JP2006036605A - Method for producing high purity aqueous silica sol - Google Patents

Method for producing high purity aqueous silica sol Download PDF

Info

Publication number
JP2006036605A
JP2006036605A JP2004221164A JP2004221164A JP2006036605A JP 2006036605 A JP2006036605 A JP 2006036605A JP 2004221164 A JP2004221164 A JP 2004221164A JP 2004221164 A JP2004221164 A JP 2004221164A JP 2006036605 A JP2006036605 A JP 2006036605A
Authority
JP
Japan
Prior art keywords
silica sol
acid
aqueous
aqueous silica
silicate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004221164A
Other languages
Japanese (ja)
Inventor
Kazuhiro Nakayama
和洋 中山
Akira Nakajima
昭 中島
Michio Komatsu
通郎 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
Catalysts and Chemicals Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts and Chemicals Industries Co Ltd filed Critical Catalysts and Chemicals Industries Co Ltd
Priority to JP2004221164A priority Critical patent/JP2006036605A/en
Publication of JP2006036605A publication Critical patent/JP2006036605A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing an aqueous silica sol having a very small amount of impurities such as alkali metals and excellent in stability. <P>SOLUTION: The method for producing a high purity aqueous silica sol comprises a step (1) of adding an acid to an aqueous silica sol that is prepared from an alkali silicate as the raw material, adjusting its pH in the range of 0-3.0, and heating it at a temperature of 40-300°C, and a step (2) of contacting the aqueous silica sol after heating with a strongly basic anion exchanger and further with a strongly acidic cation exchanger. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は高純度の水性シリカゾルの製造方法に関するものであり、得られる水性シリカゾルの不純物含有量が低いため、特に、半導体基板、シリコンウェーハ表面の研磨粒子などの用途に好適である。   The present invention relates to a method for producing a high-purity aqueous silica sol, and since the resulting aqueous silica sol has a low impurity content, it is particularly suitable for applications such as abrasive particles on the surface of semiconductor substrates and silicon wafers.

従来、例えば半導体の集積回路付基板の製造においては、シリコンウェーハ上に銅などの金属で回路を形成する際に凹凸あるいは段差が生じるので、これを研磨して表面の段差がなくなるように回路の金属部分を優先的に除去することが行われている。また、シリコンウェーハ上にアルミ配線を形成し、この上に絶縁膜としてシリカ等の酸化膜を設けると配線による凹凸が生じるので、この酸化膜を研磨して平坦化することが行われている。このような基板の研磨においては、研磨後の表面は段差や凹凸がなく平坦で、さらにミクロな傷等もなく平滑であることが求められており、また研磨速度が速いことも必要である。   Conventionally, for example, in the manufacture of a substrate with a semiconductor integrated circuit, irregularities or steps are formed when forming a circuit with a metal such as copper on a silicon wafer. The metal part is preferentially removed. Further, when an aluminum wiring is formed on a silicon wafer and an oxide film such as silica is provided thereon as an insulating film, unevenness due to the wiring is generated. Therefore, the oxide film is polished and flattened. In the polishing of such a substrate, the surface after polishing is required to be flat with no steps or irregularities, smooth without microscopic scratches, etc., and the polishing rate must be high.

さらに、半導体材料は電気・電子製品の小型化や高性能化に伴い高集積化が進展しているが、例えばトランジスタ分離層に不純物等が残存した場合、性能が発揮されなかったり、不具合の原因となることがある。特に研磨した半導体基板や酸化膜表面にアルカリ金属、中でもNaが付着すると、Naは拡散性が高く、酸化膜中の欠陥などに捕獲され、半導体基板に回路を形成しても絶縁不良を起こしたり、回路が短絡することがあり、また誘電率が低下することがあった。このため使用条件によって、或いは使用が長期にわたった場合に前記不具合を生じることがあり、金属、アルカリ金属などの不純物を殆ど含まない研磨用粒子が求められている。   In addition, semiconductor materials are becoming more highly integrated as electrical and electronic products become smaller and have higher performance. For example, if impurities remain in the transistor isolation layer, the performance may not be demonstrated or the cause of defects may be caused. It may become. In particular, when alkali metal, especially Na, adheres to the polished semiconductor substrate or oxide film surface, Na is highly diffusive and is trapped by defects in the oxide film, causing insulation failure even if a circuit is formed on the semiconductor substrate. The circuit may be short-circuited and the dielectric constant may be reduced. For this reason, the said malfunction may arise depending on use conditions or when used over a long period of time, and the abrasive | polishing particle | grains which hardly contain impurities, such as a metal and an alkali metal, are calculated | required.

研磨用粒子としては、従来、シリカゾルやヒュームドシリカ、ヒュームドアルミナなどが用いられている。
高純度の水性シリカゾルの製造方法として、不純物の少ないアルコキシシランを出発原料とする方法が知られており、特開平6−316407号公報(特許文献1)にはアルキルシリケートをアルカリ存在下で加水分解しながら、生成した珪酸を重合させて水性シリカゾルを得る方法が開示されている。また、特開2001−2411号公報(特許文献2)等には、アルコキシシランを酸性溶媒中で加水分解し、これによって生成した珪酸モノマーを塩基性溶媒中で重合させて水性シリカゾルを得る方法が開示されている。これらの方法では、得られる水性シリカゾルの安定性が不充分であったり、また、アルコキシ基(OR基)が残存して得られる粒子の密度が低く、研磨材に用いた場合に充分な研磨速度が得られないという問題がある。
Conventionally, silica sol, fumed silica, fumed alumina, or the like is used as the abrasive particles.
As a method for producing a high-purity aqueous silica sol, a method using an alkoxysilane having few impurities as a starting material is known. JP-A-6-316407 (Patent Document 1) hydrolyzes an alkyl silicate in the presence of an alkali. However, a method for obtaining an aqueous silica sol by polymerizing the produced silicic acid is disclosed. Japanese Patent Laid-Open No. 2001-2411 (Patent Document 2) discloses a method of obtaining an aqueous silica sol by hydrolyzing an alkoxysilane in an acidic solvent and polymerizing a silicic acid monomer produced thereby in a basic solvent. It is disclosed. In these methods, the stability of the resulting aqueous silica sol is insufficient, or the density of particles obtained by remaining alkoxy groups (OR groups) is low, so that a sufficient polishing rate is obtained when used as an abrasive. There is a problem that cannot be obtained.

他方、珪砂をアルカリ溶融したカレットを水に溶解させて得られる水硝子を出発原料とする方法においては、例えば、水ガラスを脱アルカリし、得られた珪酸液(珪酸モノマーを多く含む)を塩基性溶媒中で重合させることにより水性シリカゾルを得ることができる。
しかしながら、珪砂中には不純分としてAl、Ti、Fe、Mg、Caなどの金属が多く含まれるため、得られる水性シリカゾルにはこれらの金属イオン量と連動してアルカリ金属(通常Na)が多く残存し、半導体基板の研磨材として用いるには不向きな場合があった。
この様な水性シリカゾルは酸やキレート剤等で処理することによって、ある程度はAlやNaを低減することができるものの、半導体基板の研磨材としては純度が不十分であった。また、珪砂の代わりに高純度シリカ粉を用いることも行われているが、高純度シリカは高価であり、更にアルカリ溶融に時間がかかるなどの問題があった。
On the other hand, in a method in which water glass obtained by dissolving cullet obtained by alkali melting silica sand in water is used as a starting material, for example, water glass is dealkalized, and the resulting silicic acid solution (containing a large amount of silicic acid monomer) is used as a base. An aqueous silica sol can be obtained by polymerizing in an aqueous solvent.
However, since silica sand contains many metals such as Al, Ti, Fe, Mg, and Ca as impurities, the resulting aqueous silica sol contains many alkali metals (usually Na) in conjunction with the amount of these metal ions. In some cases, it remains and is not suitable for use as an abrasive for semiconductor substrates.
Although such an aqueous silica sol can reduce Al and Na to some extent by treating with an acid or a chelating agent, the purity thereof is insufficient as a polishing material for a semiconductor substrate. In addition, high-purity silica powder is used instead of silica sand, but high-purity silica is expensive and has a problem that it takes time to melt the alkali.

特開昭61−158810号公報(特許文献3)には、所定濃度のアルカリ珪酸塩水溶液を強酸型陽イオン交換体に接触させ、次に酸を加え、限外濾過を行い、更に陰イオン交換体および陽イオン交換体に接触させ、アンモニアを加え、続いて粒子成長させてなる方法が開示されている。
特開平5−85718号公報(特許文献4)には、(1)水ガラスの希釈水溶液を脱カチオンして活性珪酸の水溶液を得る工程、(2)該活性珪酸水溶液を強酸で処理する工程、(3)強酸処理後の活性珪酸水溶液を脱イオンして高純度の活性珪酸の水溶液を得る工程、(4)この水溶液にアルカリを加えて安定化活性珪酸水溶液を得る工程、(5)この水溶液を蒸発濃縮下、粒子成長させて平均粒子径が10〜30mμのシリカゾルを生成させる工程、(6)このシリカゾルをイオン交換樹脂に接触させる工程からなる高純度の水性シリカゾルの製造方法が開示されている。この方法では、活性珪酸の段階で、強酸を加えて、不純物の除去(リーチング)を行っているが、リーチング後、活性珪酸の安定性に問題があり、ゲル化を招き易かった。
In JP-A-61-158810 (Patent Document 3), an alkaline silicate aqueous solution having a predetermined concentration is brought into contact with a strong acid cation exchanger, then an acid is added, ultrafiltration is performed, and anion exchange is further performed. Disclosed is a method comprising contacting a body and a cation exchanger, adding ammonia, followed by particle growth.
JP-A-5-85718 (Patent Document 4) includes (1) a step of decationizing a diluted aqueous solution of water glass to obtain an aqueous solution of active silicic acid, (2) a step of treating the aqueous solution of active silicic acid with a strong acid, (3) a step of deionizing the active silicic acid aqueous solution after the strong acid treatment to obtain an aqueous solution of high purity active silicic acid, (4) a step of adding an alkali to this aqueous solution to obtain a stabilized active silicic acid aqueous solution, (5) this aqueous solution A process for producing a silica sol having an average particle size of 10 to 30 μm by growing particles under evaporation and concentration, and (6) a method for producing a high-purity aqueous silica sol comprising the step of bringing this silica sol into contact with an ion exchange resin is disclosed. Yes. In this method, a strong acid is added at the stage of active silicic acid to remove impurities (leaching). However, after leaching, there is a problem with the stability of active silicic acid and gelation easily occurs.

特開平6−16414号公報(特許文献5)には、アルカリ金属ケイ酸塩や活性ケイ酸の水溶液に強酸又は強酸の塩を添加した溶液を調製する工程と、次にその溶液をイオン交換樹脂で処理する工程と、次に当該イオン交換によって得られた溶液に同様な工程から得られた当該溶液を添加することによってシリカゾルを調製する工程と、次に得られたシリカゾルをイオン交換樹脂で処理する工程と、更に得られたシリカゾルにアンモニアを添加する工程からなる高純度のシリカゾルの製造方法が開示されている。この製造方法においても前記特開平5−85718号公報と同様な問題がある。   Japanese Patent Laid-Open No. 6-16414 (Patent Document 5) discloses a step of preparing a solution obtained by adding a strong acid or a salt of a strong acid to an aqueous solution of alkali metal silicate or activated silicic acid, and then the solution is ion-exchange resin. A step of preparing the silica sol by adding the solution obtained from the same step to the solution obtained by the ion exchange, and then treating the obtained silica sol with an ion exchange resin. And a method for producing a high-purity silica sol comprising a step of adding ammonia to the obtained silica sol. This manufacturing method also has the same problem as that of JP-A-5-85718.

特開2003−89786号公報(特許文献6)には、珪酸アルカリ水溶液とカチオン交換樹脂とを接触させて、活性珪酸水溶液を調製した後、この活性珪酸水溶液とキレート樹脂とを接触させて金属不純物を除去し、更に必要に応じてキレート化剤や酸化剤を添加するなどし、続いて有機アルカリを使用してコロイド粒子を成長させ、限外濾過によりシリカを濃縮することにより提供されるシリカ当たりのアルカリ金属含有量が50ppm以下であって、且つシリカ当たりのCuまたはZnの含有量が、それぞれ100ppb又は1000ppb以下のコロイダルシリカについての記載がある。   In JP 2003-89786A (Patent Document 6), an alkali silicate aqueous solution and a cation exchange resin are contacted to prepare an active silicic acid aqueous solution, and then the active silicic acid aqueous solution and a chelate resin are contacted to form metal impurities. Per silica provided by, for example, adding a chelating agent or oxidizing agent if necessary, and then growing colloidal particles using organic alkali and concentrating the silica by ultrafiltration. There is a description of colloidal silica having an alkali metal content of 50 ppm or less and a Cu or Zn content per silica of 100 ppb or 1000 ppb, respectively.

特開2003−89786号公報記載の発明ではキレート型イオン交換樹脂及びキレート剤を金属イオンの捕捉剤として使用しているが、珪酸アルカリ水溶液から活性珪酸水溶液を調製するために、先ず強酸性型イオン交換樹脂に接触させ珪酸アルカリ中のアルカリ金属を除去し、その後にキレート樹脂と接触させることにより多価金属イオンを除去させねばならず、多段階のイオン交換となり製造効率が悪かった。また、キレート型イオン交換樹脂は3価のイオンに対する選択性が強く完全には再生し難く、再生する場合も多量の再生剤を必要とするという問題点があった。
さらに、キレート剤を添加して金属イオンを捕捉する場合は、残存するキレート剤及び金属イオンを捕捉したキレート剤を除去するために、限外濾過膜で繰り返し洗浄する必要があり、生産効率が悪いという問題点がある上に、繰り返し洗浄を行っても完全にはキレート剤を除去できず、残存したキレート剤が研磨特性に影響を及ぼす可能性があった。
In the invention described in Japanese Patent Application Laid-Open No. 2003-89786, a chelate ion exchange resin and a chelating agent are used as metal ion scavengers. In order to prepare an active silicic acid aqueous solution from an alkali silicate aqueous solution, first, a strongly acidic ion is used. The polyvalent metal ions had to be removed by contacting with the exchange resin to remove the alkali metal in the alkali silicate and then contacting with the chelate resin, resulting in multistage ion exchange and poor production efficiency. In addition, the chelate ion exchange resin has a strong selectivity to trivalent ions and is difficult to completely regenerate, and there is a problem that a large amount of a regenerant is required for regeneration.
Furthermore, when a metal ion is captured by adding a chelating agent, it is necessary to repeatedly wash with an ultrafiltration membrane in order to remove the remaining chelating agent and the chelating agent that has captured the metal ion, resulting in poor production efficiency. In addition, the chelating agent could not be removed completely even after repeated cleaning, and the remaining chelating agent could affect the polishing characteristics.

特開平6−316407号公報JP-A-6-316407 特開2001−2411号公報JP 2001-2411 A 特開昭61−158810号公報JP 61-158810 A 特開平5−85718号公報Japanese Patent Laid-Open No. 5-85718 特開平6−16414号公報JP-A-6-16414 特開2003−89786号公報JP 2003-89786 A

本発明は上記問題点に鑑みてなされたものであり、アルカリ金属等の不純物が極めて少なく、また、安定性にも優れた水性シリカゾルの製造方法を提供するものである。   The present invention has been made in view of the above problems, and provides a method for producing an aqueous silica sol that is extremely low in impurities such as alkali metals and is excellent in stability.

本発明は次の工程(1)と工程(2)を含んでなる高純度水性シリカゾルの製造方法に関するものである。
(1)珪酸アルカリを原料として調製された水性シリカゾルに酸を加えることにより、そのpHを0〜3.0の範囲に調整し、40〜300℃で加熱する工程。
(2)前記加熱後の水性シリカゾルに、強塩基性陰イオン交換体を接触させ、更に強酸性陽イオン交換体を接触させる工程。
本発明製造方法の工程(1)の水性シリカゾルは、珪酸アルカリを原料として調製されたものであれば限定されるものではないが、次の(A)および(B)の工程を含む製造方法により調製された水性シリカゾルを使用した前記高純度水性シリカゾルの製造方法が好適である。
(A)固形分濃度1〜10重量%の珪酸アルカリ水溶液に強酸性陽イオン交換体を接触させ、酸性珪酸液を得る工程。
(B)該酸性珪酸液の一部にアルカリを添加し20〜98℃に加熱した後、該酸性珪酸液の残りを徐々に加えて、水性シリカゾルを得る工程。
また、前記製造方法においては、前記珪酸アルカリが珪酸ナトリウム、珪酸カリウム、珪酸リチウムまたは第4級アンモニウムシリケートのいずれかである高純度水性シリカゾルの製造方法が好適である。
また、前記製造方法においては、前記酸が塩酸、硫酸、硝酸、スルファミン酸または蟻酸のいずれかである高純度水性シリカゾルの製造方法が好適である。
The present invention relates to a method for producing a high purity aqueous silica sol comprising the following steps (1) and (2).
(1) The process which adjusts the pH to the range of 0-3.0 by adding an acid to the aqueous silica sol prepared using alkali silicate as a raw material, and heats at 40-300 degreeC.
(2) A step of bringing a strongly basic anion exchanger into contact with the heated aqueous silica sol, and further bringing into contact with a strongly acidic cation exchanger.
The aqueous silica sol in step (1) of the production method of the present invention is not limited as long as it is prepared using alkali silicate as a raw material, but by the production method including the following steps (A) and (B): The method for producing the high purity aqueous silica sol using the prepared aqueous silica sol is preferred.
(A) A step of bringing a strongly acidic cation exchanger into contact with an aqueous alkali silicate solution having a solid content concentration of 1 to 10% by weight to obtain an acidic silicate solution.
(B) A step of adding an alkali to a part of the acidic silicic acid solution and heating to 20 to 98 ° C., and then gradually adding the remainder of the acidic silicic acid solution to obtain an aqueous silica sol.
Moreover, in the said manufacturing method, the manufacturing method of the highly purified aqueous silica sol whose said silicate alkali is any of sodium silicate, potassium silicate, lithium silicate, or a quaternary ammonium silicate is suitable.
Moreover, in the said manufacturing method, the manufacturing method of the high purity aqueous silica sol whose said acid is either hydrochloric acid, a sulfuric acid, nitric acid, sulfamic acid, or formic acid is suitable.

本発明の高純度水性シリカゾル製造方法により、一旦生成させたシリカゾルから効率的にアルカリ金属等を除去することができる。   By the high purity aqueous silica sol production method of the present invention, alkali metals and the like can be efficiently removed from the silica sol once produced.

本発明は、珪酸アルカリを原料として調製された水性シリカゾルに酸を加え、pHを0〜3.0の範囲に調整し、40〜300℃で加熱した後、強塩基性陰イオン交換体を接触させ、更に強酸性陽イオン交換体と接触させてなる高純度水性シリカゾルの製造方法に関するものである。以下、工程順に説明する。
工程(1)
本発明において、使用する水性シリカゾルは、珪酸アルカリを原料として調製されたものであれば格別限定されるものではない。水性シリカゾルの原料となる珪酸アルカリの種類としては、珪酸ナトリウム、珪酸カリウム、珪酸リチウム、第4級アンモニウムシリケートなどが何れも使用可能であり、好適には1号水ガラス、2号水ガラス、3号水ガラス等の名称で市販されている珪酸ナトリウムが選ばれる。
In the present invention, an acid is added to an aqueous silica sol prepared using alkali silicate as a raw material, the pH is adjusted to a range of 0 to 3.0, heated at 40 to 300 ° C., and then contacted with a strongly basic anion exchanger. And a method for producing a high-purity aqueous silica sol which is further brought into contact with a strongly acidic cation exchanger. Hereinafter, it demonstrates in order of a process.
Process (1)
In the present invention, the aqueous silica sol to be used is not particularly limited as long as it is prepared using alkali silicate as a raw material. As a kind of the alkali silicate used as the raw material of the aqueous silica sol, any of sodium silicate, potassium silicate, lithium silicate, quaternary ammonium silicate, etc. can be used, preferably No. 1 water glass, No. 2 water glass, 3 Sodium silicate marketed under the name of No. Water Glass is selected.

珪酸アルカリの製造方法は、格別に限定されるものではなく、公知の製造方法を適用できる。このような製造方法として、例えば、特開平9−110416号公報に開示されるような珪酸アルカリガラスカレットを珪酸カルシウムアルカリよりなる種結晶の存在下に水に溶解して珪酸アルカリ水溶液を得た後、該珪酸アルカリ水溶液を濾過してなる珪酸アルカリ水溶液の製造方法、特開平6−171924号公報に開示されるような軟質珪石に水酸化アルカリ(AOH;A:アルカリ金属)水溶液を加えて、該珪石中のケイ酸分を溶解させることでA2O・nSiO2の組成を有するケイ酸アルカリ水溶液を製造するに際し、水溶液中に過酸化水素を添加して軟質珪石に由来する還元物質を酸化させることを特徴とするケイ酸アルカリ水溶液の製造方法などが挙げられる。 The manufacturing method of an alkali silicate is not specifically limited, A well-known manufacturing method is applicable. As such a production method, for example, an alkali silicate aqueous solution is obtained by dissolving an alkali silicate glass cullet as disclosed in JP-A-9-110416 in water in the presence of a seed crystal composed of calcium silicate alkali. A method for producing an alkali silicate aqueous solution obtained by filtering the alkali silicate aqueous solution, adding an alkali hydroxide (AOH; A: alkali metal) aqueous solution to soft silica as disclosed in JP-A-6-171924, In producing an alkali silicate aqueous solution having a composition of A 2 O · nSiO 2 by dissolving the silicic acid content in the silica, hydrogen peroxide is added to the aqueous solution to oxidize the reducing substance derived from the soft silica. And a method for producing an alkali silicate aqueous solution characterized by the above.

本発明の製造方法によって得られる高純度水性シリカゾルの純度を高める目的で、原料の珪酸アルカリを精製しても構わない。このような精製方法の例としては、特開2001−294420号公報に開示されているような珪酸アルカリ水溶液の粘度を予め1〜50mPa・sに調節し、これを分画分子量15000以下の限外濾過膜を通過させることにより、シリカ当たりのCuの含有率が200ppb以下であり、かつ1nm以上の大きさの粒子が実質的に存在しない珪酸アルカリ水溶液を得る精製方法などが挙げられる。   In order to increase the purity of the high-purity aqueous silica sol obtained by the production method of the present invention, the raw material alkali silicate may be purified. As an example of such a purification method, the viscosity of an alkali silicate aqueous solution as disclosed in JP-A No. 2001-294420 is adjusted to 1 to 50 mPa · s in advance, and this is the limit molecular weight of 15000 or less. Examples of the purification method include obtaining an alkali silicate aqueous solution having a Cu content per silica of 200 ppb or less and substantially free of particles having a size of 1 nm or more by passing through a filtration membrane.

本発明の製造方法においては、最初に前記水性シリカゾルに酸を加える。水性シリカゾルについては、通常は、限外濾過膜等を使用して、シリカ濃度を30重量%以下、好適には25重量%以下としたものを使用する。30重量%を超える場合にはシリカゾルの増粘やゲル化を生じる場合がある。シリカ濃度が著しく希薄な場合は、製造効率が低下する。酸の種類については、シリカ微粒子から陽イオンを溶出させる効果を考慮すると所謂強酸が用いられる。具体的には無機酸または有機酸が挙げられ、通常は、塩酸、硫酸、硝酸、スルファミン酸、蟻酸等が選ばれる。なお、酸を水性シリカゾルに添加する際には、通常、酸の濃度が1〜20%の水溶液にして添加する。   In the production method of the present invention, an acid is first added to the aqueous silica sol. As for the aqueous silica sol, usually, an ultrafiltration membrane or the like is used and the silica concentration is 30% by weight or less, preferably 25% by weight or less. If it exceeds 30% by weight, the silica sol may be thickened or gelled. When the silica concentration is extremely dilute, the production efficiency decreases. Regarding the type of acid, so-called strong acid is used in consideration of the effect of eluting cations from silica fine particles. Specific examples include inorganic acids or organic acids, and hydrochloric acid, sulfuric acid, nitric acid, sulfamic acid, formic acid and the like are usually selected. When the acid is added to the aqueous silica sol, it is usually added as an aqueous solution having an acid concentration of 1 to 20%.

酸の添加量については、水性シリカゾルのpHが0〜3.0の範囲になるように添加される。この範囲を外れた場合、シリカ微粒子から陽イオンを溶出させる効果が不十分となる。酸の添加により水性シリカゾルのpHが0〜3.0の範囲になった後に、40℃〜300℃で30分から2時間の加熱を行う。加熱温度がこの範囲を下回ると、シリカ微粒子からの陽イオン溶出効果が不十分になる。また、加熱温度がこの範囲を上回る場合も高純度水性シリカゾルの生産効率が低下する。   The acid is added so that the pH of the aqueous silica sol is in the range of 0 to 3.0. If it is out of this range, the effect of eluting cations from the silica fine particles will be insufficient. After the pH of the aqueous silica sol is in the range of 0 to 3.0 due to the addition of the acid, heating is performed at 40 to 300 ° C. for 30 minutes to 2 hours. When the heating temperature is below this range, the cation elution effect from the silica fine particles becomes insufficient. Moreover, also when heating temperature exceeds this range, the production efficiency of high purity aqueous silica sol falls.

工程(2)
加熱が終了した水性シリカゾルに、強塩基性陰イオン交換体を接触させ、更に強酸性陽イオン交換体を接触させて、溶出した不純物イオンを除去する。接触方法としては、例えば、陰イオン交換体または陽イオン交換体が充填されたカラム中に水性シリカゾルを通液させることにより行うことができ、水性シリカゾルについては、強塩基性陰イオン交換体および強酸性陽イオン交換体に接触させる前に純水を加えて固形分濃度を調整しても構わない。
Process (2)
The aqueous silica sol that has been heated is brought into contact with a strongly basic anion exchanger and further brought into contact with a strongly acidic cation exchanger to remove the eluted impurity ions. As the contact method, for example, an aqueous silica sol can be passed through a column packed with an anion exchanger or a cation exchanger. For the aqueous silica sol, a strongly basic anion exchanger and a strong acid can be used. Before contacting with the cationic cation exchanger, pure water may be added to adjust the solid content concentration.

前記強塩基性陰イオン交換体としては公知のものが使用でき、水酸基型強塩基性陰イオン交換樹脂、Cl型陰イオン交換樹脂などが挙げられる。
前記陰イオン交換体が充填されたカラムを通過した液は、通常、SiO2濃度0.5〜15重量%、好ましくは3〜10重量%で、pH8〜11のシリカゾルとして回収される。使用される強塩基性陰イオン交換体の量は、水性シリカゾルのpHを8〜11とするのに充分な量とすればよく、カラムを通過させる速度は1時間当たり1〜30程度の空間速度が好ましい。
As the strong basic anion exchanger, known ones can be used, and examples thereof include a hydroxyl group strong basic anion exchange resin and a Cl type anion exchange resin.
The liquid that has passed through the column filled with the anion exchanger is usually recovered as silica sol having a SiO 2 concentration of 0.5 to 15% by weight, preferably 3 to 10% by weight, and pH 8 to 11. The amount of the strongly basic anion exchanger to be used may be an amount sufficient to adjust the pH of the aqueous silica sol to 8 to 11, and the speed of passing through the column is a space velocity of about 1 to 30 per hour. Is preferred.

前記強酸性陽イオン交換体も公知のものが使用され、例えば、水素型強酸性陽イオン交換樹脂、ジビニルベンゼンで架橋したスチレン系スルホン酸樹脂、ホルムアルデヒドで架橋したフェノールスルホン酸樹脂等が挙げられる。また、マクロポーラス型の樹脂を使用することも可能である。
前記陽イオン交換体が充填されたカラムを通過した液は、通常、SiO2濃度0.5〜15重量%、好ましくは3〜10重量%で、pH4〜9のシリカゾルとして回収される。使用される強酸性陽イオン交換体の量は、水性シリカゾルのpHを4〜9とするのに充分な量とすれば良く、カラムを通過させる速度は1時間当り1〜30程度の空間速度が好ましい。
As the strong acid cation exchanger, known ones are used, and examples thereof include a hydrogen type strong acid cation exchange resin, a styrene sulfonic acid resin crosslinked with divinylbenzene, and a phenol sulfonic acid resin crosslinked with formaldehyde. It is also possible to use a macroporous resin.
The liquid that has passed through the column filled with the cation exchanger is usually recovered as silica sol having a SiO 2 concentration of 0.5 to 15% by weight, preferably 3 to 10% by weight, and pH 4 to 9. The amount of the strongly acidic cation exchanger to be used may be an amount sufficient to adjust the pH of the aqueous silica sol to 4 to 9, and the space velocity is about 1 to 30 per hour. preferable.

本発明の製造方法で使用される水性シリカゾルは、前記の通り珪酸アルカリを原料として調製されるものであれば、格別限定されるものではない。好ましい製造方法としては、珪酸アルカリ水溶液を希釈して固形分濃度を1〜10重量%としたものに、強酸性陽イオン交換体を接触させて酸性珪酸液を調製し、該酸性珪酸液の一部、通常0.1〜90重量%にアルカリを添加し、20℃〜98℃で10分から2時間加熱し、更に酸性珪酸液の残りを徐々に添加することにより水性シリカゾルを得る方法を挙げることができる。ここで、酸性珪酸液を調製するのは、例えば水硝子はSiO2/Na2O比が1〜3であって水酸化ナトリウムを多量に含んでおり、シリカがナトリウムによって溶解された状態にあるので、ナトリウムを除去して重合を進めるために酸性珪酸液を経由させるためである。 The aqueous silica sol used in the production method of the present invention is not particularly limited as long as it is prepared using alkali silicate as a raw material as described above. As a preferable production method, an acidic silicic acid solution is prepared by bringing a strong acidic cation exchanger into contact with a solution having a solid content concentration of 1 to 10% by weight by diluting an aqueous alkali silicate solution. To give an aqueous silica sol by adding alkali to a part, usually 0.1 to 90% by weight, heating at 20 ° C. to 98 ° C. for 10 minutes to 2 hours, and gradually adding the remainder of the acidic silicic acid solution. Can do. Here, the acidic silicic acid solution is prepared, for example, when water glass has a SiO 2 / Na 2 O ratio of 1 to 3 and contains a large amount of sodium hydroxide, and the silica is in a state dissolved by sodium. This is because the acidic silicic acid solution is passed through in order to remove sodium and proceed the polymerization.

また、この他の水性シリカゾルの製造方法としては、例えば、アルカリ金属水酸化物水溶液および/または有機塩基水溶液に有機ケイ素化合物を加えてアルカリ金属珪酸塩水溶液および/または有機塩基珪酸水溶液を得、該アルカリ金属珪酸塩水溶液および/または有機塩基珪酸水溶液からアルカリ金属カチオンおよび/または有機カチオンを除去して酸性珪酸液を調製し、該珪酸液を塩基性の水性溶媒または塩基性の核粒子分散液に加えて珪酸を重合させてなる製造方法(特開2003−128413号公報に記載)、珪酸アルカリ水溶液を限外濾過して、該溶液中に存在するコロイド状粒子を除去し、次いで、珪酸アルカリ水溶液をイオン交換樹脂で処理して精製されたシリカゾルを得る方法(特開昭60−42218号公報に記載)、珪酸アルカリ水溶液に電解質の存在下、珪酸アルカリ水溶液を添加して核粒子を成長させ、シリカゾルを製造する方法、および珪酸アルカリ水溶液(固形分濃度1〜10重量%)に強酸性陽イオン交換体を接触させ、酸性珪酸液を得て、次に該酸性珪酸液の一部にアルカリを添加し20〜98℃で加熱し、更に、該酸性珪酸液の残りを徐々に加えて、水性シリカゾルを得る方法(特開2003−26417号公報に記載)、陽極と陰極の間に、耐アルカリ性の陰イオン交換膜を有するバイポーラ膜と陽イオン交換膜を交互に並べて構成される電気透析槽を用い、該バイポーラ膜と陽イオン交換膜で構成される室(バイポーラ膜の陰極側室、酸室)にケイ酸アルカリ を、陽イオン交換膜と該バイポーラ膜で構成される室(バイポーラ膜の陽極側室、アルカリ室)に苛性アルカリ水溶液を、各々供給し、電気透析を行うことを特徴とするシリカゾル の製造方法(特開平7−803号公報に記載)などを挙げることができる。   In addition, as another method for producing an aqueous silica sol, for example, an organic silicon compound is added to an alkali metal hydroxide aqueous solution and / or an organic base aqueous solution to obtain an alkali metal silicate aqueous solution and / or an organic base silicic acid aqueous solution. An acidic silicate solution is prepared by removing an alkali metal cation and / or an organic cation from an alkali metal silicate aqueous solution and / or an organic base silicate aqueous solution, and the silicate solution is converted into a basic aqueous solvent or a basic core particle dispersion. In addition, a method for producing silicic acid by polymerization (described in JP-A-2003-128413), ultrafiltration of an aqueous alkali silicate solution to remove colloidal particles present in the solution, and then an aqueous alkali silicate solution A method for obtaining a purified silica sol by treating a silicate with an ion exchange resin (described in JP-A-60-42218), In the presence of an electrolyte in an aqueous solution of Lucali, an aqueous solution of alkali silicate is added to grow core particles to produce silica sol, and a strongly acidic cation exchanger is brought into contact with an aqueous solution of alkali silicate (solid concentration 1 to 10% by weight) A method of obtaining an aqueous silica sol by obtaining an acidic silicic acid solution, then adding an alkali to a part of the acidic silicic acid solution, heating at 20 to 98 ° C., and gradually adding the remainder of the acidic silicic acid solution. (Described in Japanese Patent Application Laid-Open No. 2003-26417), using an electrodialysis tank in which a bipolar membrane having an alkali-resistant anion exchange membrane and a cation exchange membrane are alternately arranged between an anode and a cathode. A chamber composed of a membrane and a cation exchange membrane (cathode side chamber of bipolar membrane, acid chamber) and alkali silicate, and a chamber composed of a cation exchange membrane and the bipolar membrane (anode side chamber of bipolar membrane, The aqueous caustic to re chamber), and supplies each according to production method (JP-A-7-803 silica sol which is characterized in that the electrodialysis) and the like.

本発明の製造方法によって得られる水性シリカゾルは、減圧蒸留、限外濾過法などの公知の方法により、分散媒としての水を有機溶媒に置換してオルガノゾルとすることも可能である。このような有機溶媒としては、アルコール類、グリコール類、エステル類、ケトン類、窒素化合物類、芳香族類などの溶媒を使用することができ、具体的には、メタノール、エタノール、プロパノール、エチレングリコール、プロピレングリコール、グリセリン、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、アセトン、メチルエチルケトン、ジメチルホルムアミド、N−メチル−2−ピロリドン、などの有機溶媒を例示することができる。また、ポリエチレングリコール、シリコーンオイルなどの高分子化合物を分散媒として用いることもできる。   The aqueous silica sol obtained by the production method of the present invention can be made into an organosol by substituting water as a dispersion medium with an organic solvent by a known method such as vacuum distillation or ultrafiltration. As such an organic solvent, solvents such as alcohols, glycols, esters, ketones, nitrogen compounds, and aromatics can be used. Specifically, methanol, ethanol, propanol, ethylene glycol, and the like can be used. And organic solvents such as propylene glycol, glycerin, ethylene glycol monomethyl ether, propylene glycol monomethyl ether, acetone, methyl ethyl ketone, dimethylformamide, and N-methyl-2-pyrrolidone. Further, a polymer compound such as polyethylene glycol and silicone oil can be used as a dispersion medium.

また、コロイド粒子の表面を公知の方法により表面処理することにより、キシレン、トルエン、ジメチルエタンなどの低極性有機溶媒を分散媒とするゾルとすることもできる。このような表面処理剤としては、例えば、エトラエトキシシラン、トリイソプロポキシアルミニウムなどのアルコキシド化合物、シランカップリング剤、チタンカップリング剤、低分子または高分子界面活性剤、高級脂肪酸の金属塩、または、ナフテン酸の金属塩などの金属石鹸などが挙げられる。
更に、コロイド粒子の表面をシリカ、アルミナなどの無機化合物を用いて修飾することにより分散性、耐光性等に優れたゾルとすることも可能であり、このような処理方法としては公知の方法を採用することができる。また、本願出願人による特開平7−315832号公報に記載された方法、即ち、結晶性アルミナ微粒子が水に分散したアルカリ性アルミナゾルに重合性珪素化合物を添加して熟成する方法などを適用することができる。
Further, the surface of the colloidal particles can be surface-treated by a known method to obtain a sol using a low polar organic solvent such as xylene, toluene, dimethylethane or the like as a dispersion medium. Examples of such surface treatment agents include alkoxide compounds such as etraethoxysilane and triisopropoxyaluminum, silane coupling agents, titanium coupling agents, low molecular or high molecular surfactants, higher fatty acid metal salts, or And metal soaps such as metal salts of naphthenic acid.
Furthermore, the surface of the colloidal particles can be modified with an inorganic compound such as silica or alumina to obtain a sol having excellent dispersibility, light resistance, and the like. Can be adopted. Further, the method described in Japanese Patent Application Laid-Open No. 7-315832 by the applicant of the present application, that is, a method of aging by adding a polymerizable silicon compound to an alkaline alumina sol in which crystalline alumina fine particles are dispersed in water, etc. can be applied. it can.

珪酸ナトリウム水溶液(2号水ガラス、固形分7重量%)7,000gを限外モジュール(旭化成株式会社製、SIP−1013)に通液し濾水を回収して精製水ガラスを得た。得られた精製水ガラスに純水を添加し5%濃度に調整した。この希釈水ガラス6,500gを、2.2Lの強酸性陽イオン交換樹脂(三菱化学株式会社製、SK1BH)に空間速度3.1h-1で通液させ、酸性珪酸液6,650gを得た。得られた酸性珪酸液の固形分濃度は3.1%だった。この酸性珪酸液を純水で希釈して、固形分濃度3.0%に調製した。
上記3%濃度の酸性珪酸液221.3gに純水219.6gを混合した後、28%濃度のアンモニア水(関東化学株式会社製)158gを添加した。
この混合液を83℃で30分間加熱し、引き続き固形分濃度3%の酸性珪酸液5911gを18時間かけて添加した。添加終了後、加熱を1時間継続した。得られたゾル中のシリカ微粒子の平均粒子径は26nmであった。
7,000 g of an aqueous solution of sodium silicate (No. 2 water glass, solid content 7% by weight) was passed through an ultra module (SIP-1013, manufactured by Asahi Kasei Co., Ltd.), and the filtrate was collected to obtain purified water glass. Pure water was added to the resulting purified water glass to adjust the concentration to 5%. 6,500 g of this diluted water glass was passed through 2.2 L of strong acidic cation exchange resin (manufactured by Mitsubishi Chemical Corporation, SK1BH) at a space velocity of 3.1 h −1 to obtain 6,650 g of acidic silicic acid solution. . The solid content concentration of the obtained acidic silicic acid solution was 3.1%. This acidic silicic acid solution was diluted with pure water to prepare a solid content concentration of 3.0%.
After mixing 219.6 g of pure water with 221.3 g of the 3% concentration acidic silicic acid solution, 158 g of 28% concentration ammonia water (manufactured by Kanto Chemical Co., Inc.) was added.
This mixed solution was heated at 83 ° C. for 30 minutes, and then 5911 g of an acidic silicic acid solution having a solid content concentration of 3% was added over 18 hours. After the addition was completed, heating was continued for 1 hour. The average particle diameter of the silica fine particles in the obtained sol was 26 nm.

得られたゾルを限外濾過膜でシリカ濃度が21%になるまで濃縮し、この濃縮したゾルに10%濃度の塩酸を攪拌しながら添加してpH=1.0に調整した。次いで、90℃で1時間加熱した後、純水を添加して固形分濃度5%に調整した。
上記ゾルを、500mlの強塩基性陰イオン交換樹脂(三菱化学株式会社製、SANUPC)に空間速度6.0h-1で通液し、陰イオンを除去した。シリカゾルの濃度は4.5重量%、pHは10.0だった。続いて、300mlの強酸性陽イオン交換樹脂(三菱化学株式会社製、SK1BH)に空間速度12h-1で通液させ、陽イオンを除去した。このときのシリカゾルの濃度は4.2重量%、pHは4.3だった。イオン交換したゾルをロータリーエバポレーターで20%濃度まで濃縮した。
得られたシリカ粒子の平均粒子径は26nm、不純物についてはナトリウム、カリウム、マグネシウム、カルシウム、鉄、塩素、ニッケル、銅はいずれも1ppm以下であり、アルミニウムは43ppm、チタンは21ppmであった。
The obtained sol was concentrated with an ultrafiltration membrane until the silica concentration became 21%, and 10% hydrochloric acid was added to the concentrated sol with stirring to adjust the pH to 1.0. Subsequently, after heating at 90 ° C. for 1 hour, pure water was added to adjust the solid content concentration to 5%.
The sol was passed through 500 ml of strongly basic anion exchange resin (SANUPC, manufactured by Mitsubishi Chemical Corporation) at a space velocity of 6.0 h −1 to remove anions. The silica sol concentration was 4.5% by weight and the pH was 10.0. Subsequently, 300 ml of a strongly acidic cation exchange resin (manufactured by Mitsubishi Chemical Corporation, SK1BH) was passed through at a space velocity of 12 h −1 to remove cations. At this time, the concentration of silica sol was 4.2% by weight and the pH was 4.3. The ion-exchanged sol was concentrated to 20% concentration with a rotary evaporator.
The obtained silica particles had an average particle size of 26 nm, and the impurities were sodium, potassium, magnesium, calcium, iron, chlorine, nickel, and copper, each of 1 ppm or less, aluminum 43 ppm, and titanium 21 ppm.

珪酸ナトリウム水溶液(3号水ガラス、固形分7重量%)7,000gを限外モジュール(旭化成株式会社製、SIP−1013)に通液し濾水を回収して精製水ガラスを得た。得られた精製水ガラスに純水を添加し5%濃度に調整した。この希釈水ガラス6,500gを、2.2Lの強酸性陽イオン交換樹脂(三菱化学株式会社製、SK1BH)に空間速度3.1h-1で通液させ、酸性珪酸液6,650gを得た。得られた酸性珪酸液の固形分濃度は3.6%だった。この酸性珪酸液を純水で希釈して、固形分濃度3.0%に調製した。
上記3%濃度の酸性珪酸液221.3gに純水219.6gを混合した後、28%濃度のアンモニア水(関東化学株式会社製)158gを添加した。
この混合液を83℃で30分間加熱し、引き続き固形分濃度3%の酸性珪酸液5,911gを18時間かけて添加した。添加終了後、加熱を1時間継続した。得られたゾル中のシリカ微粒子の平均粒子径は27nmであった。
7,000 g of an aqueous solution of sodium silicate (No. 3 water glass, solid content: 7% by weight) was passed through an ultra module (SIP-1013, manufactured by Asahi Kasei Co., Ltd.), and the filtrate was collected to obtain purified water glass. Pure water was added to the resulting purified water glass to adjust the concentration to 5%. 6,500 g of this diluted water glass was passed through 2.2 L of strong acidic cation exchange resin (manufactured by Mitsubishi Chemical Corporation, SK1BH) at a space velocity of 3.1 h −1 to obtain 6,650 g of acidic silicic acid solution. . The solid content concentration of the obtained acidic silicic acid solution was 3.6%. This acidic silicic acid solution was diluted with pure water to prepare a solid content concentration of 3.0%.
After mixing 219.6 g of pure water with 221.3 g of the 3% concentration acidic silicic acid solution, 158 g of 28% concentration ammonia water (manufactured by Kanto Chemical Co., Inc.) was added.
This mixed solution was heated at 83 ° C. for 30 minutes, and then 5,911 g of an acidic silicic acid solution having a solid content concentration of 3% was added over 18 hours. After the addition was completed, heating was continued for 1 hour. The average particle diameter of the silica fine particles in the obtained sol was 27 nm.

得られたゾルを限外濾過膜でシリカ濃度が21%になるまで濃縮し、この濃縮したゾルに10%濃度の塩酸を攪拌しながら添加してpH=1.0に調整した。次いで、90℃で1時間加熱した後、純水を添加して固形分濃度5%に調整した。
上記ゾルを、500mlの強塩基性陰イオン交換樹脂(三菱化学株式会社製、SANUPC)に空間速度6.0h-1で通液し、陰イオンを除去した。シリカゾルの濃度は4.6重量%、pHは10.0だった。続いて、300mlの強酸性陽イオン交換樹脂(三菱化学株式会社製、SK1BH)に空間速度12h-1で通液させ、陽イオンを除去した。このときのシリカゾルの濃度は4.3重量%、pHは5.1だった。イオン交換したゾルをロータリーエバポレーターで20%濃度まで濃縮した。
得られたシリカ粒子の平均粒子径は27nm、不純物についてはナトリウム、カリウム、マグネシウム、カルシウム、塩素、ニッケル、銅はいずれも1ppm以下であり、アルミニウムは28ppm、鉄は2ppm、チタンは17ppm存在した。
The obtained sol was concentrated with an ultrafiltration membrane until the silica concentration became 21%, and 10% hydrochloric acid was added to the concentrated sol with stirring to adjust the pH to 1.0. Subsequently, after heating at 90 ° C. for 1 hour, pure water was added to adjust the solid content concentration to 5%.
The sol was passed through 500 ml of strongly basic anion exchange resin (SANUPC, manufactured by Mitsubishi Chemical Corporation) at a space velocity of 6.0 h −1 to remove anions. The silica sol concentration was 4.6% by weight and the pH was 10.0. Subsequently, 300 ml of a strongly acidic cation exchange resin (manufactured by Mitsubishi Chemical Corporation, SK1BH) was passed through at a space velocity of 12 h −1 to remove cations. At this time, the concentration of the silica sol was 4.3% by weight, and the pH was 5.1. The ion-exchanged sol was concentrated to 20% concentration with a rotary evaporator.
The obtained silica particles had an average particle size of 27 nm, and impurities were sodium, potassium, magnesium, calcium, chlorine, nickel, and copper, all of which were 1 ppm or less, aluminum was 28 ppm, iron was 2 ppm, and titanium was 17 ppm.

珪酸ナトリウム水溶液(1号水ガラス、固形分10重量%)7,000gを限外モジュール(旭化成株式会社製、SIP−1013)に通液し濾水を回収して精製水ガラスを得た。得られた精製水ガラスに純水を添加し8%濃度に調整した。この希釈水ガラス6,500gを、2.2Lの強酸性陽イオン交換樹脂(三菱化学株式会社製、SK1BH)に空間速度3.1h-1で通液させ、酸性珪酸液6,650gを得た。得られた酸性珪酸液の固形分濃度は3.1%だった。この酸性珪酸液を純水で希釈して、固形分濃度3.0%に調製した。
上記3%濃度の酸性珪酸液221.3gに純水219.6gを混合した後、28%濃度のアンモニア水(関東化学株式会社製)158gを添加した。
この混合液を83℃で30分間加熱し、引き続き固形分濃度3%の酸性珪酸液5,911gを18時間かけて添加した。添加終了後、加熱を1時間継続した。得られたゾル中のシリカ微粒子の平均粒子径は26nmであった。
7,000 g of an aqueous solution of sodium silicate (No. 1 water glass, solid content 10% by weight) was passed through an ultra module (SIP-1013, manufactured by Asahi Kasei Co., Ltd.) and the filtrate was collected to obtain purified water glass. Pure water was added to the resulting purified water glass to adjust the concentration to 8%. 6,500 g of this diluted water glass was passed through 2.2 L of strong acidic cation exchange resin (manufactured by Mitsubishi Chemical Corporation, SK1BH) at a space velocity of 3.1 h −1 to obtain 6,650 g of acidic silicic acid solution. . The solid content concentration of the obtained acidic silicic acid solution was 3.1%. This acidic silicic acid solution was diluted with pure water to prepare a solid content concentration of 3.0%.
After mixing 219.6 g of pure water with 221.3 g of the 3% concentration acidic silicic acid solution, 158 g of 28% concentration ammonia water (manufactured by Kanto Chemical Co., Inc.) was added.
This mixed solution was heated at 83 ° C. for 30 minutes, and then 5,911 g of an acidic silicic acid solution having a solid content concentration of 3% was added over 18 hours. After the addition was completed, heating was continued for 1 hour. The average particle diameter of the silica fine particles in the obtained sol was 26 nm.

得られたゾルを限外濾過膜でシリカ濃度が21%になるまで濃縮し、この濃縮したゾルに10%濃度の塩酸を攪拌しながら添加してpH=1.0に調整した。次いで、90℃で1時間加熱した後、純水を添加して固形分濃度5%に調整した。
上記ゾルを、500mlの強塩基性陰イオン交換樹脂(三菱化学株式会社製、SANUPC)に空間速度6.0h-1で通液し、陰イオンを除去した。シリカゾルの濃度は4.6重量%、pHは9.9だった。続いて、300mlの強酸性陽イオン交換樹脂(三菱化学株式会社製、SK1BH)に空間速度12h-1で通液させ、陽イオンを除去した。このときのシリカゾルの濃度は4.2重量%、pHは4.8だった。イオン交換したゾルをロータリーエバポレーターで20%濃度まで濃縮した。
得られたシリカ粒子の平均粒子径は26nm、不純物についてはナトリウム、カリウム、マグネシウム、カルシウム、鉄、塩素、ニッケル、銅はいずれも1ppm以下であり、アルミニウムは22ppm、チタンは15ppm存在した。
The obtained sol was concentrated with an ultrafiltration membrane until the silica concentration became 21%, and 10% hydrochloric acid was added to the concentrated sol with stirring to adjust the pH to 1.0. Subsequently, after heating at 90 ° C. for 1 hour, pure water was added to adjust the solid content concentration to 5%.
The sol was passed through 500 ml of strongly basic anion exchange resin (SANUPC, manufactured by Mitsubishi Chemical Corporation) at a space velocity of 6.0 h −1 to remove anions. The silica sol concentration was 4.6% by weight and the pH was 9.9. Subsequently, 300 ml of a strongly acidic cation exchange resin (manufactured by Mitsubishi Chemical Corporation, SK1BH) was passed through at a space velocity of 12 h −1 to remove cations. At this time, the concentration of silica sol was 4.2% by weight, and the pH was 4.8. The ion-exchanged sol was concentrated to 20% concentration with a rotary evaporator.
The obtained silica particles had an average particle size of 26 nm, and impurities were sodium, potassium, magnesium, calcium, iron, chlorine, nickel, and copper, each of 1 ppm or less, aluminum 22 ppm, and titanium 15 ppm.

比較例1Comparative Example 1

実施例1において、限外濾過膜でシリカ濃度21%に濃縮したゾルについて酸添加、加熱とその後のイオン交換をおこなわず、そのまま20%濃度に調整したものを分析した。得られたシリカ粒子の平均粒子径は26nmであり、不純物量はナトリウムが13ppm、カリウムが2ppm、鉄が3ppmで、マグネシウム、カルシウム、塩素、ニッケル、銅は何れも1ppm以下であり、アルミニウムは30ppm、チタンは20ppm存在した。
In Example 1, the sol concentrated to a silica concentration of 21% with an ultrafiltration membrane was analyzed and adjusted to a 20% concentration as it was without acid addition, heating and subsequent ion exchange. The obtained silica particles have an average particle size of 26 nm, the amount of impurities is 13 ppm for sodium, 2 ppm for potassium, 3 ppm for iron, magnesium, calcium, chlorine, nickel and copper are all 1 ppm or less, and aluminum is 30 ppm. Titanium was present at 20 ppm.

Claims (4)

次の工程(1)と工程(2)を含んでなる高純度水性シリカゾルの製造方法。
(1)珪酸アルカリを原料として調製された水性シリカゾルに酸を加えることにより、そのpHを0〜3.0の範囲に調整し、40〜300℃で加熱する工程
(2)前記加熱後の水性シリカゾルに、強塩基性陰イオン交換体を接触させ、更に強酸性陽イオン交換体を接触させる工程
A method for producing a high-purity aqueous silica sol comprising the following steps (1) and (2).
(1) A step of adjusting the pH to a range of 0 to 3.0 by adding an acid to an aqueous silica sol prepared using alkali silicate as a raw material, and heating at 40 to 300 ° C. (2) Aqueous after heating A step of bringing a strongly basic anion exchanger into contact with silica sol and then a strongly acidic cation exchanger.
工程(1)の水性シリカゾルが次の工程(A)と工程(B)を含む製造方法により調製されたものである請求項1記載の高純度水性シリカゾルの製造方法。
(A)固形分濃度1〜10重量%の珪酸アルカリ水溶液に強酸性陽イオン交換体を接触させ、酸性珪酸液を得る工程
(B)該酸性珪酸液の一部にアルカリを添加して20〜98℃に加熱した後、該酸性珪酸液の残りを徐々に加えて、水性シリカゾルを得る工程
The method for producing a high-purity aqueous silica sol according to claim 1, wherein the aqueous silica sol of step (1) is prepared by a production method comprising the following steps (A) and (B).
(A) A step of bringing a strongly acidic cation exchanger into contact with an aqueous silicic acid alkali solution having a solid content concentration of 1 to 10% by weight to obtain an acidic silicic acid solution (B) An alkali is added to a part of the acidic silicic acid solution and 20 to Step of obtaining an aqueous silica sol by gradually adding the remainder of the acidic silicic acid solution after heating to 98 ° C
前記珪酸アルカリが珪酸ナトリウム、珪酸カリウム、珪酸リチウムまたは第4級アンモニウムシリケートのいずれかである請求項1記載の高純度水性シリカゾルの製造方法。   The method for producing a high-purity aqueous silica sol according to claim 1, wherein the alkali silicate is any one of sodium silicate, potassium silicate, lithium silicate, or quaternary ammonium silicate. 前記酸が塩酸、硫酸、硝酸、スルファミン酸または蟻酸のいずれかである請求項1記載の高純度水性シリカゾルの製造方法。
The method for producing a high purity aqueous silica sol according to claim 1, wherein the acid is any one of hydrochloric acid, sulfuric acid, nitric acid, sulfamic acid, or formic acid.
JP2004221164A 2004-07-29 2004-07-29 Method for producing high purity aqueous silica sol Pending JP2006036605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004221164A JP2006036605A (en) 2004-07-29 2004-07-29 Method for producing high purity aqueous silica sol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004221164A JP2006036605A (en) 2004-07-29 2004-07-29 Method for producing high purity aqueous silica sol

Publications (1)

Publication Number Publication Date
JP2006036605A true JP2006036605A (en) 2006-02-09

Family

ID=35901992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004221164A Pending JP2006036605A (en) 2004-07-29 2004-07-29 Method for producing high purity aqueous silica sol

Country Status (1)

Country Link
JP (1) JP2006036605A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006213541A (en) * 2005-02-02 2006-08-17 Catalysts & Chem Ind Co Ltd Method for producing high purity aqueous silica sol
WO2008111383A1 (en) * 2007-03-13 2008-09-18 Fuso Chemical Co.Ltd. Aluminum-modified colloidal silica and method for producing the same
WO2013035742A1 (en) * 2011-09-05 2013-03-14 日産化学工業株式会社 Method for producing purified silicic acid alkali aqueous solution and silica sol
JP2013151409A (en) * 2011-12-28 2013-08-08 Jgc Catalysts & Chemicals Ltd High purity silica sol and method for producing the same
JP2015020919A (en) * 2013-07-17 2015-02-02 日揮触媒化成株式会社 High purity silica sol and method for producing the same
CN111186840A (en) * 2020-01-17 2020-05-22 山东百特新材料有限公司 Method for improving sphericity of silica sol particles
WO2020262406A1 (en) * 2019-06-24 2020-12-30 日産化学株式会社 Methods for producing chelating agent-containing water glass and silica sol

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63285112A (en) * 1987-05-15 1988-11-22 Nissan Chem Ind Ltd Production of high-purity silica sol of large particle size
JP2003128413A (en) * 2001-10-19 2003-05-08 Catalysts & Chem Ind Co Ltd Method for producing silica sol

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63285112A (en) * 1987-05-15 1988-11-22 Nissan Chem Ind Ltd Production of high-purity silica sol of large particle size
JP2003128413A (en) * 2001-10-19 2003-05-08 Catalysts & Chem Ind Co Ltd Method for producing silica sol

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4549878B2 (en) * 2005-02-02 2010-09-22 日揮触媒化成株式会社 Method for producing high-purity aqueous silica sol
JP2006213541A (en) * 2005-02-02 2006-08-17 Catalysts & Chem Ind Co Ltd Method for producing high purity aqueous silica sol
JP5221517B2 (en) * 2007-03-13 2013-06-26 扶桑化学工業株式会社 Aluminum modified colloidal silica and method for producing the same
WO2008111383A1 (en) * 2007-03-13 2008-09-18 Fuso Chemical Co.Ltd. Aluminum-modified colloidal silica and method for producing the same
JPWO2008111383A1 (en) * 2007-03-13 2010-06-24 扶桑化学工業株式会社 Aluminum modified colloidal silica and method for producing the same
JP2016183096A (en) * 2011-09-05 2016-10-20 日産化学工業株式会社 Method for producing purified alkali silicate aqueous solution and silica sol
JPWO2013035742A1 (en) * 2011-09-05 2015-03-23 日産化学工業株式会社 Process for producing purified alkali silicate aqueous solution and silica sol
WO2013035742A1 (en) * 2011-09-05 2013-03-14 日産化学工業株式会社 Method for producing purified silicic acid alkali aqueous solution and silica sol
JP2013151409A (en) * 2011-12-28 2013-08-08 Jgc Catalysts & Chemicals Ltd High purity silica sol and method for producing the same
US9598611B2 (en) 2011-12-28 2017-03-21 Jgc Catalysts And Chemicals Ltd. High purity silica sol and its production method
TWI681929B (en) * 2011-12-28 2020-01-11 日揮觸媒化成股份有限公司 High purity silica sol and its production method
JP2015020919A (en) * 2013-07-17 2015-02-02 日揮触媒化成株式会社 High purity silica sol and method for producing the same
WO2020262406A1 (en) * 2019-06-24 2020-12-30 日産化学株式会社 Methods for producing chelating agent-containing water glass and silica sol
CN114007981A (en) * 2019-06-24 2022-02-01 日产化学株式会社 Method for producing water glass and silica sol containing chelating agent
CN111186840A (en) * 2020-01-17 2020-05-22 山东百特新材料有限公司 Method for improving sphericity of silica sol particles

Similar Documents

Publication Publication Date Title
US8585791B2 (en) Method of producing nodular silica sol
EP1966410B1 (en) Ultrapure colloidal silica for use in chemical mechanical polishing applications
JP4712556B2 (en) Alkali-resistant vertical colloidal silica particles and method for producing the same
JP4643085B2 (en) Method for producing high-purity colloidal silica for abrasives
TWI520904B (en) Process for preparing aqueous colloidal silica sols of high purity from alkali metal silicate solutions
US20060283095A1 (en) Fumed silica to colloidal silica conversion process
JP4549878B2 (en) Method for producing high-purity aqueous silica sol
JP2003109921A (en) Abrasive silica particle-dispersed fluid, its manufacturing method, and abrasive material
JP2009510224A5 (en)
US20080170979A1 (en) Method for Making Alkali Resistant Ultra Pure Colloidal Silica
JP2005060219A (en) Silica sol and manufacturing method therefor
JP5398963B2 (en) Low sodium non-spherical colloidal silica
JP2001294417A (en) Method of producing colloidal silica
JP2002338951A (en) Hydrothermally treated colloidal silica for polishing agent
JP2006036605A (en) Method for producing high purity aqueous silica sol
JP2007145633A (en) Manufacturing method of anisotropic-shape silica sol
JP4954046B2 (en) Method for producing ammonium-containing silica-based sol
JP2006012969A (en) Silica sol for polish, and its manufacturing method
JP2010241642A (en) Colloidal silica
JP2001294420A (en) Purification method of alkali silicate solution
JP5377135B2 (en) Method for producing colloidal silica
JP2009184858A (en) Colloidal silica composed of silica particles with fixed hydrazine
JP5377134B2 (en) Method for producing colloidal silica
JP2010265140A (en) Colloidal silica, and method for producing the same
KR100613142B1 (en) Method for producing colloidal silica for chemical mechanical polishing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070601

A977 Report on retrieval

Effective date: 20091119

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A521 Written amendment

Effective date: 20101015

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A02 Decision of refusal

Effective date: 20111004

Free format text: JAPANESE INTERMEDIATE CODE: A02