereof
JP2006247646A (en) Device for processing bulk material
JP4100567B2 (en) Crusher
CN105457526B (en) A kind of quick mixing agitator of biliquid
CN214974490U (en) Temperature control water-cooled horizontal sand mill
JP3793539B2 (en) Cell disruption apparatus and cell disruption method
CN218478618U (en) Automatic change device of handling high rigidity circulating water
KR101254272B1 (en) Apparatus for forming a hole
CN219485284U (en) Grinder with bearing cooling device
JP2008002510A (en) Pressure vessel
JPH11221767A (en) Coolant feeding device for double-head surface finishing processor
JP4273009B2 (en) Powder processing equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101115

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20101115

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110623

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4773072

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250