JP2006032166A - Cathode carbon material for rechargeable lithium-ion battery, and its manufacturing method - Google Patents

Cathode carbon material for rechargeable lithium-ion battery, and its manufacturing method Download PDF

Info

Publication number
JP2006032166A
JP2006032166A JP2004210464A JP2004210464A JP2006032166A JP 2006032166 A JP2006032166 A JP 2006032166A JP 2004210464 A JP2004210464 A JP 2004210464A JP 2004210464 A JP2004210464 A JP 2004210464A JP 2006032166 A JP2006032166 A JP 2006032166A
Authority
JP
Japan
Prior art keywords
carbon material
rice
negative electrode
ion secondary
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004210464A
Other languages
Japanese (ja)
Other versions
JP4724390B2 (en
Inventor
Masaji Sasaki
正司 佐々木
Takeshi Tenma
毅 天間
Munehiro Kadowaki
宗広 門脇
Hironori Ozawa
浩典 小沢
Kazunori Ozawa
和典 小沢
Shiyuujun Kano
秀順 鹿野
Kanji Matsuda
莞爾 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanwa Yushi Co Ltd
Enax Inc
Aomori Prefecture
Original Assignee
Sanwa Yushi Co Ltd
Enax Inc
Aomori Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanwa Yushi Co Ltd, Enax Inc, Aomori Prefecture filed Critical Sanwa Yushi Co Ltd
Priority to JP2004210464A priority Critical patent/JP4724390B2/en
Publication of JP2006032166A publication Critical patent/JP2006032166A/en
Application granted granted Critical
Publication of JP4724390B2 publication Critical patent/JP4724390B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a negative electrode carbon material for a lithium-ion secondary battery in which the negative electrode carbon material for the lithium-ion secondary battery which is as good as conventional ones can be manufactured more inexpensively by utilizing effectively Chujiro bran or Jojiro bran (mixture of aleurone layer and a part of endosperm) of rice. <P>SOLUTION: This is the negative electrode carbon material for the lithium-ion secondary battery in which a rice starch part in which pericarp and testa are removed from brown rice is calcined. The rice starch part is preferably the Chujiro bran or Jojiro bran in polishing the brown rice, and a powder X-ray (CuKα) diffractive figure of the negative electrode carbon material for the lithium-ion secondary battery has preferably a relatively broad peak in 2θ=40-50° and a sharper peak in 2θ=42-44°. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、リチウムイオン二次電池用負極炭素材料、及びその製造方法に関する。より詳しくは、米澱粉部位を原料に用いて、より原料コスト軽減効果に優れたリチウムイオン二次電池用負極炭素材料、及びその製造方法に関する。   The present invention relates to a negative electrode carbon material for a lithium ion secondary battery and a method for producing the same. More specifically, the present invention relates to a negative electrode carbon material for a lithium ion secondary battery that uses a rice starch portion as a raw material and is more excellent in raw material cost reduction effect, and a method for producing the same.

本明細書において米澱粉部位とは、米由来の澱粉部位であって、中白糠又は上白糠と呼ばれる、澱粉粒子を多く含む胚乳の部分を云う。   In the present specification, the rice starch portion refers to a portion of endosperm containing a large amount of starch particles, which is a starch portion derived from rice and is referred to as middle white rice cake or upper white rice cake.

特開2001−266850号公報JP 2001-266850 A

特許文献1には、リチウムイオン二次電池用負極炭素材料の原料として米糠を用いる技術が開示されている。   Patent Document 1 discloses a technique of using rice bran as a raw material for a negative electrode carbon material for a lithium ion secondary battery.

籾は稲の種子であり、この籾から籾殻を除いたものが玄米である。玄米の組織は、果皮、種皮、胚及び胚乳からなり、胚乳は、外層の糊粉層及び内層の澱粉貯蔵組織からなる。また、果皮及び種皮の部分を赤糠とも云う。玄米の各組織の質量割合は、外側から、赤糠が5〜7%、胚が2〜3%、胚乳が90〜93%である。   Rice bran is rice seed, and brown rice is obtained by removing rice husk from this rice bran. The brown rice tissue consists of pericarp, seed coat, embryo and endosperm, and the endosperm consists of an outer paste layer and an inner starch storage tissue. Also, the pericarp and seed coat are also called red coral. From the outside, the mass ratio of each tissue of brown rice is 5-7% for red cocoons, 2-3% for embryos, and 90-93% for endosperm.

なお、精米歩合Lが100〜91%の玄米の表層部分を赤糠層、精米歩合Lが91〜81%の胚乳の外側部分をサピオ層、精米歩合Lが81〜66%の胚乳の内側部分を白糠層、と呼ぶ場合もある。   The surface layer portion of brown rice having a rice polishing ratio L of 100-91% is the red rice layer, the outer part of the endosperm having a rice polishing ratio L of 91-81% is the sapio layer, and the inner part of the endosperm having a rice polishing ratio L of 81-66% Is sometimes called a birch layer.

一般に、玄米の精米過程において、精米度合を精米歩合Lで表現することができる。精米歩合Lとは玄米質量に対する白米質量の割合を云う(式1)。   Generally, in the process of brown rice polishing, the degree of rice polishing can be expressed by the rice polishing ratio L. The polished rice ratio L refers to the ratio of the white rice mass to the brown rice mass (Formula 1).

(式1) 精米歩合L(%)=(白米質量÷玄米質量)×100 (Formula 1) Rice polishing ratio L (%) = (white rice mass ÷ brown rice mass) × 100

また、精白歩合とは玄米質量に対する研削質量の割合を云う(式2)。   The milling ratio is the ratio of the grinding mass to the brown rice mass (Formula 2).

(式2) 精白歩合(%)=(研削質量÷玄米質量)×100 (Formula 2) Polishing rate (%) = (grinding mass ÷ brown rice mass) × 100

玄米質量とは白米質量と研削質量の和である(式3)。   The brown rice mass is the sum of the white rice mass and the grinding mass (Formula 3).

(式3) 白米質量+研削質量=玄米質量 (Formula 3) White rice mass + grinding mass = brown rice mass

したがって、玄米の精米度合については、常に次の関係が成立する(式4)。   Therefore, the following relationship is always established for the degree of brown rice polishing (Formula 4).

(式4) 精米歩合L(%)+精白歩合(%)=100(%) (Formula 4) Milling ratio L (%) + Milling ratio (%) = 100 (%)

ご飯として食べる飯米の精米歩合Lは一般に92〜90%程である。清酒醸造には精米歩合Lが70〜50%の白米が通常使用されており、精米歩合Lを低くすれば製成酒の品質は一般に向上する。精米歩合Lが90〜70%(精白歩合10〜30%)の部分を中白糠、70〜50%(精白歩合30〜50%)の部分を上白糠と云う。   The rice polishing ratio L of the rice that is eaten as rice is generally about 92 to 90%. For sake brewing, white rice having a rice polishing ratio L of 70 to 50% is usually used. If the rice polishing ratio L is lowered, the quality of the sake is generally improved. The portion where the rice polishing ratio L is 90 to 70% (milling rate 10 to 30%) is called middle white rice cake, and the portion 70 to 50% (milling rate 30 to 50%) is called upper white rice cake.

特許文献1では、米糠から油を取り去ったことから分かるように、米糠のうち果皮及び種皮の部分、すなわち、通称赤糠と呼ばれる部分を原料として用いて、熱硬化性樹脂と共に焼成して、負極の炭素材料とした。ここでは、油を取り去った状態の米糠のカスと熱硬化樹脂であるフェノール樹脂を混ぜ、その混ぜたものを焼成している。   In Patent Document 1, as can be seen from the removal of the oil from the rice bran, the part of the pericarp and seed coat of the rice bran, that is, the part commonly referred to as red rice bran, is used as a raw material and is baked with a thermosetting resin. Carbon material. Here, the rice bran residue from which the oil has been removed is mixed with a phenol resin, which is a thermosetting resin, and the mixture is baked.

しかしながら、上記特許文献1に開示された実施例の場合には、米糠から油を取り去る工程が必要で、そうでないと焼成時に水分以外の大量の揮発物が浮遊して炉内に付着し、悪臭などがあり実用的でない。焼成作業後の電気炉メンテナンスのコスト負担も問題である。更に、フェノール樹脂を用いているが、米糠に比べて価格が高く、植物残渣のひとつである米糠を利用することによるコスト削減化のメリットが享受できない。   However, in the case of the embodiment disclosed in Patent Document 1, a process for removing oil from rice bran is necessary, otherwise a large amount of volatiles other than moisture floats and adheres to the furnace during firing, causing malodor It is not practical. The cost burden of electric furnace maintenance after firing is also a problem. Furthermore, although phenol resin is used, the price is higher than that of rice bran, and the merit of cost reduction by using rice bran which is one of plant residues cannot be enjoyed.

米糠の用途として、中白糠や上白糠は飼料や菓子原料に二次利用もされているが、更なる有効利用の用途開発が望まれている。   As for the use of rice bran, middle white rice cake and upper white rice cake are also used for feed and confectionery raw materials, but further development of effective use is desired.

そこで、本発明は上記従来技術の問題点に鑑みてなされたものであり、本発明が解決しようとする課題は、米の中白糠又は上白糠を有効利用した、従来品と同等以上の性能のリチウムイオン二次電池用負極炭素材料であって、焼成時の悪臭の問題や電気炉メンテナンスの問題を解決するとともに製造コストを改善し、より安価に製造することのできるリチウムイオン二次電池用負極炭素材料を提供することにある。   Accordingly, the present invention has been made in view of the above-mentioned problems of the prior art, and the problem to be solved by the present invention is that lithium having a performance equal to or better than that of a conventional product using rice white birch or white birch effectively. A negative electrode carbon material for lithium ion secondary batteries, which is a negative electrode carbon material for ion secondary batteries, which solves the problem of bad odor during firing and the problem of electric furnace maintenance and can be manufactured at a lower cost by improving the manufacturing cost. To provide materials.

本発明者等は、鋭意検討の結果、玄米から米澱粉部位を取得し、これを焼成することによって、焼成時の悪臭の問題や電気炉メンテナンスの問題を解決するとともに、従来品に比べて同等以上の性能のリチウムイオン二次電池用負極炭素材料を低コストに製造できることを見出し、本発明を完成した。   As a result of intensive studies, the present inventors have acquired a rice starch portion from brown rice and firing it to solve the problem of bad odor during firing and the problem of electric furnace maintenance, and are equivalent to conventional products. The inventors have found that a negative electrode carbon material for lithium ion secondary batteries having the above performance can be produced at low cost, and completed the present invention.

すなわち、本発明のリチウムイオン二次電池用負極炭素材料は、玄米から果皮及び種皮が取り除かれた米澱粉部位を、焼成してなることを特徴とする。   That is, the negative electrode carbon material for a lithium ion secondary battery of the present invention is characterized in that it is obtained by baking a rice starch portion from which pericarp and seed coat are removed from brown rice.

米由来の澱粉部位である胚乳の澱粉貯蔵組織では、ひとつのアミロプラストに、通常、50〜80個くらいの多くの澱粉粒子が密に詰まっている。米の澱粉粒子は、比較的大きな長径40μm程のアミロプラストでは径6〜10μm、小さなアミロプラストでは径1μmぐらいの大きさである。すなわち、米の澱粉粒子の大きさは一般に10μm以下であり、他の植物由来の澱粉と比べてかなり小さい。したがって、焼成後の炭素粒子径(一次粒子径)を小さくしてリチウムイオン二次電池用負極炭素材料としての比表面積を大きくすることができる。   In the starch storage tissue of endosperm, which is a starch part derived from rice, normally, about 50 to 80 starch particles are densely packed in one amyloplast. Rice starch particles are about 6 to 10 μm in diameter for amyloplasts with a relatively large major axis of about 40 μm, and about 1 μm in diameter for small amyloplasts. That is, the size of rice starch particles is generally 10 μm or less, which is considerably smaller than starches derived from other plants. Therefore, the specific surface area as the negative electrode carbon material for a lithium ion secondary battery can be increased by reducing the carbon particle diameter (primary particle diameter) after firing.

前記米澱粉部位は玄米を精米した際の中白糠又は上白糠であることが好ましく、該リチウムイオン二次電池用負極炭素材料の粉末X線(CuKα)回折図が、2θ=40〜50°に比較的ブロードなピークと、2θ=42〜44°に、よりシャープなピークとを有することが好ましい。2θ=42〜44°に、このシャープなピークを有する場合には、この負極炭素材料を用いてリチウムイオン二次電池を構成したときに、初回の充放電効率が改善し、より良い性能を示した。このシャープなピークをノイズと容易に区別するためには、前記シャープなピークの強度Aの前記ブロードなピークの強度Bに対する比A/Bが1.2以上であることが好ましく、1.4以上であることがより好ましい。また、前記ブロードなピークの半価幅が3.5〜5.5°であり、前記シャープなピークの半価幅が0.30〜0.45°であることが好ましい。   It is preferable that the rice starch part is middle white rice cake or upper white rice cake when brown rice is polished, and the powder X-ray (CuKα) diffraction pattern of the negative electrode carbon material for lithium ion secondary battery is compared with 2θ = 40-50 °. It is preferable to have a broad peak and a sharper peak at 2θ = 42 to 44 °. In the case of having this sharp peak at 2θ = 42 to 44 °, when a lithium ion secondary battery is configured using this negative electrode carbon material, the first charge / discharge efficiency is improved and better performance is exhibited. It was. In order to easily distinguish this sharp peak from noise, the ratio A / B of the sharp peak intensity A to the broad peak intensity B is preferably 1.2 or more, and 1.4 or more. It is more preferable that The half-width of the broad peak is preferably 3.5 to 5.5 °, and the half-width of the sharp peak is preferably 0.30 to 0.45 °.

本発明のリチウムイオン二次電池用負極炭素材料は、他の植物由来の澱粉に比べてより小さな澱粉粒子からなる澱粉部位を原料として用いており、焼成した後も、リチウムイオン二次電池用負極炭素材料を構成する微細粒子をより小さくすることができ、粒子間の距離を短く、微細構造をより緻密にすることができる。その微細構造が(110)面を形成し、42〜44°にシャープなピークを形成したものと考えられる。焼成後の微細粒子を小さくし、粒子間の距離を狭く緻密な構造とすることができれば、ハードカーボンのような網目構造にした場合により薄い炭素材料でリチウムイオン二次電池用の負極を構成することができる。また、同じ体積の負極について比較すれば、炭素材料の微細構造が緻密な分、網目組織が増え、またリチウムイオンが入り込みやすい空隙の容積も増えることから高容量が期待できる。   The negative electrode carbon material for a lithium ion secondary battery of the present invention uses a starch portion made of starch particles smaller than other plant-derived starch as a raw material, and after firing, a negative electrode for a lithium ion secondary battery The fine particles constituting the carbon material can be made smaller, the distance between the particles can be shortened, and the fine structure can be made denser. It is considered that the fine structure formed a (110) plane and formed a sharp peak at 42 to 44 °. If the fine particles after firing can be made small and the distance between the particles can be made into a dense structure, a negative electrode for a lithium ion secondary battery can be formed with a thinner carbon material when a network structure such as hard carbon is formed. be able to. Further, when comparing negative electrodes having the same volume, a high capacity can be expected because the fine structure of the carbon material increases the network structure and the volume of voids into which lithium ions can easily enter.

本発明のリチウムイオン二次電池用負極炭素材料では、澱粉粒子を多く含有する部位を用いるので、赤糠にフェノール樹脂を加えて炭素材料としたものに比べて焼成後の組織が微細で電池特性も改善される。また、石油系ピッチから製造される炭素材料に比べても製造コスト上有利である。   In the negative electrode carbon material for lithium ion secondary battery of the present invention, since a portion containing a large amount of starch particles is used, the structure after firing is finer than that obtained by adding phenol resin to red rice cake, and battery characteristics. Will be improved. In addition, it is advantageous in terms of production cost as compared with a carbon material produced from petroleum pitch.

また、本発明のリチウムイオン二次電池用負極炭素材料の製造方法は、玄米から果皮及び種皮を取り除いて、米澱粉部位を取得する第一工程と、該米澱粉部位を焼成する第二工程と、を備えたことを特徴とする。第一工程で果皮及び種皮を取り除いているので、第二工程で焼成する米澱粉部位に油分はなく、大量の揮発分が浮遊することはない。例えば清酒製造の精米工程において、米糠のうち果皮及び種皮と他の米澱粉部位とを選別するだけで、副産物として中白糠又は上白糠を取得する第一工程とすることができる。これにより原料コストを格段に削減することができる。第二工程で米澱粉部位を焼成して、リチウムイオン保持に優れた緻密な網目構造を有するリチウムイオン二次電池用負極炭素材料とすることができる。第二工程の焼成は、窒素ガス又はアルゴンガス等の不活性ガス中で行うことができる。   Moreover, the method for producing a negative electrode carbon material for a lithium ion secondary battery of the present invention includes a first step of removing the pericarp and seed coat from brown rice to obtain a rice starch portion, and a second step of baking the rice starch portion. , Provided. Since the pericarp and seed coat are removed in the first step, there is no oil in the rice starch portion baked in the second step, and a large amount of volatile matter does not float. For example, in the rice milling process for sake production, it is possible to use the first step of obtaining medium white lees or upper white lees as a by-product simply by selecting the pericarp and seed coat and other rice starch parts from the rice bran. Thereby, raw material cost can be reduced significantly. In the second step, the rice starch portion can be fired to obtain a negative electrode carbon material for a lithium ion secondary battery having a dense network structure excellent in lithium ion retention. Firing in the second step can be performed in an inert gas such as nitrogen gas or argon gas.

前記第一工程は、玄米から果皮及び種皮を取り除いた後に、更に糊粉層を取り除く工程を含むことが好ましい。中白糠には一部の糊粉層と胚乳が含まれる。胚乳のみの上白糠の方が、焼成の後に得られる負極炭素材料の組織の均一化・微細化の点で好ましい。ただし、中白糠と上白糠とでは入手コストが上白糠の方が高く、中白糠若しくは上白糠のいずれを原料として用いるか、又は両者を混合して用いるかは、コストとのバランスによる。   The first step preferably includes a step of further removing the paste powder layer after removing the pericarp and seed coat from the brown rice. Medium white cocoons contain some paste layers and endosperm. An upper white rice cake containing only endosperm is preferable in terms of homogenization and refinement of the structure of the negative electrode carbon material obtained after firing. However, the cost of obtaining the white birch is higher for the white birch and the white birch. Whether the white birch or the white birch is used as a raw material or a mixture of both depends on the balance with cost.

更に、前記第一工程は、玄米を精米する際の中白糠又は上白糠に相当する米澱粉部位を取得する工程であって、前記第二工程が、前記中白糠又は前記上白糠に相当する米澱粉部位を焼成する工程を含むことが好ましい。このとき、前記米澱粉部位が粉体状であって、第一工程は玄米から果皮及び種皮を取り除いて粉体状の米澱粉部位を取得する工程とすることができ、さらに、この粉体状の米澱粉部位をペレット状に成形して、このペレット状の米澱粉部位を焼成することにより、短時間に均質に焼成することが容易になる。   Further, the first step is a step of obtaining a rice starch portion corresponding to the middle white rice bran or the upper white rice bran when the brown rice is polished, and the second step is a rice starch portion corresponding to the middle white rice bran or the upper white rice bran. It is preferable that the process of baking is included. At this time, the rice starch portion is in the form of powder, and the first step can be a step of removing the pericarp and seed coat from the brown rice to obtain a powdery rice starch portion. By forming the rice starch portion of this into a pellet and firing this pellet-shaped rice starch portion, it becomes easy to fire uniformly in a short time.

本発明のリチウムイオン二次電池用負極炭素材料の製造方法において、第一工程は少なくとも精白歩合7%未満(精米歩合93%を超える)に相当する果皮及び種皮を取り除いて精白歩合7%〜65%の範囲内に相当する米澱粉部位を取得し、第二工程が該米澱粉部位を焼成する工程であることが好ましく、第一工程は少なくとも精白歩合9%未満(精米歩合91%を超える)に相当する果皮及び種皮を取り除いて精白歩合9%〜65%の範囲内に相当する米澱粉部位を取得し、第二工程が該米澱粉部位を焼成する工程であることがより好ましい。   In the method for producing a negative electrode carbon material for a lithium ion secondary battery according to the present invention, the first step is to remove the skin and seed coat corresponding to at least a polishing ratio of less than 7% (exceeding a polishing ratio of 93%) to a polishing ratio of 7% to 65 % Rice starch portion corresponding to within the range, it is preferable that the second step is a step of firing the rice starch portion, the first step is at least less than 9% milling rate (over 91% rice milling rate) More preferably, the pericarp and seed coat corresponding to the above are removed to obtain a rice starch portion corresponding to a whitening ratio of 9% to 65%, and the second step is a step of baking the rice starch portion.

更に、本発明のリチウムイオン二次電池用負極炭素材料の製造方法において、第一工程は少なくとも精白歩合12%未満(精米歩合88%を超える)に相当する果皮、種皮及び糊粉層を取り除いて精白歩合12%〜65%の範囲内に相当する米澱粉部位を取得し、第一工程が該米澱粉部位を焼成する工程であることが特に好ましい。   Furthermore, in the method for producing a negative electrode carbon material for a lithium ion secondary battery of the present invention, the first step is to remove the skin, seed coat and paste powder layer corresponding to at least a milling ratio of less than 12% (more than a milling ratio of 88%). It is particularly preferable that a rice starch portion corresponding to a whitening ratio of 12% to 65% is obtained, and the first step is a step of firing the rice starch portion.

取得する米澱粉部位の精白歩合の下限は、玄米から果皮及び種皮を取り除くためには少なくとも7%以上である必要があり、より完全に玄米から果皮及び種皮を取り除くために9%以上であることが好ましく、糊粉層を取り除いて、得られる炭化物の組織の均一化・微細化の為には12%以上であることが特に好ましい。取得する米澱粉部位の精白歩合の上限は、精白歩合65%を超えて精米しようとすると米が砕けてしまう為65%以下が好ましく、安価に入手する為に、60%以下がより好ましく、55%以下が特に好ましい。   The lower limit of the refining rate of the rice starch portion to be obtained must be at least 7% in order to remove the peel and seed coat from brown rice, and more than 9% in order to remove the peel and seed coat from brown rice more completely It is particularly preferably 12% or more for removing the paste powder layer and homogenizing and refining the structure of the resulting carbide. The upper limit of the milling rate of the rice starch portion to be obtained is preferably 65% or less because rice breaks when trying to polish the milling rate exceeding 65%, and more preferably 60% or less to obtain it at a low price. % Or less is particularly preferable.

本発明のリチウムイオン二次電池用負極炭素材料の製造方法において、第一工程は清酒製造の精米工程で副産される糠を取得する工程であることが好ましい。精米歩合35%まで精米する場合には、精白歩合65%以下の米澱粉部位を第二工程の焼成原料として用いることができ、精米歩合40%まで精米する場合には、精白歩合60%以下の米澱粉部位を第二工程の焼成原料として用いることができ、精米歩合50%まで精米する場合には、精白歩合50%以下の米澱粉部位を第二工程の焼成原料として用いることができ、精米歩合65%まで精米する場合には、精白歩合35%以下の米澱粉部位を第二工程の焼成原料として用いることができる。   In the method for producing a negative electrode carbon material for a lithium ion secondary battery of the present invention, the first step is preferably a step of obtaining koji produced as a by-product in the rice milling process of sake production. When milling to a polishing rate of 35%, a rice starch portion with a milling rate of 65% or less can be used as a baking raw material in the second step. When polishing to a polishing rate of 40%, a milling rate of 60% or less The rice starch portion can be used as the baking raw material in the second step. When the rice polishing ratio is polished to 50%, the rice starch portion having a polishing ratio of 50% or less can be used as the baking raw material in the second step. In the case of polishing rice to a proportion of 65%, a rice starch portion having a polishing ratio of 35% or less can be used as a baking raw material in the second step.

本発明のリチウムイオン二次電池用負極炭素材料の製造方法において、第二工程は、前記米澱粉部位を仮焼成して仮焼成物を得る仮焼成工程と、前記仮焼成物を粉砕物に粉砕する粉砕工程と、前記粉砕物を前記仮焼成工程の温度よりも高い温度で本焼成する本焼成工程と、を含むことが好ましい。第二工程をこのようにすることにより、より均一に焼成することができ、粉体特性の良好なリチウムイオン二次電池用負極炭素材料を得ることができる。前記粉砕工程では、例えば、前記仮焼成物を平均粒子径が5〜40μmの粉砕物に粉砕する。   In the method for producing a negative electrode carbon material for a lithium ion secondary battery of the present invention, the second step is a pre-baking step of pre-baking the rice starch portion to obtain a pre-fired product, and crushing the pre-fired product into a pulverized product It is preferable to include a pulverization step of performing the main calcination of the pulverized product at a temperature higher than the temperature of the preliminary calcination step. By carrying out the second step in this way, it is possible to obtain a negative electrode carbon material for a lithium ion secondary battery that can be fired more uniformly and has good powder characteristics. In the pulverization step, for example, the calcined product is pulverized into a pulverized product having an average particle size of 5 to 40 μm.

本発明のリチウムイオン二次電池用負極炭素材料の製造方法において、第二工程は、例えば、前記米澱粉部位を500〜2700℃で0.5〜50時間焼成する工程とすることができる。第二工程において仮焼成工程は前記米澱粉部位を500〜1000℃で0.5〜10時間焼成する工程であることが好ましく、本焼成工程は前記粉砕物を700〜1600℃で0.5〜50時間焼成する工程であることが好ましい。また、本焼成工程は前記粉砕物を1100〜1400℃で焼成する工程であることがより好ましく、1200〜1300℃で焼成する工程であることが特に好ましい。   In the method for producing a negative electrode carbon material for a lithium ion secondary battery of the present invention, the second step can be, for example, a step of baking the rice starch portion at 500 to 2700 ° C. for 0.5 to 50 hours. In the second step, the preliminary baking step is preferably a step of baking the rice starch portion at 500 to 1000 ° C. for 0.5 to 10 hours, and the main baking step is baking the pulverized product at 700 to 1600 ° C. for 0.5 to 50 hours. It is preferable that it is a process. The firing step is more preferably a step of firing the pulverized product at 1100 to 1400 ° C, and particularly preferably a step of firing at 1200 to 1300 ° C.

焼成温度1100〜1400℃で0.5〜50時間焼成することにより、本発明のリチウムイオン二次電池用負極炭素材料を、そのリチウムイオン二次電池用負極炭素材料の粉末X線(CuKα)回折図が、2θ=40〜50°に比較的ブロードなピークと、2θ=42〜44°に、よりシャープなピークとを有するものとすることができる。   The negative electrode carbon material for a lithium ion secondary battery of the present invention is calcined at a firing temperature of 1100 to 1400 ° C. for 0.5 to 50 hours, and the powder X-ray (CuKα) diffractogram of the negative electrode carbon material for a lithium ion secondary battery of the present invention It can have a relatively broad peak at 2θ = 40 to 50 ° and a sharper peak at 2θ = 42 to 44 °.

本発明のリチウムイオン二次電池用負極炭素材料の製造方法によれば、玄米から果皮と種皮部が取り除かれているので、焼成作業中に揮発物が浮遊することが少なく作業性に優れ、清酒製造等の副産物として得られる米由来の澱粉部位を利用するので原料コストを低減でき、従来技術である赤糠及びフェノール樹脂の混合物を焼成する場合より作業性、コストの点で改善することができる。果皮部分が取り除かれているので、得られるリチウムイオン二次電池用負極炭素材料の性能を従来品同等以上のものとすることができるうえ、清酒製造等の副産物として得られる米由来の澱粉部位を利用するので原料コストを低減でき、玄米の種皮部分が取り除かれているので、焼成作業中に揮発物が浮遊することが少なく、作業性が優れ、リチウムイオン二次電池用負極炭素材料のトータルの製造コストを大幅に低減することができる。   According to the method for producing a negative electrode carbon material for a lithium ion secondary battery of the present invention, since the pericarp and seed coat are removed from the brown rice, volatiles are less likely to float during the baking operation, and workability is excellent. Since the starch part derived from rice obtained as a by-product such as manufacturing is used, the raw material cost can be reduced, and the workability and cost can be improved compared with the case of baking the mixture of red rice bran and phenol resin, which is a conventional technique. . Since the skin part has been removed, the performance of the obtained negative electrode carbon material for lithium ion secondary batteries can be equal to or higher than that of conventional products, and the starch part derived from rice obtained as a by-product of sake production etc. Since it is used, raw material costs can be reduced, and the seed coat part of brown rice has been removed, so that volatiles are less likely to float during the baking operation, and workability is excellent, and the total of negative electrode carbon materials for lithium ion secondary batteries Manufacturing costs can be greatly reduced.

さらに、本発明のリチウムイオン二次電池用負極炭素材料の製造方法では比較的小さな澱粉粒子を有する米澱粉部位を用いているので、他の植物由来の澱粉部位を焼成してリチウムイオン二次電池用負極炭素材料とする場合に比べて、焼成後のリチウムイオン二次電池用負極炭素材料の微細構造をより小さく緻密にすることができ、二次電池において薄く小さな負極の構成が可能となり、その結果、単位体積当たりの充放電容量を大きくすることができる。   Further, in the method for producing a negative electrode carbon material for a lithium ion secondary battery according to the present invention, a rice starch portion having relatively small starch particles is used. Therefore, a starch portion derived from another plant is baked to obtain a lithium ion secondary battery. Compared with the case of the negative electrode carbon material for use, the fine structure of the negative electrode carbon material for the lithium ion secondary battery after firing can be made smaller and denser, and the secondary battery can be configured as a thin and small negative electrode. As a result, the charge / discharge capacity per unit volume can be increased.

また、米糠のうち赤糠の部分は、利用した玄米の産地、気候変動、収穫時期等により成分変動が起きやすく、得られるリチウムイオン二次電池用負極炭素材料の品質管理が難しいのに対して、本発明のリチウムイオン二次電池用負極炭素材料の製造方法では、米糠のうち赤糠の部分が除かれているので、原料由来の成分変動が小さく、品質管理が容易となる。   In addition, the red rice bran portion of the rice bran tends to undergo component fluctuations depending on the production area of the brown rice used, climate change, harvest time, etc., whereas the quality control of the obtained negative electrode carbon material for lithium ion secondary batteries is difficult. In the method for producing a negative electrode carbon material for a lithium ion secondary battery according to the present invention, since the red rice bran portion is removed from the rice bran, the component variation derived from the raw material is small, and quality control becomes easy.

以下に、本発明の実施の形態について説明する。   Embodiments of the present invention will be described below.

(実施例1〜13)
(米澱粉部位取得工程)
600kgの玄米を、チヨダ式醸造用精米機(HS−15型CNC)で、28時間かけて、精米歩合L=50%の精白酒米にまで精米した。この時に、赤糠層(L=100〜91%)及びサピオ層(L=91〜85%)を取り除いて、中白糠(L=85〜75%、精白歩合15〜25%)に相当する粉体状の米澱粉部位約60kgを取得した(実施例1、2)。同様にして、赤糠層及びサピオ層(L=100〜80%)を取り除いて、中白糠(L=80〜70%、精白歩合20〜30%)に相当する粉体状の米澱粉部位を取得した(実施例3)。赤糠層及びサピオ層(L=100〜90%)を取り除いて、中白糠(L=90〜70%、精白歩合10〜30%)に相当する粉体状の米澱粉部位を取得した(実施例4〜9)。同様にして、上白糠(L=65〜50%、精白歩合35〜50%)に相当する粉体状の米澱粉部位を取得した(実施例10、11)。中白糠及び上白糠(L=85〜50%、精白歩合15〜50%)に相当する粉体状の米澱粉部位を取得した(実施例12、13)。これらの米澱粉部位に対してそれぞれ質量比約5%の水を散布して混合攪拌し、造粒機(デスクペレッター、F20/330型)にて3mmφ×3mmのペレット状に成形し、70〜80℃、5分間乾燥した。
(Examples 1 to 13)
(Rice starch part acquisition process)
600 kg of brown rice was polished with a Chiyoda type brewing machine (HS-15 CNC) over 28 hours to a polished rice with a polishing ratio L = 50%. At this time, the red coral layer (L = 100-91%) and the sapio layer (L = 91-85%) are removed, and the powder corresponding to the medium white coral (L = 85-75%, whitening ratio 15-25%) About 60 kg of body-shaped rice starch portion was obtained (Examples 1 and 2). Similarly, the red rice bran layer and the sapio layer (L = 100-80%) are removed, and the powdery rice starch portion corresponding to the medium white rice cake (L = 80-70%, whitening rate 20-30%) is obtained. Obtained (Example 3). The red rice bran layer and the sapio layer (L = 100-90%) were removed, and a powdery rice starch portion corresponding to the medium white rice cake (L = 90-70%, whitening ratio 10-30%) was obtained (implementation) Examples 4-9). In the same manner, powdery rice starch portions corresponding to upper white rice bran (L = 65-50%, whitening ratio 35-50%) were obtained (Examples 10 and 11). Powdered rice starch portions corresponding to medium white rice cake and upper white rice cake (L = 85-50%, whitening rate 15-50%) were obtained (Examples 12 and 13). Each of these rice starch parts was sprayed with water at a mass ratio of about 5%, mixed and stirred, and formed into pellets of 3mmφ × 3mm with a granulator (desk pelleter, F20 / 330 type). Dry at -80 ° C for 5 minutes.

(焼成工程)
得られたペレット状の各米澱粉部位を、ロータリーキルンにて、窒素ガス中、450〜900℃、0.4〜9時間で仮焼成した。次に、この仮焼成物を、平均粒子径が20〜30μmの粉砕物に粉砕し、この粉砕物をるつぼに入れて、650〜2700℃、0.45〜48時間本焼成して、リチウムイオン二次電池用負極炭素材料を得た。これらの条件を、表1にまとめて示す。
(Baking process)
Each pellet-shaped rice starch site | part obtained was provisionally baked in a rotary kiln in nitrogen gas at 450 to 900 ° C. for 0.4 to 9 hours. Next, the calcined product is pulverized into a pulverized product having an average particle size of 20 to 30 μm, and the pulverized product is put into a crucible and subjected to main calcination at 650 to 2700 ° C. for 0.45 to 48 hours. A negative electrode carbon material for a battery was obtained. These conditions are summarized in Table 1.

このうち、1200℃、5hにて本焼成して得られたリチウムイオン二次電池用負極炭素材料(実施例1)について、X線回折図の結果を図1に示す。X線源はCuKα(40kV、30mA)、発散スリット幅は1/2deg、散乱スリット幅は1/2deg、受光スリットは0.15mm、Kβフィルタを用い、10〜90°の走査範囲で測定した。得られたX線回折図の横軸は2θ(°)、縦軸は検出強度(cps)である。2θ=40〜50°に比較的ブロードなピークと、2θ=42〜44°に、よりシャープなピークとを有していることが分かる。より詳細には、2θ=40〜50°(ピークトップが2θ=44°)の比較的ブロードなピークの半価幅は4.6°であり、ピーク高さは24cpsであった。2θ=42〜44°(ピークトップが2θ=42.9°)の、よりシャープなピークの半価幅は0.36°であり、ピーク高さは46cpsであった。また、このシャープなピークの強度の、このブロードなピークの強度に対する比は1.92であった。   Among these, about the negative electrode carbon material (Example 1) for lithium ion secondary batteries obtained by carrying out this baking at 1200 degreeC and 5 hours, the result of an X-ray-diffraction figure is shown in FIG. The X-ray source was CuKα (40 kV, 30 mA), the divergence slit width was 1/2 deg, the scattering slit width was 1/2 deg, the light receiving slit was 0.15 mm, and a Kβ filter was used to measure in a scanning range of 10 to 90 °. The horizontal axis of the obtained X-ray diffraction diagram is 2θ (°), and the vertical axis is the detection intensity (cps). It can be seen that there is a relatively broad peak at 2θ = 40 to 50 ° and a sharper peak at 2θ = 42 to 44 °. More specifically, the half width of a relatively broad peak at 2θ = 40 to 50 ° (peak top is 2θ = 44 °) was 4.6 °, and the peak height was 24 cps. The half width of the sharper peak at 2θ = 42 to 44 ° (peak top is 2θ = 42.9 °) was 0.36 °, and the peak height was 46 cps. The ratio of the sharp peak intensity to the broad peak intensity was 1.92.

Figure 2006032166
Figure 2006032166

Figure 2006032166
Figure 2006032166

なお、実施例2、3、10、12のリチウムイオン二次電池用負極炭素材料についても、実施例1と同様、2θ=40〜50°に比較的ブロードなピークと、2θ=42〜44°に、よりシャープなピークとを有していた。しかし、実施例4〜9、11、13のリチウムイオン二次電池用負極炭素材料については、2θ=40〜50°に比較的ブロードなピークを有していたが、2θ=42〜44°にあるピークの半価幅が0.30°未満、又はこのピークの強度Aの、ブロードなピークの強度Bに対する比A/Bが1.2未満であり、ノイズと区別することはできなかった(表2)。実施例8の負極炭素材料のX線回折図を図2に示す。   In addition, the negative electrode carbon materials for lithium ion secondary batteries of Examples 2, 3, 10, and 12 also have a relatively broad peak at 2θ = 40 to 50 ° and 2θ = 42 to 44 ° as in Example 1. And a sharper peak. However, the negative electrode carbon materials for lithium ion secondary batteries of Examples 4 to 9, 11, and 13 had a relatively broad peak at 2θ = 40 to 50 °, but at 2θ = 42 to 44 °. The half width of a peak is less than 0.30 °, or the ratio A / B of the intensity A of this peak to the intensity B of a broad peak is less than 1.2, and cannot be distinguished from noise (Table 2). ). The X-ray diffraction pattern of the negative electrode carbon material of Example 8 is shown in FIG.

なお、表1において、2700℃にて本焼成した実施例7のリチウムイオン二次電池用負極炭素材料は黒鉛組織を有する。それ以外のリチウムイオン二次電池用負極炭素材料はアモルファス系ハードカーボン組織を有する。   In Table 1, the negative electrode carbon material for a lithium ion secondary battery of Example 7 that was calcined at 2700 ° C. has a graphite structure. Other negative electrode carbon materials for lithium ion secondary batteries have an amorphous hard carbon structure.

次に、これらのリチウムイオン二次電池用負極炭素材料を用いて、次に示す要領で、マンガン酸リチウムLiMn2O4を正極活物質とする二次電池を作成した。 Next, using these negative electrode carbon materials for lithium ion secondary batteries, secondary batteries using lithium manganate LiMn 2 O 4 as a positive electrode active material were prepared in the following manner.

(負極の作製)
上記のリチウムイオン二次電池用負極炭素材料と、ポリビニリデンフルオライド(結着剤)とを91:9の質量比でN-メチルピロリジノン溶媒中で均一に混合した。厚さ14μmの銅箔(負極集電体)の両面に、厚さが約80μmになるようにこの混合物を塗布した後、乾燥させてシート状負極を作製した。この負極を14.8cm×13.0cmに切り出した。
(Preparation of negative electrode)
The negative electrode carbon material for a lithium ion secondary battery and polyvinylidene fluoride (binder) were uniformly mixed in a N: methylpyrrolidinone solvent at a mass ratio of 91: 9. This mixture was applied on both sides of a 14 μm thick copper foil (negative electrode current collector) to a thickness of about 80 μm, and then dried to prepare a sheet-like negative electrode. This negative electrode was cut out to 14.8 cm × 13.0 cm.

(正極の作製)
市販のマンガン酸リチウムLiMn2O4(正極活物質、平均粒径10μm)と、アセチレンブラック(導電剤)と、ポリビニリデンフルオライド(結着剤)とを89:6:5の質量比でN-メチルピロリドンを用いて混合した。厚さ15μmのアルミニウムシート(正極集電体)の両面に、厚さが約130μmになるようにこの混合物を塗布した後、乾燥させてシート状正極を作製した。この正極を14.3cm×12.9 cmに切り出した。
(Preparation of positive electrode)
Commercially available lithium manganate LiMn 2 O 4 (positive electrode active material, average particle size 10 μm), acetylene black (conductive agent) and polyvinylidene fluoride (binder) in a mass ratio of 89: 6: 5 N -Mixed with pyrrolidone. This mixture was applied to both sides of a 15 μm thick aluminum sheet (positive electrode current collector) so as to have a thickness of about 130 μm, and then dried to produce a sheet-like positive electrode. This positive electrode was cut into 14.3 cm × 12.9 cm.

(非水系電解液の調製)
EC(Ethylene carbonate)とDMC(Dimethyl carbonate)とを50:50の質量比で混合した溶媒に、LiPF6を1mol/Lの濃度で溶解して、非水系電解液を調製した。
(Preparation of non-aqueous electrolyte)
LiPF 6 was dissolved at a concentration of 1 mol / L in a solvent in which EC (Ethylene carbonate) and DMC (Dimethyl carbonate) were mixed at a mass ratio of 50:50 to prepare a non-aqueous electrolyte.

(セパレータ)
市販の多孔性延伸ポリプロピレンシート(宇部興産株式会社製、UP3025)をセパレータとして用いた。このセパレータを14.8cm×12.8cmに切り出した。
(Separator)
A commercially available porous stretched polypropylene sheet (manufactured by Ube Industries, Ltd., UP3025) was used as a separator. This separator was cut into 14.8 cm × 12.8 cm.

(電池の組み立て)
正極及び負極に上記セパレータを挾んだ積層体を試験電池の基本構成とした。これを上記で調製した非水系電解液に10分間浸漬して多孔性延伸ポリプロピレンシートに非水系電解液を含浸させ、リチウムイオン二次電池を組み立てた。正極及び負極の集電体にリード線を取り付け、30℃において定電流で充放電サイクル試験を行なった。充放電試験は、充電終止電圧4.2V、放電終止電圧2.9V、充放電電流密度1mA/cm2として、初回充放電容量を測定した。これらの結果を、初回充放電効率(初回効率=初回放電容量/初回充電容量×100(%))の結果と共に表2に示す。本発明のリチウムイオン二次電池用負極炭素材料の初回充放電効率は、従来品のものと同等(△)か、又は、優れており(◎、○)、2θ=40〜50°に比較的ブロードなピークと、2θ=42〜44°に、よりシャープなピークとを有するリチウムイオン二次電池用負極炭素材料の充放電性能は特に優れていた(◎)。
(Battery assembly)
A laminate in which the separator was sandwiched between the positive electrode and the negative electrode was used as the basic configuration of the test battery. This was immersed in the non-aqueous electrolyte prepared above for 10 minutes to impregnate the porous stretched polypropylene sheet with the non-aqueous electrolyte, and a lithium ion secondary battery was assembled. Lead wires were attached to the positive and negative electrode current collectors, and a charge / discharge cycle test was conducted at a constant current at 30 ° C. In the charge / discharge test, the initial charge / discharge capacity was measured at a charge end voltage of 4.2 V, a discharge end voltage of 2.9 V, and a charge / discharge current density of 1 mA / cm 2 . These results are shown in Table 2 together with the results of initial charge / discharge efficiency (initial efficiency = initial discharge capacity / initial charge capacity × 100 (%)). The initial charge / discharge efficiency of the negative electrode carbon material for a lithium ion secondary battery of the present invention is equivalent to (△) or superior to that of a conventional product (◎, ○), and relatively relatively 2θ = 40 to 50 °. The charge / discharge performance of the negative electrode carbon material for a lithium ion secondary battery having a broad peak and a sharper peak at 2θ = 42 to 44 ° was particularly excellent (◎).

(比較例1〜3)
赤糠層の部分(L=99.5〜94%、精白歩合0.5〜6%)を取得して、フェノール樹脂を加えて、特開2001-266850号公報を参考にして、赤糠層75質量%にフェノール樹脂25質量%を混合した。実施例1と同様に、ペレット状にした原料を、ロータリーキルンにて、窒素ガス中800〜900℃、6時間で仮焼成した。次に、この仮焼成物を、平均粒子径が20〜30μmの粉砕物に粉砕し、この粉砕物をるつぼに入れて、900〜1550℃、5〜10時間本焼成して、リチウムイオン二次電池用負極炭素材料を得た(表1)。実施例1と同様にしてリチウムイオン二次電池を組み立てて、充放電性能を評価した。その評価結果を表2に示す。
(Comparative Examples 1-3)
Acquire the red cocoon layer part (L = 99.5-94%, whitening ratio 0.5-6%), add phenol resin, and refer to JP-A-2001-266850 to make 75% by mass of red cocoon layer. 25% by mass of phenol resin was mixed. In the same manner as in Example 1, the pelletized raw material was calcined in a rotary kiln in nitrogen gas at 800 to 900 ° C. for 6 hours. Next, the calcined product is pulverized into a pulverized product having an average particle size of 20 to 30 μm, and the pulverized product is put into a crucible and subjected to main firing at 900 to 1550 ° C. for 5 to 10 hours. Battery negative electrode carbon materials were obtained (Table 1). A lithium ion secondary battery was assembled in the same manner as in Example 1, and the charge / discharge performance was evaluated. The evaluation results are shown in Table 2.

(比較例4〜6)
玄米の精米工程のうち、果皮及び種皮に相当する赤糠(比較例4)、中白糠(比較例5)、及び上白糠(比較例6)の各部分をサンプルとして、電気炉にて焼成を試みた。それぞれ約50gのサンプルについて、Arガス雰囲気下、1600℃、2hの条件で試験したところ、赤糠(比較例4)では、電気炉内部の天板に、サンプルの10質量%を超える大量の揮発性物が付着し、焼成中の異臭が強かった。中白糠(比較例5)、及び上白糠(比較例6)では、電気炉内部の天板での揮発性物の付着は、いずれも2質量%未満であった。比較例4では、回収率の低さと電気炉のメンテナンスの時間も含めると、中白糠(比較例5)と同量の焼成材を得るには5倍以上の時間と労力を要した。
(Comparative Examples 4-6)
In the milling process of brown rice, the red rice bran (Comparative Example 4), the medium white rice bran (Comparative Example 5), and the upper white rice bran (Comparative Example 6) corresponding to the pericarp and seed coat were used as samples to try firing in an electric furnace. It was. About 50 g of each sample was tested under conditions of 1600 ° C. and 2 h in an Ar gas atmosphere. In Akamine (Comparative Example 4), a large amount of volatilization exceeding 10% by mass of the sample was placed on the top plate inside the electric furnace. Adherent material was attached, and a bad odor during baking was strong. In the middle birch (Comparative Example 5) and the upper white birch (Comparative Example 6), the adhesion of volatile substances on the top plate inside the electric furnace was less than 2 mass%. In Comparative Example 4, including the low recovery rate and the time for maintenance of the electric furnace, it took five times or more time and labor to obtain the same amount of fired material as that of Nakashiragi (Comparative Example 5).

図1は、本発明に係る実施例1のリチウムイオン二次電池用負極炭素材料のX線回折図である。FIG. 1 is an X-ray diffraction pattern of a negative electrode carbon material for a lithium ion secondary battery of Example 1 according to the present invention. 図2は、実施例8の負極炭素材料のX線回折図である。FIG. 2 is an X-ray diffraction pattern of the negative electrode carbon material of Example 8.

Claims (11)

玄米から果皮及び種皮が取り除かれた米澱粉部位を、焼成してなることを特徴とするリチウムイオン二次電池用負極炭素材料。   A negative electrode carbon material for a lithium ion secondary battery, which is obtained by firing a rice starch portion from which pericarp and seed coat are removed from brown rice. 前記米澱粉部位が玄米を精米した際の中白糠又は上白糠であることを特徴とする、請求項1に記載のリチウムイオン二次電池用負極炭素材料。   2. The negative electrode carbon material for a lithium ion secondary battery according to claim 1, wherein the rice starch portion is middle white rice bran or upper white rice bran when brown rice is polished. 請求項1又は2に記載のリチウムイオン二次電池用負極炭素材料であって、該リチウムイオン二次電池用負極炭素材料の粉末X線(CuKα)回折図が、2θ=40〜50°に比較的ブロードなピークと、2θ=42〜44°に、よりシャープなピークとを有することを特徴とするリチウムイオン二次電池用負極炭素材料。   3. The negative electrode carbon material for a lithium ion secondary battery according to claim 1, wherein a powder X-ray (CuKα) diffractogram of the negative electrode carbon material for a lithium ion secondary battery is compared with 2θ = 40 to 50 °. A negative electrode carbon material for a lithium ion secondary battery, which has a broad peak and a sharper peak at 2θ = 42 to 44 °. 前記シャープなピークの強度Aの前記ブロードなピークの強度Bに対する比A/Bが1.2以上であることを特徴とする、請求項3に記載のリチウムイオン二次電池用負極炭素材料。   4. The negative electrode carbon material for a lithium ion secondary battery according to claim 3, wherein a ratio A / B of the sharp peak intensity A to the broad peak intensity B is 1.2 or more. 5. 前記ブロードなピークの半価幅が3.5〜5.5°であり、前記シャープなピークの半価幅が0.30〜0.45°であることを特徴とする、請求項3又は4に記載のリチウムイオン二次電池用負極炭素材料。   5. The lithium ion secondary battery according to claim 3, wherein the half-width of the broad peak is 3.5 to 5.5 °, and the half-width of the sharp peak is 0.30 to 0.45 °. 6. Negative electrode carbon material. 玄米から果皮及び種皮を取り除いて、米澱粉部位を取得する第一工程と、該米澱粉部位を焼成する第二工程と、を備えたことを特徴とするリチウムイオン二次電池用負極炭素材料の製造方法。   A negative carbon material for a lithium ion secondary battery, comprising: a first step of removing a pericarp and seed coat from brown rice to obtain a rice starch portion; and a second step of firing the rice starch portion. Production method. 前記第一工程が玄米から果皮及び種皮を取り除いた後に更に糊粉層を取り除く工程を含むことを特徴とする、請求項6に記載のリチウムイオン二次電池用負極炭素材料の製造方法。   The method for producing a negative electrode carbon material for a lithium ion secondary battery according to claim 6, wherein the first step further includes a step of removing the paste powder layer after removing the peel and seed coat from the brown rice. 前記第一工程が玄米を精米する際の中白糠又は上白糠に相当する米澱粉部位を取得する工程であって、前記第二工程が前記中白糠又は前記上白糠に相当する米澱粉部位を焼成する工程を含むことを特徴とする、請求項6又は7に記載のリチウムイオン二次電池用負極炭素材料の製造方法。   The first step is a step of obtaining a rice starch portion corresponding to the middle white rice bran or the upper white rice bran when brown rice is polished, and the second step is a step of firing the rice starch portion corresponding to the middle white rice bran or the upper white rice bran. The manufacturing method of the negative electrode carbon material for lithium ion secondary batteries of Claim 6 or 7 characterized by the above-mentioned. 前記第一工程が精白歩合7%〜65%の範囲内に相当する米澱粉部位を取得することを特徴とする、請求項6〜8のいずれかに記載のリチウムイオン二次電池用負極炭素材料の製造方法。   The negative electrode carbon material for a lithium ion secondary battery according to any one of claims 6 to 8, wherein the first step obtains a rice starch portion corresponding to a polishing rate of 7% to 65%. Manufacturing method. 前記第二工程が、前記米澱粉部位を仮焼成して仮焼成物を得る仮焼成工程と、前記仮焼成物を粉砕物に粉砕する粉砕工程と、前記粉砕物を前記仮焼成工程の温度よりも高い温度で本焼成する本焼成工程と、を含むことを特徴とする、請求項6〜9のいずれかに記載のリチウムイオン二次電池用負極炭素材料の製造方法。   The second step includes a preliminary baking step of pre-baking the rice starch portion to obtain a pre-baked product, a pulverizing step of pulverizing the pre-baked product into a pulverized product, and the temperature of the pulverized product from the temperature of the preliminary baking step. And a main baking step of main baking at a high temperature. The method for producing a negative electrode carbon material for a lithium ion secondary battery according to any one of claims 6 to 9. 前記仮焼成工程が前記米澱粉部位を500〜1000℃で0.5〜10時間焼成する工程であり、前記本焼成工程が前記粉砕物を700〜1600℃で0.5〜50時間焼成する工程であることを特徴とする、請求項10に記載のリチウムイオン二次電池用負極炭素材料の製造方法。   The preliminary baking step is a step of baking the rice starch portion at 500 to 1000 ° C. for 0.5 to 10 hours, and the main baking step is a step of baking the pulverized product at 700 to 1600 ° C. for 0.5 to 50 hours. The manufacturing method of the negative electrode carbon material for lithium ion secondary batteries of Claim 10 characterized by the above-mentioned.
JP2004210464A 2004-07-16 2004-07-16 Negative electrode carbon material for lithium ion secondary battery and method for producing the same Active JP4724390B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004210464A JP4724390B2 (en) 2004-07-16 2004-07-16 Negative electrode carbon material for lithium ion secondary battery and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004210464A JP4724390B2 (en) 2004-07-16 2004-07-16 Negative electrode carbon material for lithium ion secondary battery and method for producing the same

Publications (2)

Publication Number Publication Date
JP2006032166A true JP2006032166A (en) 2006-02-02
JP4724390B2 JP4724390B2 (en) 2011-07-13

Family

ID=35898253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004210464A Active JP4724390B2 (en) 2004-07-16 2004-07-16 Negative electrode carbon material for lithium ion secondary battery and method for producing the same

Country Status (1)

Country Link
JP (1) JP4724390B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008123606A1 (en) * 2007-04-04 2008-10-16 Sony Corporation Porous carbon material, process for producing the same, adsorbent, mask, adsorbent sheet and supporting member
JP2011042569A (en) * 2007-04-04 2011-03-03 Sony Corp Porous carbon material, adsorbent, filler, mask, adsorbing sheet, and carrier
KR101234512B1 (en) * 2006-01-16 2013-02-19 에낙스 가부시키가이샤 Negative electrode carbon material for lithium ion secondary battery and manufacturing method thereof
WO2014024395A1 (en) * 2012-08-09 2014-02-13 Sony Corporation Electrode material, method for manufacturing electrode material, and secondary battery
JP2019142744A (en) * 2018-02-21 2019-08-29 デクセリアルズ株式会社 Porous carbon material, method for producing the same, and catalyst for synthesis reaction
JP2019142743A (en) * 2018-02-21 2019-08-29 デクセリアルズ株式会社 Porous carbon material, method for producing the same, and catalyst for synthesis reaction
KR20220016115A (en) 2019-06-03 2022-02-08 산와 덴푼코교 가부시키가이샤 Spherical carbon particles and their manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996027911A1 (en) * 1995-03-06 1996-09-12 Sony Corporation Negative electrode material for secondary cell for nonaqueous electrolytic solution, process for the production thereof, and secondary cell for nonaqueous electrolytic solution using it
JP2004220972A (en) * 2003-01-16 2004-08-05 Hitachi Chem Co Ltd Carbon material for lithium secondary battery negative electrode and manufacture thereof, lithium secondary battery negative electrode and lithium secondary battery
JP2006032091A (en) * 2004-07-15 2006-02-02 Hitachi Chem Co Ltd Anode carbon material for lithium secondary battery, manufacturing method of the same, lithium secondary battery anode, and lithium secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996027911A1 (en) * 1995-03-06 1996-09-12 Sony Corporation Negative electrode material for secondary cell for nonaqueous electrolytic solution, process for the production thereof, and secondary cell for nonaqueous electrolytic solution using it
JP2004220972A (en) * 2003-01-16 2004-08-05 Hitachi Chem Co Ltd Carbon material for lithium secondary battery negative electrode and manufacture thereof, lithium secondary battery negative electrode and lithium secondary battery
JP2006032091A (en) * 2004-07-15 2006-02-02 Hitachi Chem Co Ltd Anode carbon material for lithium secondary battery, manufacturing method of the same, lithium secondary battery anode, and lithium secondary battery

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101234512B1 (en) * 2006-01-16 2013-02-19 에낙스 가부시키가이샤 Negative electrode carbon material for lithium ion secondary battery and manufacturing method thereof
US10714750B2 (en) 2007-04-04 2020-07-14 Sony Corporation Porous carbon materials and production process thereof, and adsorbents, masks, adsorbing sheets and carriers
JP2008273816A (en) * 2007-04-04 2008-11-13 Sony Corp Porous carbon material, its manufacturing process and adsorbent, mask, adsorption sheet, and supporting member
JP4618308B2 (en) * 2007-04-04 2011-01-26 ソニー株式会社 Porous carbon material and method for producing the same, adsorbent, mask, adsorbing sheet, and carrier
JP2011042569A (en) * 2007-04-04 2011-03-03 Sony Corp Porous carbon material, adsorbent, filler, mask, adsorbing sheet, and carrier
US11955638B2 (en) 2007-04-04 2024-04-09 Sony Corporation Sheet-shaped member
WO2008123606A1 (en) * 2007-04-04 2008-10-16 Sony Corporation Porous carbon material, process for producing the same, adsorbent, mask, adsorbent sheet and supporting member
US11545665B2 (en) 2007-04-04 2023-01-03 Sony Corporation Carbon-polymer complex
US10756346B2 (en) 2007-04-04 2020-08-25 Sony Corporation Porous Carbon Material
CN104205431A (en) * 2012-08-09 2014-12-10 索尼公司 Electrode material, method for manufacturing electrode material, and secondary battery
RU2643194C2 (en) * 2012-08-09 2018-02-01 МУРАТА МЭНЬЮФЭКЧЕРИНГ Ко., Лтд Electrode material, method for manufacturing electrode material and battery
WO2014024395A1 (en) * 2012-08-09 2014-02-13 Sony Corporation Electrode material, method for manufacturing electrode material, and secondary battery
JP2019142743A (en) * 2018-02-21 2019-08-29 デクセリアルズ株式会社 Porous carbon material, method for producing the same, and catalyst for synthesis reaction
JP2019142744A (en) * 2018-02-21 2019-08-29 デクセリアルズ株式会社 Porous carbon material, method for producing the same, and catalyst for synthesis reaction
KR20220016115A (en) 2019-06-03 2022-02-08 산와 덴푼코교 가부시키가이샤 Spherical carbon particles and their manufacturing method

Also Published As

Publication number Publication date
JP4724390B2 (en) 2011-07-13

Similar Documents

Publication Publication Date Title
CN101208819B (en) Graphite composite particle for non-aqueous secondary battery, negative electrode active material containing it, negative electrode, and non-aqueous secondary battery
JP7025514B2 (en) Electrodes for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary batteries equipped with these electrodes
CN105247709B (en) Positive active material
CN100340014C (en) Method for producing positive plate material for lithium secondary cell
JP6994690B2 (en) Negative electrode material for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary batteries
CN1088266C (en) Nonaqueous-electrolyte secondary cell
KR100824247B1 (en) Process for producing lithium-containing composite oxide for positive electrode of lithium secondary battery
WO2014034858A1 (en) Carbonaceous material for negative electrodes of nonaqueous electrolyte secondary batteries and method for producing same
CN101053098A (en) Negative electrode material for nonaqueous secondary cells, negative electrode for nonaqueous secondary cells, and nonaqueous secondary cell
CN1649190A (en) Negative active material for a lithium secondary battery, a method of preparing the same, and a lithium secondary battery comprising the same
CN1902776A (en) Electrode active material powder with size dependent composition and method to prepare the same
CN1298556A (en) Active material of positive electrode for non-aqueous electrode secondary battery and method for preparing the same and non-aqueous electrode secondary battery using the same
JP2007134286A (en) Negative electrode material for lithium secondary battery and lithium secondary battery
JP2010212260A (en) Positive electrode active material and lithium secondary battery
CN1193445C (en) Modified graphite particle and battery using it
JP4724390B2 (en) Negative electrode carbon material for lithium ion secondary battery and method for producing the same
JP2010113874A (en) Method for manufacturing positive electrode for lithium secondary battery, and lithium secondary battery
CN1633722A (en) Non-aqueous electrolyte secondary cell
JP2006196234A (en) Negative electrode material for lithium secondary battery, its manufacturing method, and lithium secondary battery
US7981395B2 (en) Negative electrode carbon material for lithium ion secondary battery and manufacturing method thereof
CN104604000A (en) Active substance for use in negative electrode of lithium ion secondary battery, and negative electrode of lithium ion secondary battery and lithium ion secondary battery using same
JP6297285B2 (en) Activated carbon for hybrid capacitor and method for producing the same
CN101000955B (en) Negative electrode carbon material for lithium ion secondary battery and its manufacturing method
JP2021086723A (en) Positive electrode active material composite for lithium ion secondary battery and manufacturing method thereof
CN1745490A (en) Method for regulating terminal voltage of cathode during overdischarge and cathode active material for lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070713

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110411

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4724390

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371