JP2006028636A - Fibrous nano carbon-metallic composite material and its production method - Google Patents

Fibrous nano carbon-metallic composite material and its production method Download PDF

Info

Publication number
JP2006028636A
JP2006028636A JP2004312901A JP2004312901A JP2006028636A JP 2006028636 A JP2006028636 A JP 2006028636A JP 2004312901 A JP2004312901 A JP 2004312901A JP 2004312901 A JP2004312901 A JP 2004312901A JP 2006028636 A JP2006028636 A JP 2006028636A
Authority
JP
Japan
Prior art keywords
plating
metal
carbon
carbon nanofibers
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004312901A
Other languages
Japanese (ja)
Other versions
JP4489561B2 (en
Inventor
Susumu Arai
進 新井
Tomoyuki Sato
智之 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinshu University NUC
Nissei Plastic Industrial Co Ltd
Original Assignee
Shinshu University NUC
Nissei Plastic Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinshu University NUC, Nissei Plastic Industrial Co Ltd filed Critical Shinshu University NUC
Priority to JP2004312901A priority Critical patent/JP4489561B2/en
Priority to US11/257,742 priority patent/US7906210B2/en
Priority to CNA2005101181503A priority patent/CN1769541A/en
Publication of JP2006028636A publication Critical patent/JP2006028636A/en
Application granted granted Critical
Publication of JP4489561B2 publication Critical patent/JP4489561B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compound plating technology capable of smoothly finishing a surface in compound plating of compounding a carbon nano material with metal. <P>SOLUTION: As an embodiment, (water+nickel sulfate+nickel chloride+boric acid+brightener+surfactant +carbon nanofiber) are employed and polyacrylic acid is employed for the surfactant. The surface roughness of the plating layer can be improved to about 1/50 the conventional surface roughness. Accordingly, the smooth surface can be obtained in spite of the compound plating and therefore the plating excellent in thermal characteristics and electrical characteristics and good in appearance characteristics based on the inclusion of the carbon nanofibers can be applied to the metallic material. Consequently, the application of the compound plating including the carbon nanofibers can be remarkably expanded. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は平滑な表面が得られる繊維状ナノカーボン・金属複合材料およびその製造方法に関する。   The present invention relates to a fibrous nanocarbon / metal composite material capable of obtaining a smooth surface and a method for producing the same.

金属の表面保護や外観性を高めるために、表面を金属薄膜で覆うめっき法が普及している。
一方、直径が1.0nm(ナノメートル)〜50nmであるナノカーボン材料と称する超微細な炭素材料を含む複合金属めっきが提案されている。炭素材料は特に熱伝導性及び電気伝導性に優れ金属に複合させることによって、熱的特性や電気的特性を改善することができる。
In order to improve the surface protection and appearance of the metal, a plating method in which the surface is covered with a metal thin film is widely used.
On the other hand, composite metal plating including an ultrafine carbon material called a nanocarbon material having a diameter of 1.0 nm (nanometer) to 50 nm has been proposed. The carbon material is particularly excellent in thermal conductivity and electrical conductivity, and can be improved in thermal characteristics and electrical characteristics by being combined with a metal.

本発明者らは、ナノカーボン材料と金属を複合させた複合めっきに関する発明を次に掲げる非特許文献1により先に提案した。
特願2004−106191明細書(請求項1、図5)
The inventors of the present invention have previously proposed an invention relating to composite plating in which a nanocarbon material and a metal are combined by Non-Patent Document 1 listed below.
Japanese Patent Application No. 2004-106191 (Claim 1, FIG. 5)

非特許文献1は、それの請求項1に示すとおり「金属系めっき液に、界面活性剤とともにカーボンナノファイバを混合することで、複合めっき用めっき液を調整し、この複合めっき液を用いてめっき処理を施すことによって得られた複合めっき物であって、この複合めっき物は、めっき金属の割合が50〜98体積%,カーボンナノファイバの含有量が2〜50体積%である」ことを特徴とする。すなわち、界面活性剤を使用することで、本来濡れ性の悪いカーボンナノファイバの濡れ性を改善し、耐久性のある複合めっき物を提供することができるというものである。   Non-Patent Document 1 describes that, as shown in claim 1, “a plating solution for composite plating is prepared by mixing carbon nanofibers with a surfactant in a metal-based plating solution, and this composite plating solution is used. It is a composite plating product obtained by performing plating treatment, and this composite plating product has a plating metal ratio of 50 to 98% by volume and a carbon nanofiber content of 2 to 50% by volume. Features. That is, by using a surfactant, it is possible to improve the wettability of carbon nanofibers with originally poor wettability and provide a durable composite plating product.

非特許文献1(図5)を次図に基づいて説明する。
図3は従来の技術による粒子の断面図であって、実際の破断面における電子顕微鏡観察でも亜鉛の析出と共にファイバが巻き込まれて複合化されており,破断面ではほぼ一様にファイバが存在している状態であり、鉄板100に10μm未満の厚さのカーボンナノファイバを含んだめっき膜101が形成され、その後、カーボンナノファイバを含んだ亜鉛塊102を主体とした凹凸形状が形成され、このカーボンナノファイバを含んだ亜鉛塊102の凸部に亜鉛が集中して析出するようになり、その際に,カーボンナノファイバ103も凸部に集中して巻き込まれて複合化された状態となる。
Non-Patent Document 1 (FIG. 5) will be described based on the following figure.
FIG. 3 is a cross-sectional view of a particle according to the prior art. In an electron microscopic observation at an actual fracture surface, the fiber is entrained and compounded with the precipitation of zinc, and the fiber exists almost uniformly at the fracture surface. In this state, a plating film 101 containing carbon nanofibers having a thickness of less than 10 μm is formed on the iron plate 100, and then an uneven shape mainly composed of a zinc lump 102 containing carbon nanofibers is formed. Zinc concentrates and precipitates on the convex portion of the zinc lump 102 containing the carbon nanofibers, and at this time, the carbon nanofiber 103 is also concentrated on the convex portion and becomes a composite state.

基本的なめっき膜成長の原理として,金属イオンの析出は,形成されためっき膜の表面全体で均一に起こるのではなく,相対的に凸となった部分に集中する。そのような凸部に金属の析出が集中すると,凹となった部分ではほとんど析出が起こらずめっき膜の成長が乏しくなる。したがって,金属の析出初期に凹凸が形成されると,めっき処理時間の延長と共に益々助長し,凹凸が激しい表面となる。   As a basic principle of plating film growth, the deposition of metal ions does not occur uniformly on the entire surface of the formed plating film but concentrates on a relatively convex portion. When metal deposition concentrates on such a convex part, almost no precipitation occurs in the concave part and the growth of the plating film becomes poor. Therefore, if irregularities are formed in the initial stage of metal deposition, the plating process time is further increased and the irregularities become more severe.

上記のような理由のため,金属析出の激しい凸部に集中してカーボンナノファイバが巻き込まれていると考えられる。実際,電子顕微鏡写真でも凸となった部分にカーボンナノファイバがより集中した結果を示している。   For the above reasons, it is considered that the carbon nanofibers are entangled concentrated on the convex part where metal deposition is intense. In fact, the electron micrograph shows that the carbon nanofibers are more concentrated on the convex part.

以上に示した凸部は、外観面に臨むため、従来技術の複合金属めっきによるめっき膜101を鉄板100に施しても、外観性はよくない。
すなわち、熱的特性や電気的特性の改善を目的に金属材料(鉄板100など)にめっき膜101を被覆した場合、外観性が低下するため、この複合めっきの用途が限定される。
用途を拡大するには、平滑な複合めっきが求められる。
Since the convex part shown above faces an external appearance surface, even if it applies the plating film 101 by the composite metal plating of a prior art to the iron plate 100, an external appearance property is not good.
That is, when the plating film 101 is coated on a metal material (such as the iron plate 100) for the purpose of improving thermal characteristics and electrical characteristics, the appearance is deteriorated, so that the use of this composite plating is limited.
In order to expand applications, smooth composite plating is required.

本発明は、金属にカーボンナノ材料を複合する複合めっきにおいて、表面を平滑に仕上げることのできる複合めっき技術を提供することを課題とする。   This invention makes it a subject to provide the composite plating technique which can finish the surface smoothly in the composite plating which combines a carbon nanomaterial with a metal.

請求項1に係る発明は、硫酸ニッケルと塩化ニッケルを主成分とするワット浴に、光沢剤と、ポリアクリル酸と、カーボンナノファイバとを混合して複合めっき液を調製し、このめっき液に金属材料を投入し、電解めっき処理を施すことで、ニッケルに繊維状カーボンナノ材料を複合させた複合めっき層からなる繊維状ナノカーボン・金属複合材料である。   The invention according to claim 1 prepares a composite plating solution by mixing a brightening agent, polyacrylic acid, and carbon nanofibers in a watt bath mainly composed of nickel sulfate and nickel chloride. It is a fibrous nanocarbon / metal composite material composed of a composite plating layer in which a fibrous carbon nanomaterial is combined with nickel by introducing a metal material and performing electrolytic plating treatment.

請求項2に係る発明は、硫酸ニッケルと塩化ニッケルを主成分とするワット浴に、光沢剤と、ポリアクリル酸と、カーボンナノファイバとを混合して複合めっき液を調製し、このめっき液に金属材料を投入し、電解めっき処理を施すことで、ニッケルに繊維状カーボンナノ材料を複合させた複合めっき層を金属材料に積層することを特徴とする繊維状ナノカーボン・金属複合材料の製造方法である。   The invention according to claim 2 prepares a composite plating solution by mixing a brightening agent, polyacrylic acid, and carbon nanofibers in a watt bath mainly composed of nickel sulfate and nickel chloride. A method for producing a fibrous nanocarbon / metal composite material, wherein a composite plating layer in which a fibrous carbon nanomaterial is combined with nickel is laminated on the metal material by introducing a metal material and performing an electrolytic plating treatment It is.

請求項3に係る発明では、光沢剤は、サッカリンナトリウム及び2−ブチン1.4ジオールであることを特徴とする。   The invention according to claim 3 is characterized in that the brightener is saccharin sodium and 2-butyne 1.4 diol.

請求項4に係る発明では、ポリアクリル酸は、めっき液1m当たり0.1〜1.0kg混合し、カーボンナノファイバは、めっき液1m当たり2〜20kg混合することを特徴とする。 The invention according to claim 4 is characterized in that 0.1 to 1.0 kg of polyacrylic acid is mixed per 1 m 3 of the plating solution, and 2 to 20 kg of carbon nanofiber is mixed per 1 m 3 of the plating solution.

請求項1に係る繊維状ナノカーボン・金属複合材料では、表面粗さが非特許文献1の表面粗さの約1/50まで改善することができた。詳細なデータは後述するが、本発明のめっき層の表面は十分に平滑であった。
したがって、請求項1によれば、カーボンナノファイバを含む複合めっきであるにも拘わらず、平滑な表面が得られるので、カーボンナノファイバ混入に基づき熱的特性及び電気的特性に優れ、外見性の良いめっき層を提供することができる。
In the fibrous nanocarbon / metal composite material according to claim 1, the surface roughness can be improved to about 1/50 of the surface roughness of Non-Patent Document 1. Although detailed data will be described later, the surface of the plating layer of the present invention was sufficiently smooth.
Therefore, according to claim 1, since a smooth surface can be obtained in spite of the composite plating containing carbon nanofibers, the thermal characteristics and electrical characteristics are excellent based on the carbon nanofiber mixture, and the appearance is excellent. A good plating layer can be provided.

請求項2に係る発明では、めっき層の表面粗さを非特許文献1の表面粗さの約1/50まで改善することができる。
したがって、請求項2によれば、カーボンナノファイバを含む複合めっきであるにも拘わらず、平滑な表面が得られるので、カーボンナノファイバ混入に基づいて熱的特性及び電気的特性に優れ、外見性の良いめっきを金属材料に施すことができる。
この結果、カーボンナノファイバを含む複合めっきの用途を飛躍的に拡大させることができる。
In the invention which concerns on Claim 2, the surface roughness of a plating layer can be improved to about 1/50 of the surface roughness of the nonpatent literature 1. FIG.
Therefore, according to claim 2, a smooth surface can be obtained in spite of the composite plating containing carbon nanofibers. Therefore, the thermal and electrical characteristics are excellent based on the carbon nanofiber mixture, and the appearance is good. Can be applied to metal materials.
As a result, the application of the composite plating including carbon nanofibers can be dramatically expanded.

請求項3に係る発明では、光沢剤は、サッカリンナトリウム及び2−ブチン1.4ジオールとした。光沢剤には分散剤(界面活性剤)と相性が悪く、表面に凹凸を形成するものと、働きを弱めるものとがある。サッカリンナトリウム及び2−ブチン1.4ジオールは、界面活性剤との相性が良く、界面活性剤の働きを阻害しない。
したがって、請求項3によれば、めっきの品質を高めることができる。
In the invention according to claim 3, the brightener is saccharin sodium and 2-butyne 1.4 diol. Brightening agents have poor compatibility with dispersants (surfactants), and there are those that form irregularities on the surface and those that weaken the function. Saccharin sodium and 2-butyne 1.4 diol have good compatibility with the surfactant and do not inhibit the action of the surfactant.
Therefore, according to the third aspect, the quality of plating can be improved.

請求項4に係る発明では、ポリアクリル酸は、めっき液1m当たり0.1〜1.0kg混合し、カーボンナノファイバは、めっき液1m当たり2〜20kg混合する。
ポリアクリル酸は、めっき液1m当たり0.1kg未満では、分散機能が弱く、カーボンナノファイバが凝集する。また、ポリアクリル酸は、めっき液1m当たり1.0kgを超えると添加過多になり、めっき液中に分解生成物が析出し、この析出物がめっきの品質を低下させる。
In the invention according to claim 4, 0.1 to 1.0 kg of polyacrylic acid is mixed per 1 m 3 of the plating solution, and 2 to 20 kg of carbon nanofiber is mixed per 1 m 3 of the plating solution.
When polyacrylic acid is less than 0.1 kg per 1 m 3 of the plating solution, the dispersion function is weak and the carbon nanofibers aggregate. Further, when polyacrylic acid exceeds 1.0 kg per 1 m 3 of the plating solution, it is excessively added, and a decomposition product is deposited in the plating solution, which deteriorates the quality of the plating.

また、カーボンナノファイバが2kg/m未満であると、浴内での濃度不足であり、めっき物中への複合が不十分であり、20kg/mを超えると浴中に必要な界面活性剤の絶対量が増えるため、好ましくない。
そこで、ポリアクリル酸は、めっき液1m当たり0.1〜1.0kg混合し、カーボンナノファイバは、めっき液1m当たり2〜20kg混合することとした。
Further, when the carbon nanofiber is less than 2 kg / m 3 , the concentration in the bath is insufficient, and the composite in the plated product is insufficient, and when it exceeds 20 kg / m 3 , the necessary surface activity in the bath is obtained. Since the absolute amount of the agent increases, it is not preferable.
Therefore, 0.1 to 1.0 kg of polyacrylic acid is mixed per 1 m 3 of plating solution, and 2 to 20 kg of carbon nanofiber is mixed per 1 m 3 of plating solution.

本発明を実施するための最良の形態を添付図に基づいて以下に説明する。
図1は本発明に係る電気めっきを施す電気めっき設備の原理図であり、電気めっき設備10は、めっき槽11に正極として亜鉛板又はニッケル板12を下げるとともに負極として鉄板、アルミ板、銅板又はステンレス板の金属板13を下げ、両板12、13に電源14を連結し、めっき層11に次に述べるめっき液15を満たした設備である。めっき液15を撹拌し循環させる撹拌手段、循環手段は必須であるが周知の手段が採用できるので説明は省略する。
The best mode for carrying out the present invention will be described below with reference to the accompanying drawings.
FIG. 1 is a principle view of an electroplating facility for performing electroplating according to the present invention. An electroplating facility 10 lowers a zinc plate or a nickel plate 12 as a positive electrode in a plating tank 11 and uses an iron plate, an aluminum plate, a copper plate or a negative electrode as a negative electrode. The stainless steel plate 13 is lowered, the power source 14 is connected to both plates 12 and 13, and the plating layer 11 is filled with a plating solution 15 described below. The stirring means and the circulation means for stirring and circulating the plating solution 15 are indispensable, but since well-known means can be adopted, description thereof is omitted.

めっき液15は、比較例1では(水+塩化亜鉛+塩化アンモニウム+界面活性剤+カーボンナノファイバ)とし、実施例1では(水+硫酸ニッケル+塩化ニッケル+ほう酸+光沢剤+界面活性剤+カーボンナノファイバ)とした。混合量(添加量)は後述する。   In Comparative Example 1, the plating solution 15 was (water + zinc chloride + ammonium chloride + surfactant + carbon nanofiber), and in Example 1, (water + nickel sulfate + nickel chloride + boric acid + brightener + surfactant + surfactant + Carbon nanofiber). The mixing amount (addition amount) will be described later.

比較例1では、亜鉛イオンとともにカーボンナノファイバが、金属板13に到達する。したがって、亜鉛とカーボンナノファイバとが混合した形態の被膜を金属板13に形成することができる。
実施例1では、ニッケルイオンとともにカーボンナノファイバが、金属板13に到達する。したがって、ニッケルとカーボンナノファイバとが混合した形態の被膜を金属板13に形成することができる。
In Comparative Example 1, the carbon nanofibers reach the metal plate 13 together with the zinc ions. Therefore, a coating film in which zinc and carbon nanofibers are mixed can be formed on the metal plate 13.
In Example 1, the carbon nanofibers reach the metal plate 13 together with the nickel ions. Therefore, a coating film in a form in which nickel and carbon nanofibers are mixed can be formed on the metal plate 13.

(実験例)
本発明に係る実験例を以下に述べる。なお、本発明は実験例に限定されるものではない。
(Experimental example)
Experimental examples according to the present invention will be described below. Note that the present invention is not limited to experimental examples.

○電気めっきにおける共通条件:
陰極:鉄板(脱脂処理した清浄な板)
陽極:亜鉛板(比較例1)、電解ニッケル板(実施例1)
めっき液温:25℃
電流密度:5A/dm
処理時間:3分30秒(実施例1−2及び比較例1−2は、20分)
○ Common conditions in electroplating:
Cathode: Iron plate (clean and degreased plate)
Anode: Zinc plate (Comparative Example 1), electrolytic nickel plate (Example 1)
Plating solution temperature: 25 ° C
Current density: 5 A / dm 2
Processing time: 3 minutes 30 seconds (Example 1-2 and Comparative Example 1-2 are 20 minutes)

○比較例1でのめっき液の組成:
水:1.0m
塩化亜鉛:70kg/m
塩化アンモニウム:180kg/m
界面活性剤:2、4、7、9−テトラメチル−5−デシン−4、7−ジオールに非イオン性界面活性剤を混合してなる界面活性剤(製品名 オルフィン PD−002W 日信化学工業(株)製 ):2000cm/m
カーボンナノファイバ:2kg/m
○ Composition of plating solution in Comparative Example 1:
Water: 1.0m 3
Zinc chloride: 70 kg / m 3
Ammonium chloride: 180 kg / m 3
Surfactant: Surfactant obtained by mixing 2,4,7,9-tetramethyl-5-decyne-4,7-diol with a nonionic surfactant (product name: Orphin PD-002W Nisshin Chemical Industry) Manufactured by)): 2000 cm 3 / m 3
Carbon nanofiber: 2 kg / m 3

○実施例1でのめっき液の組成:
水:1.0m
硫酸ニッケル:240kg/m
塩化ニッケル: 45kg/m
ほう酸: 30kg/m
光沢剤:サッカリンナトリウム 2kg/m
+2−ブチン1.4ジオール 0.2kg/m
界面活性剤:ポリアクリル酸 0.1kg/m
カーボンナノファイバ:2kg/m
比較例1、実施例1では、めっき液に超音波振動を付与しながら、カーボンナノファイバを混入した。これで、カーボンナノファイバの分散を促すことができた。
○ Composition of plating solution in Example 1:
Water: 1.0m 3
Nickel sulfate: 240 kg / m 3
Nickel chloride: 45kg / m 3
Boric acid: 30kg / m 3
Brightener: Saccharin sodium 2 kg / m 3
+ 2-butyne 1.4 diol 0.2 kg / m 3
Surfactant: Polyacrylic acid 0.1 kg / m 3
Carbon nanofiber: 2 kg / m 3
In Comparative Example 1 and Example 1, carbon nanofibers were mixed while applying ultrasonic vibration to the plating solution. This promoted the dispersion of carbon nanofibers.

実験の結果を次表に示す。なお、表面粗さRaはレーザ顕微鏡で計測した。RaはJIS B0601で定義される中心線平均粗さである。
なお、比較例1−2、実施例1−2の条件は処理時間を除き、比較例1、実施例1と同じである。
The results of the experiment are shown in the following table. The surface roughness Ra was measured with a laser microscope. Ra is the centerline average roughness defined by JIS B0601.
The conditions of Comparative Example 1-2 and Example 1-2 are the same as those of Comparative Example 1 and Example 1 except for the processing time.

Figure 2006028636
Figure 2006028636

比較例1では表面粗さは10μmあり(図3参照)、実施例1では表面粗さは0.75μmであった。表面粗さについて、比較例1を「1」とすれば、実施例1は「1/13」となり、実施例1は十分に平滑であることが確認できた。   In Comparative Example 1, the surface roughness was 10 μm (see FIG. 3), and in Example 1, the surface roughness was 0.75 μm. Regarding the surface roughness, when Comparative Example 1 is “1”, Example 1 is “1/13”, and it can be confirmed that Example 1 is sufficiently smooth.

比較例1−2では表面粗さは40μmあり、実施例1−2では表面粗さは0.8μmであった。表面粗さについて、比較例1−2を「1」とすれば、実施例1−2は「1/50」となり、実施例1−2は、より十分に平滑であることが確認できた。   In Comparative Example 1-2, the surface roughness was 40 μm, and in Example 1-2, the surface roughness was 0.8 μm. As for the surface roughness, when Comparative Example 1-2 was “1”, Example 1-2 was “1/50”, and it was confirmed that Example 1-2 was sufficiently smooth.

比較例1の界面活性剤がPD−002Wであり、実施例1の界面活性剤がポリアクリル酸であることから、PD−002Wは表面に凹凸を形成し、ポリアクリル酸は表面を平滑にすることが分かった。しかし、比較例1は亜鉛浴であり、実施例1はニッケル浴であることから界面活性剤はめっき浴に関係があるか否かを調べる必要がある。   Since the surfactant of Comparative Example 1 is PD-002W and the surfactant of Example 1 is polyacrylic acid, PD-002W forms irregularities on the surface, and polyacrylic acid smoothes the surface. I understood that. However, since Comparative Example 1 is a zinc bath and Example 1 is a nickel bath, it is necessary to investigate whether the surfactant is related to the plating bath.

そこで、界面活性剤を除く条件を同一にして、比較例2を実験した。   Therefore, Comparative Example 2 was tested under the same conditions except for the surfactant.

○比較例2でのめっき液の組成:
水:1.0m
硫酸ニッケル:240kg/m
塩化ニッケル: 45kg/m
ほう酸: 30kg/m
光沢剤:サッカリンナトリウム 2kg/m
+2−ブチン1.4ジオール 0.2kg/m
界面活性剤:2、4、7、9−テトラメチル−5−デシン−4、7−ジオールに非イオン性界面活性剤を混合してなる界面活性剤(製品名 オルフィン PD−002W 日信化学工業(株)製 ):2000cm/m
カーボンナノファイバ:2kg/m
○ Composition of plating solution in Comparative Example 2:
Water: 1.0m 3
Nickel sulfate: 240 kg / m 3
Nickel chloride: 45kg / m 3
Boric acid: 30kg / m 3
Brightener: Saccharin sodium 2 kg / m 3
+ 2-butyne 1.4 diol 0.2 kg / m 3
Surfactant: Surfactant obtained by mixing 2,4,7,9-tetramethyl-5-decyne-4,7-diol with a nonionic surfactant (product name: Orphin PD-002W Nisshin Chemical Industry) Manufactured by)): 2000 cm 3 / m 3
Carbon nanofiber: 2 kg / m 3

結果、比較例2は、実施例1に比べて大きな凹凸が発生した。さらに、析出した複合めっきは脆弱なものであった。
したがって、PD−002Wは表面に凹凸を形成し、さらに表面を脆弱化させてしまうが、ポリアクリル酸は表面の硬度を保ったまま平滑にすることが再度確認できた。
As a result, in Comparative Example 2, large irregularities were generated as compared with Example 1. Furthermore, the deposited composite plating was fragile.
Therefore, PD-002W forms irregularities on the surface and further weakens the surface, but it was confirmed again that polyacrylic acid was smooth while maintaining the surface hardness.

以上で表面粗さの評価を終える。
次にカーボンナノファイバの混合量についての実験を行う。
条件は、前記実施例1の条件をベースにカーボンナノファイバの量だけを変化させる。
○実施例1〜6及び比較例3でのめっき液の組成:
水:1.0m
硫酸ニッケル:240kg/m
塩化ニッケル: 45kg/m
ほう酸: 30kg/m
光沢剤:サッカリンナトリウム 2kg/m
+2−ブチン1.4ジオール 0.2kg/m
界面活性剤:ポリアクリル酸 0.1kg/m
This completes the evaluation of the surface roughness.
Next, an experiment on the amount of carbon nanofiber mixed is performed.
The condition is changed only by the amount of the carbon nanofiber based on the condition of the first embodiment.
○ Composition of plating solutions in Examples 1 to 6 and Comparative Example 3:
Water: 1.0m 3
Nickel sulfate: 240 kg / m 3
Nickel chloride: 45kg / m 3
Boric acid: 30kg / m 3
Brightener: Saccharin sodium 2 kg / m 3
+ 2-butyne 1.4 diol 0.2 kg / m 3
Surfactant: Polyacrylic acid 0.1 kg / m 3

カーボンナノファイバ:2kg/m(実施例1)、4kg/m(実施例2)、6
kg/m(実施例3)、12kg/m(実施例4)、20kg/m(実施例5)、
30kg/m(比較例3)
Carbon nanofibers: 2 kg / m 3 (Example 1), 4 kg / m 3 (Example 2), 6
kg / m 3 (Example 3), 12 kg / m 3 (Example 4), 20 kg / m 3 (Example 5),
30 kg / m 3 (Comparative Example 3)

そして、複合状態、表面状態を調べ、ほぼ良を○、良を◎とし、最右の評価欄は悪い方の評価を記載する。   Then, the composite state and the surface state are examined. Almost “good” is given as “good” and “good” is given as “◎”.

Figure 2006028636
Figure 2006028636

表面状態は、ポリアクリル酸が効果を発揮し、良好であった。しかし、カーボンナノファイバが均一に分布しているか否かを調べる複合状態では、評価に差が出た。   The surface condition was good with polyacrylic acid being effective. However, there was a difference in evaluation in the composite state in which it was investigated whether or not the carbon nanofibers were uniformly distributed.

すなわち、比較例3では、カーボンナノファイバが多過ぎて、界面活性剤が不足し、部分的にカーボンナノファイバの凝集が発生し、複合状態は悪かった。また、実施例1、2はカーボンナノファイバが不足気味であり、許容範囲ではあるがカーボンナノファイバの偏りが見られた。実施例5も同様であった。   That is, in Comparative Example 3, there were too many carbon nanofibers, the surfactant was insufficient, the carbon nanofibers partially aggregated, and the composite state was poor. Further, in Examples 1 and 2, the carbon nanofibers seemed to be insufficient, and the carbon nanofibers were biased although they were within an allowable range. Example 5 was also the same.

したがって、カーボンナノファイバは、めっき液1m当たり2〜20kg、好ましくは6〜12kgの混合量とする。 Therefore, the carbon nanofiber is mixed in an amount of 2 to 20 kg, preferably 6 to 12 kg per 1 m 3 of the plating solution.

以上の説明から明らかなように、カーボンナノファイバの凝集を防止するために添加する分散剤としてのポリアクリル酸の添加量は重要である。そこで、カーボンナノファイバの添加量とポリアクリル酸の添加量との相関を調べた。その結果を次図で説明する。   As is clear from the above description, the amount of polyacrylic acid added as a dispersant added to prevent the aggregation of carbon nanofibers is important. Therefore, the correlation between the amount of carbon nanofiber added and the amount of polyacrylic acid added was investigated. The results will be described with reference to the next figure.

図2は本発明におけるカーボンナノファイバ添加量とポリアクリル酸添加量との相関図であり、横軸はカーボンナノファイバ添加量、縦軸はポリアクリル酸添加量を示す。
上記表2で説明したとおりに、ポリアクリル酸0.1kg/mで、カーボンナノファイバが2〜20kg/mの範囲では、複合状態は良好であった。そこで、ポリアクリル酸を変化させて評価したところ、0.1kg/m未満では、分散機能が弱く、カーボンナノファイバが凝集する。また、1.0kg/mを超えると添加過多になり、めっき液中に分解生成物が析出し、この析出物がめっきの品質を低下させる。
FIG. 2 is a correlation diagram between the carbon nanofiber addition amount and the polyacrylic acid addition amount in the present invention, where the horizontal axis represents the carbon nanofiber addition amount and the vertical axis represents the polyacrylic acid addition amount.
As described in Table 2, polyacrylic acid 0.1 kg / m 3, in a range of carbon nanofibers of 2~20kg / m 3, the composite state was good. Therefore, when the polyacrylic acid was changed and evaluated, if it is less than 0.1 kg / m 3 , the dispersion function is weak and the carbon nanofibers aggregate. Moreover, when it exceeds 1.0 kg / m < 3 >, it will be excessive addition and a decomposition product will precipitate in a plating solution, and this deposit will reduce the quality of plating.

カーボンナノファイバの添加量に比例してポリアクリル酸を増量すべきであるから、適量範囲は、座標(2,0.1)、(20,0.1)、(20,1.0)を結んだ大きな三角形の領域となる。この領域を「良」とする。   Since the amount of polyacrylic acid should be increased in proportion to the amount of carbon nanofiber added, the appropriate amount range is the coordinates (2,0.1), (20,0.1), (20,1.0). It becomes a large triangular area connected. This area is defined as “good”.

また、ポリアクリル酸が多過ぎると析出物が顕著となるため、寧ろ少なめの方が好ましい。実験の結果、最適範囲は、座標(2,0.1)、(20,0.1)、(20,0.5
)を結んだ小さな三角形の領域となった。この領域を「優」とする。
したがって、カーボンナノファイバ添加量とポリアクリル酸添加量は良の領域、好ましくは優の領域に設定することが望ましい。
Moreover, since a precipitate will become remarkable when there is too much polyacrylic acid, rather a little is preferable. As a result of the experiment, the optimum range is coordinates (2,0.1), (20,0.1), (20,0.5
) Became a small triangular area. This area is designated as “excellent”.
Therefore, it is desirable to set the carbon nanofiber addition amount and the polyacrylic acid addition amount in a good region, preferably in a superior region.

本発明では,めっき浴内におけるカーボンナノファイバの分散状態が非常に重要であり,実施例1に示す割合でめっき浴を建浴した場合でも,浴内におけるカーボンナノファイバの分散状態が不十分なままめっき処理を行った場合では十分な複合効果が得られない。   In the present invention, the dispersion state of the carbon nanofibers in the plating bath is very important. Even when the plating bath is constructed at the ratio shown in Example 1, the dispersion state of the carbon nanofibers in the bath is insufficient. If the plating process is performed as it is, a sufficient composite effect cannot be obtained.

実際,ニッケルめっき浴を建浴した後に,カーボンナノファイバおよび界面活性剤を添加しても直ちに分散はおこらない。
したがって,分散を十分に行うためにはある程度長い時間の超音波振動および攪拌を交互に行うことによる分散工程が必要になる。
実験的には,下記の表のように最低でも1時間程度は分散させた方が良好な複合効果を得られることを確認している。
In fact, even if carbon nanofibers and surfactants are added after the nickel plating bath is built, dispersion does not occur immediately.
Therefore, in order to perform sufficient dispersion, a dispersion process by alternately performing ultrasonic vibration and agitation for a relatively long time is necessary.
Experimentally, as shown in the table below, it has been confirmed that a good combined effect can be obtained by dispersing for at least about 1 hour.

Figure 2006028636
Figure 2006028636

なお,界面活性剤の添加量については,カーボンナノファイバの添加量を増やしたときに分散が悪いようであれば添加量を増やす程度が良い。上記に示す表のように分散にはかなり長い時間を要するため,分散が悪いからといってむやみに添加量を増やすことは逆効果である。   As for the addition amount of the surfactant, it is preferable to increase the addition amount if the dispersion is poor when the addition amount of the carbon nanofiber is increased. As shown in the table above, the dispersion takes a considerably long time, so it is counterproductive to increase the amount added unnecessarily just because the dispersion is poor.

つまり,20kg/mのカーボンナノファイバを添加する場合でも界面活性剤をはじめから1kg/mを入れるのではなく,まずは少量で分散状態を確認し,十分な分散工程後に目視でカーボンナノファイバの凝集がみられないようであったら,それ以上界面活性剤は添加しないほうが良い。 In other words, even when adding 20 kg / m 3 of carbon nanofibers, instead of adding 1 kg / m 3 from the beginning of the surfactant, first check the dispersion state in a small amount, and after a sufficient dispersion process, visually check the carbon nanofibers. If no coagulation is observed, it is better not to add any more surfactant.

さらに,カーボンナノファイバを2kg/m以上添加する場合には,一度に全ての量を浴内に入れると,浴内での分散が著しく悪くなり,通常よりもたくさんの界面活性剤を添加しなければ十分に分散しなくなってしまう。したがって,例えば,20kg/mのカーボンナノファイバを添加する場合では,まず界面活性剤を0.1kg/m添加し,続いてカーボンナノファイバを2kg/m添加し,攪拌や超音波振動により浴内に十分分散させる。 Furthermore, when adding 2 kg / m 3 or more of carbon nanofibers, if all of the amount is placed in the bath at once, the dispersion in the bath will be significantly worse, and more surfactant will be added than usual. Otherwise, it will not be fully dispersed. Therefore, for example, in the case of adding 20 kg / m 3 of carbon nanofibers, first, 0.1 kg / m 3 of surfactant is added, and then 2 kg / m 3 of carbon nanofibers are added, followed by stirring and ultrasonic vibration. To fully disperse in the bath.

その後,カーボンナノファイバを2kg/mずつ添加して,分散を繰り返す。このように,カーボンナノファイバを少量ずつ添加することによって,一度に添加するよりも少ない界面活性剤によって分散させることができる。 Thereafter, carbon nanofibers are added at a rate of 2 kg / m 3 , and dispersion is repeated. Thus, by adding carbon nanofibers little by little, it is possible to disperse with less surfactant than adding them all at once.

なお,カーボンナノファイバを2kg/mずつ添加して,分散を繰り返しているうちに明らかに分散状態が悪くなるようであれば,今度は界面活性剤を少量添加し,再度分散を行うようにすれば,カーボンナノファイバの添加量が多い場合でも,少量の界面活性剤の添加により十分に分散させることができる。 If carbon nanofibers are added in increments of 2 kg / m 3 and the dispersion state is clearly deteriorated while repeating the dispersion, a small amount of surfactant is added this time, and dispersion is performed again. Thus, even when the amount of carbon nanofiber added is large, it can be sufficiently dispersed by adding a small amount of surfactant.

次に、熱的性質(放射率及び熱伝導率)について評価する。
比較例4は、実施例1、3、4と比較対照するために、カーボンナノファイバ無しで実験した。
○比較例4でのめっき液の組成:
水:1.0m
硫酸ニッケル:240kg/m
塩化ニッケル: 45kg/m
ほう酸: 30kg/m
光沢剤:サッカリンナトリウム 2kg/m
+2−ブチン1.4ジオール 0.2kg/m
界面活性剤:ポリアクリル酸 0.1kg/m
Next, thermal properties (emissivity and thermal conductivity) are evaluated.
Comparative Example 4 was tested without carbon nanofibers for comparison with Examples 1, 3, and 4.
○ Composition of plating solution in Comparative Example 4:
Water: 1.0m 3
Nickel sulfate: 240 kg / m 3
Nickel chloride: 45kg / m 3
Boric acid: 30kg / m 3
Brightener: Saccharin sodium 2 kg / m 3
+ 2-butyne 1.4 diol 0.2 kg / m 3
Surfactant: Polyacrylic acid 0.1 kg / m 3

放射率は、λ=10μmの条件で放射率測定装置で測定した。結果を次表に示す。   The emissivity was measured with an emissivity measuring apparatus under the condition of λ = 10 μm. The results are shown in the following table.

Figure 2006028636
Figure 2006028636

比較例4でのめっき層は、ニッケル層であるため、放射率は小さく、0.07であった。この値は、通常のニッケルめっき層とほぼ同じである。これに対して、カーボンナノファイバを含む実施例1は0.80、実施例3は0.85、実施例4は0.86と、何れも放射率は格段に大きかった。   Since the plating layer in Comparative Example 4 was a nickel layer, the emissivity was small, 0.07. This value is almost the same as that of a normal nickel plating layer. On the other hand, Example 1 including carbon nanofibers was 0.80, Example 3 was 0.85, and Example 4 was 0.86.

パワートランジスタなどの発熱源を、金属の箱に入れ、この箱の外面にめっきを施した場合、めっき層表面の放射率が小さいときには、箱の外面から外部へ放出する放射熱は小さくなる。すると、熱が籠もってしまい、金属の箱の温度が上がり、発熱源の温度も上がるという悪循環が起こり、パワートランジスタの温度劣化が進行する。
この点、放射率が大きければ、熱が籠もることがなく、箱の温度が下がり、発熱源の温度も下がり、パワートランジスタの寿命が延びる。
When a heat source such as a power transistor is placed in a metal box and the outer surface of the box is plated, when the emissivity on the surface of the plating layer is small, the radiant heat emitted from the outer surface of the box to the outside is reduced. As a result, heat is trapped, the temperature of the metal box rises, and the temperature of the heat source rises, causing a vicious cycle, and the temperature degradation of the power transistor proceeds.
In this respect, if the emissivity is large, heat does not stagnate, the temperature of the box decreases, the temperature of the heat generation source also decreases, and the life of the power transistor is extended.

次に、熱伝導率をレーザーフラッシュ法により測定したので、その結果を説明する。   Next, since the thermal conductivity was measured by the laser flash method, the result will be described.

Figure 2006028636
Figure 2006028636

比較例4が60〜70W/mKであったが、カーボンナノファイバを含む実施例1は65〜75W/mK、実施例3は80〜90W/mK、実施例4は80〜90W/mKと増大した。   Comparative Example 4 was 60 to 70 W / mK, but Example 1 including carbon nanofibers increased to 65 to 75 W / mK, Example 3 increased to 80 to 90 W / mK, and Example 4 increased to 80 to 90 W / mK. did.

熱伝導量は厚さに影響を強く受けるため、めっき層の厚さがμmオーダでは影響が少ないが、100μm〜1mmの厚づけめっき層の場合は影響が顕著となる。
パワートランジスタを収納する金属箱は、一般に0.5〜1.0mmの厚さの金属板で構成する。これに0.1〜1.0mmの厚づけめっき層を施した場合は、厚づけめっき層の熱伝導率が大きいほど、箱及びパワートランジスタの温度を下げることができる。
したがって、発熱源を収納する金属箱に施すめっき層は、放射率が大きいほど好ましいと言える。
Since the amount of heat conduction is strongly influenced by the thickness, there is little influence when the thickness of the plating layer is on the order of μm, but the influence becomes remarkable in the case of a thick plating layer of 100 μm to 1 mm.
The metal box that houses the power transistor is generally composed of a metal plate having a thickness of 0.5 to 1.0 mm. When a thick plating layer having a thickness of 0.1 to 1.0 mm is applied thereto, the temperature of the box and the power transistor can be lowered as the thermal conductivity of the thick plating layer increases.
Therefore, it can be said that the higher the emissivity, the better the plating layer applied to the metal box that houses the heat source.

次に、機械的性質について評価する。
機械的性質の評価として、めっき層の硬さを調べた。その結果を次表に示す。
Next, the mechanical properties are evaluated.
As an evaluation of mechanical properties, the hardness of the plating layer was examined. The results are shown in the following table.

Figure 2006028636
Figure 2006028636

比較例4ではビッカース硬度が476であったものが、実施例3では559、実施例4では648まで増加した。通常の光沢ニッケルめっき層の硬さが400〜500であるから、実施例3、4はそれより十分に硬い。特に、実施例4の648は、250℃で焼き入れ処理した無電解ニッケル燐めっきの硬さに匹敵する。   In Comparative Example 4, the Vickers hardness was 476, but increased to 559 in Example 3 and to 648 in Example 4. Since the hardness of the normal bright nickel plating layer is 400 to 500, Examples 3 and 4 are sufficiently harder than that. In particular, 648 of Example 4 is comparable to the hardness of electroless nickel phosphor plating that is quenched at 250 ° C.

めっき層が硬いほど、傷が付きにくくなるため、柔らかい金属の保護に最適である。
したがって、本発明のめっき層は、平滑であるため外観性が良く、放射率が高いため発熱源を収納する金属製筐体の表皮に最適であると共に、硬度が高いため内部の金属を保護することができる。したがって、従来の光沢ニッケルめっきでは得られない付加価値のあるめっき層を提供することができる。
The harder the plating layer, the harder it is to scratch, making it ideal for protecting soft metals.
Therefore, the plating layer of the present invention is smooth and has a good appearance, and has a high emissivity. Therefore, the plating layer is suitable for the skin of a metal housing that houses a heat source, and protects the internal metal because of its high hardness. be able to. Therefore, it is possible to provide a plating layer with added value that cannot be obtained by conventional bright nickel plating.

尚、金属板13は、鉄板の他、アルミ板、銅板、ステンレス板についても実験した。いずれもめっき層の付着性は問題なく、本発明の作用、効果を発揮することが確認できた。   In addition, the metal plate 13 experimented also about the aluminum plate, the copper plate, and the stainless steel plate other than the iron plate. In any case, it was confirmed that the adhesion of the plating layer was satisfactory, and the effects and effects of the present invention were exhibited.

本発明は、パワートランジスタを内蔵する金属製筐体を被覆するめっき層に好適である。   The present invention is suitable for a plating layer that covers a metal housing containing a power transistor.

本発明に係る電気めっきを施す電気めっき設備の原理図である。It is a principle figure of the electroplating installation which performs the electroplating which concerns on this invention. 本発明におけるカーボンナノファイバ添加量とポリアクリル酸添加量との相関図である。It is a correlation diagram of the carbon nanofiber addition amount and the polyacrylic acid addition amount in the present invention. 従来の技術による粒子の断面図である。It is sectional drawing of the particle | grains by a prior art.

符号の説明Explanation of symbols

10…電解めっき設備、13…金属材料(金属板)、15…めっき液、101…複合めっき膜(めっき層)、103…カーボンナノファイバ。   DESCRIPTION OF SYMBOLS 10 ... Electrolytic plating equipment, 13 ... Metal material (metal plate), 15 ... Plating solution, 101 ... Composite plating film (plating layer), 103 ... Carbon nanofiber.

Claims (4)

硫酸ニッケルと塩化ニッケルを主成分とするワット浴に、光沢剤と、ポリアクリル酸と、カーボンナノファイバとを混合して複合めっき液を調製し、このめっき液に金属材料を投入し、電解めっき処理を施すことで、ニッケルに繊維状カーボンナノ材料を複合させた複合めっき層からなる繊維状ナノカーボン・金属複合材料。   A composite plating solution is prepared by mixing brightener, polyacrylic acid, and carbon nanofibers in a watt bath mainly composed of nickel sulfate and nickel chloride, and a metal material is added to the plating solution, followed by electrolytic plating. A fibrous nanocarbon / metal composite material composed of a composite plating layer in which a fibrous carbon nanomaterial is combined with nickel by processing. 硫酸ニッケルと塩化ニッケルを主成分とするワット浴に、光沢剤と、ポリアクリル酸と、カーボンナノファイバとを混合して複合めっき液を調製し、このめっき液に金属材料を投入し、電解めっき処理を施すことで、ニッケルに繊維状カーボンナノ材料を複合させた複合めっき層を金属材料に積層することを特徴とする繊維状ナノカーボン・金属複合材料の製造方法。   A composite plating solution is prepared by mixing brightener, polyacrylic acid, and carbon nanofibers in a watt bath mainly composed of nickel sulfate and nickel chloride, and a metal material is added to the plating solution, followed by electrolytic plating. A method for producing a fibrous nanocarbon / metal composite material, wherein a composite plating layer in which a fibrous carbon nanomaterial is combined with nickel is laminated on a metal material by performing a treatment. 前記光沢剤は、サッカリンナトリウム及び2−ブチン1.4ジオールであることを特徴とする請求項2記載の繊維状ナノカーボン・金属複合材料の製造方法。   3. The method for producing a fibrous nanocarbon / metal composite material according to claim 2, wherein the brightening agent is saccharin sodium and 2-butyne 1.4 diol. 前記ポリアクリル酸は、めっき液1m当たり0.1〜1.0kg混合し、カーボンナノファイバは、めっき液1m当たり2〜20kg混合することを特徴とする請求項2記載の繊維状ナノカーボン・金属複合材料の製造方法。
The fibrous nanocarbon according to claim 2, wherein 0.1 to 1.0 kg of the polyacrylic acid is mixed per 1 m 3 of the plating solution, and 2 to 20 kg of the carbon nanofiber is mixed per 1 m 3 of the plating solution. -Manufacturing method of metal composite material.
JP2004312901A 2004-06-18 2004-10-27 Fibrous nanocarbon / metal composite material and method for producing the same Expired - Fee Related JP4489561B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004312901A JP4489561B2 (en) 2004-06-18 2004-10-27 Fibrous nanocarbon / metal composite material and method for producing the same
US11/257,742 US7906210B2 (en) 2004-10-27 2005-10-25 Fibrous nanocarbon and metal composite and a method of manufacturing the same
CNA2005101181503A CN1769541A (en) 2004-10-27 2005-10-26 Fibrous nano carbon-metallic composite material and its production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004181447 2004-06-18
JP2004312901A JP4489561B2 (en) 2004-06-18 2004-10-27 Fibrous nanocarbon / metal composite material and method for producing the same

Publications (2)

Publication Number Publication Date
JP2006028636A true JP2006028636A (en) 2006-02-02
JP4489561B2 JP4489561B2 (en) 2010-06-23

Family

ID=35895337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004312901A Expired - Fee Related JP4489561B2 (en) 2004-06-18 2004-10-27 Fibrous nanocarbon / metal composite material and method for producing the same

Country Status (1)

Country Link
JP (1) JP4489561B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007042355A (en) * 2005-08-02 2007-02-15 Totoku Electric Co Ltd Composite coated copper wire and composite coated enamel copper wire
KR100748228B1 (en) 2006-02-28 2007-08-09 한국과학기술원 Method of making metal/carbon nanotube composite materials by electroplating
JP2007332454A (en) * 2006-04-12 2007-12-27 Mikarome Ind Co Ltd Method for preparing molybdenum disulfide composite plating liquid, molybdenum disulfide composite plating method and nickel-molybdenum disulfide composite plating film
JP2008050668A (en) * 2006-08-25 2008-03-06 Nissei Plastics Ind Co Composite plated product and its production method
EP1927681A1 (en) 2006-11-28 2008-06-04 Seiko Epson Corporation Timepiece component and timepiece having the timepiece component
JP2008163376A (en) * 2006-12-27 2008-07-17 Nissei Plastics Ind Co Composite plated product and method of manufacturing the same
JP2012172245A (en) * 2011-02-24 2012-09-10 Shinko Electric Ind Co Ltd Composite plating liquid
US8846201B2 (en) 2009-03-05 2014-09-30 Nissei Industrial Plastic Co., Ltd. Composite plated product
US9136200B2 (en) 2010-09-14 2015-09-15 Shinko Electric Industries Co., Ltd. Heat radiating component and method of producing same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007042355A (en) * 2005-08-02 2007-02-15 Totoku Electric Co Ltd Composite coated copper wire and composite coated enamel copper wire
KR100748228B1 (en) 2006-02-28 2007-08-09 한국과학기술원 Method of making metal/carbon nanotube composite materials by electroplating
JP2007332454A (en) * 2006-04-12 2007-12-27 Mikarome Ind Co Ltd Method for preparing molybdenum disulfide composite plating liquid, molybdenum disulfide composite plating method and nickel-molybdenum disulfide composite plating film
JP4617327B2 (en) * 2006-04-12 2011-01-26 ミカローム工業株式会社 Preparation method of molybdenum disulfide composite plating solution, molybdenum disulfide composite plating method and nickel-molybdenum disulfide composite plating film
JP2008050668A (en) * 2006-08-25 2008-03-06 Nissei Plastics Ind Co Composite plated product and its production method
JP4719646B2 (en) * 2006-08-25 2011-07-06 日精樹脂工業株式会社 Manufacturing method of composite plating products
EP1927681A1 (en) 2006-11-28 2008-06-04 Seiko Epson Corporation Timepiece component and timepiece having the timepiece component
JP2008163376A (en) * 2006-12-27 2008-07-17 Nissei Plastics Ind Co Composite plated product and method of manufacturing the same
US8846201B2 (en) 2009-03-05 2014-09-30 Nissei Industrial Plastic Co., Ltd. Composite plated product
US9136200B2 (en) 2010-09-14 2015-09-15 Shinko Electric Industries Co., Ltd. Heat radiating component and method of producing same
JP2012172245A (en) * 2011-02-24 2012-09-10 Shinko Electric Ind Co Ltd Composite plating liquid
US9476138B2 (en) 2011-02-24 2016-10-25 Shinko Electric Industries Co., Ltd Composite plating liquid

Also Published As

Publication number Publication date
JP4489561B2 (en) 2010-06-23

Similar Documents

Publication Publication Date Title
US7906210B2 (en) Fibrous nanocarbon and metal composite and a method of manufacturing the same
CN1059154C (en) A highly corrosion-ressistant nickle plating sheet steel and its manufacturing method
CN113774442B (en) Nano composite coating based on endogenesis precipitation method and preparation process thereof
US20090211914A1 (en) Trivalent Chromium Electroplating Solution and an Operational Method Thereof
JP4489561B2 (en) Fibrous nanocarbon / metal composite material and method for producing the same
JP2009215590A (en) Copper-zinc alloy electroplating method, steel wire using the same, steel wire-rubber bonded composite and tire
US3951759A (en) Chromium electroplating baths and method of electrodepositing chromium
JPH0570718B2 (en)
Li et al. Pulse electrodepsoited Ni-Cu/TiN-ZrO2 nanocomposite coating: microstructural and electrochemical properties
JP4764330B2 (en) Composite plating product and manufacturing method thereof
CN113463148A (en) Method for electroplating gold on surface of titanium or titanium alloy substrate
US6699379B1 (en) Method for reducing stress in nickel-based alloy plating
KR102352209B1 (en) Chitosan used in electrolytic plasma process of magnesium alloy
JP3973039B2 (en) Composite plated product and method for producing the same
KR102639142B1 (en) Composite plated product and method for producing same
US11827995B2 (en) In-situ method for synthesizing Ni—w—Wc composite coating
CN113502518B (en) Wear-resistant aluminum alloy composite material
JP2009149978A (en) Copper-zinc alloy electroplating bath and plating method using the same
JP4719646B2 (en) Manufacturing method of composite plating products
US8673445B2 (en) Composite-plated article and method for producing same
CN113584542A (en) Method for plating nickel on surface of aluminum alloy
JP5274817B2 (en) Copper-zinc alloy electroplating bath and plating method using the same
KR102232161B1 (en) Electroless Ni-P-TiO2 Alloy Plating Solution Compositions and Plating Methods Using Thereof
KR102336506B1 (en) A Cyanide Copper Plating Solution And A Method for Cyanide Copper Plating Using The Same
WO2010101212A1 (en) Copper-zinc alloy electroplating bath and method of plating using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080527

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100331

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4489561

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160409

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees