JP2006036544A - Method for producing cubic magnesia powder - Google Patents

Method for producing cubic magnesia powder Download PDF

Info

Publication number
JP2006036544A
JP2006036544A JP2004213850A JP2004213850A JP2006036544A JP 2006036544 A JP2006036544 A JP 2006036544A JP 2004213850 A JP2004213850 A JP 2004213850A JP 2004213850 A JP2004213850 A JP 2004213850A JP 2006036544 A JP2006036544 A JP 2006036544A
Authority
JP
Japan
Prior art keywords
magnesia
magnesium
purity
chloride
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004213850A
Other languages
Japanese (ja)
Other versions
JP4873680B2 (en
JP2006036544A5 (en
Inventor
Takayasu Ikegami
隆康 池上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2004213850A priority Critical patent/JP4873680B2/en
Publication of JP2006036544A publication Critical patent/JP2006036544A/en
Publication of JP2006036544A5 publication Critical patent/JP2006036544A5/ja
Application granted granted Critical
Publication of JP4873680B2 publication Critical patent/JP4873680B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To synthesize a magnesia powder having high purity surface because the surface purity has extensive effects on material characteristics in various fillers, raw materials for PDP fluorescent substances, catalysts or the like. <P>SOLUTION: Chloride ions are mixed with a magnesium compound having a purity of ≥99 wt.%, which is converted into magnesia by firing, in an amount 0.1-15 mol%, and then the resulting mixture is fired at 600-1.200°C. Alternatively chloride ions are mixed with magnesia obtained by calcining a magnesium compound having a purity of ≥99 wt.% at a temperature not lower than thermal decomposition temperature and not higher than 1,100°C, in an amount of 0.1-15 mol%, and then the resulting mixture is fired at 600-1.200°C. Alternatively, an aqueous solution of magnesium chloride having a purity of ≥99 wt.% and a solution of a basic precipitating agent not containing metal ions except magnesium ion are mixed to form a magnesium compound by a reaction in the resulting mixed solution, and then the formed magnesium compound is filtered without being washed, and fired at 600-1.200°C. The magnesium powder comprising cubic particles having flat surfaces is produced by each process mentioned above. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、塩化物イオンを含むマグネシウム化合物を焼成して立方体状の粒子が個々
に分離していて粒子表面が平らな立方体状粒子で構成された微細マグネシア粉末の製造に
関するものである。
The present invention relates to the production of a fine magnesia powder composed of cubic particles in which a magnesium compound containing chloride ions is calcined and cubic particles are individually separated and the particle surfaces are flat.

マグネシアは資源が豊富で安価であり電気絶縁性に優れているという長所を備えており
、耐火物ばかりでなく色々なフィラーや電子部品として利用されている。しかしながら、
付加価値を高めるには、高純度マグネシアの製造が不可欠である。特に、各種フィラーや
PDP蛍光体用原料、触媒等は表面の純度が材料特性に非常に影響するので表面の純度が高
い粉末の合成が望まれていた。
Magnesia has the advantages of being rich in resources, inexpensive and excellent in electrical insulation, and is used not only as a refractory but also as various fillers and electronic components. However,
Production of high-purity magnesia is indispensable to increase added value. Especially various fillers and
Since the surface purity of PDP phosphor raw materials and catalysts greatly affects the material properties, it has been desired to synthesize a powder having a high surface purity.

高純度マグネシア粉末の工業的生産は、一般に化学的方法で精製した水酸化マグネシウ
ムや炭酸マグネシウム等のマグネシウム化合物等〔以下、母塩という〕を熱分解温度以上
の温度で焼成して行う。この場合、焼成粉末の粒子の表面や角、稜は丸みを帯びた多角形
をしている。これは、焼成粉末がその表面形状に影響を与えるほどの量の水蒸気や炭酸ガ
ス等を吸着しているためであり、このような粉末の性質はマグネシア固有の性質と異なっ
ている。また、しばしば焼成粉末の粒子は硬い凝集を形成していて、全粒子表面を材料の
機能発現に有効に活用できないことや焼結性が悪い等の欠点があった。このため清浄表面
を有し、粒子が分離した高純度マグネシア粉末の製造が望まれていた。
Industrial production of high-purity magnesia powder is generally performed by baking a magnesium compound such as magnesium hydroxide or magnesium carbonate (hereinafter referred to as a mother salt) purified by a chemical method at a temperature equal to or higher than the thermal decomposition temperature. In this case, the surface, corners, and ridges of the sintered powder particles are rounded polygons. This is because the calcined powder adsorbs water vapor, carbon dioxide gas, and the like to such an extent that the surface shape is affected, and the properties of such powder are different from those inherent to magnesia. Moreover, the particles of the calcined powder often form hard agglomerates, and there are drawbacks such as the fact that the entire particle surface cannot be used effectively for the material function expression and the sinterability is poor. Therefore, it has been desired to produce a high purity magnesia powder having a clean surface and separated particles.

マグネシウム金属の蒸気を酸化するという非常に清浄な環境で表面が平らな立方体状の
マグネシア粒子を合成する方法が知られている(特許文献1、2)。マグネシアはNaCl型
の結晶構造をしていることから、 熱力学的に(100)面が最も安定な結晶面であり粒子形状
は立方体になると考えられている。上記の立方体状のマグネシア粒子は熱力学で予測され
たマグネシア粒子の形状と合致している。このことから、表面が平らで立方体状であるこ
とが、マグネシア粒子の表面が清浄であることの一つの目安になるといえる。
A method of synthesizing cubic magnesia particles having a flat surface in a very clean environment in which magnesium metal vapor is oxidized is known (Patent Documents 1 and 2). Since magnesia has a NaCl-type crystal structure, the (100) plane is thermodynamically the most stable crystal plane and the particle shape is considered to be a cube. The above cubic magnesia particles are consistent with the shape of magnesia particles predicted by thermodynamics. From this, it can be said that a flat and cubic surface is one indication that the surface of the magnesia particles is clean.

塩化物イオンで水酸化マグネシウムの母塩の形骸を破壊し粒子が個々に分離したマグネ
シア粉末を製造したという池上ら(非特許文献1)の報告があるが、該粒子は面の数が6
よりも多い多面体であり、立方体状粒子が個々に分離したマグネシア粉末を製造したとい
う報告はない。
There is a report by Ikegami et al. (Non-patent Document 1) that a magnesium ion powder was produced by destroying the form of the mother salt of magnesium hydroxide with chloride ions.
There are no reports of producing magnesia powder with more polyhedrons and cubic particles separated individually.

特開平1-292146号(特公平6-76251号)公報Japanese Unexamined Patent Publication No. 1-292146 (Japanese Patent Publication No. 6-76251) 特開平7-1017227号公報JP 7-1017227 A 特開2004-84017号公報JP 2004-84017 A 窯業協会誌、86 [3] 97〜101(1978)Journal of the Ceramic Industry Association, 86 [3] 97-101 (1978)

マグネシウム金属の蒸気を酸化したマグネシア粉末の製造は、マグネシウム金属を蒸発
させる必要があり、生産性に劣るという欠点があった。一方、化学的方法で精製したマグ
ネシウム化合物を焼成して得たマグネシア粉末は、表面に無視できないほど多量の水蒸気
や炭酸ガス等のガス成分を吸着しているために、粒子表面は丸みを帯びた多面体をしてお
り、吸着ガスにより触媒活性や電子放射、蛍光特性等に関してMgO固有の特性が阻害され
るという欠点があった。さらに、しばしば立方体状の微細な結晶子がモザイク状に凝集し
ていて、結晶子の表面が有効に利用できないばかりでなく、焼結性も悪いという欠点があ
った。
The production of magnesia powder in which magnesium metal vapor is oxidized has the disadvantage that the magnesium metal needs to be evaporated and the productivity is poor. On the other hand, the magnesia powder obtained by firing a magnesium compound purified by a chemical method adsorbs a gas component such as water vapor or carbon dioxide gas so much that it cannot be ignored, so the particle surface is rounded. It has a polyhedron, and the adsorbed gas has the drawback that the properties unique to MgO, such as catalytic activity, electron emission, and fluorescence properties, are hindered. In addition, cubic fine crystallites are often agglomerated in a mosaic manner, and the surface of the crystallites cannot be effectively used, and the sinterability is also poor.

本発明は、水溶液反応を利用した湿式法で調製した母塩や市販の母塩、或いはそれらの
母塩を焼成して得たマグネシアに塩化物イオンを添加した後に焼成して、表面が平らな立
方体状の粒子で構成されたマグネシア粉末を非常に安価に製造する方法を提供する。
In the present invention, a mother salt prepared by a wet method using an aqueous solution reaction, a commercially available mother salt, or magnesia obtained by firing the mother salt is calcined after adding chloride ions to obtain a flat surface. Provided is a method for producing magnesia powder composed of cubic particles at a very low cost.

すなわち、本発明は、(1)焼成してマグネシアになる純度が99 重量% 以上のマグネ
シウム化合物に、0.1〜15モル%の塩化物イオンを混合し、600℃〜1200℃で焼成すること
を特徴とする表面が平らな立方体状粒子で構成されたマグネシア粉末の製造法、である。
That is, the present invention is characterized in that (1) 0.1-15 mol% of chloride ions is mixed with a magnesium compound having a purity of 99% by weight or more which is calcined to magnesia and calcined at 600 ° C. to 1200 ° C. And a method for producing magnesia powder, the surface of which is composed of flat cubic particles.

また、本発明は、(2)純度が99 重量% 以上のマグネシウム化合物を熱分解温度以上1
100℃以下で仮焼して得たマグネシアに、0.1〜15モル%の塩化物イオンを混合し、600℃
〜1200℃で焼成することを特徴とする表面が平らな立方体状粒子で構成されたマグネシア
粉末の製造法、である。
The present invention also provides (2) a magnesium compound having a purity of 99% by weight or more and having a thermal decomposition temperature of 1 or more.
Magnesia obtained by calcining at 100 ° C. or lower is mixed with 0.1 to 15 mol% of chloride ions, and 600 ° C.
A method for producing magnesia powder composed of cubic particles having flat surfaces, characterized by firing at ˜1200 ° C.

また、本発明は、(3)純度が99重量%以上の塩化マグネシウムの水溶液とマグネシウ
ムイオン以外の金属イオンを含まない塩基性沈殿剤の溶液を混合して溶液中の反応で生成
したマグネシウム化合物を洗浄することなくろ過し、600℃〜1200℃で焼成することを特
徴とする表面が平らな立方体状粒子で構成されたマグネシア粉末の製造法、である。
また、本発明は、(4)酸素を含む気流中で焼成を行うことを特徴とする請求項1ない
し3のいずれかに記載の表面が平らな立方体状粒子で構成されたマグネシア粉末の製造法
、である。
The present invention also provides (3) a magnesium compound produced by a reaction in a solution obtained by mixing an aqueous solution of magnesium chloride having a purity of 99% by weight or more with a solution of a basic precipitant containing no metal ions other than magnesium ions. It is a method for producing magnesia powder composed of cubic particles having flat surfaces, which are filtered without washing and fired at 600 ° C. to 1200 ° C.
Further, the present invention provides (4) a method for producing a magnesia powder composed of cubic particles having flat surfaces according to any one of claims 1 to 3, wherein firing is performed in an air stream containing oxygen. .

本発明は、塩化物イオンを添加した母塩を焼成して表面が平らな立方体状のマグネシア
粉末を製造する方法を提供するものであり、(1)資源的に豊富で安価な化合物を用いて取
り扱いが容易な水溶液反応法で合成した母塩でも立方体状のマグネシア粉末を製造できる
ので、環境負荷が小さくコストが安い、(2)粒子表面が平らで立方体状の粉末を非常に安
価に製造できる、等の効果を奏する。
The present invention provides a method for producing a magnesia powder having a flat surface by firing a mother salt to which chloride ions are added, and (1) using a resource-rich and inexpensive compound. Cubic magnesia powder can be produced even with a mother salt synthesized by an aqueous solution reaction method that is easy to handle, so environmental impact is low and cost is low, and (2) Cubic powder with a flat particle surface can be produced at a very low cost. There are effects such as.

<A> マグネシウム化合物〔母塩〕
本発明の方法に用いる母塩として、塩基性炭酸マグネシウム、炭酸マグネシウム、水酸
化マグネシウム、蓚酸マグネシウム等が例示される。該母塩が硝酸イオンや硫酸イオンの
合計が1モル%以上を含むと、たとえ塩化物イオンを添加しても、その焼成粉末の粒子は丸
みを帯び、硬く凝集するので好ましくない。本発明のマグネシア粉末の製造法では、その
ような母塩は硝酸イオンと硫酸イオンの合計が1モル%以下になるまで洗浄する必要があ
る。
<A> Magnesium compound [mother salt]
Examples of the mother salt used in the method of the present invention include basic magnesium carbonate, magnesium carbonate, magnesium hydroxide, magnesium oxalate and the like. If the mother salt contains a total of 1 mol% or more of nitrate ions and sulfate ions, even if chloride ions are added, the particles of the fired powder are rounded and hard agglomerates, which is not preferable. In the method for producing magnesia powder of the present invention, such a mother salt needs to be washed until the total of nitrate ions and sulfate ions is 1 mol% or less.

母塩の純度が99 重量%よりも悪いと、たとえ本発明の方法でマグネシア粉末を合成して
も、不純物はマグネシア粒子の表面に偏析して粒子は丸みを帯びた多角形になるので好ま
しくない。
If the purity of the mother salt is lower than 99% by weight, even if the magnesia powder is synthesized by the method of the present invention, impurities are segregated on the surface of the magnesia particles and the particles become rounded polygons. .

塩化マグネシウムを焼成すると粉末粒子は硬い凝集を形成するので、本発明の方法に用
いる母塩としては好ましくない。しかしながら、塩化マグネシウムとNa-イオンやK-イオ
ン等の、焼成後に残る不純物を含まない塩基性沈殿剤、例えばアンモニアや炭酸アンモニ
ウム等を反応させて合成した水酸化マグネシウムや炭酸マグネシム等は洗浄することなく
ろ過し乾燥するだけで本発明の特徴を発揮する塩化物イオンを含む母塩となる。
When magnesium chloride is fired, the powder particles form hard agglomerates, which is not preferable as the mother salt used in the method of the present invention. However, wash magnesium chloride and magnesium carbonate synthesized by reacting magnesium chloride with a basic precipitating agent that does not contain impurities such as Na - ion and K - ion, such as ammonia and ammonium carbonate. Only by filtering and drying, a mother salt containing chloride ions that exhibits the characteristics of the present invention is obtained.

Na-イオンやK-イオン等の、焼成後に残る金属イオンを含む塩基性沈殿剤を用いて母塩
を合成した場合、該不純物を除去するために洗浄する必要がある。この場合、上記発明(
2)のように出発物質として塩化マグネシウムを用いても、洗浄後の母塩は本発明の特徴
を発揮するほど塩化物イオンを含まないので、上記発明(1)の製造法に従いあらたに塩
化物イオンを添加する必要がある。
Na - ions and K - such as ions, obtained by combining the mother salt with a basic precipitating agent containing metal ions remaining after firing, it is necessary to wash in order to remove the impurities. In this case, the above invention (
Even if magnesium chloride is used as the starting material as in 2), the washed mother salt does not contain chloride ions to the extent that the characteristics of the present invention are exhibited. Ions need to be added.

<B> マグネシア
本発明の方法に用いるマグネシアは、マグネシウム化合物を仮焼して製造する。焼成温
度が低いほどマグネシアの結晶子は微細になる。塩化物イオンが母塩の形骸を破壊する能
力はマグネシアの結晶子が微細であるほど大きいので、仮焼温度は低いほど好ましい。熱
分解直後のマグネシア結晶子は非常に微細で、その粒子で構成された母塩の形骸は塩化物
イオンにより容易に破壊できるので特に好ましい。仮焼温度が1100℃を超えるとマグネシ
ア粒子は成長し母塩の形骸も強固になり、塩化物イオンを添加して焼成しても該形骸を十
分に破壊できないので好ましくない。
<B> Magnesia Magnesia used in the method of the present invention is produced by calcining a magnesium compound. The lower the firing temperature, the finer the magnesia crystallites. The smaller the magnesia crystallites, the greater the ability of chloride ions to destroy the mother salt form, so the lower the calcining temperature, the better. The magnesia crystallite immediately after pyrolysis is very fine, and the form of the mother salt composed of the particles can be easily destroyed by chloride ions, which is particularly preferable. When the calcining temperature exceeds 1100 ° C., the magnesia particles grow and the form of the mother salt becomes strong, and it is not preferable because the form cannot be sufficiently destroyed even by adding chloride ions and firing.

<C>塩化物イオン
本発明は、塩化物イオンが焼成後に残る母塩の形骸を破壊し、粒子を個々に分離させると同時に、粒子表面が平らな立方体状にする能力を利用する。本発明の方法において、塩化物イオンを含む化合物として塩化マグネシウム、塩酸、塩化アンモニウム等が例示できる。塩化ナトリウムや塩化カリウム等のように、マグネシウムイオン以外の金属イオンを含む塩化物は、該塩化物を添加後に好ましくない金属イオンを除去する方法はないので好ましくない。
<C> Chloride Ion The present invention takes advantage of the ability of chloride ions to break apart the salt form of the mother salt that remains after calcination and separate the particles individually, while at the same time making the particle surface flat. In the method of the present invention, examples of the compound containing chloride ions include magnesium chloride, hydrochloric acid, ammonium chloride and the like. Chlorides containing metal ions other than magnesium ions, such as sodium chloride and potassium chloride, are not preferred because there is no method for removing undesirable metal ions after the chloride is added.

本発明の方法において、母塩と塩化物の混合は、塩化物を母塩へ均一に添加するために
、母塩が分散した純水や有機溶媒、或いはそれらを任意の割合で混合した溶媒と、塩化物
を溶解した純水や有機溶媒、或いはそれらを任意の割合で混合した溶媒を混合する方法が
特に好ましい。
In the method of the present invention, the mother salt and chloride are mixed with pure water or an organic solvent in which the mother salt is dispersed, or a solvent in which they are mixed at an arbitrary ratio in order to uniformly add the chloride to the mother salt. A method of mixing pure water in which chloride is dissolved, an organic solvent, or a solvent in which these are mixed at an arbitrary ratio is particularly preferable.

母塩は焼成過程で熱分解しマグネシアとなるが、塩化物もやはり焼成過程で熱分解する
。母塩と異なり該塩化物は熱分解ですべてガス状になる。このガスに含まれる塩素ガスが
マグネシウム化合物粒子やマグネシア粒子の全表面に拡散して作用するので、粒径が比較
的大きい母塩を用いても、本発明の特徴を発揮するマグネシア粉末が得られる。勿論、経
済的に許す範囲で可能な限り母塩と塩化物を均一に混合すると、より粒度分布が狭いマグ
ネシア粉末が得られるので好ましい。ボールミル等の粉末を混合する機器を用いて、上記
方法で溶媒中に分散させた母塩の凝集を解しながら混合すると、凝集粒子の中心部にあっ
た粒子表面まで塩化物を均一に添加できるので好ましい。
The mother salt is thermally decomposed into magnesia during the firing process, but the chloride is also thermally decomposed during the firing process. Unlike the mother salt, the chloride becomes all gaseous upon pyrolysis. Since chlorine gas contained in this gas diffuses and acts on the entire surface of the magnesium compound particles and magnesia particles, a magnesia powder that exhibits the features of the present invention can be obtained even when a mother salt having a relatively large particle size is used. . Of course, it is preferable to mix the mother salt and chloride as uniformly as possible within the economically acceptable range because a magnesia powder having a narrower particle size distribution can be obtained. Using a device that mixes powder such as a ball mill and mixing while deaggregating the mother salt dispersed in the solvent by the above method, chloride can be uniformly added to the particle surface at the center of the aggregated particles. Therefore, it is preferable.

本発明の方法において、使用する塩化物イオンの添加量は、母塩或いはマグネシアに対
して0.1〜15モル%が好ましい。0.1モル%未満であると、塩化物イオンの添加効果は小さく
、表面が平らな粒子を製造できない。一方、塩化物イオンを15モル%以上添加すると、焼
成により粒子間のネックが成長し、凝集粒子ができるので好ましくない。
In the method of the present invention, the amount of chloride ion to be used is preferably 0.1 to 15 mol% with respect to the mother salt or magnesia. If it is less than 0.1 mol%, the effect of adding chloride ions is small, and particles having a flat surface cannot be produced. On the other hand, addition of 15 mol% or more of chloride ions is not preferable because a neck between particles grows by firing and aggregated particles are formed.

本発明の方法において、使用するマグネシウム化合物に硫酸イオンや硝酸イオン等の塩
化物イオン以外の陰イオンが大量に含まれていると、塩化物イオンの添加効果は弱められ
るので好ましくない。このため、塩化マグネシウム以外のマグネシウム塩水溶液と沈殿剤
が溶解した水溶液を混合してマグネシウム化合物を合成する場合、該化合物を生成後洗浄
して塩化物イオンの添加効果を阻害する硫酸イオンや硝酸イオン等の化学種を、該阻害効
果が認められなくなるまで洗浄で取り除く必要がある。
In the method of the present invention, if the magnesium compound used contains a large amount of anions other than chloride ions such as sulfate ions and nitrate ions, the effect of adding chloride ions is weakened, which is not preferable. Therefore, when synthesizing a magnesium compound by mixing an aqueous solution of a magnesium salt other than magnesium chloride and an aqueous solution in which a precipitant is dissolved, sulfate ions and nitrate ions that inhibit the effect of addition of chloride ions by washing after generation of the compound. It is necessary to remove such chemical species by washing until the inhibitory effect is not recognized.

例えば、阻害する化学種が硫酸イオンや硝酸イオンであると、これらの化学種は洗浄で
1モル%以下に減少させる必要がある。塩化物イオン効果を阻害する化学種の量は化学種に
よって異なるので、化学種に応じて阻害が実効的に認められなくなるほど洗浄で除去する
必要がある。これに対して、塩化マグネシウムを用いて合成したマグネシウム化合物をろ
過して得た試料内には、1)塩化物イオンの添加効果を抑制する化学種が存在しない、2)本
発明の特徴を発揮するほどの量の塩化物イオンが残留するので、該化合物を洗浄すること
なく本発明の特徴を発揮する酸化マグネシウムが製造できるので好ましい。
For example, if the interfering chemical species are sulfate ions or nitrate ions, these chemical species cannot be washed.
It is necessary to reduce it to 1 mol% or less. Since the amount of the chemical species that inhibits the chloride ion effect varies depending on the chemical species, it must be removed by washing so that inhibition is not effectively recognized depending on the chemical species. In contrast, in a sample obtained by filtering a magnesium compound synthesized using magnesium chloride, 1) there is no chemical species that suppresses the effect of addition of chloride ions, 2) the features of the present invention are exhibited. Since an amount of chloride ions remains, it is preferable because magnesium oxide that exhibits the characteristics of the present invention can be produced without washing the compound.

<D>焼成
本発明の塩化物イオンを添加した母塩或いはマグネシアは600℃〜1200℃で焼成する必
要がある。同様に、純度が99重量%以上の塩化マグネシウムと金属イオンを含まない塩基
性沈殿剤を溶液中で反応させて生成したマグネシウム化合物も600℃〜1200℃で焼成する
必要がある。焼成温度が600℃未満では、粒子表面に無視できないほど塩化物イオンが残
留し、粒子は丸みを帯びるので好ましくない。一方、焼成温度が1200℃を超えると強固な
凝集粒子が形成され本発明の特徴が失われるので好ましくない。
<D> Firing The mother salt or magnesia to which the chloride ion of the present invention is added needs to be fired at 600 ° C. to 1200 ° C. Similarly, a magnesium compound produced by reacting a magnesium chloride having a purity of 99% by weight or more with a basic precipitant containing no metal ion in a solution also needs to be calcined at 600 ° C. to 1200 ° C. If the calcination temperature is less than 600 ° C., chloride ions remain on the particle surface to a negligible extent, and the particles are unfavorable. On the other hand, if the firing temperature exceeds 1200 ° C., strong aggregated particles are formed and the characteristics of the present invention are lost.

<E> 焼成雰囲気
本発明の焼成雰囲気として大気、窒素ガス、アルゴンガス、酸素ガスなどが例示される
が、本発明の特徴を発揮する雰囲気であればガスの種類に特に制限されない。経済的に、
大気雰囲気が最も好ましい。窒素ガスやアルゴンガス、水素ガスなどの還元性或いは不活
性なガス雰囲気で焼成すると、母塩の種類によっては焼成粉末に炭素が残ることがある。
そのような母塩でも、酸素ガスを含む雰囲気で焼成すると、母塩内の炭素は酸化されて炭
酸ガスとして取り除くことができるので好ましい。焼成雰囲気として最適な酸素分圧は母
塩の種類や製造条件で異なるので、焼成する母塩が決まったら、予め好ましい酸素ガス分
圧を調べる必要がある。
<E> Firing atmosphere Examples of the firing atmosphere of the present invention include air, nitrogen gas, argon gas, oxygen gas, and the like, but the type of gas is not particularly limited as long as the atmosphere exhibits the characteristics of the present invention. Economically,
An atmospheric atmosphere is most preferred. When firing in a reducing or inert gas atmosphere such as nitrogen gas, argon gas or hydrogen gas, carbon may remain in the fired powder depending on the type of the mother salt.
Even such a mother salt is preferably fired in an atmosphere containing oxygen gas, because carbon in the mother salt is oxidized and can be removed as carbon dioxide gas. Since the optimum oxygen partial pressure as the firing atmosphere varies depending on the type of the mother salt and the production conditions, it is necessary to examine the preferred oxygen gas partial pressure in advance once the mother salt to be fired is determined.

市販の炭酸ナトリウムを純水に溶解し、0.4モル/Lとした水溶液500mLをマグネチックス
ターラーで攪拌しながら、循環恒温槽で25℃に保った。この溶液に、同じく25℃に保った
0.4モル/Lの市販の塩化マグネシウム六水和物500mLを100mL/minの速度で滴下し、30分間
攪拌保持した。その後35℃で18時間熟成させ塩基性炭酸マグネシウムを含むスラリーを得
た。
Commercially available sodium carbonate was dissolved in pure water, and 500 mL of an aqueous solution having a concentration of 0.4 mol / L was kept at 25 ° C. in a circulating thermostat while stirring with a magnetic stirrer. This solution was also kept at 25 ° C.
0.4 mL / L of commercially available magnesium chloride hexahydrate (500 mL) was added dropwise at a rate of 100 mL / min, and the mixture was stirred and held for 30 minutes. Thereafter, the mixture was aged at 35 ° C. for 18 hours to obtain a slurry containing basic magnesium carbonate.

このスラリーをアスピレーターで吸引ろ過した。ろ過後の沈殿を500mLの純水に分散し5
分間攪拌し、再びろ過する操作を6回繰り返して洗浄した。洗浄後ろ過した沈殿の一部は
乾燥し、化学分析を行った。この前駆体の純度は99.9%重量以上であった。
The slurry was suction filtered with an aspirator. Disperse the filtered precipitate in 500 mL of pure water.
The operation of stirring for 5 minutes and filtering again was repeated 6 times for washing. A part of the precipitate filtered after washing was dried and subjected to chemical analysis. The purity of this precursor was 99.9% weight or more.

ろ過した残りの塩基性炭酸マグネシウムの沈殿は湿った状態でエタノール溶媒に分散さ
せヒータ付きマグネチックスターラーで攪拌し、5モル%に相当する塩化アンモニウムを含
む50mLの水溶液を滴下し塩化物イオンを混合した。滴下後、スターラーのプレート部を50
℃に加熱し、アルコールを蒸発させ、乾燥した。十分に乾燥した後、乳鉢でよくほぐし、
管状電気炉で酸素気流中5℃/minの等速昇温下で900℃まで昇温し、4時間保持して焼成し
マグネシア粉末を得た。
The remaining filtered basic magnesium carbonate precipitate is dispersed in an ethanol solvent in a moist state, stirred with a magnetic stirrer with a heater, and 50 mL of an aqueous solution containing 5 mol% of ammonium chloride is added dropwise to mix chloride ions. did. After dropping, remove the stirrer plate
Heated to 0 ° C. to evaporate the alcohol and dry. After thoroughly drying, loosen well in a mortar,
In a tubular electric furnace, the temperature was raised to 900 ° C. at a constant rate of 5 ° C./min in an oxygen stream, and the powder was held for 4 hours and fired to obtain magnesia powder.

図1(A)に、実施例1の方法で調製した塩基性炭酸マグネシウムのSEM写真を示した。
図2(A)に実施例1の方法で900 ℃で焼成したマグネシア粉末のSEM写真を示した。同SE
M写真から、母塩の形骸が完全に破壊されており、粒子は平らな面を持つ立方体状であっ
たことが分かった。
FIG. 1 (A) shows an SEM photograph of basic magnesium carbonate prepared by the method of Example 1.
FIG. 2A shows an SEM photograph of magnesia powder fired at 900 ° C. by the method of Example 1. Same SE
From the M picture, it was found that the salt of the mother salt had been completely destroyed, and the particles were cubes with flat surfaces.

市販の純度が99 重量% 以上の塩基性炭酸マグネシウム10gをエタノールに分散した。マ
グネチックスターラーで攪拌しているこの分散液に、5モル%に相当する塩化アンモニウム
を溶解させた水溶液50mLを滴下し塩化物イオンを混合した。窒素気流中で攪拌しながら加
熱してエタノールを蒸発させた。
Commercially available 10 g of basic magnesium carbonate having a purity of 99% by weight or more was dispersed in ethanol. To this dispersion stirred with a magnetic stirrer, 50 mL of an aqueous solution in which ammonium chloride corresponding to 5 mol% was dissolved was dropped and mixed with chloride ions. The ethanol was evaporated by heating with stirring in a nitrogen stream.

窒素気流中で十分に乾燥した後、粉末を乳鉢で軽くほぐし、電気炉に入れ酸素気流中90
0℃で4時間焼成した。焼成粉末粒子は表面が平らで立方体状をしており、さらにそれらの
粒子は分離していた。化学分析の結果、塩化物イオンは0.05重量%であり、その他の金属
系不純物は0.01重量%以下であった。
After thoroughly drying in a nitrogen stream, gently loosen the powder in a mortar and place it in an electric furnace.
Baked at 0 ° C. for 4 hours. The calcined powder particles had a flat surface and a cubic shape, and the particles were separated. As a result of chemical analysis, chloride ion was 0.05% by weight, and other metal impurities were 0.01% by weight or less.

実施例1の方法で調製した塩基性炭酸マグネシウムを酸素気流中、600℃で焼成してマ
グネシアを得た。このマグネシア粉末5gを150mLのエタノール中に分散し5モル%に相当す
る塩化マグネシウムを溶解させた50mLの水溶液を滴下し塩化物イオンを混合した。エタノ
ールを蒸発・乾燥させた後に酸素気流中900℃で4時間焼成した。得られたマグネシア粒子
は表面が平らな立方体状であった。
The basic magnesium carbonate prepared by the method of Example 1 was calcined at 600 ° C. in an oxygen stream to obtain magnesia. 50 g of an aqueous solution in which 5 g of this magnesia powder was dispersed in 150 mL of ethanol and magnesium chloride corresponding to 5 mol% was dissolved was dropped and mixed with chloride ions. After evaporating and drying ethanol, it was calcined at 900 ° C. for 4 hours in an oxygen stream. The obtained magnesia particles were in the shape of a cube with a flat surface.

市販の比較的大きい純度が99 重量% 以上の炭酸マグネシウムをエタノールに分散し、この分散液に5モル%に相当する塩化マグネシウムを溶解させた50mLの水溶液を滴下し塩化物イオンを混合した。エタノールを蒸発・乾燥させた後に酸素気流中900℃で4時間焼成した。得られたマグネシア粒子は表面が平らで立方体状であった。   Commercially available magnesium carbonate having a relatively high purity of 99 wt% or more was dispersed in ethanol, and 50 mL of an aqueous solution in which magnesium chloride corresponding to 5 mol% was dissolved was added dropwise to this dispersion, and chloride ions were mixed. After evaporating and drying ethanol, it was calcined at 900 ° C. for 4 hours in an oxygen stream. The obtained magnesia particles had a flat surface and a cubic shape.

市販の純度が99 重量% 以上の塩化マグネシウム六水和物を純水に溶解して作製した0.4
モル/Lの溶液500mLをヒータ付のマグネチックスターラーで攪拌しながら90℃に保った。
この溶液に塩基性沈殿剤として純水で薄めて作製した1規定のアンモニア水溶液500mLを10
0mL/minの速度で滴下し、水酸化マグネシウムの沈殿を合成し1時間攪拌保持し、アスピ
レーターで吸引ろ過した。ろ過した試料を乾燥し、乳鉢でよくほぐした後に管状電気炉で
酸素気流中5℃/minの等速昇温で900℃まで昇温し、4時間保持してマグネシア粉末を得た
。得られたマグネシア粒子は分離しており、表面が平らな立方体状をしていた。
(比較例1)
A commercially available magnesium chloride hexahydrate having a purity of 99% by weight or more was prepared by dissolving in pure water.
500 mL of a mol / L solution was kept at 90 ° C. while stirring with a magnetic stirrer with a heater.
10 mL of 1N aqueous ammonia solution prepared by diluting with pure water as a basic precipitating agent was added to this solution.
The solution was added dropwise at a rate of 0 mL / min to synthesize a precipitate of magnesium hydroxide, stirred for 1 hour, and suction filtered with an aspirator. The filtered sample was dried and loosened in a mortar, and then heated to 900 ° C. at a constant rate of 5 ° C./min in an oxygen stream in a tubular electric furnace, and held for 4 hours to obtain a magnesia powder. The obtained magnesia particles were separated and had a cube shape with a flat surface.
(Comparative Example 1)

実施例5の方法で調製した水酸化マグネシウム沈殿をろ過後、純水に分散しろ過する操
作を4回繰り返した後にろ過して該水酸化マグネシウムから塩化物イオンを除去した。該
水酸化物を実施例2の条件で焼成した。図1(B)に比較例1の方法で調製した水酸化マグ
ネシウムのSEM写真を示した。図2(B)に比較例1の方法で製造したマグネシア粉末のSEM
写真を示した。図1(B)と図2(B)の比較から分かるように、母塩の形骸が認められた。
(比較例2)
The magnesium hydroxide precipitate prepared by the method of Example 5 was filtered, then dispersed in pure water and filtered four times, and then filtered to remove chloride ions from the magnesium hydroxide. The hydroxide was calcined under the conditions of Example 2. FIG. 1B shows an SEM photograph of magnesium hydroxide prepared by the method of Comparative Example 1. Fig. 2 (B) shows the SEM of the magnesia powder produced by the method of Comparative Example 1.
A photograph is shown. As can be seen from the comparison between FIG. 1 (B) and FIG. 2 (B), a form of mother salt was observed.
(Comparative Example 2)

塩基性炭酸マグネシウムの沈殿に20モル%の塩化マグネシウムを添加する以外は実施例
1の方法でマグネシア粉末を製造した。丸みのあるマグネシア粒子が凝集を形成していた
Examples except adding 20 mol% magnesium chloride to the precipitation of basic magnesium carbonate
The magnesia powder was manufactured by the method of 1. Rounded magnesia particles formed agglomerates.

本発明の製造方法は、透明焼結体用の原料粉体や各種絶縁材料用フィラー、機能性樹脂
フィラー、PDP保護膜用原料、PDP蛍光体用原料、誘電体用原料に適した一次粒子が分離し
た状態で存在して、しかも粒子表面が平らな立方体状の微細粉末の製造に有用である。
The production method of the present invention comprises a raw material powder for a transparent sintered body, a filler for various insulating materials, a functional resin filler, a raw material for a PDP protective film, a raw material for a PDP phosphor, and a primary particle suitable for a raw material for a dielectric. It is useful for producing a cubic fine powder which exists in a separated state and has a flat particle surface.

実施例1の方法で製造した塩基性炭酸マグネシム(A)と比較例1の方法で製造した水酸化マグネシウム(B)の図面代用SEM写真である。2 is a drawing-substitute SEM photograph of basic magnesium carbonate (A) produced by the method of Example 1 and magnesium hydroxide (B) produced by the method of Comparative Example 1. FIG. 実施例1の方法で製造したマグネシア粉末(A)及び比較例1の方法で製造したマグネシア粉末(B)の図面代用SEM写真である。It is a drawing-substitute SEM photograph of the magnesia powder (A) manufactured by the method of Example 1 and the magnesia powder (B) manufactured by the method of Comparative Example 1.

Claims (4)

焼成してマグネシアになる純度が99 重量% 以上のマグネシウム化合物に、0.1〜15モル%
の塩化物イオンを混合し、600℃〜1200℃で焼成することを特徴とする表面が平らな立方
体状粒子で構成されたマグネシア粉末の製造法。
0.1-15 mol% of magnesium compound with a purity of 99% by weight or more when calcined to become magnesia
A method for producing a magnesia powder composed of cubic particles having a flat surface, characterized by mixing the above chloride ions and firing at 600 ° C. to 1200 ° C.
純度が99 重量% 以上のマグネシウム化合物を熱分解温度以上1100℃以下で仮焼して得た
マグネシアに、0.1〜15モル%の塩化物イオンを混合し、600℃〜1200℃で焼成することを
特徴とする表面が平らな立方体状粒子で構成されたマグネシア粉末の製造法。
Magnesia obtained by calcining a magnesium compound with a purity of 99% by weight or more at a thermal decomposition temperature of 1100 ° C. or less is mixed with 0.1 to 15 mol% of chloride ions and calcined at 600 ° C. to 1200 ° C. A process for producing magnesia powder comprising cubic particles with a flat surface.
純度が99重量%以上の塩化マグネシウムの水溶液とマグネシウムイオン以外の金属イオン
を含まない塩基性沈殿剤の溶液を混合して溶液中の反応で生成したマグネシウム化合物を
洗浄することなくろ過し、600℃〜1200℃で焼成することを特徴とする表面が平らな立方
体状粒子で構成されたマグネシア粉末の製造法。
Mix an aqueous solution of magnesium chloride with a purity of 99% by weight or more and a solution of a basic precipitant containing no metal ions other than magnesium ions, and filter the magnesium compound produced by the reaction in the solution without washing, 600 ° C A method for producing magnesia powder composed of cubic particles having a flat surface, characterized by firing at ~ 1200 ° C.
酸素を含む気流中で焼成を行うことを特徴とする請求項1ないし3のいずれかに記載の表
面が平らな立方体状粒子で構成されたマグネシア粉末の製造法。
4. The method for producing a magnesia powder comprising cubic particles having flat surfaces according to claim 1, wherein the firing is performed in an air stream containing oxygen.
JP2004213850A 2004-07-22 2004-07-22 Method for producing cubic magnesia powder Expired - Fee Related JP4873680B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004213850A JP4873680B2 (en) 2004-07-22 2004-07-22 Method for producing cubic magnesia powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004213850A JP4873680B2 (en) 2004-07-22 2004-07-22 Method for producing cubic magnesia powder

Publications (3)

Publication Number Publication Date
JP2006036544A true JP2006036544A (en) 2006-02-09
JP2006036544A5 JP2006036544A5 (en) 2007-09-06
JP4873680B2 JP4873680B2 (en) 2012-02-08

Family

ID=35901936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004213850A Expired - Fee Related JP4873680B2 (en) 2004-07-22 2004-07-22 Method for producing cubic magnesia powder

Country Status (1)

Country Link
JP (1) JP4873680B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008239475A (en) * 2007-03-01 2008-10-09 Ube Material Industries Ltd Chlorine-containing magnesium oxide powder
WO2010024389A1 (en) * 2008-08-29 2010-03-04 宇部マテリアルズ株式会社 Light-emitting laminate
JP2010077425A (en) * 2008-08-29 2010-04-08 Ube Material Industries Ltd Phosphor powder composition
JP2010138067A (en) * 2006-02-21 2010-06-24 Ube Material Industries Ltd Method for producing fluorine-containing magnesium oxide powder
JP2010163357A (en) * 2008-12-19 2010-07-29 Ube Material Industries Ltd Magnesium oxide fine powder and production method thereof
KR101173728B1 (en) * 2007-01-30 2012-08-13 다테호 가가쿠 고교 가부시키가이샤 Cubic magnesium oxide powder and method for producing the same
CN105540622A (en) * 2015-12-31 2016-05-04 上海应用技术学院 Recycling and re-preparation method of silicon-steel level magnesium oxide
CN110028089A (en) * 2019-03-18 2019-07-19 辽宁工程技术大学 A kind of serpentine tailing prepares method of magnesium oxide

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5816918A (en) * 1981-07-24 1983-01-31 Nissan Motor Co Ltd Dual air conditioner for vehicle
JPS60161328A (en) * 1984-01-27 1985-08-23 Natl Inst For Res In Inorg Mater Preparation of magnesia powder having high purity
JPS6311516A (en) * 1986-07-02 1988-01-19 Natl Inst For Res In Inorg Mater Production of high purity magnesia powder having anti-hydration property
JPS63107811A (en) * 1986-10-27 1988-05-12 Tdk Corp Method for purifying alkaline earth metal oxide
JPH08268713A (en) * 1995-03-02 1996-10-15 Tateho Chem Ind Co Ltd Refining method of magnesium oxide
JP2000034119A (en) * 1998-07-15 2000-02-02 Ube Material Industries Ltd Magnesium oxide and its production
JP2003002640A (en) * 2001-06-18 2003-01-08 Ube Material Industries Ltd Magnesium-containing oxide powder
JP2004244313A (en) * 2004-04-19 2004-09-02 Ube Material Industries Ltd Magnesium oxide

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5816918A (en) * 1981-07-24 1983-01-31 Nissan Motor Co Ltd Dual air conditioner for vehicle
JPS60161328A (en) * 1984-01-27 1985-08-23 Natl Inst For Res In Inorg Mater Preparation of magnesia powder having high purity
JPS6311516A (en) * 1986-07-02 1988-01-19 Natl Inst For Res In Inorg Mater Production of high purity magnesia powder having anti-hydration property
JPS63107811A (en) * 1986-10-27 1988-05-12 Tdk Corp Method for purifying alkaline earth metal oxide
JPH08268713A (en) * 1995-03-02 1996-10-15 Tateho Chem Ind Co Ltd Refining method of magnesium oxide
JP2000034119A (en) * 1998-07-15 2000-02-02 Ube Material Industries Ltd Magnesium oxide and its production
JP2003002640A (en) * 2001-06-18 2003-01-08 Ube Material Industries Ltd Magnesium-containing oxide powder
JP2004244313A (en) * 2004-04-19 2004-09-02 Ube Material Industries Ltd Magnesium oxide

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6010063513, 池上隆康 他, "MgOの仮焼及び焼結におけるハロゲンイオンの添加効果", 窯業協会誌, 19780301, Vol.86,Issue 3, pp.97−101, JP, 社団法人窯業協会 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010138067A (en) * 2006-02-21 2010-06-24 Ube Material Industries Ltd Method for producing fluorine-containing magnesium oxide powder
KR101173728B1 (en) * 2007-01-30 2012-08-13 다테호 가가쿠 고교 가부시키가이샤 Cubic magnesium oxide powder and method for producing the same
JP2008239475A (en) * 2007-03-01 2008-10-09 Ube Material Industries Ltd Chlorine-containing magnesium oxide powder
JP2013047176A (en) * 2007-03-01 2013-03-07 Ube Material Industries Ltd Chlorine-containing magnesium oxide powder
KR101492628B1 (en) * 2007-03-01 2015-02-12 우베 마테리알즈 가부시키가이샤 Chlorine-containing magnesium oxide powder
JP2010077425A (en) * 2008-08-29 2010-04-08 Ube Material Industries Ltd Phosphor powder composition
WO2010024389A1 (en) * 2008-08-29 2010-03-04 宇部マテリアルズ株式会社 Light-emitting laminate
CN102203896A (en) * 2008-08-29 2011-09-28 宇部材料工业株式会社 Light-emitting laminate
KR101573104B1 (en) 2008-08-29 2015-11-30 우베 마테리알즈 가부시키가이샤 Light-emitting laminate
JP2010163357A (en) * 2008-12-19 2010-07-29 Ube Material Industries Ltd Magnesium oxide fine powder and production method thereof
KR101388362B1 (en) * 2008-12-19 2014-04-22 우베 마테리알즈 가부시키가이샤 Fine magnesium oxide powder and preparation thereof
CN105540622A (en) * 2015-12-31 2016-05-04 上海应用技术学院 Recycling and re-preparation method of silicon-steel level magnesium oxide
CN110028089A (en) * 2019-03-18 2019-07-19 辽宁工程技术大学 A kind of serpentine tailing prepares method of magnesium oxide

Also Published As

Publication number Publication date
JP4873680B2 (en) 2012-02-08

Similar Documents

Publication Publication Date Title
JP5016993B2 (en) Magnesium oxide particle aggregate and method for producing the same
JP5069865B2 (en) High purity magnesium hydroxide powder and method for producing the same
JP2005519831A (en) Method for producing nano-sized and sub-micron sized lithium transition metal oxides
JP4873680B2 (en) Method for producing cubic magnesia powder
JP5034350B2 (en) Method for producing zirconium oxide powder
WO2013039108A1 (en) Method for producing barium titanyl oxalate and method for producing barium titanate
JPH0137331B2 (en)
CN103964475B (en) Cubic magnesium oxide powder and method for making thereof
TWI386369B (en) Magnesium oxide powder
JP6190964B2 (en) Method for producing platinum alloy powder
WO2020195721A1 (en) Spinel powder
CN111777097A (en) Preparation method of high-purity praseodymium titanate
JP5729926B2 (en) Gallium oxide powder
JP4849793B2 (en) Tabular strontium carbonate particles
JP2005082462A (en) Ultrafine particle of scandium compound and its manufacture method
JPH11130428A (en) Easily sinterable yttrium aluminum garnet powder
JPH02120214A (en) Production of aluminum nitride powder
JPH04231310A (en) Manufacture of aluminum nitride
JP2005179116A (en) METHOD FOR MANUFACTURING PARTICULATE of alpha-ALUMINA
JP3125067B2 (en) Method for producing transparent yttria sintered body
JP5188267B2 (en) Heat resistant ceramics and insulation
KR20140115973A (en) Highly crystallized particles and production method thereof
JP2016172658A (en) Manufacturing method of nickel oxide powder
TW202344305A (en) Resin hydrogenation catalyst and method for manufacturing same
JP2011213508A (en) Gallium oxide powder

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070720

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees