JP2006010294A - Air and water cooled hybrid air conditioner - Google Patents

Air and water cooled hybrid air conditioner Download PDF

Info

Publication number
JP2006010294A
JP2006010294A JP2004216583A JP2004216583A JP2006010294A JP 2006010294 A JP2006010294 A JP 2006010294A JP 2004216583 A JP2004216583 A JP 2004216583A JP 2004216583 A JP2004216583 A JP 2004216583A JP 2006010294 A JP2006010294 A JP 2006010294A
Authority
JP
Japan
Prior art keywords
air
water
cooled
heat exchange
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004216583A
Other languages
Japanese (ja)
Inventor
Shinichi Tateno
慎一 舘野
Shinji Takasugi
真司 高杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EARTH RESOURCES KK
Original Assignee
EARTH RESOURCES KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EARTH RESOURCES KK filed Critical EARTH RESOURCES KK
Priority to JP2004216583A priority Critical patent/JP2006010294A/en
Publication of JP2006010294A publication Critical patent/JP2006010294A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Other Air-Conditioning Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air and water cooled hybrid air conditioner with favorable heat exchange efficiency, capable of reducing an environmental load even from an aspect of recycling resources. <P>SOLUTION: In the air conditioner carrying out heat exchange of a heat exchange medium circulating in a passage by an air-cooled heat exchanger 5 arranged on the passage 4 connecting a four way valve 2 and an expansion valve 3, a water-cooled heat exchanger 20 carrying out heat exchange with the heat exchange medium is retrofitted, and it is composed such that a change-over can be carried out between the air-cooled heat exchanger 5 and the water-cooled heat exchanger 20. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、熱交換媒体を空冷熱交換機部で熱交換する空調装置に、熱交換媒体を水熱源で熱交換する水冷熱交換機を後付けした空水冷ハイブリッド空調装置に関する。  The present invention relates to an air-water cooled hybrid air conditioner in which a water-cooled heat exchanger that exchanges heat with a water heat source is retrofitted to an air-conditioner that exchanges heat with an air-cooled heat exchanger.

所謂、空冷式の熱交換機となるヒートポンプを有する本空調装置では、一般に直接膨張方式(以下、直膨方式)を用いて冷房及び暖房を行っている。以下、冷房サイクルを用いて冷房システムについて説明すると、直膨方式は室内に設置された蒸発器に熱交換媒体を送り、コイルの中で膨張気化させてコイルを冷却し、通過する空気と熱交換をし、その空気より吸熱を行っている。本空調装置は、室外に設置された凝縮器で空気と直接熱交換を行う構造であるため、構造が簡単である反面、放熱する空気温度(外気温度)によってその性能が大きく変化する特性となっている。  In the present air conditioner having a heat pump as a so-called air-cooled heat exchanger, cooling and heating are generally performed using a direct expansion method (hereinafter referred to as a direct expansion method). Hereinafter, the cooling system will be described using a cooling cycle. In the direct expansion method, a heat exchange medium is sent to an evaporator installed in a room, and the coil is expanded and vaporized in the coil to cool the coil and exchange heat with the passing air. It absorbs heat from the air. Since this air conditioner has a structure in which heat is exchanged directly with air using a condenser installed outside the room, the structure is simple, but the performance varies greatly depending on the air temperature (outside air temperature) to dissipate heat. ing.

一方、空冷式に比べて熱交換率が良いことで、水冷式の熱交換機としてのヒートポンプが種々提案されている。ここで空冷式と水冷式のヒートポンプの差を冷却サイクルで説明する。この水冷式のヒートポンプは、熱交換媒体を水熱源とする地下水、クーリングタワー内の水等の冷却水に放熱するので、空冷式に比べて熱交換性能が安定する特性がある。しかしながら、冷却水への放熱方式を行おうとしても、この冷却水として水道水を利用するとコストが高く、地下水を利用すると、汲み上げ規制のある地域では十分に利用できるものとは限らない。また、冷却水を循環させる経路を地中に埋設して熱交換させる場合、ヒートポンプの原理的な問題から冷却水の温度がある一定温度を越えると、冷却水と熱交換媒体との間で熱交換を行えなくなる。  On the other hand, various heat pumps as water-cooled heat exchangers have been proposed because of their better heat exchange rate than air-cooled. Here, the difference between the air-cooled heat pump and the water-cooled heat pump will be described in terms of the cooling cycle. This water-cooled heat pump dissipates heat to cooling water such as ground water using a heat exchange medium as a water heat source, water in a cooling tower, etc., and thus has a characteristic that heat exchange performance is more stable than air-cooled heat pumps. However, even if a heat dissipation method for cooling water is used, the cost is high if tap water is used as the cooling water, and the use of groundwater may not be sufficient in areas where pumping is restricted. In addition, when heat exchange is performed by burying a path for circulating the cooling water in the ground, if the temperature of the cooling water exceeds a certain temperature due to a principle problem of the heat pump, heat is generated between the cooling water and the heat exchange medium. It becomes impossible to exchange.

ここで、冷却水を熱源とするヒートポンプの原理について説明する。ヒートポンプは、図3、図4に示すように、エンタルピー(h)と圧力(p)に対して用いる熱交換媒体の飽和線上に変化を示した図で説明される。ヒートポンプは、暖房サイクルと冷房サイクルで熱交換媒体の動きが逆になるが、以下に示すように、両サイクルとも、水冷式の方の熱交換効率が向上する。  Here, the principle of a heat pump using cooling water as a heat source will be described. As shown in FIGS. 3 and 4, the heat pump is described with a diagram showing a change on a saturation line of a heat exchange medium used for enthalpy (h) and pressure (p). In the heat pump, the movement of the heat exchange medium is reversed between the heating cycle and the cooling cycle. However, as shown below, the heat exchange efficiency of the water-cooled type is improved in both cycles.

図3を用いて暖房サイクルを説明する。ヒートポンプにおいては、蒸発器が熱源との熱交換機分となり、ここが空冷冷却機と水冷冷却機で異なる部分となる。水の熱伝達率は、空気のそれと比べて数百倍と大変大きく、また、熱容量も大きくなることから、効率的に吸熱反応が行われ、ヒートポンプの動力費(電気消費量)が空気の場合と比べて小さく、効率が向上しており、暖房能力がよくなる。  The heating cycle will be described with reference to FIG. In the heat pump, the evaporator serves as a heat exchanger with the heat source, and this is a different part between the air-cooled cooler and the water-cooled cooler. The heat transfer coefficient of water is very large, several hundred times that of air, and the heat capacity is also large, so the endothermic reaction is carried out efficiently, and the heat pump power cost (electricity consumption) is air. Compared to the above, the efficiency is improved and the heating capacity is improved.

図4を用いて冷房サイクルを説明すると、熱交換媒体の循環サイクルは暖房サイクルと逆向きとなり、凝縮器での放熱が冷却機の仕事となる。この効率も暖房サイクルと同様に熱伝達率が、圧倒的に空気と比べて高いことから、水による放熱が少ない動力費で行われ、効率が向上して冷房能力もよくなる。
このような特性を鑑み、近年、空冷式と水冷式の熱交換機を備えたハイブリッド空調装置が、例えば特許文献1、2で提案されている。
The cooling cycle will be described with reference to FIG. 4. The circulation cycle of the heat exchange medium is opposite to the heating cycle, and the heat radiation in the condenser is the work of the cooler. This efficiency is similar to that of the heating cycle because the heat transfer rate is overwhelmingly higher than that of air. Therefore, heat is released with less heat, and the efficiency is improved and the cooling capacity is improved.
In view of such characteristics, in recent years, for example, Patent Documents 1 and 2 have proposed hybrid air conditioners including air-cooled and water-cooled heat exchangers.

特開2004−116800JP 2004-116800 A 特開2004−116806JP-A-2004-116806

特許文献1,2には、空冷式と水冷式の熱交換機を有する空調装置が提案されているが、これらは最初から空冷と水冷の熱交換機を持っているので、効率的な熱交換を行える反面、既存のハイブリッド方式の空調装置を高性能化することは、空冷式の熱交換機を改造する必要があり、極めて難しい。このため、高性能なハイブリッド方式の空調装置をユーザーが導入しようとする場合、新たに空冷方式の空調装置を新設する必要があり、まだ使用可能な既存の空冷式の空調装置を利用することができず、廃棄することになる。すなわち、空調装置のハイブリッド化は、熱交換性能が向上してヒートアイランド現象に関わる環境問題を抑制することになる反面、使用可能な空冷熱交換機の廃棄につながり、資源のリサイクルと言う側面からの環境問題に対してはマイナスの一要因になることが懸念される。  Patent Documents 1 and 2 propose air conditioners having air-cooled and water-cooled heat exchangers, but since these have air-cooled and water-cooled heat exchangers from the beginning, efficient heat exchange can be performed. On the other hand, it is extremely difficult to improve the performance of an existing hybrid air conditioner because it is necessary to remodel the air-cooled heat exchanger. For this reason, when a user intends to introduce a high-performance hybrid air conditioner, it is necessary to newly install an air-cooled air conditioner, and it is necessary to use an existing air-cooled air conditioner that can still be used. It cannot be done and will be discarded. In other words, while air conditioning equipment is hybridized, heat exchange performance is improved and environmental problems related to the heat island phenomenon are suppressed. On the other hand, it can lead to the disposal of usable air-cooled heat exchangers, and the environment from the aspect of resource recycling. There is concern that the problem may be a negative factor.

また、空冷式空調装置の熱交換効率の向上は、近年著しいことから、この高性能を維持しながら、水熱源を選択的に付加することで、よりさらに高効率な熱交換を実現することが可能で、環境に配慮したヒートポンプの一層の性能向上が期待できる。
本発明は、熱交換効率が良く、資源のリサイクルの面からも環境負荷を低減可能な空水冷式のハイブリッド空調装置を提供することを、その目的とする。
In addition, since the improvement in heat exchange efficiency of air-cooled air conditioners has been remarkable in recent years, more efficient heat exchange can be realized by selectively adding a water heat source while maintaining this high performance. It is possible to expect further improvement in the performance of environmentally friendly heat pumps.
An object of the present invention is to provide an air-water-cooled hybrid air conditioner that has good heat exchange efficiency and can reduce the environmental load from the viewpoint of resource recycling.

本発明は、四方弁と膨張弁とを結ぶ流路上に配置された空冷熱交換で流路を循環する熱交換媒体の熱交換を行う空調装置に対して、熱交換媒体と熱交換を行う水冷熱交換機を後付けするとともに、空冷熱交換機と水冷熱交換機とを切換可能に構成したことを特徴としている。
本発明にかかる空水冷式ハイブリッド空調装置では、流路内を流れる熱交換媒体を水冷熱交換機へ案内する第1の経路と、流路内を流れる熱交換媒体を空冷熱交換機へと案内する第2の経路と、第1の経路と第2の経路とを切換る切換手段と、四方弁と圧縮機とを流路上に設けられたアキュムレータの一次側と水冷熱交換機とを接続する第3の経路と、アキュムレータの一次側と空冷熱交換機とを接続する第4の経路と、第3及び第4の経路をそれぞれ開閉可能とする開閉手段とを有することを特徴としている。
The present invention relates to water that performs heat exchange with a heat exchange medium for an air conditioner that performs heat exchange of a heat exchange medium that circulates through the flow path by air-cooling heat exchange disposed on a flow path that connects a four-way valve and an expansion valve. A feature is that a cold heat exchanger is retrofitted, and an air-cooled heat exchanger and a water-cooled heat exchanger can be switched.
In the air-water cooled hybrid air conditioner according to the present invention, the first path for guiding the heat exchange medium flowing in the flow path to the water-cooled heat exchanger, and the first path for guiding the heat exchange medium flowing in the flow path to the air-cooled heat exchanger. Switching means for switching between the path 2, the first path and the second path, a four-way valve and a compressor are connected to the primary side of the accumulator provided on the flow path and the water-cooled heat exchanger. It is characterized by comprising a path, a fourth path connecting the primary side of the accumulator and the air-cooling heat exchanger, and an opening / closing means capable of opening and closing each of the third and fourth paths.

本発明によれば、四方弁と膨張弁とを結ぶ流路上に配置された空冷熱交換で流路を循環する熱交換媒体の熱交換を行う空調装置に対して、熱交換媒体を冷却する水冷熱交換機を後付けするとともに、空冷熱交換機と水冷熱交換機とを切換可能に構成したので、既存の空冷式の空調装置を利用して熱交換媒体を水冷熱交換機で冷却することができ、熱交換効率を高めつつ、資源のリサイクルの面からも環境負荷を低減することができる。  According to the present invention, the water that cools the heat exchange medium to the air conditioner that performs heat exchange of the heat exchange medium that circulates through the flow path by air-cooling heat exchange disposed on the flow path connecting the four-way valve and the expansion valve. A retrofitting of a cold heat exchanger and a switchable structure between an air cooling heat exchanger and a water cooling heat exchanger are possible, so the heat exchange medium can be cooled by the water cooling heat exchanger using the existing air cooling type air conditioner. Environmental efficiency can be reduced in terms of resource recycling while increasing efficiency.

以下、本発明の実施の形態について、図面を用いて説明する。図1は、空水冷ハイブリッド空調装置を示す概略図である。図1において、符号1は室内に装着されるファンコイルユニット11と接続する室外機1の内部構造を示す。この室外機1は、その図示しないケーシングの内部に、四方弁2、膨張弁3、四方弁2と膨張弁3とを結ぶ流路4上に配置された空冷熱交換5、四方弁2と圧縮機6とを結ぶ低圧の流路7上にアキュムレータ8と低圧開閉弁9、四方弁2と膨張弁3の流路4を閉鎖して室外機1とファンコイルユニット11を切り離し可能とする停止弁10A,10Bがそれぞれ設けられている。空冷熱交換5と対向する部位には、駆動モータ19によって回転駆動されるファン18が設けられている。圧縮機6と四方弁2とを結ぶ高圧の流路12には、周知の消音器13と圧力開閉弁14が設けられている。これら各構成要素は、通常の空冷式の室外機1が備えている、流路4内を循環する熱交換媒体の熱交換を行い、冷房と暖房を行う空冷熱交換機と冷凍サイクルの構成要素である。熱交換媒体は、最適な性能を得られる量が流路4内に封入されている。  Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram showing an air-water cooled hybrid air conditioner. In FIG. 1, the code | symbol 1 shows the internal structure of the outdoor unit 1 connected with the fan coil unit 11 with which indoors are mounted | worn. The outdoor unit 1 includes a four-way valve 2, an expansion valve 3, an air-cooling heat exchange 5 arranged on a flow path 4 connecting the four-way valve 2 and the expansion valve 3, and a compression with the four-way valve 2 inside the casing (not shown). A stop valve that enables the outdoor unit 1 and the fan coil unit 11 to be separated by closing the accumulator 8, the low-pressure on-off valve 9, the four-way valve 2 and the expansion valve 3 on the low-pressure flow path 7 connecting the machine 6. 10A and 10B are provided. A fan 18 that is rotationally driven by a drive motor 19 is provided at a portion facing the air-cooling heat exchange 5. A known silencer 13 and a pressure opening / closing valve 14 are provided in the high-pressure flow path 12 connecting the compressor 6 and the four-way valve 2. Each of these components is a component of an refrigeration cycle and an air-cooling heat exchanger that performs cooling and heating by exchanging heat of a heat exchange medium that circulates in the flow path 4 provided in a normal air-cooling outdoor unit 1. is there. The amount of heat exchange medium that can obtain optimum performance is enclosed in the flow path 4.

本形態の特徴は、これら空冷式の室外機1に対して熱交換媒体と熱交換、すなわち、冷却/加熱する水冷熱交換機20を後付けし、空冷熱交換機5と水冷熱交換機20とを切換可能に構成して、熱交換媒体の熱交換場所を適宜変更するようにした点にある。  The feature of this embodiment is that the air-cooled outdoor unit 1 can be switched between the air-cooled heat exchanger 5 and the water-cooled heat exchanger 20 by retrofitting a water-cooled heat exchanger 20 for heat exchange with the heat exchange medium, that is, cooling / heating. And the heat exchange place of the heat exchange medium is appropriately changed.

以下、この特徴的な構成について説明する。水冷熱交換機20は、空冷熱交換機5を迂回するように流路4に接続された追加流路4Aに配設されている。この迂回流路4Aは、流路4内を流れる熱交換媒体を水冷熱交換機20へ案内する第1の経路を構成する。また、水冷熱交換機20に対して迂回流路となる流路4Bには空冷熱交換機5が配設されている。  Hereinafter, this characteristic configuration will be described. The water-cooled heat exchanger 20 is disposed in an additional flow path 4A connected to the flow path 4 so as to bypass the air-cooled heat exchanger 5. The bypass flow path 4A constitutes a first path for guiding the heat exchange medium flowing in the flow path 4 to the water-cooled heat exchanger 20. An air cooling heat exchanger 5 is disposed in the flow path 4 </ b> B serving as a bypass flow path for the water cooling heat exchanger 20.

水冷熱交換機20の上流側と下流側に位置する追加流路4Aには電磁弁22,23が、水冷熱交換機5の上流側と下流側に位置する経路4Bには電磁弁24,25がそれぞれ配設されている。これら電磁弁は、オフ状態では各経路を閉じて水冷熱交換機20と空冷熱交換機5への熱交換媒体の流入を停止し、オン状態となると、各経路を開き各熱交換機に対して熱交換媒体を流入するように構成されている。  Electromagnetic valves 22 and 23 are provided in the additional flow path 4A located upstream and downstream of the water-cooled heat exchanger 20, and electromagnetic valves 24 and 25 are provided in the path 4B located upstream and downstream of the water-cooled heat exchanger 5, respectively. It is arranged. These solenoid valves close each path in the off state to stop the flow of the heat exchange medium into the water-cooled heat exchanger 20 and the air-cooled heat exchanger 5, and when turned on, open each path and perform heat exchange with each heat exchanger. The medium is configured to flow in.

水冷熱交換機20は、その内部に水熱源の一形態である地下水を通過させる水流路が形成されていて、ファンコイルユニット11との間で循環する熱交換媒体を、地下水によって冷却あるいは加熱するように構成されている。水熱源としては地下水に限定されるものではなく、水道水、クーリングタワーで用いる水、貯水されている水等の冷却水全般を含むものである。  The water-cooled heat exchanger 20 has a water flow path through which ground water, which is one form of a water heat source, passes, and the heat exchange medium circulating between the fan coil unit 11 is cooled or heated by the ground water. It is configured. The water heat source is not limited to groundwater, but includes general cooling water such as tap water, water used in a cooling tower, and stored water.

アキュムレータ8の一次側に位置する流路7と水冷熱交換機20とは、第3の経路26で接続されている。この第3の経路26は、電磁弁22,23がオフ、かつ電磁弁24,25がオンの時に、水冷熱交換機20内にある熱交換媒体をアキュムレータ8に導入するための媒体回収通路を構成する。  The flow path 7 located on the primary side of the accumulator 8 and the water-cooled heat exchanger 20 are connected by a third path 26. The third path 26 constitutes a medium recovery path for introducing the heat exchange medium in the water-cooled heat exchanger 20 into the accumulator 8 when the solenoid valves 22 and 23 are off and the solenoid valves 24 and 25 are on. To do.

アキュムレータ8の一次側に位置する流路7と空冷熱交換機5とは、第4の経路27で接続されている。この第4の経路27は、電磁弁22,23がオン、かつ電磁弁24,25がオフの時に、空冷熱交換機5内にある熱交換媒体をアキュムレータ8に導入するための媒体回収通路を構成する。これら第3及び第4の経路26,27には、同経路をそれぞれ開閉可能とする開閉手段としての電磁式の開閉弁28,29が設けられている。すなわち、電磁弁22,33及び電磁弁24,25は、そのオン/オン状態に応じて迂回経路4Aと経路4Bとを切換る切換手段を構成している。  The flow path 7 located on the primary side of the accumulator 8 and the air cooling heat exchanger 5 are connected by a fourth path 27. The fourth path 27 constitutes a medium recovery path for introducing the heat exchange medium in the air-cooled heat exchanger 5 into the accumulator 8 when the electromagnetic valves 22 and 23 are on and the electromagnetic valves 24 and 25 are off. To do. The third and fourth paths 26 and 27 are provided with electromagnetic on-off valves 28 and 29 as opening / closing means that can open and close the paths. That is, the solenoid valves 22 and 33 and the solenoid valves 24 and 25 constitute switching means for switching between the bypass path 4A and the path 4B in accordance with the on / on state.

駆動モータ19、電磁弁22,23,24,25及び開閉弁28,29のオン/オフ制御は、図2に示す制御手段30で制御されるようになっている。制御手段30は、図示を省略したが、CPU(中央処理装置)、I/O(入出力)ポート、ROM(読み出し専用記憶装置)、RAM(読み書き可能な記憶装置)およびタイマー等をそれぞれ備え、これらが信号バスによって接続された構成を有する周知のコンピュータで構成されている。制御手段30の入力側には、水冷熱交換機20への冷却水の流入温度を検出する温度検知手段としての温度検知センサ31が接続されている。  The on / off control of the drive motor 19, the electromagnetic valves 22, 23, 24, 25 and the on-off valves 28, 29 is controlled by the control means 30 shown in FIG. Although not shown, the control means 30 includes a CPU (central processing unit), an I / O (input / output) port, a ROM (read only storage device), a RAM (read / write storage device), a timer, and the like. These are configured by a known computer having a configuration connected by a signal bus. Connected to the input side of the control means 30 is a temperature detection sensor 31 as temperature detection means for detecting the inflow temperature of the cooling water to the water-cooled heat exchanger 20.

本形態において、温度検知センサ31には周知のサーミスタを用いるが、これ以外の構成であっても無論構わない。制御手段30の出力側には、電磁弁22〜25と開閉弁28,29及び圧縮機6と駆動モータ18が電気的に接続されている。制御手段30のROMには、電磁弁22,23と開閉弁29及び電磁弁24,25と開閉弁28、駆動モータ19をオン/オフするためのパラメータとなる所定温度t1,t2が予め設定されている。所定温度t1、t2は、t1>t2の関係にある。制御手段30は、水温検知センサ31からの温度情報が所定温度t1となると、電磁弁24,25、開閉弁28、駆動モータ19をオン状態、電磁弁22,23、開閉弁28をオフ状態とし、所定温度t2となると電磁弁22,23と開閉弁29をオン状態、電磁弁24,25、開閉弁28及び駆動モータ19をオフ状態とするようにして経路の切換制御と冷却用のファン18の動作制御を実行する。  In this embodiment, a known thermistor is used for the temperature detection sensor 31, but other configurations may be used. On the output side of the control means 30, the electromagnetic valves 22 to 25, the on-off valves 28 and 29, the compressor 6 and the drive motor 18 are electrically connected. In the ROM of the control means 30, predetermined temperatures t1 and t2 that are parameters for turning on / off the electromagnetic valves 22, 23, the on-off valve 29, the electromagnetic valves 24, 25, the on-off valve 28, and the drive motor 19 are set in advance. ing. The predetermined temperatures t1 and t2 have a relationship of t1> t2. When the temperature information from the water temperature detection sensor 31 reaches the predetermined temperature t1, the control means 30 turns on the electromagnetic valves 24 and 25, the on-off valve 28, and the drive motor 19, and turns off the electromagnetic valves 22, 23, and on-off valve 28. When the predetermined temperature t2 is reached, the solenoid valves 22, 23 and the on-off valve 29 are turned on, and the solenoid valves 24, 25, the on-off valve 28 and the drive motor 19 are turned off, and the path switching control and the cooling fan 18 are performed. The operation control is executed.

このような構成において、図示しない電源が投入されると、制御手段30は、温度検知センサ31からの温度情報に応じて、各電磁弁と開閉弁のオンさせる。例えば、温度検知センサ31からの温度情報Tが、所定温度t1>t>t2で、冷房運転する場合には、電磁弁22,23と開閉弁29だけをオンして圧縮機5を駆動する。このため、熱交換媒体は、ファンコイルユニット11から四方弁2を介して図1において実線示す矢印方向に移動する。この時、電磁弁22,23はオンされて迂回迷路4Aが開放されているので、熱交換媒体は水冷熱交換機20へ導入される。また、開閉弁28はオフ状態、開閉弁29はオン状態とされるので、第4の経路27が開放されて使用しない空冷熱交換機5内の存在する熱交換媒体が、アキュムレータ8の負圧によりアキュムレータ8に回収される。このため、流路4内を循環する熱交換媒体の量が、封入時の量とほぼ同一の量とされて水冷熱交換機20へ導入される。導入された熱交換媒体は、冷却水と間で熱交換されて冷却され、膨張弁3を介してファンコイルユニット11へと戻される。水冷熱交換機5での熱交換を時には、駆動モータ19が停止状態となるので、省エネと、ファン18の回転に伴い発生する風切り音などの騒音を低減することができる。  In such a configuration, when a power supply (not shown) is turned on, the control means 30 turns on each solenoid valve and the on-off valve in accordance with temperature information from the temperature detection sensor 31. For example, when the temperature information T from the temperature detection sensor 31 is a predetermined temperature t1> t> t2 and the cooling operation is performed, only the electromagnetic valves 22 and 23 and the opening / closing valve 29 are turned on to drive the compressor 5. For this reason, the heat exchange medium moves from the fan coil unit 11 through the four-way valve 2 in the arrow direction indicated by the solid line in FIG. At this time, since the electromagnetic valves 22 and 23 are turned on and the detour maze 4A is opened, the heat exchange medium is introduced into the water-cooled heat exchanger 20. Further, since the on-off valve 28 is turned off and the on-off valve 29 is turned on, the heat exchange medium existing in the air-cooled heat exchanger 5 that is not used when the fourth path 27 is opened is caused by the negative pressure of the accumulator 8. It is collected in the accumulator 8. For this reason, the amount of the heat exchange medium circulating in the flow path 4 is introduced to the water-cooled heat exchanger 20 with the amount substantially the same as the amount at the time of encapsulation. The introduced heat exchange medium is cooled by exchanging heat with the cooling water and returned to the fan coil unit 11 via the expansion valve 3. When the heat exchange in the water-cooled heat exchanger 5 is occasionally performed, the drive motor 19 is stopped, so that energy saving and noise such as wind noise generated with the rotation of the fan 18 can be reduced.

冷房運転の継続により熱交換媒体の温度は上昇し、これに伴い水冷熱交換機20での熱交換負荷が高まり冷却水の温度も上昇する。そして、冷却水の温度が所定温度t1となると、電磁弁24,25、開閉弁28、駆動モータ19がオン状態、電磁弁22,23と開閉弁29をオフ状態となる。このため、迂回流路4Aは閉じ、流路4Bが開放されて経路切換えが行われるとともに第3の経路26が開放されて使用しない水冷熱交換機20内の存在する熱交換媒体がアキュムレータ8の負圧によりアキュムレータ8に回収されるとともにファン18が回転する。このため、圧縮機6、四方弁2を通過した熱交換媒体は、全て空冷熱交換機5へ案内され、ファン18の回転に発生する気流により空気と間で熱交換されて冷却され、膨張弁3を介してファンコイルユニット11へと戻される。  As the cooling operation continues, the temperature of the heat exchange medium rises, and accordingly, the heat exchange load in the water-cooled heat exchanger 20 increases and the temperature of the cooling water also rises. When the temperature of the cooling water reaches a predetermined temperature t1, the electromagnetic valves 24 and 25, the on-off valve 28, and the drive motor 19 are turned on, and the electromagnetic valves 22, 23 and the on-off valve 29 are turned off. Therefore, the bypass flow path 4A is closed, the flow path 4B is opened and the path switching is performed, and the third path 26 is opened and the heat exchange medium existing in the water-cooled heat exchanger 20 that is not used is negative in the accumulator 8. The pressure is collected by the accumulator 8 and the fan 18 rotates. For this reason, the heat exchange medium that has passed through the compressor 6 and the four-way valve 2 is all guided to the air-cooled heat exchanger 5 and is cooled by being exchanged with air by the air flow generated by the rotation of the fan 18. Is returned to the fan coil unit 11.

次に暖房運転時の動作について説明する。暖房運転する場合、熱交換媒体は膨張弁3から四方弁2に向かって、図1に破線で示す矢印方向に移動する。制御手段30は、暖房運転時においても、温度検知センサ31からの温度情報に応じて、各電磁弁と開閉弁及び駆動モータ19のオ/オフン制御する。例えば、温度検知センサ31からの温度情報Tが、所定温度t1>t>t2の場合には、電磁弁22,23はオンして迂回迷路4Aが開放し、熱交換媒体を水冷熱交換機20へ導入する。無論、開閉弁29もオン状態とされるので、第4の経路27が開放されて使用しない空冷熱交換機5内の存在する熱交換媒体がアキュムレータ8に回収される。このため、流路4内を循環する熱交換媒体の量が、封入時の量とほぼ同一の量とされて水冷熱交換機20へ導入される。導入された熱交換媒体は、冷却水と間で熱交換されて加熱され、膨張弁3を介してファンコイルユニット11へと戻される。暖房時においても、水冷熱交換機5での熱交換を時には、駆動モータ19が停止状態となるので、省エネと、ファン18の回転に伴い発生する風切り音などの騒音を低減することができる。  Next, operation during heating operation will be described. In the heating operation, the heat exchange medium moves from the expansion valve 3 toward the four-way valve 2 in the direction of the arrow indicated by a broken line in FIG. The control means 30 performs on / off control of each solenoid valve, the on-off valve, and the drive motor 19 according to the temperature information from the temperature detection sensor 31 even during the heating operation. For example, when the temperature information T from the temperature detection sensor 31 is a predetermined temperature t1> t> t2, the electromagnetic valves 22 and 23 are turned on and the detour maze 4A is opened, and the heat exchange medium is transferred to the water-cooled heat exchanger 20. Introduce. Of course, since the on-off valve 29 is also turned on, the heat exchange medium existing in the air-cooled heat exchanger 5 that is not used because the fourth path 27 is opened is recovered by the accumulator 8. For this reason, the amount of the heat exchange medium circulating in the flow path 4 is introduced to the water-cooled heat exchanger 20 with the amount substantially the same as the amount at the time of encapsulation. The introduced heat exchange medium is heated by heat exchange with the cooling water, and returned to the fan coil unit 11 via the expansion valve 3. Even during heating, when the heat exchange in the water-cooled heat exchanger 5 is sometimes performed, the drive motor 19 is stopped, so that energy saving and noise such as wind noise generated with the rotation of the fan 18 can be reduced.

暖房運転の継続により熱交換媒体の温度は低下し、これに伴い水冷熱交換機20での熱交換負荷が高まり冷却水の温度も低下する。そして、冷却水の温度が所定温度t2となると、電磁弁24,25と開閉弁28、駆動モータ19をオン状態、電磁弁22,23と開閉弁29をオフ状態とする。このため、迂回流路4Aは閉じ、流路4Bが開放されて経路切換えが行われ、同時に第3の経路26が開放されて使用しない水冷熱交換機20内の存在する熱交換媒体がアキュムレータ8に回収されるとともにファン18が回転する。このため、圧縮機6,四方弁2を通過した熱交換媒体は、全て空冷熱交換機5へ案内され、ファン18の回転に発生する気流により空気と間で熱交換されて、膨張弁3を介してファンコイルユニット11へと戻される。  As the heating operation continues, the temperature of the heat exchange medium decreases, and accordingly, the heat exchange load in the water-cooled heat exchanger 20 increases and the temperature of the cooling water also decreases. When the temperature of the cooling water reaches a predetermined temperature t2, the electromagnetic valves 24 and 25 and the on-off valve 28 and the drive motor 19 are turned on, and the electromagnetic valves 22 and 23 and the on-off valve 29 are turned off. For this reason, the bypass flow path 4A is closed, the flow path 4B is opened, and the path is switched. At the same time, the third path 26 is opened and the heat exchange medium existing in the water-cooled heat exchanger 20 that is not used is transferred to the accumulator 8. The fan 18 rotates while being collected. For this reason, all the heat exchange medium that has passed through the compressor 6 and the four-way valve 2 is guided to the air-cooled heat exchanger 5, and is heat-exchanged with air by the airflow generated by the rotation of the fan 18, and is passed through the expansion valve 3. Is returned to the fan coil unit 11.

このように、既存の空冷式の装着装置に対して水冷熱交換20を付設し、冷却水の温度に応じて適宜、空冷熱交換2と水冷熱交換機20とを切換えて使用することで、既存の空冷式の空調装置を利用して熱交換媒体を水冷熱交換機で冷却することができ、熱交換効率を高めつつ、資源のリサイクルの面からも環境負荷を低減することができる。  As described above, the water-cooling heat exchange 20 is attached to the existing air-cooling type mounting device, and the air-cooling heat exchange 2 and the water-cooling heat exchanger 20 are appropriately switched according to the temperature of the cooling water. The air-cooled air conditioner can be used to cool the heat exchange medium with a water-cooled heat exchanger, and the environmental load can be reduced from the viewpoint of resource recycling while improving the heat exchange efficiency.

本発明の一形態である空水冷式ハイブリッド空調装置の概略構成図である。It is a schematic block diagram of the air-water cooling type hybrid air conditioner which is one form of this invention. 制御手段とこれにつながる構成要素を示すブロック図である。It is a block diagram which shows a control means and the component connected to this. 熱交換媒体の暖房時の特性を示すモリエ線図である。It is a Mollier diagram which shows the characteristic at the time of the heating of a heat exchange medium. 熱交換媒体の冷房時の特性を示すモリエ線図である。It is a Mollier diagram which shows the characteristic at the time of the cooling of a heat exchange medium.

符号の説明Explanation of symbols

2 四方弁
3 膨張弁
4 流路
5 空冷熱交換機
8 アキュムレータ
20 水冷熱交換機
4A 第1の経路
4B 第2の経路
22〜25 切換手段
26 第3経路
27 第4の経路
28,29 開閉手段
2 four-way valve 3 expansion valve 4 flow path 5 air-cooled heat exchanger 8 accumulator 20 water-cooled heat exchanger 4A first path 4B second path 22-25 switching means 26 third path 27 fourth path 28, 29 opening / closing means

Claims (2)

四方弁と膨張弁とを結ぶ流路上に配置された空冷熱交換機で前記流路内を循環する熱交換媒体の熱交換を行う空調装置に対して、前記熱交換媒体と熱交換する水冷熱交換機を後付けするとともに、前記空冷熱交換機と前記水冷熱交換機とを切換可能に構成したことを特徴とする空水冷式ハイブリッド空調装置。  A water-cooled heat exchanger that exchanges heat with the heat exchange medium for an air conditioner that performs heat exchange of the heat exchange medium circulating in the flow path with an air-cooled heat exchanger disposed on the flow path connecting the four-way valve and the expansion valve. The air-cooled hybrid air conditioner is characterized in that the air-cooled heat exchanger and the water-cooled heat exchanger can be switched. 請求項1記載の空水冷式ハイブリッド空調装置において、
前記流路内を流れる熱交換媒体を前記水冷熱交換機へ案内する第1の経路と、
前記流路内を流れる熱交換媒体を前記空冷熱交換機と案内する第2の経路と、
前記熱交換媒体が流れる経路を第1の経路と第2の経路とに切換る切換手段と、
前記四方弁と圧縮機とを結ぶ流路上に設けられたアキュムレータの一次側と前記水冷熱交換機とを接続する第3の経路と、
前記アキュムレータの一次側と前記空冷熱交換機とを接続する第4の経路と、
第3及び第4の経路をそれぞれ開閉可能とする開閉手段とを具備することを特徴とする空水冷式ハイブリッド空調装置。
The air-water cooled hybrid air conditioner according to claim 1,
A first path for guiding the heat exchange medium flowing in the flow path to the water-cooled heat exchanger;
A second path for guiding a heat exchange medium flowing in the flow path with the air-cooled heat exchanger;
Switching means for switching a path through which the heat exchange medium flows between a first path and a second path;
A third path connecting the primary side of an accumulator provided on the flow path connecting the four-way valve and the compressor and the water-cooled heat exchanger;
A fourth path connecting the primary side of the accumulator and the air-cooled heat exchanger;
An air / water-cooled hybrid air conditioner comprising: opening / closing means capable of opening and closing each of the third and fourth paths.
JP2004216583A 2004-06-28 2004-06-28 Air and water cooled hybrid air conditioner Pending JP2006010294A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004216583A JP2006010294A (en) 2004-06-28 2004-06-28 Air and water cooled hybrid air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004216583A JP2006010294A (en) 2004-06-28 2004-06-28 Air and water cooled hybrid air conditioner

Publications (1)

Publication Number Publication Date
JP2006010294A true JP2006010294A (en) 2006-01-12

Family

ID=35777736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004216583A Pending JP2006010294A (en) 2004-06-28 2004-06-28 Air and water cooled hybrid air conditioner

Country Status (1)

Country Link
JP (1) JP2006010294A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009243802A (en) * 2008-03-31 2009-10-22 Mitsubishi Electric Corp Heat pump type air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009243802A (en) * 2008-03-31 2009-10-22 Mitsubishi Electric Corp Heat pump type air conditioner

Similar Documents

Publication Publication Date Title
WO2018028299A1 (en) Cooling system for pure electric vehicle and vehicle
US20080302113A1 (en) Refrigeration system having heat pump and multiple modes of operation
KR20190051742A (en) thermal management system
JP2002352866A (en) Battery cooling system for electric vehicle
JP2009264699A (en) Heat pump device
EP3954559B1 (en) Heat pump system for vehicle
JP2010115993A (en) Vehicular air-conditioner
CN113492637A (en) Thermal management system for vehicle
JP2008275214A (en) Compression type heat pump device
JP2008014563A (en) Cold storage type air conditioning system
JP5537489B2 (en) Heat pump hot water supply air conditioner
CN113137665A (en) Method and device for radiating frequency conversion module of air conditioner and air conditioner
US6260366B1 (en) Heat recycling air-conditioner
KR20030067558A (en) Air conditioner
JP2004144399A (en) Refrigeration cycle device
KR20090102478A (en) Heat pump system for vehicles
WO2024074064A1 (en) Indirect multi-level waste heat recovery heat pump air-conditioning system, and control method therefor
JP4071250B2 (en) Heat pump control device
KR100657472B1 (en) Cogeneration system
JP4947558B2 (en) Rack cooling system
JP2006349333A (en) Air-and water-cooled hybrid heat pump, and air-conditioning system
JP2006010294A (en) Air and water cooled hybrid air conditioner
KR101170712B1 (en) Using a gas engine heat pump geothermal heating and cooling systems
JP2006017440A (en) Heat pump air conditioner
JP5790147B2 (en) Engine-driven air conditioner

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Effective date: 20061010

Free format text: JAPANESE INTERMEDIATE CODE: A7422

A621 Written request for application examination

Effective date: 20070604

Free format text: JAPANESE INTERMEDIATE CODE: A621

A871 Explanation of circumstances concerning accelerated examination

Effective date: 20070604

Free format text: JAPANESE INTERMEDIATE CODE: A871

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20070702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070711

A521 Written amendment

Effective date: 20070909

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20071212

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080411