JP2002338951A - Hydrothermally treated colloidal silica for polishing agent - Google Patents

Hydrothermally treated colloidal silica for polishing agent

Info

Publication number
JP2002338951A
JP2002338951A JP2001148975A JP2001148975A JP2002338951A JP 2002338951 A JP2002338951 A JP 2002338951A JP 2001148975 A JP2001148975 A JP 2001148975A JP 2001148975 A JP2001148975 A JP 2001148975A JP 2002338951 A JP2002338951 A JP 2002338951A
Authority
JP
Japan
Prior art keywords
colloidal silica
polishing
silica
silicic acid
hydrothermal treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001148975A
Other languages
Japanese (ja)
Inventor
Kuniaki Maejima
邦明 前島
Shinsuke Miyabe
慎介 宮部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP2001148975A priority Critical patent/JP2002338951A/en
Publication of JP2002338951A publication Critical patent/JP2002338951A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain colloidal silica which exhibits excellent polishing performances when used as a polishing agent for, e.g. semiconductor elements and can be produced at a low cost. SOLUTION: The colloidal silica is prepared by mixing monodisperse colloidal silica with active silicic acid in a weight ratio of 1:0.03 to 1:0.3 (in terms of the weight of SiO2 ) and hydrothermally treating the mixture under conditions of a pH at 8-11. A method for producing the same is also provided. The colloidal silica is the one whose surface has been changed by depositing the active silicic acid on the monodisperse silica particles under high-temperature high- pressure conditions and is excellent in polishing characteristics in polishing the surface of an electronic material such as a semicondcutor element.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、シリコンウエハ、
化合物半導体ウェハ、半導体デバイスウェハ、磁気ディ
スク基板、水晶基板等の電子材料の研磨加工時に用いら
れるコロイダルシリカに関する。
TECHNICAL FIELD The present invention relates to a silicon wafer,
The present invention relates to colloidal silica used when polishing electronic materials such as compound semiconductor wafers, semiconductor device wafers, magnetic disk substrates, and quartz substrates.

【0002】[0002]

【従来の技術】従来より市販の珪酸アルカリを原料とし
て製造されるコロイダルシリカはシリコンウエハの研磨
剤、ブラウン管製造における蛍光体の接着バインダー、
電池中の電解液のゲル化剤および揺変や飛散防止剤など
様々な用途に用いられてきた。一般に使用されているコ
ロイダルシリカは、100℃以下の常圧下イオン交換法
で製造されるもの、高圧下に120℃〜180℃の高温
の熱水で処理する水熱処理(以下「水熱処理」と記載)
の解膠法で製造されるもの、またイオン交換法に水熱処
理を組み込んだ方法で製造されるものがあるが、これら
はいずれもシリコンウエハ、化合物半導体ウェハ、半導
体デバイスウェハ、磁気ディスク基板、水晶基板等の電
子材料の研磨加工時に用いられるコロイダルシリカとし
て,研磨特性や製造コストの点で不十分なものであっ
た。
2. Description of the Related Art Colloidal silica conventionally manufactured using commercially available alkali silicate as a raw material is used as an abrasive for silicon wafers, an adhesive binder for a phosphor in the manufacture of cathode ray tubes,
It has been used for various purposes such as a gelling agent for electrolyte in a battery and a thixotropic or scattering inhibitor. Commonly used colloidal silica is produced by an ion exchange method under normal pressure of 100 ° C. or less, and is subjected to hydrothermal treatment of high-temperature hot water of 120 ° C. to 180 ° C. under high pressure (hereinafter referred to as “hydrothermal treatment”) )
Some are manufactured by the deflocculation method, and others are manufactured by a method that incorporates hydrothermal treatment into the ion exchange method. These are all silicon wafers, compound semiconductor wafers, semiconductor device wafers, magnetic disk substrates, and quartz crystals. As colloidal silica used in polishing of electronic materials such as substrates, it was insufficient in terms of polishing characteristics and manufacturing cost.

【0003】シリコンウエハ、化合物半導体ウェハ、半
導体デバイスウェハ、磁気ディスク基板、水晶基板等の
電子材料の研磨剤として使用されてきたコロイダルシリ
カは、研磨速度の高速化の要求に対応して、次第にシリ
カの粒径の大きいグレードが好まれるようになってき
た。しかし、シリカ粒子径の大きいものを製造するには
ビルドアップ工程に長時間を必要とし、製造コストが大
きくなる。一方、研磨費用の低減化も時流となってお
り、粒子径がさほど大きくなくても高速研磨の出来るコ
ロイダルシリカが求められている。一方、100℃以下
の常圧下でイオン交換法で製造されるコロイダルシリカ
の粒径を大きくするためには、粒子の表面に更にシリカ
を沈着させて粒子を成長させる、いわゆるビルドアップ
工程に長い時間が必要となり、製造コストの上昇をまね
くという問題がある。特開平6-199515号公報には、ビル
ドアップ法により所定の粒子径とした後、アルミニウム
成分の存在下に水熱処理をする方法を記載している。シ
リカ粒子上にアルミニウム成分によりアルミノシリケー
トサイトを生成させ、シリカ粒子の負電荷を強めコロイ
ドの安定化を行っているが、コロイド粒子表面にシリカ
以外の成分を増やすことは、電子材料の研磨特性上好ま
しい方法ではない。
[0003] Colloidal silica, which has been used as a polishing agent for electronic materials such as silicon wafers, compound semiconductor wafers, semiconductor device wafers, magnetic disk substrates, and quartz substrates, has been increasingly used in response to the demand for higher polishing rates. Grades having a large particle size have become preferred. However, in order to produce silica particles having a large diameter, a long time is required for the build-up process, and the production cost is increased. On the other hand, the reduction of polishing cost has become a trend, and there is a demand for colloidal silica capable of high-speed polishing even if the particle diameter is not so large. On the other hand, in order to increase the particle size of the colloidal silica produced by the ion exchange method under normal pressure of 100 ° C. or less, a so-called build-up process in which silica is further deposited on the surface of the particles to grow the particles, Is required, which leads to an increase in manufacturing cost. JP-A-6-199515 describes a method in which a predetermined particle size is obtained by a build-up method, and then a hydrothermal treatment is performed in the presence of an aluminum component. Aluminosilicate sites are generated on the silica particles by the aluminum component to enhance the negative charge of the silica particles and stabilize the colloid.However, increasing the components other than silica on the surface of the colloidal particles requires the polishing properties of electronic materials. This is not the preferred method.

【0004】解膠法では、ゲル状のシリカを水熱処理で
解膠してコロイド粒子を生成させているが、その製法に
起因してこの粒子は粒度分布が広く、粒子の形状も不均
一となる。また、原料の水ガラスに起因する不純物の量
が多く、研磨に用いた場合に研磨傷の発生や金属汚染が
あり、粗研磨用以外には使用できない。さらにゲル状粗
大粒子の混在が避けられず、これをサブミクロン域で分
離除去することは、非常に困難であることから、粗研磨
用以外には研磨剤用として使用することはできない。
In the peptization method, gelled silica is peptized by hydrothermal treatment to form colloidal particles. However, due to the production method, these particles have a wide particle size distribution and a nonuniform particle shape. Become. In addition, the amount of impurities caused by the raw water glass is large, and when used for polishing, polishing scratches occur and metal contamination occurs, so that it cannot be used except for rough polishing. Furthermore, it is unavoidable to mix gel-like coarse particles, and it is very difficult to separate and remove them in the submicron region. Therefore, they cannot be used for abrasives other than for coarse polishing.

【0005】また,シリカ粒子を大きくする方法とし
て、イオン交換法に水熱処理を組み込んだ製造法が米国
特許第2680721号公報や特公昭49-4636号公報に
開示されている。これらの方法では温度が高いほど粒子
径が大きくなると述べられているが、実際には250℃
(4000kPa)でも25nm程度までの大きさしか
得られていない。粒子径をより大きくするためさらに高
温とすることは装置が高価になり、量産品としてはコス
トが高くなり不適切になる。他の方法として、種ゾルに
活性珪酸を添加するビルドアップ法により粒子を大きく
した後、水熱処理をする方法が考えられるが、ビルドア
ップ法により作られた大きい粒子を水熱処理して得られ
たコロイダルシリカは、上述の従来の方法で得られたも
との比べても、その研磨特性において若干の性能向上が
認められる程度で、大きな改善効果は見られなかった。
Further, as a method for enlarging silica particles, a production method incorporating a hydrothermal treatment into an ion exchange method is disclosed in US Pat. No. 2,680,721 and Japanese Patent Publication No. 49-4636. In these methods, it is stated that the higher the temperature, the larger the particle size becomes.
(4000 kPa), only a size up to about 25 nm was obtained. If the temperature is further increased to increase the particle diameter, the apparatus becomes expensive, and the cost becomes high and the mass production becomes inappropriate. As another method, a method in which particles are made larger by a build-up method of adding active silicic acid to the seed sol and then subjected to hydrothermal treatment is considered, but the large particles produced by the build-up method are obtained by hydrothermal treatment. Colloidal silica showed only a slight improvement in polishing characteristics compared to the original obtained by the above-described conventional method, and did not show a significant improvement effect.

【0006】[0006]

【発明が解決しようとする課題】従って、本発明の目的
は、低コストで製造することができ、かつシリコンウエ
ハ、化合物半導体ウェハ、半導体デバイスウェハ、磁気
ディスク基板、水晶基板等の電子材料の研磨剤として優
れた研磨性能を有する、コロイダルシリカを提供するこ
とである。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a polishing method for polishing electronic materials such as silicon wafers, compound semiconductor wafers, semiconductor device wafers, magnetic disk substrates and quartz substrates which can be manufactured at low cost. An object of the present invention is to provide colloidal silica having excellent polishing performance as an agent.

【0007】[0007]

【課題を解決するための手段】このような目的を達成す
るために、本出願に係る発明者らが、鋭意研究した結
果、本発明を完成した。即ち、本発明は、単分散コロイ
ダルシリカと活性珪酸とをSiO2重量比で1:0.0
3〜1:0.3の割合で混合し、pH8〜11の条件で
水熱処理して得られる研磨剤用コロイダルシリカであ
る。また、本発明は、単分散コロイダルシリカと活性珪
酸とをSiO2重量比で1:0.03〜1:0.3の割
合で混合し、pH8〜11の条件で水熱処理することを
特徴とする研磨剤用コロイダルシリカの製造方法であ
る。また、本発明は、単分散コロイダルシリカと活性珪
酸とをSiO2重量比で1:0.03〜1:0.3の割
合で混合し、pH8〜11の条件で水熱処理して得られ
る研磨剤用コロイダルシリカを含有する電子材料用研磨
剤組成物である。
Means for Solving the Problems In order to achieve such an object, the inventors of the present application have made intensive studies and as a result, completed the present invention. That is, the present invention relates to a method in which monodispersed colloidal silica and active silicic acid are mixed in a weight ratio of SiO 2 of 1: 0.0.
Colloidal silica for abrasives obtained by mixing at a ratio of 3-1 to 0.3 and performing a hydrothermal treatment under conditions of pH 8 to 11. Further, the present invention is characterized in that monodisperse colloidal silica and active silicic acid are mixed at a weight ratio of SiO 2 of 1: 0.03 to 1: 0.3 and subjected to hydrothermal treatment under conditions of pH 8 to 11. This is a method for producing colloidal silica for abrasives. In addition, the present invention provides polishing obtained by mixing monodisperse colloidal silica and active silicic acid at a SiO 2 weight ratio of 1: 0.03 to 1: 0.3 and performing a hydrothermal treatment under the conditions of pH 8 to 11. An abrasive composition for electronic materials containing colloidal silica for an additive.

【0008】[0008]

【発明の実施の形態】本発明の研磨剤用コロイダルシリ
カは、単分散コロイダルシリカと活性珪酸とを特定の割
合で混合し、これをアルカリ条件下で水熱処理すること
によって得られるものである。この本発明の研磨剤用コ
ロイダルシリカの粒子径は、窒素吸着BET法による測
定値で20〜200nmの範囲がよく、さらには20〜
50nmの範囲であることがより望ましい。20nm未
満であると研磨対象物の研磨速度が小さすぎ、また、2
00nmを超えると研磨対象物の表面に研磨痕が発生す
るおそれが出るため好ましくない。さらに、水熱処理の
温度、時間等のコストを考えると20〜50nmの範囲
が最も好適である。このように水熱処理をすることによ
りコロイダルシリカの研磨特性が向上する理由は明確で
ないが,コロイダルシリカの表面状態がアルカリ下の水
熱処理により変化したものと考えられる。
BEST MODE FOR CARRYING OUT THE INVENTION The colloidal silica for an abrasive of the present invention is obtained by mixing monodispersed colloidal silica and active silicic acid in a specific ratio and subjecting the mixture to a hydrothermal treatment under alkaline conditions. The particle size of the colloidal silica for an abrasive of the present invention is preferably in the range of 20 to 200 nm as measured by a nitrogen adsorption BET method, and more preferably 20 to 200 nm.
More preferably, it is in the range of 50 nm. If it is less than 20 nm, the polishing rate of the object to be polished is too low.
If it exceeds 00 nm, polishing marks may be generated on the surface of the object to be polished, which is not preferable. Further, considering the cost of the hydrothermal treatment such as temperature and time, the range of 20 to 50 nm is most preferable. Although the reason why the hydrothermal treatment improves the polishing characteristics of colloidal silica is not clear, it is considered that the surface state of the colloidal silica has been changed by the hydrothermal treatment under alkali.

【0009】以下に、本発明の研磨剤用コロイダルシリ
カの製造方法に付いて詳しく述べる。単分散コロイダル
シリカを得るために、一般的にはその原料として珪酸ア
ルカリ水溶液を使用する。用いる珪酸アルカリ水溶液と
しては、通常水ガラス(水ガラス1号〜4号等)と呼ば
れる珪酸ナトリウム水溶液が好適に用いられる。このも
のは比較的安価であり、容易に手に入れることができ
る。また、Naイオンを嫌う半導体用途の製品を考慮す
ると珪酸カリウム水溶液が高純度化の対象としてふさわ
しい。
Hereinafter, the method for producing the colloidal silica for abrasives of the present invention will be described in detail. In order to obtain monodisperse colloidal silica, an alkali silicate aqueous solution is generally used as a raw material. As the aqueous alkali silicate solution to be used, a sodium silicate aqueous solution usually called water glass (water glass No. 1 to 4 or the like) is preferably used. It is relatively inexpensive and can be easily obtained. In addition, considering a product for semiconductor use which dislikes Na ions, an aqueous solution of potassium silicate is suitable as a target of high purification.

【0010】本発明に使用する単分散のコロイダルシリ
カとしては、例えばイオン交換法によるコロイダルシリ
カを使用することができる。イオン交換法によるコロイ
ダルシリカの製造工程では、まず珪酸アルカリ水溶液を
シリカ濃度3〜10重量%に水で希釈し、次いでH型強
酸性陽イオン交換樹脂に接触させて脱アルカリし、必要
に応じてOH型強塩基性陰イオン交換樹脂に接触させて
脱アニオンし、活性珪酸を作成する。イオン交換樹脂の
種類や諸条件については既に様々な提案があり、それら
公知のいかなる方法も適用できる。次いで、常法に準じ
てpHが8以上となるようアルカリ剤を添加し、60〜
240℃に加熱して、活性珪酸から種ゾルを作る。加熱
温度に応じて6〜25nmのコロイド粒子からなる種ゾ
ルが出来る。この種ゾルの代わりに、市販のコロイダル
シリカを種ゾルとすることもできる。
As the monodispersed colloidal silica used in the present invention, for example, colloidal silica obtained by an ion exchange method can be used. In the process of producing colloidal silica by the ion exchange method, first, an aqueous solution of an alkali silicate is diluted with water to a silica concentration of 3 to 10% by weight, and then contacted with an H-type strongly acidic cation exchange resin to remove alkali. Contact with an OH-type strong basic anion exchange resin to deanionize it to form active silicic acid. Various proposals have already been made regarding the type and various conditions of the ion exchange resin, and any of those known methods can be applied. Next, an alkali agent is added so that the pH becomes 8 or more according to a conventional method,
Heat to 240 ° C. to make seed sol from activated silicic acid. Depending on the heating temperature, a seed sol composed of colloidal particles of 6 to 25 nm is formed. Instead of this seed sol, commercially available colloidal silica can be used as the seed sol.

【0011】次いで、ビルドアップの方法のよって、常
法に準じてコロイド粒子を成長させる。即ち、アルカリ
剤を添加してpHを8以上、温度を60〜240℃に維
持しながら、上記の種ゾルに活性珪酸を添加してシリカ
粒子を成長させる。或いは、希釈した珪酸アルカリ水溶
液に活性珪酸を添加していくビルドアップの方法でも良
い。ここで使用するアルカリ剤としては、NaOH、K
OHなどのアルカリ金属水酸化物や、アミン、第4級ア
ンモニウム水酸化物などの有機塩基を使用することがで
きる。またそれらの珪酸アルカリ水溶液も使用すること
ができる。これらの方法を用いてシリカの粒子径が10
〜50nmとなるようにシリカ粒子を成長させる。シリ
カ粒子の分散状態は単分散であるが、二次凝集が存在し
ていてもよく、用途に応じて使い分けることが出来る。
粒子の形状は真球状であっても、非球形状であってもよ
く、用途に応じて使い分けることが出来る。
Next, colloid particles are grown by a build-up method according to a conventional method. That is, while maintaining the pH at 8 or more and the temperature at 60 to 240 ° C. by adding an alkali agent, activated silicic acid is added to the seed sol to grow silica particles. Alternatively, a build-up method in which active silicic acid is added to a diluted alkali silicate aqueous solution may be used. As the alkaline agent used here, NaOH, K
Organic bases such as alkali metal hydroxides such as OH, amines and quaternary ammonium hydroxides can be used. Also, their aqueous alkali silicate solutions can be used. Using these methods, silica particles having a particle size of 10
The silica particles are grown to a thickness of 5050 nm. Although the dispersion state of the silica particles is monodisperse, secondary aggregation may be present, and the silica particles can be used properly depending on the application.
The shape of the particles may be a true spherical shape or a non-spherical shape, and can be properly used depending on the application.

【0012】次いで、限外濾過膜によってシリカの濃度
が20〜50重量%となるように濃縮する。ただし、こ
の工程は余分なイオンの洗い出し効果もあるので、必要
に応じて、目標濃度に達した後も純水を加えるなどし
て、更に洗い出し除去を行って、不要成分の除去率を高
める作業を行うこともできる。このようにして、本発明
の製造方法に原料として使用する単分散コロイダルシリ
カを得ることができる。ここまでの工程を省略して、単
分散コロイダルシリカとして、市販のコロイダルシリカ
を以後の工程に使用することもできる。その場合、市販
品はシリカ濃度20〜50%の高濃度のものを使用する
のが経済的である。また、使用前にイオン交換、透析、
精密濾過などで成分調節をするのも良い。
Then, the silica is concentrated by an ultrafiltration membrane so that the concentration of silica becomes 20 to 50% by weight. However, this step also has the effect of washing out excess ions, so if necessary, add more pure water even after reaching the target concentration to further wash out and remove unnecessary components to increase the removal rate of unnecessary components. Can also be performed. Thus, monodisperse colloidal silica used as a raw material in the production method of the present invention can be obtained. By omitting the steps so far, commercially available colloidal silica can be used as monodisperse colloidal silica in the subsequent steps. In this case, it is economical to use a commercially available product having a high silica concentration of 20 to 50%. Before use, ion exchange, dialysis,
It is also good to adjust the components by microfiltration or the like.

【0013】このようにして得られた単分散コロイダル
シリカを用いて、活性珪酸とアルカリ剤の存在下で水熱
処理することになるが、このときのコロイダルシリカと
活性珪酸の混合割合は、それぞれのSiO2の重量比で
1:0.03から1:0.3の範囲がよく、1:0.1
から1:0.2の範囲が更に好ましい。コロイダルシリ
カに対して、活性珪酸が0.03より少ないと添加効果
が明らかにならず、無添加の水熱処理と同等になる。ま
た、コロイダルシリカに対して、活性珪酸が0.3より
多いと新たな核の発生が起こり、微粒子が発生し、その
量に相当するだけ既存粒子へのシリカの沈着量が減少
し、水熱処理の効果が薄れることとなる。また、この場
合は微粒子が多数発生することにより平均粒子径が小さ
くなることも好ましくない。さらに、活性珪酸は通常S
iO2の濃度が5重量%以下であるため、活性珪酸の配
合量が多くなると水熱処理容器に仕込めるSiO2の量
が減少し、経済的にも好ましくない。使用する活性珪酸
は、上記の珪酸アルカリ水溶液をイオン交換して得られ
た活性珪酸と同じものでよい。
The monodispersed colloidal silica thus obtained is subjected to hydrothermal treatment in the presence of active silicic acid and an alkali agent. At this time, the mixing ratio of colloidal silica and active silicic acid is The weight ratio of SiO 2 is preferably in the range of 1: 0.03 to 1: 0.3, and 1: 0.1
Is more preferably in the range of from 1: 0.2. When the amount of active silicic acid is less than 0.03 with respect to colloidal silica, the effect of addition is not evident, and it is equivalent to hydrothermal treatment without addition. When the amount of active silicic acid is more than 0.3 with respect to colloidal silica, new nuclei are generated, fine particles are generated, and the amount of silica deposited on existing particles is reduced by an amount corresponding to the amount, and hydrothermal treatment Will be less effective. Further, in this case, it is not preferable that the average particle diameter is reduced due to generation of a large number of fine particles. Further, activated silicic acid is usually S
Since the concentration of iO 2 is 5% by weight or less, if the amount of active silicic acid is increased, the amount of SiO 2 charged in the hydrothermal treatment vessel decreases, which is not economically preferable. The activated silicic acid used may be the same as the activated silicic acid obtained by ion-exchanging the above-mentioned aqueous alkali silicate solution.

【0014】また、使用するアルカリ剤としては、コロ
イダルシリカのビルドアップに使用したものと同じでも
よく、或いは、それとは関係なくNaOH、KOHなど
のアルカリ金属水酸化物や、アミン、第4級アンモニウ
ム水酸化物などの有機塩基を使用することができる。ま
たそれらの珪酸アルカリ水溶液も使用することができ
る。アルカリ剤の添加量は、水熱処理する混合物全体の
pHが8〜11となるような量で使用する。pH8未満
であると,得られるコロイダルシリカの表面の変化が認
められないためであり、pH11を越えることは添加す
るアルカリ剤の量が多くなり過ぎ経済的でない。
The alkaline agent to be used may be the same as that used for build-up of colloidal silica, or irrespective of it, an alkali metal hydroxide such as NaOH or KOH, an amine or a quaternary ammonium. Organic bases such as hydroxides can be used. Also, their aqueous alkali silicate solutions can be used. The alkali agent is used in such an amount that the pH of the mixture to be hydrothermally treated becomes 8 to 11. If the pH is less than 8, no change in the surface of the obtained colloidal silica is observed, and if the pH is more than 11, the amount of the alkaline agent to be added becomes too large to be economical.

【0015】単分散コロイダルシリカと活性珪酸の混合
物の水熱処理は、通常オートクレーブ等を使用して攪拌
下でおこない、処理温度は120〜180℃、処理時間
は0.5〜3時間が好ましく、処理温度が130℃〜1
60℃、処理時間が1.5〜2.5時間が更に好まし
い。180℃では30分程度でよく、120℃では約3
時間の処理時間が必要になる。180℃以上の温度は処
理効果に比べてコストがかかるため経済的ではない。次
いで、必要に応じて限外濾過膜によってシリカの濃度を
20〜50重量%となるように濃縮する。ただし、この
工程は余分なイオンの洗い出し効果もあるので、必要に
応じて、目標濃度に達した後も純水を加えるなどして、
更に洗い出し除去を行って、除去率を高める作業を行う
こともできる。また、濃縮前後にイオン交換、透析、精
密濾過などで成分調節をするのも良い。
The hydrothermal treatment of the mixture of monodisperse colloidal silica and active silicic acid is usually carried out with stirring using an autoclave or the like, the treatment temperature is preferably 120 to 180 ° C., and the treatment time is preferably 0.5 to 3 hours. Temperature is 130 ° C ~ 1
60 ° C. and a treatment time of 1.5 to 2.5 hours are more preferable. At 180 ° C., it may take about 30 minutes, and at 120 ° C., about 3 minutes.
Time processing time is required. A temperature of 180 ° C. or higher is not economical because it costs more than the effect of the treatment. Next, if necessary, the silica is concentrated to a concentration of 20 to 50% by weight using an ultrafiltration membrane. However, since this step also has the effect of washing out excess ions, if necessary, add pure water even after reaching the target concentration,
Further, it is also possible to perform an operation of increasing the removal rate by washing out and removing. It is also possible to adjust the components by ion exchange, dialysis, microfiltration, etc. before and after concentration.

【0016】限外濾過膜が適用される分離は対象粒子が
1nmから数ミクロンであるが、溶解した高分子物質を
も対象とするため、ナノメータ域では濾過精度を分画分
子量で表現している。本発明では、分画分子量1500
0以下の限外濾過膜を使用する。この範囲の膜を使用す
ると1nm以上の粒子は分離することが出来る。更に好
ましくは分画分子量3000〜15000の限外濾過膜
を使用する。3000未満の膜では濾過抵抗が大きすぎ
て処理時間が長くなり不経済であり、15000以上で
は、精製度が低くなり目的を達成できない。膜の材質は
ポリスルホン、ポリアクリルニトリル、焼結金属、セラ
ミック、カーボンなどあり、いずれも使用できるが、耐
熱性や濾過速度などからポリスルホン製が使用しやす
い。膜の形状はスパイラル型、チューブラー型、中空糸
型などあり、どれでも使用できるが、中空糸型がコンパ
クトで使用しやすい。
Although the separation to which the ultrafiltration membrane is applied has a target particle size of 1 nm to several microns, it also covers a dissolved high molecular substance, so that in the nanometer range, the filtration accuracy is expressed by a fraction molecular weight. . In the present invention, the molecular weight cut off is 1500
Use an ultrafiltration membrane of 0 or less. When a film in this range is used, particles of 1 nm or more can be separated. More preferably, an ultrafiltration membrane having a molecular weight cutoff of 3000 to 15000 is used. If the membrane is less than 3,000, the filtration resistance is too large, and the treatment time becomes longer, which is uneconomical. The material of the membrane includes polysulfone, polyacrylonitrile, sintered metal, ceramic, carbon, and the like. Any of them can be used, but polysulfone is easily used because of heat resistance and filtration speed. The shape of the membrane can be any type such as a spiral type, a tubular type and a hollow fiber type, and any type can be used, but the hollow fiber type is compact and easy to use.

【0017】以上のようにして、窒素吸着BET法によ
る測定値で20〜200nmの粒子径の本発明の研磨剤
用コロイダルシリカが得られる。これは単分散コロイダ
ルシリカ粒子に活性珪酸を高温高圧下で沈着させること
によってシリカ粒子の表面の状態を変化させたもので、
研磨剤として優れた性質を有する。
As described above, the colloidal silica for an abrasive of the present invention having a particle diameter of 20 to 200 nm as measured by the nitrogen adsorption BET method is obtained. This is to change the surface state of silica particles by depositing active silicic acid on monodisperse colloidal silica particles under high temperature and pressure.
It has excellent properties as an abrasive.

【0018】本発明はまた、このコロイダルシリカを含
む電子材料用研磨剤組成物である。即ち、本発明の電子
材料の研磨用組成物は、この研磨剤用コロイダルシリカ
を1〜15重量%、好ましくは1〜10重量%の割合で
含むコロイダルシリカ粒子の水性分散液である。本発明
の電子材料用研磨剤組成物には、更に研磨対象の材料の
種類や研磨条件等に応じて、その他のコロイド、例えば
アルミナゾル、酸化セリウムゾル、酸化ジルコニウムゾ
ルなども加えることもでき、それらの微粒子粉体を加え
ることもできる。また、研磨面やパッドの濡れ性の改善
には、界面活性剤や水溶性高分子を加えることができ
る。同様に、酸化剤、キレート剤、腐食防止剤、殺菌剤
などを必要に応じて添加することができる。本発明の電
子材料用研磨剤組成物が使用できる研磨対象材料は種々
の電子材料であるが、特にシリコンウエハ、化合物半導
体ウェハ、半導体デバイスウェハ、磁気ディスク基板、
又は水晶基板の研磨に優れた研磨性能を発揮する。
The present invention is also an abrasive composition for electronic materials containing the colloidal silica. That is, the polishing composition for an electronic material of the present invention is an aqueous dispersion of colloidal silica particles containing the colloidal silica for an abrasive in an amount of 1 to 15% by weight, preferably 1 to 10% by weight. The abrasive composition for electronic materials of the present invention may further contain other colloids, for example, alumina sol, cerium oxide sol, zirconium oxide sol, and the like, depending on the type of material to be polished, polishing conditions, and the like. Fine particle powder can also be added. In order to improve the wettability of the polished surface or the pad, a surfactant or a water-soluble polymer can be added. Similarly, an oxidizing agent, a chelating agent, a corrosion inhibitor, a bactericide, and the like can be added as necessary. Materials to be polished that can be used for the polishing composition for electronic materials of the present invention are various electronic materials. In particular, silicon wafers, compound semiconductor wafers, semiconductor device wafers, magnetic disk substrates,
Alternatively, it exhibits excellent polishing performance for polishing a quartz substrate.

【0019】[0019]

【実施例】以下に、実施例によって本発明をさらに詳細
に説明する。実施例中「%」は重量基準である。
The present invention will be described in more detail with reference to the following examples. In the examples, "%" is based on weight.

【0020】実施例1:脱イオン水5450gにJIS
3号珪酸ソーダ(SiO2:29.0%、Na2O:9.
7%、H2O:61.3%)1000gを加えて均一に
混合し、SiO2を4.5%含む希釈珪酸ソーダを作成
した。この希釈珪酸ソーダを、予め塩酸によって再生し
たH型強酸性陽イオン交換樹脂のカラムに通して脱アル
カリし、シリカ濃度3.8%でpH2.9の活性珪酸7
250gを得た。別途、市販のコロイダルシリカ(日本
化学工業(株)製「シリカドール40L」SiO2;4
0%、BET法によるシリカの粒子径は21nmであ
り、pH9.9)120gを脱イオン水880gで希釈
して、攪拌下95℃に加熱して10%NaOHを添加し
てpHを10.0とし、更に30分この温度を保った
後、前記の活性珪酸5900gを8時間かけて添加し
た。添加中は温度を95℃を保ち、pHも10を保つよ
うに10%NaOHを30分おきに添加した。活性珪酸
の添加終了後95℃に1時間保った。この時点でのシリ
カの粒子径は、BET法によると37nmで、コロイド
液は白味を帯びた半透明であった。得られたコロイダル
シリカは、冷却後分画分子量6000の中空糸型限外濾
過膜(旭化成(株)製マイクローザUFモジュールSI
P−1013)を用いてポンプ循環送液による加圧濾過
を行い、シリカ濃度40%の単分散コロイダルシリカ約
680gを得た。次いで、このコロイダルシリカに前記
の活性珪酸の残部1350gを加えて攪拌下10%Na
OHを添加してpHを10とし、2リットルのオートク
レーブにいれて、130℃に加熱して2時間この温度を
保ち水熱処理を行い、放冷した。
Example 1: JIS was added to 5450 g of deionized water.
No. 3 sodium silicate (SiO 2 : 29.0%, Na 2 O: 9.
7%, H 2 O: 61.3 %) was added to 1000g were uniformly mixed to prepare a diluted sodium silicate containing SiO 2 4.5%. The diluted sodium silicate is passed through a column of an H-type strongly acidic cation exchange resin which has been previously regenerated with hydrochloric acid to remove alkali, and activated silica 7 having a silica concentration of 3.8% and a pH of 2.9 is obtained.
250 g were obtained. Separately, commercially available colloidal silica (“Silica Doll 40L” manufactured by Nippon Chemical Industry Co., Ltd.) SiO 2 ; 4
0%, the particle size of the silica obtained by the BET method is 21 nm, and 120 g of pH 9.9) is diluted with 880 g of deionized water, heated to 95 ° C. with stirring, and added with 10% NaOH to adjust the pH to 10.0. After maintaining this temperature for 30 minutes, 5900 g of the above-mentioned activated silicic acid was added over 8 hours. During the addition, 10% NaOH was added every 30 minutes so that the temperature was kept at 95 ° C and the pH was kept at 10. After the addition of the activated silicic acid, the temperature was maintained at 95 ° C. for 1 hour. At this time, the particle size of the silica was 37 nm according to the BET method, and the colloid liquid was white and translucent. The obtained colloidal silica is a hollow fiber type ultrafiltration membrane having a molecular weight cut off of 6000 after cooling (Microza UF module SI manufactured by Asahi Kasei Corporation).
Using P-1013), pressure filtration was performed by pump circulation liquid feeding to obtain about 680 g of monodisperse colloidal silica having a silica concentration of 40%. Next, 1350 g of the above-mentioned activated silicic acid was added to the colloidal silica, and 10% Na was added under stirring.
The pH was adjusted to 10 by adding OH, and the mixture was placed in a 2 liter autoclave, heated to 130 ° C., kept at this temperature for 2 hours, subjected to hydrothermal treatment, and allowed to cool.

【0021】水熱処理したコロイダルシリカは、分画分
子量6000の中空糸型限外濾過膜(旭化成(株)製マイ
クローザUFモジュールSIP−1013)を用いてポ
ンプ循環送液による加圧濾過を行い、シリカ濃度30%
のコロイダルシリカ約1000gを得た。得られたコロ
イダルシリカは窒素吸着BET法による粒子径は42n
mであった。
The hydrothermally treated colloidal silica is subjected to pressure filtration by pump circulation using a hollow fiber type ultrafiltration membrane having a molecular weight cut off of 6000 (Microza UF module SIP-1013 manufactured by Asahi Kasei Corporation). Silica concentration 30%
About 1000 g of colloidal silica was obtained. The obtained colloidal silica has a particle diameter of 42 n according to a nitrogen adsorption BET method.
m.

【0022】比較例1:市販のコロイダルシリカ(日本
化学工業(株)製「シリカドール40G」SiO2;4
0%、BET法によるシリカの粒子径は46nmであ
り、pHは9.9)800gに脱イオン水1350gを
加えて攪拌下10%NaOHを添加してpHを10と
し、これを2リットルのオートクレーブにいれて、13
0℃に加熱して2時間この温度を保ち水熱処理を行い、
放冷した。水熱処理したコロイダルシリカは、分画分子
量6000の中空糸型限外濾過膜(旭化成(株)製マイ
クローザUFモジュールSIP−1013)を用いてポ
ンプ循環送液による加圧濾過を行い、シリカ濃度30%
のコロイダルシリカ約1000gを得た。この活性珪酸
を加えずに水熱処理して得られたコロイダルシリカは窒
素吸着BET法による粒子径46nmであった。
Comparative Example 1: Commercially available colloidal silica ("Silica Doll 40G" manufactured by Nippon Chemical Industry Co., Ltd., SiO 2 ; 4)
0%, the particle size of silica by the BET method is 46 nm, and the pH is 9.9) 800 g of deionized water is added with 1350 g of deionized water, and 10% NaOH is added to the mixture with stirring to adjust the pH to 10; 13
Heat to 0 ° C and keep this temperature for 2 hours for hydrothermal treatment,
Allowed to cool. The hydrothermally treated colloidal silica was subjected to pressure filtration by pump circulation using a hollow fiber type ultrafiltration membrane having a molecular weight cutoff of 6000 (Microza UF module SIP-1013 manufactured by Asahi Kasei Corporation) to obtain a silica concentration of 30. %
About 1000 g of colloidal silica was obtained. The colloidal silica obtained by hydrothermal treatment without adding the active silicic acid had a particle diameter of 46 nm by a nitrogen adsorption BET method.

【0023】実施例2:市販のコロイダルシリカ(日本
化学工業(株)製「シリカドール40L」SiO2;4
0%、BET法によるシリカの粒子径は21nmであ
り、pHは9.9)5kg(SiO2として2.0k
g)を使用して、これに実施例1と同様にして作成した
活性珪酸5kg(SiO2として190g)を加えて攪
拌下10%KOHを滴下してpHを10とし、これを2
0リットルのオートクレーブに仕込み、攪拌下160℃
に加熱してこの温度に1時間保ち水熱処理を行ない、放
冷した。次いで分画分子量10000の中空糸型限外濾
過膜(旭化成(株)製マイクローザUFモジュールSL
P−2053)を用いてポンプ循環送液による加圧濾過
を行い、シリカ濃度30%のコロイダルシリカ約7kg
を得た。得られたコロイダルシリカは、窒素吸着BET
法による粒子径24nmであった。
Example 2 Commercially available colloidal silica ("Silica Doll 40L" manufactured by Nippon Kagaku Kogyo KK) SiO 2 ; 4
0%, the particle diameter of silica by BET method is 21 nm, pH is 9.9) 5 kg (2.0 k as SiO 2 )
g), 5 kg of activated silicic acid (190 g as SiO 2 ) prepared in the same manner as in Example 1 was added thereto, and 10% KOH was added dropwise with stirring to adjust the pH to 10.
Charge into a 0 liter autoclave, 160 ° C under stirring
And kept at this temperature for 1 hour to perform hydrothermal treatment, and then allowed to cool. Next, a hollow fiber type ultrafiltration membrane having a molecular weight cutoff of 10,000 (Microza UF module SL manufactured by Asahi Kasei Corporation)
P-2053), pressure filtration by pump circulation is performed, and about 7 kg of colloidal silica having a silica concentration of 30%.
I got The obtained colloidal silica is nitrogen-adsorbed BET
The particle diameter was 24 nm according to the method.

【0024】比較例2:市販のコロイダルシリカ(日本
化学工業(株)製「シリカドール40L」SiO240
%、BET法によるとシリカの粒子径は21nmであ
り、pHは9.9)5kg(SiO2として2.0k
g)に、脱イオン水5kgを加えて希釈した後、攪拌下
95℃に熱して10%KOHを添加してpHを10.0
とし、更に30分この温度を保った後、実施例1と同様
にして作成した活性珪酸5kg(SiO2として190
g)を1時間かけて添加した。添加中は95℃を保ち、
pHも10を保つように10%KOHを10分おきに添
加した。活性珪酸の添加終了後95℃に1時間保った。
冷却後分画分子量10000の中空糸型限外濾過膜(旭
化成(株)製マイクローザUFモジュールSLP−20
53)を用いてポンプ循環送液による加圧濾過を行い、
シリカ濃度30%のコロイダルシリカ約7kgを得た。
従って、ここでは市販のコロイダルシリカと活性珪酸の
混合物を使用するが、水熱処理は行なわず、単にアルカ
リ条件下で95℃に加熱処理したものである。このよう
な方法によって得られたコロイダルシリカは、窒素吸着
BET法による粒子径22nmであった。
Comparative Example 2: Commercial colloidal silica ("Silica Doll 40L" manufactured by Nippon Chemical Industry Co., Ltd.) SiO 2 40
%, According to the BET method, the silica particle diameter is 21 nm, the pH is 9.9) and 5 kg (2.0 k as SiO 2 ).
g) and diluted with 5 kg of deionized water, heated to 95 ° C. with stirring, and added with 10% KOH to adjust the pH to 10.0.
And then, after maintaining for a further 30 minutes at this temperature, as in Example 1 active silicic acid 5kg were prepared in the same manner as (SiO 2 190
g) was added over 1 hour. Keep 95 ° C during the addition,
10% KOH was added every 10 minutes to keep the pH at 10. After the addition of the activated silicic acid, the temperature was maintained at 95 ° C. for 1 hour.
A hollow fiber type ultrafiltration membrane having a molecular weight cut off of 10,000 after cooling (Microza UF Module SLP-20 manufactured by Asahi Kasei Corporation)
53) to perform pressure filtration by pump circulation liquid supply,
About 7 kg of colloidal silica having a silica concentration of 30% was obtained.
Therefore, here, a commercially available mixture of colloidal silica and active silicic acid is used, but a hydrothermal treatment is not performed, and the mixture is simply heated to 95 ° C. under alkaline conditions. The colloidal silica obtained by such a method had a particle size of 22 nm by a nitrogen adsorption BET method.

【0025】実施例4:実施例1、2で得た本発明のコ
ロイダルシリカ及び及び比較例1、2の市販のコロイダ
ルシリカを処理したものを用いて、表1に示す組成の研
磨剤組成物を調製した。
Example 4: Using the colloidal silica of the present invention obtained in Examples 1 and 2 and the commercially available colloidal silica of Comparative Examples 1 and 2, a polishing composition having the composition shown in Table 1 was used. Was prepared.

【0026】[0026]

【表1】 [Table 1]

【0027】これらの研磨剤組成物1〜4を用いて、下
記の研磨条件で、シリコン単結晶(シリコン矩形ミラー
ウェハー、方位:<100>±1゜)の研磨試験を行った。これ
らの結果を表2に示す。 <研磨条件> 研磨機 ; 片面研磨機 研磨パッド;ロデール(株)製SUBA400 定盤回転数;150rpm 自転数 ; 100rpm 加工圧力; 230g/cm2 研磨時間; 10分 研磨液供給量;20ml/分 <研磨性能> 研磨速度;加工完了後のシリコンを洗浄・乾燥し、加工
前後の重量減から研磨速度を求めた。 研磨痕 ;暗室で目視により研磨痕の有無を判定した。
Using these polishing compositions 1 to 4, a polishing test was performed on a silicon single crystal (silicon rectangular mirror wafer, orientation: <100> ± 1 °) under the following polishing conditions. Table 2 shows the results. <Polishing condition> Polishing machine; Single-side polishing machine Polishing pad; SUBA400 manufactured by Rodale Co., Ltd. Surface plate rotation speed: 150 rpm Rotation speed: 100 rpm Processing pressure: 230 g / cm 2 Polishing time: 10 minutes Polishing liquid supply amount: 20 ml / min < Polishing performance> Polishing rate: The silicon after processing was washed and dried, and the polishing rate was determined from the weight loss before and after processing. Polishing marks: The presence or absence of polishing marks was visually determined in a dark room.

【0028】[0028]

【表2】 [Table 2]

【0029】表2に示すように、本発明の方法によって
得られたコロイダルシリカを使用した研磨剤組成物(N
o.1及び2)は、対応する同一粒径の比較例のもの
(No.3及び4)に比較して、それぞれほぼ同じ粒子
径であるにもかかわらず10%以上の研磨速度の向上が
みられた。
As shown in Table 2, an abrasive composition using colloidal silica obtained by the method of the present invention (N
o. 1 and 2) show an improvement in polishing rate of 10% or more in comparison with the corresponding comparative example having the same particle size (Nos. 3 and 4), though they have almost the same particle size. Was.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 単分散コロイダルシリカと活性珪酸をS
iO2重量比で1:0.03〜1:0.3の割合で混合
し、pH8〜11の条件で水熱処理して得られる研磨剤
用コロイダルシリカ。
1. Monodisperse colloidal silica and activated silicic acid are S
In iO 2 weight ratio of 1: 0.03 to 1: at a ratio of 0.3, colloidal silica polishing agent obtained by hydrothermal treatment under conditions of pH 8-11.
【請求項2】 窒素吸着BET法によるシリカ粒子径が
20〜200nmの範囲である請求項1記載の研磨剤用
コロイダルシリカ。
2. The colloidal silica for an abrasive according to claim 1, wherein the silica particle diameter measured by a nitrogen adsorption BET method is in the range of 20 to 200 nm.
【請求項3】 単分散コロイダルシリカと活性珪酸をS
iO2重量比で1:0.03〜1:0.3の割合で混合
し、pH8〜11の条件で水熱処理することを特徴とす
る研磨剤用コロイダルシリカの製造方法。
3. Monodispersed colloidal silica and activated silicic acid are S
iO 1 2 weight ratio: 0.03 to 1: at a ratio of 0.3, the manufacturing method of the abrasive for the colloidal silica, wherein the hydrothermal treatment under conditions of pH 8-11.
【請求項4】 オートクレーブ中で、120〜180℃
の温度で0.5〜3時間の条件で水熱処理することを特
徴とする請求項3記載の研磨剤用コロイダルシリカの製
造方法。
4. 120-180 ° C. in an autoclave
4. The method for producing colloidal silica for an abrasive according to claim 3, wherein the hydrothermal treatment is performed at a temperature of 0.5 to 3 hours.
【請求項5】 単分散コロイダルシリカと活性珪酸をS
iO2重量比で1:0.03〜1:0.3に混合しpH
8〜11の条件で水熱処理して得られる研磨剤用コロイ
ダルシリカを含有する電子材料用研磨剤組成物。
5. The monodisperse colloidal silica and activated silicic acid are
The mixture was mixed at a weight ratio of iO 2 of 1: 0.03 to 1: 0.3 and pH was adjusted.
An abrasive composition for an electronic material, comprising colloidal silica for an abrasive obtained by hydrothermal treatment under the conditions of 8 to 11.
【請求項6】 電子材料が、シリコンウェハ、化合物半
導体ウェハ、半導体デバイスウェハ、磁気ディスク基
板、又は水晶基板の何れかである請求項5記載の電子材
料用研磨剤組成物。
6. The polishing composition according to claim 5, wherein the electronic material is any one of a silicon wafer, a compound semiconductor wafer, a semiconductor device wafer, a magnetic disk substrate, and a quartz substrate.
JP2001148975A 2001-05-18 2001-05-18 Hydrothermally treated colloidal silica for polishing agent Pending JP2002338951A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001148975A JP2002338951A (en) 2001-05-18 2001-05-18 Hydrothermally treated colloidal silica for polishing agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001148975A JP2002338951A (en) 2001-05-18 2001-05-18 Hydrothermally treated colloidal silica for polishing agent

Publications (1)

Publication Number Publication Date
JP2002338951A true JP2002338951A (en) 2002-11-27

Family

ID=18994201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001148975A Pending JP2002338951A (en) 2001-05-18 2001-05-18 Hydrothermally treated colloidal silica for polishing agent

Country Status (1)

Country Link
JP (1) JP2002338951A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005045102A (en) * 2003-07-24 2005-02-17 Shin Etsu Handotai Co Ltd Polishing method of wafer
JP2006021259A (en) * 2004-07-06 2006-01-26 Fuji Electric Device Technology Co Ltd Polishing method of magnetic disk base board and magnetic disk medium
JP2007123759A (en) * 2005-10-31 2007-05-17 Nitta Haas Inc Semiconductor polishing composition and polishing method
US7303601B2 (en) 2002-12-26 2007-12-04 Kao Corporation Polishing composition
JP2010095568A (en) * 2008-10-14 2010-04-30 Jgc Catalysts & Chemicals Ltd Silica sol for polishing, composition for polishing, and method for producing silica sol for polishing
JP2013227168A (en) * 2012-04-25 2013-11-07 Nippon Chem Ind Co Ltd Colloidal silica having silica particle with unevenness on the surface, method for manufacturing the same, and polishing material using the same
JP2014120676A (en) * 2012-12-18 2014-06-30 Kao Corp Polishing liquid composition for sapphire plate
JPWO2018012173A1 (en) * 2016-07-15 2019-05-30 株式会社フジミインコーポレーテッド Polishing composition, method for producing polishing composition, and polishing method
JPWO2018012176A1 (en) * 2016-07-15 2019-05-30 株式会社フジミインコーポレーテッド Polishing composition, method for producing polishing composition, and polishing method
JP2019172853A (en) * 2018-03-29 2019-10-10 株式会社フジミインコーポレーテッド Abrasive grain dispersion, polishing composition kit, and method for polishing magnetic disk substrate
KR102107089B1 (en) * 2018-11-01 2020-05-06 닛산 가가쿠 가부시키가이샤 Polishing composition using abrasive particles with high water affinity
CN113454024A (en) * 2019-02-21 2021-09-28 三菱化学株式会社 Silica particles and method for producing same, silica sol, polishing composition, polishing method, method for producing semiconductor wafer, and method for producing semiconductor device
CN113474289A (en) * 2019-02-21 2021-10-01 三菱化学株式会社 Silica particles and method for producing same, silica sol, polishing composition, polishing method, method for producing semiconductor wafer, and method for producing semiconductor device

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7303601B2 (en) 2002-12-26 2007-12-04 Kao Corporation Polishing composition
JP4608856B2 (en) * 2003-07-24 2011-01-12 信越半導体株式会社 Wafer polishing method
JP2005045102A (en) * 2003-07-24 2005-02-17 Shin Etsu Handotai Co Ltd Polishing method of wafer
JP2006021259A (en) * 2004-07-06 2006-01-26 Fuji Electric Device Technology Co Ltd Polishing method of magnetic disk base board and magnetic disk medium
JP2007123759A (en) * 2005-10-31 2007-05-17 Nitta Haas Inc Semiconductor polishing composition and polishing method
JP2010095568A (en) * 2008-10-14 2010-04-30 Jgc Catalysts & Chemicals Ltd Silica sol for polishing, composition for polishing, and method for producing silica sol for polishing
JP2013227168A (en) * 2012-04-25 2013-11-07 Nippon Chem Ind Co Ltd Colloidal silica having silica particle with unevenness on the surface, method for manufacturing the same, and polishing material using the same
JP2014120676A (en) * 2012-12-18 2014-06-30 Kao Corp Polishing liquid composition for sapphire plate
JP7044704B2 (en) 2016-07-15 2022-03-30 株式会社フジミインコーポレーテッド Polishing composition, manufacturing method and polishing method of polishing composition
JPWO2018012173A1 (en) * 2016-07-15 2019-05-30 株式会社フジミインコーポレーテッド Polishing composition, method for producing polishing composition, and polishing method
JPWO2018012176A1 (en) * 2016-07-15 2019-05-30 株式会社フジミインコーポレーテッド Polishing composition, method for producing polishing composition, and polishing method
JP2019172853A (en) * 2018-03-29 2019-10-10 株式会社フジミインコーポレーテッド Abrasive grain dispersion, polishing composition kit, and method for polishing magnetic disk substrate
JP7066480B2 (en) 2018-03-29 2022-05-13 株式会社フジミインコーポレーテッド Abrasive grain dispersion liquid, polishing composition kit, and polishing method for magnetic disk substrates
WO2020091000A1 (en) * 2018-11-01 2020-05-07 日産化学株式会社 Polishing composition using polishing particles that have high water affinity
JP6718157B1 (en) * 2018-11-01 2020-07-08 日産化学株式会社 Polishing composition using abrasive particles having high water affinity
KR102107089B1 (en) * 2018-11-01 2020-05-06 닛산 가가쿠 가부시키가이샤 Polishing composition using abrasive particles with high water affinity
CN113454024A (en) * 2019-02-21 2021-09-28 三菱化学株式会社 Silica particles and method for producing same, silica sol, polishing composition, polishing method, method for producing semiconductor wafer, and method for producing semiconductor device
CN113474289A (en) * 2019-02-21 2021-10-01 三菱化学株式会社 Silica particles and method for producing same, silica sol, polishing composition, polishing method, method for producing semiconductor wafer, and method for producing semiconductor device
EP3929154A4 (en) * 2019-02-21 2022-04-06 Mitsubishi Chemical Corporation Silica particles and production method therefor, silica sol, polishing composition, polishing method, semiconductor wafer production method, and semiconductor device production method
EP3929155A4 (en) * 2019-02-21 2022-04-06 Mitsubishi Chemical Corporation Silica particles and production method therefor, silica sol, polishing composition, polishing method, semiconductor wafer production method, and semiconductor device production method
US11862470B2 (en) 2019-02-21 2024-01-02 Mitsubishi Chemical Corporation Silica particle and production method therefor, silica sol, polishing composition, polishing method, method for producing semiconductor wafer and method for producing semiconductor device

Similar Documents

Publication Publication Date Title
JP5599440B2 (en) Deformed silica sol
JP4643085B2 (en) Method for producing high-purity colloidal silica for abrasives
JP4712556B2 (en) Alkali-resistant vertical colloidal silica particles and method for producing the same
JPH10309660A (en) Finishing abrasive
US20080038996A1 (en) Polishing composition for semiconductor wafer, production method thereof, and polishing method
JP2003109921A (en) Abrasive silica particle-dispersed fluid, its manufacturing method, and abrasive material
JP2008546617A (en) Method for converting fumed silica to colloidal silica
JP2002338232A (en) Secondary flocculated colloidal silica, method for producing the same and abrasive composition using the same
TW200521215A (en) Abrasive for chemical mechanical polishing and method for producing the same
JP2002338951A (en) Hydrothermally treated colloidal silica for polishing agent
JP4549878B2 (en) Method for producing high-purity aqueous silica sol
WO2006059537A1 (en) Process for producing abrasive material, abrasive material produced by the same, and process for producing silicon wafer
JP6207345B2 (en) Method for producing silica particles
JP2001294417A (en) Method of producing colloidal silica
JP2004203638A (en) Peanut-like twin colloidal silica particle, and production method therefor
JP2007061989A (en) Polishing composite-oxide particle and slurry abrasive
JP2002246341A (en) Polishing slurry for chemical mechanical polishing of silica film
KR101121576B1 (en) A manufacturing method of colloidal silica for chemical mechenical polishing
JP2013227168A (en) Colloidal silica having silica particle with unevenness on the surface, method for manufacturing the same, and polishing material using the same
JP6882727B1 (en) Polishing composition for eliminating ridges around laser marks containing cations
JP4507141B2 (en) Polishing composition, production method thereof and polishing method using the same
JP2006012969A (en) Silica sol for polish, and its manufacturing method
JP2003297778A (en) Composition for polishing and method for modifying the same
JP2010241642A (en) Colloidal silica
JP7268808B1 (en) Post-polishing composition used after primary polishing of silicon wafer

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060707

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100119