JP2004144399A - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
JP2004144399A
JP2004144399A JP2002310452A JP2002310452A JP2004144399A JP 2004144399 A JP2004144399 A JP 2004144399A JP 2002310452 A JP2002310452 A JP 2002310452A JP 2002310452 A JP2002310452 A JP 2002310452A JP 2004144399 A JP2004144399 A JP 2004144399A
Authority
JP
Japan
Prior art keywords
heat exchanger
peltier element
expander
refrigerant
indoor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002310452A
Other languages
Japanese (ja)
Inventor
Yoshikazu Kawabe
川邉 義和
Kazuo Nakatani
中谷 和生
Yuji Inoue
井上 雄二
Noriho Okaza
岡座 典穂
Akira Iwashida
鶸田  晃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002310452A priority Critical patent/JP2004144399A/en
Publication of JP2004144399A publication Critical patent/JP2004144399A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/06Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using expanders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • F25B21/02Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To minimize the constraint of a constant density ratio by using an expansion device in accordance with the flowing direction of a refrigerant, and to achieve high power recovering effect in a wide operation range. <P>SOLUTION: This refrigeration cycle device uses carbon dioxide as the refrigerant, comprises a compressor, an outdoor-side heat exchanger, the expansion device and an indoor-side heat exchanger, and operates a Peltier element by the electric power obtained from the motive power recovered by the expansion device. The indoor-side heat exchanger is used as an evaporator, and the refrigerant is cooled by the refrigerant between an outlet of the expansion device and the indoor-side heat exchanger by using the Peltier element. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、冷媒として二酸化炭素を用い、圧縮機と室外側熱交換器と膨張機と室内側熱交換器とを備えた冷凍サイクル装置に関する。
【0002】
【従来の技術】
冷凍サイクルを構成する膨張弁を膨張機に代えることで作動媒体の膨張エネルギーを回収し、冷凍サイクル装置の成績係数を向上させることが従来から提案されている。
しかし、膨張機で発電機を駆動し、その電力を圧縮機の駆動電力の一部とするものも考えられるが、圧縮機の駆動源に供給する商用電源とのマッチングのために、コンバータやインバータなどの複雑な電力変換装置を必要とし、コストアップを招く恐れがあることが指摘されている(例えば特許文献1参照)。
また、冷凍サイクル装置に膨張機を設け、この膨張機で回収した動力を圧縮機の駆動力の一部に利用する場合には、膨張機と圧縮機との回転数を同じにしなければならず、密度比一定の制約のもとでは、運転条件が変化した場合の最適なCOPを維持することは困難である。
そこで、膨張機をバイパスするバイパス管を設けて、膨張機に流入する冷媒量を制御することで、最適なCOPを維持する構成が提案されている(例えば特許文献2及び特許文献3参照)。
【0003】
【特許文献1】
特開昭61−128066号公報(公報第1ページ右欄14行から第2ページ左欄8行)
【特許文献2】
特開2000−234814号公報(段落番号(0024)(0025)図1)
【特許文献3】
特開2001−116371号公報(段落番号(0023)図1)
【0004】
【発明が解決しようとする課題】
しかしながら、膨張機をバイパスするバイパス管を設ける場合にあっても、膨張機に流入する冷媒流量が設計上の最適な流量との差が大きくなるにしたがって、バイパスを通過させる冷媒量が大きくなり、その結果回収できるはずの動力が十分に回収できなくなるという問題を有している。
【0005】
そこで本発明は、膨張機から回収した電力を、圧縮機の駆動源に用いることなく、冷却や放熱に直接利用することを目的とする。
【0006】
【課題を解決するための手段】
請求項1記載の本発明の冷凍サイクル装置は、冷媒として二酸化炭素を用い、圧縮機と室外側熱交換器と膨張機と室内側熱交換器とを備え、前記膨張機で回収した動力からの電力によってペルチェ素子を動作させる冷凍サイクル装置であって、前記室内側熱交換器を蒸発器とし、前記ペルチェ素子を用いて前記膨張機出口から前記室内側熱交換器の間で冷媒を冷却することを特徴とする。
請求項2記載の本発明の冷凍サイクル装置は、冷媒として二酸化炭素を用い、圧縮機と室外側熱交換器と膨張機と室内側熱交換器とを備え、前記膨張機で回収した動力からの電力によってペルチェ素子を動作させる冷凍サイクル装置であって、前記室内側熱交換器を放熱器とし、前記ペルチェ素子を用いて前記膨張機出口から前記室内側熱交換器の間で冷媒を加熱することを特徴とする。
請求項3記載の本発明の冷凍サイクル装置は、冷媒として二酸化炭素を用い、圧縮機と室外側熱交換器と膨張機と室内側熱交換器とを備え、前記膨張機で回収した動力からの電力によってペルチェ素子を動作させる冷凍サイクル装置であって、前記室内側熱交換器を蒸発器とし、前記ペルチェ素子を用いて室内空気を冷却又は除湿することを特徴とする。
請求項4記載の本発明の冷凍サイクル装置は、冷媒として二酸化炭素を用い、圧縮機と室外側熱交換器と膨張機と室内側熱交換器とを備え、前記膨張機で回収した動力からの電力によってペルチェ素子を動作させる冷凍サイクル装置であって、前記室内側熱交換器を放熱器とし、前記ペルチェ素子を用いて室内空気を加熱することを特徴とする。
請求項5記載の本発明の冷凍サイクル装置は、冷媒として二酸化炭素を用い、圧縮機と室外側熱交換器と膨張機と室内側熱交換器とを備え、前記膨張機で回収した動力からの電力によってペルチェ素子を動作させる冷凍サイクル装置であって、前記ペルチェ素子の冷却面と放熱面とを切り替える切替手段を有し、前記切替手段による切り替えによって、前記室内側熱交換器を蒸発器とする場合には前記ペルチェ素子の冷却面を用い、前記室内側熱交換器を放熱器とする場合には前記ペルチェ素子の放熱面を用いることを特徴とする。
請求項6記載の本発明の冷凍サイクル装置は、冷媒として二酸化炭素を用い、圧縮機と室外側熱交換器と膨張機と室内側熱交換器とを備え、前記膨張機で回収した動力からの電力によってペルチェ素子を動作させる冷凍サイクル装置であって、前記室内側熱交換器を蒸発器とし、前記ペルチェ素子の放熱面を前記室内側熱交換器の入口側又は出口側配管と熱交換させ、前記ペルチェ素子の冷却面を用いて室内空気を冷却又は除湿することを特徴とする。
請求項7記載の本発明の冷凍サイクル装置は、冷媒として二酸化炭素を用い、圧縮機と室外側熱交換器と膨張機と室内側熱交換器とを備え、前記膨張機で回収した動力からの電力によってペルチェ素子を動作させる冷凍サイクル装置であって、前記室内側熱交換器を放熱器とし、前記ペルチェ素子の冷却面を前記室内側熱交換器の入口側又は出口側配管と熱交換させ、前記ペルチェ素子の放熱面を用いて室内空気を加熱することを特徴とする。
請求項8記載の本発明の冷凍サイクル装置は、冷媒として二酸化炭素を用い、圧縮機と室外側熱交換器と膨張機と室内側熱交換器とを備え、前記膨張機で回収した動力からの電力によってペルチェ素子を動作させる冷凍サイクル装置であって、前記ペルチェ素子の冷却面と放熱面とを切り替える切替手段を有し、前記切替手段による切り替えによって、前記室内側熱交換器を蒸発器とする場合には前記ペルチェ素子の放熱面を前記室内側熱交換器の入口側又は出口側配管と熱交換させるとともに前記ペルチェ素子の冷却面を用い、前記室内側熱交換器を放熱器とする場合には前記ペルチェ素子の冷却面を前記室内側熱交換器の入口側又は出口側配管と熱交換させるとともに前記ペルチェ素子の放熱面を用いることを特徴とする。
請求項9記載の本発明の冷凍サイクル装置は、冷媒として二酸化炭素を用い、圧縮機と室外側熱交換器と膨張機と室内側熱交換器と補助圧縮機とを備え、前記膨張機で回収した動力によって前記補助圧縮機を駆動するとともに発電機を駆動する冷凍サイクル装置であって、前記発電機からの電力によってペルチェ素子を動作させ、前記ペルチェ素子によって前記補助圧縮機の出口から前記圧縮機の入口に至る配管を冷却することを特徴とする。
【0007】
【発明の実施の形態】
本発明による第1の実施の形態は、室内側熱交換器を蒸発器とし、ペルチェ素子を用いて膨張機出口から室内側熱交換器の間で冷媒を冷却するものである。
本実施の形態によれば、膨張機で回収した動力からの電力によってペルチェ素子を動作させ、室内側熱交換器を蒸発器として利用中に、このペルチェ素子によって室内側熱交換器に流れる冷媒を更に冷却することで、室内側熱交換器の冷却能力を増加させることができ、効率的な冷却運転を行うことができる。
本発明による第2の実施の形態は、室内側熱交換器を放熱器とし、ペルチェ素子を用いて膨張機出口から室内側熱交換器の間で冷媒を加熱するものである。
本実施の形態によれば、膨張機で回収した動力からの電力によってペルチェ素子を動作させ、室内側熱交換器を放熱器として利用中に、このペルチェ素子によって室内側熱交換器に流れる冷媒を更に加熱することで、室内側熱交換器の加熱能力を増加させることができ、効率的な加熱運転を行うことができる。
本発明による第3の実施の形態は、室内側熱交換器を蒸発器とし、ペルチェ素子を用いて室内空気を冷却又は除湿するものである。
本実施の形態によれば、膨張機で回収した動力からの電力によってペルチェ素子を動作させ、室内側熱交換器を蒸発器として利用中に、このペルチェ素子によって室内空気を冷却することで、室内側熱交換器とは別に冷却や除湿を行うことができ、効率的な冷却運転を行うことができる。
本発明による第4の実施の形態は、室内側熱交換器を放熱器とし、ペルチェ素子を用いて室内空気を加熱するものである。
本実施の形態によれば、膨張機で回収した動力からの電力によってペルチェ素子を動作させ、室内側熱交換器を放熱器として利用中に、このペルチェ素子によって室内空気を加熱することで、室内側熱交換器とは別に加熱を行うことができ、効率的な加熱運転を行うことができる。
本発明による第5の実施の形態は、ペルチェ素子の冷却面と放熱面とを切り替える切替手段を有し、切替手段による切り替えによって、室内側熱交換器を蒸発器とする場合にはペルチェ素子の冷却面を用い、室内側熱交換器を放熱器とする場合にはペルチェ素子の放熱面を用いるものである。
本実施の形態によれば、膨張機で回収した動力からの電力によってペルチェ素子を動作させ、室内側熱交換器を蒸発器とする場合には、室内側熱交換器を蒸発器として利用中に、このペルチェ素子によって例えば室内空気を冷却することで、室内側熱交換器とは別に冷却や除湿を行うことができ、効率的な冷却運転を行うことができる。また、室内側熱交換器を放熱器とする場合には、室内側熱交換器を放熱器として利用中に、このペルチェ素子によって室内空気を加熱することで、室内側熱交換器とは別に加熱を行うことができ、効率的な加熱運転を行うことができる。
本発明による第6の実施の形態は、室内側熱交換器を蒸発器とし、ペルチェ素子の放熱面を室内側熱交換器の入口側又は出口側配管と熱交換させ、ペルチェ素子の冷却面を用いて室内空気を冷却又は除湿するものである。
本実施の形態によれば、室内側熱交換器を蒸発器として利用中に、ペルチェ素子の放熱面を室内側熱交換器の入口側又は出口側配管と熱交換させ、このペルチェ素子の冷却面を用いて室内空気を冷却又は除湿することで、ペルチェ素子では、より低い温度を得ることができるため、このより低い温度を利用して冷却や除湿を行うことで、室内側熱交換器での冷房負荷を減じ、効率的な冷却運転を行うことができる。
本発明による第7の実施の形態は、室内側熱交換器を放熱器とし、ペルチェ素子の冷却面を室内側熱交換器の入口側又は出口側配管と熱交換させ、ペルチェ素子の放熱面を用いて室内空気を加熱するものである。
本実施の形態によれば、室内側熱交換器を放熱器として利用中に、ペルチェ素子の冷却面を室内側熱交換器の入口側又は出口側配管と熱交換させ、このペルチェ素子の放熱面を用いて室内空気を加熱することで、ペルチェ素子では、より高い温度を得ることができるため、このより高い温度を利用して加熱を行うことで、室内側熱交換器での加熱負荷を減じ、効率的な加熱運転を行うことができる。本発明による第8の実施の形態は、ペルチェ素子の冷却面と放熱面とを切り替える切替手段を有し、切替手段による切り替えによって、室内側熱交換器を蒸発器とする場合にはペルチェ素子の放熱面を室内側熱交換器の入口側又は出口側配管と熱交換させるとともにペルチェ素子の冷却面を用い、室内側熱交換器を放熱器とする場合にはペルチェ素子の冷却面を室内側熱交換器の入口側又は出口側配管と熱交換させるとともにペルチェ素子の放熱面を用いるものである。
本実施の形態によれば、室内側熱交換器を蒸発器とする場合には、室内側熱交換器を蒸発器として利用中に、ペルチェ素子の放熱面を室内側熱交換器の入口側又は出口側配管と熱交換させ、このペルチェ素子の冷却面を用いて室内空気を冷却又は除湿することで、ペルチェ素子では、より低い温度を得ることができるため、このより低い温度を利用して冷却や除湿を行うことで、室内側熱交換器での冷房負荷を減じ、効率的な冷却運転を行うことができる。また、室内側熱交換器を放熱器とする場合には、室内側熱交換器を放熱器として利用中に、ペルチェ素子の冷却面を室内側熱交換器の入口側又は出口側配管と熱交換させ、このペルチェ素子の放熱面を用いて室内空気を加熱することで、ペルチェ素子では、より高い温度を得ることができるため、このより高い温度を利用して加熱を行うことで、室内側熱交換器での加熱負荷を減じ、効率的な加熱運転を行うことができる。本発明による第9の実施の形態は、発電機からの電力によってペルチェ素子を動作させ、ペルチェ素子によって補助圧縮機の出口から圧縮機の入口に至る配管を冷却するものである。
本実施の形態によれば、膨張機で回収した動力からの電力によってペルチェ素子を動作させ、補助圧縮機の出口側の冷媒を冷却して加熱度を調整することができるため、膨張機での動力を補助圧縮機での動力として回収できるとともに、圧縮機の動作点を最適に調整し、効率的な運転を行うことができる。
【0008】
【実施例】
以下、本発明の他の実施例による冷凍サイクル装置を、ヒートポンプ式冷暖房型空気調和装置について、図面を参照して説明する。
図1は、本実施例によるヒートポンプ式冷暖房型空気調和装置の構成図である。
図に示すように、本実施例によるヒートポンプ式冷暖房型空気調和装置は、冷媒としてCO冷媒を使用し、モータ11を有する圧縮機1と、室外側熱交換器3と、膨張機6と、室内側熱交換器8とを配管で接続した冷媒回路から構成される。
また、膨張機6の駆動軸は発電機42の駆動軸と連結されており、膨張機6で回収した動力を電力に変換している。
そしてこの冷媒回路には、圧縮機1の吐出側配管と吸入側配管とが接続される第1四方弁2と、膨張機6の流入側配管と流出側配管とが接続される第2四方弁4とを備えている。
発電機42からの電力は、ペルチェ素子43に供給される。このペルチェ素子43は、冷却面43aと放熱面43bとを有している。
ここで、ペルチェ素子43の冷却面43aは、膨張機6の出口から蒸発器として作用する室内側熱交換器8の入口までを流れる冷媒を冷却する。なお、ペルチェ素子43の放熱面43bは、室外にて熱を放出している。なお、図中45は、室内などの利用側空間を示している。そして、冷却面43aは利用空間45内に配置されているが、膨張機6の出口から室内側熱交換器8の入口までの間に配置されていれば、室外側であっても良い。
【0009】
本実施例によるヒートポンプ式冷暖房型空気調和装置の動作について以下に説明する。
なお、本実施例では、ペルチェ素子を動作させる冷房運転モードについて説明し、暖房運転モードについては説明を省略する。冷房運転モードでは、室外側熱b交換器3を放熱器、室内側熱交換器8を蒸発器として用いる。この冷房運転モードでの冷媒流れを、図中実線矢印で示す。
冷房運転モード時の冷媒は、モータ11で駆動される圧縮機1により高温高圧に圧縮されて吐出され、第1四方弁2を経て、室外側熱交換器3に導入される。室外側熱交換器3では、CO冷媒は、超臨界状態であるので、気液二相状態とはならずに、空気や水などの外部流体に放熱する。その後CO冷媒は、第2四方弁4を経由して膨張機6に導入され減圧される。この減圧時に膨張機6で回収した動力は発電機42によって電力に変換される。
膨張機6にて減圧されたCO冷媒は、ペルチェ素子43の冷却面43aによって更に冷却されて室内側熱交換器8に導かれる。従って、室内側熱交換器8での蒸発能力は高くなるため、ペルチェ素子43での冷却分だけ圧縮機1での能力を低下させることができる。室内側熱交換器8での吸熱によって室内の冷房が行われ、蒸発を終えた冷媒は圧縮機1に吸入される。
以上のように本実施例によれば、膨張機6で回収した動力からの電力によってペルチェ素子43を動作させ、室内側熱交換器8を蒸発器として利用中に、このペルチェ素子43によって室内側熱交換器8に流れる冷媒を更に冷却することで、室内側熱交換器8の冷却能力を増加させることができる。
【0010】
以下、本発明の他の実施例による冷凍サイクル装置を、ヒートポンプ式冷暖房型空気調和装置について、図面を参照して説明する。
図2は、本実施例によるヒートポンプ式冷暖房型空気調和装置の構成図である。
図に示すように、本実施例によるヒートポンプ式冷暖房型空気調和装置は、冷媒としてCO冷媒を使用し、モータ11を有する圧縮機1と、室外側熱交換器3と、膨張機6と、室内側熱交換器8とを配管で接続した冷媒回路から構成される。
また、膨張機6の駆動軸は発電機42の駆動軸と連結されており、膨張機6で回収した動力を電力に変換している。
そしてこの冷媒回路には、圧縮機1の吐出側配管と吸入側配管とが接続される第1四方弁2と、膨張機6の流入側配管と流出側配管とが接続される第2四方弁4とを備えている。
発電機42からの電力は、ペルチェ素子43に供給される。このペルチェ素子43は、冷却面43aと放熱面43bとを有している。
ここで、ペルチェ素子43の放熱面43bは、圧縮機1の出口から放熱器として作用する室内側熱交換器8の入口までを流れる冷媒を加熱する。なお、ペルチェ素子43の冷却面43aは、室外にて熱を吸熱している。なお、図中45は、室内などの利用側空間を示している。そして、放熱面43bは利用空間45内に配置されているが、圧縮機1の出口から室内側熱交換器8の入口までの間に配置されていれば、室外側であっても良い。
【0011】
本実施例によるヒートポンプ式冷暖房型空気調和装置の動作について以下に説明する。
なお、本実施例では、ペルチェ素子を動作させる暖房運転モードについて説明し、冷房運転モードについては説明を省略する。暖房運転モードでは、室外側熱交換器3を蒸発器、室内側熱交換器8を放熱器として用いる。この暖房運転モードでの冷媒流れを、図中波線矢印で示す。
暖房運転モード時の冷媒は、モータ11で駆動される圧縮機1により高温高圧に圧縮されて吐出され、ペルチェ素子43の放熱面43bによって更に加熱されて室内側熱交換器8に導入される。従って、室内側熱交換器8での放熱能力は高くなるため、ペルチェ素子43での加熱分だけ圧縮機1での能力を低下させることができる。室内側熱交換器8では、CO冷媒は、超臨界状態であるので、気液二相状態とはならずに、空気や水などの外部流体に放熱し、この放熱を利用して例えば室内暖房が行われる。その後CO冷媒は、膨張機6に導入され減圧される。この減圧時に膨張機6で回収した動力は発電機42によって電力に変換される。
膨張機6にて減圧されたCO冷媒は、第2四方弁4を経由して室外側熱交換器3に導かれ、室外側熱交換器3にて蒸発して吸熱し、蒸発を終えた冷媒は第1四方弁2を経由して圧縮機1に吸入される。
以上のように本実施例によれば、膨張機6で回収した動力からの電力によってペルチェ素子43を動作させ、室内側熱交換器8を放熱器として利用中に、このペルチェ素子43によって室内側熱交換器8に流れる冷媒を更に加熱することで、室内側熱交換器8の加熱能力を増加させることができる。
【0012】
以下、本発明の他の実施例による冷凍サイクル装置を、ヒートポンプ式冷暖房型空気調和装置について、図3及び図4を参照して説明する。
図3及び図4は、本実施例によるヒートポンプ式冷暖房型空気調和装置の構成図である。
図に示すように、本実施例によるヒートポンプ式冷暖房型空気調和装置は、冷媒としてCO冷媒を使用し、モータ11を有する圧縮機1と、室外側熱交換器3と、膨張機6と、室内側熱交換器8とを配管で接続した冷媒回路から構成される。
また、膨張機6の駆動軸は発電機42の駆動軸と連結されており、膨張機6で回収した動力を電力に変換している。
そしてこの冷媒回路には、圧縮機1の吐出側配管と吸入側配管とが接続される第1四方弁2と、膨張機6の流入側配管と流出側配管とが接続される第2四方弁4とを備えている。
発電機42からの電力は、ペルチェ素子43に供給される。このペルチェ素子43は、冷却面43aと放熱面43bとを有している。またペルチェ素子43の冷却面43aと放熱面43bとを切り替える切替手段43cを備えている。
この切換手段43cによって、冷房運転モード時にはペルチェ素子43の冷却面43aを利用し、暖房運転モード時にはペルチェ素子43の放熱面43bを利用する。なお、図中45は、室内などの利用側空間を示している。
【0013】
本実施例によるヒートポンプ式冷暖房型空気調和装置の動作について以下に説明する。
まず、図3を用いて、室外側熱交換器3を放熱器、室内側熱交換器8を蒸発器として用いる冷房運転モードについて説明する。この冷房運転モードでの冷媒流れを、図中実線矢印で示す。
冷房運転モード時の冷媒は、モータ11で駆動される圧縮機1により高温高圧に圧縮されて吐出され、第1四方弁2を経て、室外側熱交換器3に導入される。室外側熱交換器3では、CO冷媒は、超臨界状態であるので、気液二相状態とはならずに、空気や水などの外部流体に放熱する。その後CO冷媒は、第2四方弁4を経由して膨張機6に導入され減圧される。この減圧時に膨張機6で回収した動力は発電機42によって電力に変換される。
膨張機6にて減圧されたCO冷媒は、第2四方弁4を経て室内側熱交換器8に導かれ、室内側熱交換器8にて蒸発して吸熱する。この吸熱によって室内の冷房が行われる。蒸発を終えた冷媒は、第1四方弁2を経て圧縮機1に吸入される。
一方、ペルチェ素子43は、切換手段43cによって冷却面43aを室内側で利用し、放熱面43bは室外にて熱を放出するように切り替えられている。
従って、ペルチェ素子43は発電機42からの電力によって室内空気を冷却することで、室内側熱交換器8とは別に冷却や除湿を行うことができる。
【0014】
次に、図4を用いて、室内側熱交換器8を放熱器、室外側熱交換器3を蒸発器として用いる暖房運転モードについて説明する。この暖房運転モードでの冷媒流れを、図中波線矢印で示す。
暖房運転モード時の冷媒は、モータ11で駆動される圧縮機1により高温高圧に圧縮されて吐出され、第1四方弁2を経て、室内側熱交換器8に導入される。室内側熱交換器8では、CO冷媒は、超臨界状態であるので、気液二相状態とはならずに、空気や水などの外部流体に放熱し、この放熱を利用して例えば室内暖房が行われる。その後CO冷媒は、第2四方弁4を経て膨張機6に導入され減圧される。この減圧時に膨張機6で回収した動力は発電機42によって電力に変換される。
膨張機6にて減圧されたCO冷媒は、第2四方弁4を経由して室外側熱交換器3に導かれ、室外側熱交換器3にて蒸発して吸熱し、蒸発を終えた冷媒は第1四方弁2を経由して圧縮機1に吸入される。
一方、ペルチェ素子43は、切換手段43cによって放熱面43bを室内側で利用し、冷却面43aは室外にて熱を吸収するように切り替えられている。
従って、ペルチェ素子43は発電機42からの電力によって室内空気を加熱することで、室内側熱交換器8とは別に加熱を行うことができる。
【0015】
以下、本発明の他の実施例による冷凍サイクル装置を、ヒートポンプ式冷暖房型空気調和装置について、図5及び図6を参照して説明する。
図5及び図6は、本実施例によるヒートポンプ式冷暖房型空気調和装置の構成図である。
図に示すように、本実施例によるヒートポンプ式冷暖房型空気調和装置は、冷媒としてCO冷媒を使用し、モータ11を有する圧縮機1と、室外側熱交換器3と、膨張機6と、室内側熱交換器8とを配管で接続した冷媒回路から構成される。
また、膨張機6の駆動軸は発電機42の駆動軸と連結されており、膨張機6で回収した動力を電力に変換している。
そしてこの冷媒回路には、圧縮機1の吐出側配管と吸入側配管とが接続される第1四方弁2と、膨張機6の流入側配管と流出側配管とが接続される第2四方弁4とを備えている。
発電機42からの電力は、ペルチェ素子43に供給される。このペルチェ素子43は、冷却面43aと放熱面43bとを有している。またペルチェ素子43の冷却面43aと放熱面43bとを切り替える切替手段43cを備えている。
この切換手段43cによって、冷房運転モード時にはペルチェ素子43の放熱面43bを室内側熱交換器8の入口側配管と熱交換させ、ペルチェ素子43の冷却面43aを利用し、暖房運転モード時にはペルチェ素子43の冷却面43aを室内側熱交換器8の出口側配管と熱交換させ、ペルチェ素子43の放熱面43bを利用する。なお、図中45は、室内などの利用側空間を示している。
【0016】
本実施例によるヒートポンプ式冷暖房型空気調和装置の動作について以下に説明する。
まず、図5を用いて、室外側熱交換器3を放熱器、室内側熱交換器8を蒸発器として用いる冷房運転モードについて説明する。この冷房運転モードでの冷媒流れを、図中実線矢印で示す。
冷房運転モード時の冷媒は、モータ11で駆動される圧縮機1により高温高圧に圧縮されて吐出され、第1四方弁2を経て、室外側熱交換器3に導入される。室外側熱交換器3では、CO冷媒は、超臨界状態であるので、気液二相状態とはならずに、空気や水などの外部流体に放熱する。その後CO冷媒は、第2四方弁4を経由して膨張機6に導入され減圧される。この減圧時に膨張機6で回収した動力は発電機42によって電力に変換される。
膨張機6にて減圧されたCO冷媒は、第2四方弁4を経て室内側熱交換器8に導かれ、室内側熱交換器8にて蒸発して吸熱する。この吸熱によって室内の冷房が行われる。蒸発を終えた冷媒は、第1四方弁2を経て圧縮機1に吸入される。
一方、ペルチェ素子43は、切換手段43cによってペルチェ素子43の放熱面43bを室内側熱交換器8の入口側配管と熱交換させ、ペルチェ素子43の冷却面43aを室内側で冷却又は除湿に利用する。
本実施例によれば、ペルチェ素子43の冷却面43aでは、より低い温度を得ることができるため、このより低い温度を利用して冷却や除湿を行うことで、室内側熱交換器での冷房負荷を減じることができる。
【0017】
次に、図6を用いて、室内側熱交換器8を放熱器、室外側熱交換器3を蒸発器として用いる暖房運転モードについて説明する。この暖房運転モードでの冷媒流れを、図中波線矢印で示す。
暖房運転モード時の冷媒は、モータ11で駆動される圧縮機1により高温高圧に圧縮されて吐出され、第1四方弁2を経て、室内側熱交換器8に導入される。室内側熱交換器8では、CO冷媒は、超臨界状態であるので、気液二相状態とはならずに、空気や水などの外部流体に放熱し、この放熱を利用して例えば室内暖房が行われる。その後CO冷媒は、第2四方弁4を経て膨張機6に導入され減圧される。この減圧時に膨張機6で回収した動力は発電機42によって電力に変換される。
膨張機6にて減圧されたCO冷媒は、第2四方弁4を経由して室外側熱交換器3に導かれ、室外側熱交換器3にて蒸発して吸熱し、蒸発を終えた冷媒は第1四方弁2を経由して圧縮機1に吸入される。
一方、ペルチェ素子43は、切換手段43cによって冷却面43aを室内側熱交換器8の出口側配管と熱交換させ、ペルチェ素子43の放熱面43bを室内側で暖房に利用する。
本実施例によれば、ペルチェ素子43の放熱面43bでは、より高い温度を得ることができるため、このより高い温度を利用して暖房を行うことで、室内側熱交換器での暖房負荷を減じることができる。
【0018】
以下、本発明の他の実施例による冷凍サイクル装置を、ヒートポンプ式冷暖房型空気調和装置について、図7及び図8を参照して説明する。
図7及び図8は、本実施例によるヒートポンプ式冷暖房型空気調和装置の構成図である。
本実施例では、冷房運転モード時にはペルチェ素子43の放熱面43bを室内側熱交換器8の出口側配管と熱交換させ、ペルチェ素子43の冷却面43aを利用し、暖房運転モード時にはペルチェ素子43の冷却面43aを室内側熱交換器8の入口側配管と熱交換させ、ペルチェ素子43の放熱面43bを利用するものである。なお、図中45は、室内などの利用側空間を示している。
本実施例に示すように、ペルチェ素子43と熱交換させる配管の位置を、室内側熱交換器8の入口と出口を入れ換えても、図5及び図6に示す実施例と同様の作用効果を奏する。
【0019】
以下、本発明の他の実施例による冷凍サイクル装置を、ヒートポンプ式冷暖房型空気調和装置について、図面を参照して説明する。
図9は、本実施例によるヒートポンプ式冷暖房型空気調和装置の構成図である。
図に示すように、本実施例によるヒートポンプ式冷暖房型空気調和装置は、冷媒としてCO冷媒を使用し、モータ11を有する圧縮機1と、室外側熱交換器3と、膨張機6と、室内側熱交換器8と、補助圧縮機10とを配管で接続した冷媒回路から構成される。
また、膨張機6の駆動軸と補助圧縮機10の駆動軸とは連結されており、補助圧縮機10は膨張機6で回収した動力によって駆動される。
また、膨張機6の駆動軸は発電機42の駆動軸と連結されており、膨張機6で回収した動力を電力に変換している。
そしてこの冷媒回路には、圧縮機1の吐出側配管と補助圧縮機10の吸入側配管とが接続される第1四方弁2と、膨張機6の流入側配管と流出側配管とが接続される第2四方弁4とを備えている。
発電機42からの電力は、ペルチェ素子43に供給される。このペルチェ素子43は、冷却面43aと放熱面43bとを有している。
ここで、ペルチェ素子43の冷却面43aは、補助圧縮機10の出口から圧縮機1の吸入口までを流れる冷媒を冷却する。なお、ペルチェ素子43の放熱面43bは、室外にて熱を放出している。
【0020】
本実施例によるヒートポンプ式冷暖房型空気調和装置の動作について以下に説明する。
まず、室外側熱交換器3を放熱器、室内側熱交換器8を蒸発器として用いる冷房運転モードについて説明する。この冷房運転モードでの冷媒流れを、図中実線矢印で示す。
冷房運転モード時の冷媒は、モータ11で駆動される圧縮機1により高温高圧に圧縮されて吐出され、第1四方弁2を経て、室外側熱交換器3に導入される。室外側熱交換器3では、CO冷媒は、超臨界状態であるので、気液二相状態とはならずに、空気や水などの外部流体に放熱する。その後CO冷媒は膨張機6に導入され減圧される。この減圧時に膨張機6で回収した動力は補助圧縮機10の駆動に用いられるとともに、発電機42によって電力に変換される。
膨張機6にて減圧されたCO冷媒は、第2四方弁4を経由して室内側熱交換器8に導かれ、室内側熱交換器8にて蒸発して吸熱する。この吸熱によって室内の冷房が行われる。蒸発を終えた冷媒は、第1四方弁2を経て補助圧縮機10に導かれ、補助圧縮機10によって過給(チャージャ)される。補助圧縮機10によって過給された冷媒は、ペルチェ素子43の冷却面43aによって冷却されて圧縮機1に吸入される。
【0021】
次に、室外側熱交換器3を蒸発器、室内側熱交換器8を放熱器として用いる暖房運転モードについて説明する。この暖房運転モードでの冷媒流れを、図中波線矢印で示す。
暖房運転モード時の冷媒は、モータ11で駆動される圧縮機1により高温高圧に圧縮されて吐出され、第1四方弁2を経て、室内側熱交換器8に導入される。室内側熱交換器8では、CO冷媒は、超臨界状態であるので、気液二相状態とはならずに、空気や水などの外部流体に放熱し、この放熱を利用して例えば室内暖房が行われる。その後CO冷媒は膨張機6に導入され減圧される。この減圧時に膨張機6で回収した動力は補助圧縮機10の駆動に用いられるとともに、発電機42によって電力に変換される。
膨張機6にて減圧されたCO冷媒は、第2四方弁4を経由して室外側熱交換器3に導かれ、室外側熱交換器3にて蒸発して吸熱し、蒸発を終えた冷媒は第1四方弁2を経由して補助圧縮機10に導かれ、補助圧縮機10によって過給(チャージャ)される。補助圧縮機10によって過給された冷媒は、ペルチェ素子43の冷却面43aによって冷却されて圧縮機1に吸入される。
以上のように、本実施例によれば、膨張機6で回収した動力からの電力によってペルチェ素子43を動作させ、補助圧縮機10の出口側の冷媒を冷却して加熱度を調整することができるため、膨張機6での動力を補助圧縮機10での動力として回収できるとともに、圧縮機1の動作点を最適に調整することができる。
【0022】
上記それぞれの実施例では、ヒートポンプ式冷暖房型空気調和装置を用いて説明したが、室外側熱交換器3を第1の熱交換器、室内側熱交換器8を第2の熱交換器とし、これら第1の熱交換器や第2の熱交換器を、温冷水器や蓄冷熱器などに利用したその他の冷凍サイクル装置であってもよい。
【0023】
【発明の効果】
以上のように、本発明によれば、膨張機で回収した動力からの電力によってペルチェ素子を動作させ、このペルチェ素子による冷却と放熱を利用することで効率的な運転を行うことができる。
【図面の簡単な説明】
【図1】本発明の一実施例によるヒートポンプ式冷暖房型空気調和装置の構成図
【図2】本発明の他の実施例によるヒートポンプ式冷暖房型空気調和装置の構成図
【図3】本発明の他の実施例によるヒートポンプ式冷暖房型空気調和装置の構成図
【図4】同実施例によるヒートポンプ式冷暖房型空気調和装置の構成図
【図5】本発明の他の実施例によるヒートポンプ式冷暖房型空気調和装置の構成図
【図6】同実施例によるヒートポンプ式冷暖房型空気調和装置の構成図
【図7】本発明の他の実施例によるヒートポンプ式冷暖房型空気調和装置の構成図
【図8】同実施例によるヒートポンプ式冷暖房型空気調和装置の構成図
【図9】本発明の他の実施例によるヒートポンプ式冷暖房型空気調和装置の構成図
【符号の説明】
1 圧縮機
2 第1四方弁
3 室外側熱交換器
4 第2四方弁
6 膨張機
8 室内側熱交換器
10 補助圧縮機
11 モータ
42 発電機
43 ペルチェ素子
43a 冷却面
43b 放熱面
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a refrigeration cycle apparatus using carbon dioxide as a refrigerant and including a compressor, an outdoor heat exchanger, an expander, and an indoor heat exchanger.
[0002]
[Prior art]
It has been conventionally proposed that the expansion valve constituting the refrigeration cycle be replaced with an expander to recover the expansion energy of the working medium and improve the coefficient of performance of the refrigeration cycle device.
However, it is conceivable that the generator is driven by the expander and that power is used as part of the drive power of the compressor.However, in order to match the commercial power supplied to the drive source of the compressor, a converter or inverter is required. It has been pointed out that a complicated power conversion device such as the above is required, which may lead to an increase in cost (for example, see Patent Document 1).
When an expander is provided in the refrigeration cycle device, and the power recovered by the expander is used as part of the driving force of the compressor, the rotational speeds of the expander and the compressor must be the same. However, it is difficult to maintain an optimum COP when the operating conditions change under the constraint that the density ratio is constant.
Therefore, a configuration has been proposed in which a bypass pipe that bypasses the expander is provided to control the amount of refrigerant flowing into the expander to maintain an optimum COP (for example, see Patent Literature 2 and Patent Literature 3).
[0003]
[Patent Document 1]
JP-A-61-128066 (publication, page 1, right column, line 14 to page 2, left column, line 8)
[Patent Document 2]
JP-A-2000-234814 (paragraph numbers (0024) and (0025) in FIG. 1)
[Patent Document 3]
JP 2001-116371 A (paragraph number (0023) FIG. 1)
[0004]
[Problems to be solved by the invention]
However, even in the case of providing a bypass pipe that bypasses the expander, as the difference between the flow rate of the refrigerant flowing into the expander and the design optimal flow rate increases, the amount of refrigerant passing through the bypass increases, As a result, there is a problem that the power that can be recovered cannot be sufficiently recovered.
[0005]
Therefore, an object of the present invention is to directly use electric power recovered from an expander for cooling and heat radiation without using the electric power as a drive source of a compressor.
[0006]
[Means for Solving the Problems]
The refrigeration cycle apparatus of the present invention according to claim 1 uses carbon dioxide as a refrigerant, includes a compressor, an outdoor heat exchanger, an expander, and an indoor heat exchanger, and generates power from power recovered by the expander. A refrigeration cycle apparatus that operates a Peltier element by electric power, wherein the indoor side heat exchanger is an evaporator, and the refrigerant is cooled between the expander outlet and the indoor side heat exchanger using the Peltier element. It is characterized by.
The refrigeration cycle device of the present invention according to claim 2 uses carbon dioxide as a refrigerant, includes a compressor, an outdoor heat exchanger, an expander, and an indoor heat exchanger, and generates power from power recovered by the expander. A refrigeration cycle device that operates a Peltier element by electric power, wherein the indoor heat exchanger is a radiator, and the refrigerant is heated between the expander outlet and the indoor heat exchanger using the Peltier element. It is characterized by.
The refrigeration cycle apparatus according to the third aspect of the present invention uses carbon dioxide as a refrigerant, includes a compressor, an outdoor heat exchanger, an expander, and an indoor heat exchanger, and generates power from power recovered by the expander. A refrigeration cycle apparatus that operates a Peltier element with electric power, wherein the indoor heat exchanger is an evaporator, and the Peltier element is used to cool or dehumidify indoor air.
The refrigeration cycle apparatus of the present invention according to claim 4 uses carbon dioxide as a refrigerant, includes a compressor, an outdoor heat exchanger, an expander, and an indoor heat exchanger, and generates power from power recovered by the expander. A refrigeration cycle apparatus that operates a Peltier element by electric power, wherein the indoor heat exchanger is used as a radiator, and indoor air is heated using the Peltier element.
The refrigeration cycle apparatus of the present invention according to claim 5 uses carbon dioxide as a refrigerant, includes a compressor, an outdoor heat exchanger, an expander, and an indoor heat exchanger, and generates power from power recovered by the expander. A refrigeration cycle apparatus that operates a Peltier element with electric power, the apparatus including switching means for switching between a cooling surface and a heat radiation surface of the Peltier element, and the indoor heat exchanger is set to an evaporator by switching by the switching means. In this case, the cooling surface of the Peltier element is used, and when the indoor heat exchanger is used as a radiator, the radiating surface of the Peltier element is used.
The refrigeration cycle apparatus of the present invention according to claim 6 uses carbon dioxide as a refrigerant, includes a compressor, an outdoor heat exchanger, an expander, and an indoor heat exchanger, and generates power from power recovered by the expander. A refrigeration cycle apparatus that operates a Peltier element with electric power, wherein the indoor heat exchanger is an evaporator, and a heat radiation surface of the Peltier element exchanges heat with an inlet or outlet pipe of the indoor heat exchanger, The indoor air is cooled or dehumidified by using the cooling surface of the Peltier element.
The refrigeration cycle apparatus of the present invention according to claim 7 uses carbon dioxide as a refrigerant, includes a compressor, an outdoor heat exchanger, an expander, and an indoor heat exchanger, and generates power from power recovered by the expander. A refrigeration cycle device that operates a Peltier element by electric power, wherein the indoor heat exchanger is a radiator, and a cooling surface of the Peltier element exchanges heat with an inlet or outlet pipe of the indoor heat exchanger, The indoor air is heated using the heat dissipation surface of the Peltier element.
The refrigeration cycle apparatus of the present invention according to claim 8 uses carbon dioxide as a refrigerant, includes a compressor, an outdoor heat exchanger, an expander, and an indoor heat exchanger, and generates power from power recovered by the expander. A refrigeration cycle apparatus that operates a Peltier element with electric power, the apparatus including switching means for switching between a cooling surface and a heat radiation surface of the Peltier element, and the indoor heat exchanger is set to an evaporator by switching by the switching means. In the case where the heat dissipation surface of the Peltier element exchanges heat with the inlet or outlet pipe of the indoor side heat exchanger and the cooling surface of the Peltier element is used, and the indoor side heat exchanger is a radiator. Is characterized in that the cooling surface of the Peltier element exchanges heat with the inlet or outlet pipe of the indoor heat exchanger and the heat dissipation surface of the Peltier element is used.
The refrigeration cycle apparatus according to the ninth aspect of the present invention uses carbon dioxide as a refrigerant, includes a compressor, an outdoor heat exchanger, an expander, an indoor heat exchanger, and an auxiliary compressor, and is recovered by the expander. A refrigeration cycle device that drives the auxiliary compressor by a motive power and drives a generator, wherein a Peltier element is operated by electric power from the generator, and the Peltier element drives the compressor from an outlet of the auxiliary compressor. The cooling system is characterized in that a pipe leading to an inlet of the air conditioner is cooled.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
In the first embodiment according to the present invention, the indoor heat exchanger is used as an evaporator, and the refrigerant is cooled between the outlet of the expander and the indoor heat exchanger using a Peltier element.
According to the present embodiment, the Peltier element is operated by the electric power from the power recovered by the expander, and while the indoor heat exchanger is used as an evaporator, the refrigerant flowing to the indoor heat exchanger by the Peltier element is used. By further cooling, the cooling capacity of the indoor heat exchanger can be increased, and an efficient cooling operation can be performed.
In the second embodiment according to the present invention, the indoor heat exchanger is used as a radiator, and the refrigerant is heated from the outlet of the expander to the indoor heat exchanger using a Peltier element.
According to the present embodiment, the Peltier element is operated by the power from the power recovered by the expander, and while the indoor heat exchanger is used as a radiator, the refrigerant flowing to the indoor heat exchanger by the Peltier element is used. By performing further heating, the heating capacity of the indoor heat exchanger can be increased, and an efficient heating operation can be performed.
In the third embodiment according to the present invention, an indoor heat exchanger is used as an evaporator, and indoor air is cooled or dehumidified using a Peltier element.
According to the present embodiment, the Peltier element is operated by the power from the power recovered by the expander, and the indoor air is cooled by the Peltier element while the indoor heat exchanger is being used as an evaporator. Cooling and dehumidification can be performed separately from the inner heat exchanger, and efficient cooling operation can be performed.
In the fourth embodiment according to the present invention, a room-side heat exchanger is used as a radiator, and room air is heated using a Peltier element.
According to the present embodiment, the Peltier element is operated by the power from the power recovered by the expander, and the indoor air is heated by the Peltier element while the indoor heat exchanger is used as a radiator, whereby the room is heated. Heating can be performed separately from the inner heat exchanger, and efficient heating operation can be performed.
The fifth embodiment according to the present invention has switching means for switching between a cooling surface and a heat radiation surface of a Peltier element, and when the indoor heat exchanger is used as an evaporator by switching by the switching means, the Peltier element is used. When a cooling surface is used and the indoor heat exchanger is a radiator, the radiating surface of the Peltier element is used.
According to the present embodiment, when the Peltier element is operated by electric power from the power recovered by the expander and the indoor heat exchanger is used as an evaporator, the indoor heat exchanger is used as an evaporator. By cooling the indoor air, for example, by the Peltier element, cooling and dehumidification can be performed separately from the indoor heat exchanger, and an efficient cooling operation can be performed. When the indoor heat exchanger is used as a radiator, the indoor air is heated by the Peltier element while the indoor heat exchanger is used as a radiator, so that the indoor heat exchanger is heated separately from the indoor heat exchanger. Can be performed, and an efficient heating operation can be performed.
In a sixth embodiment of the present invention, the indoor heat exchanger is an evaporator, and the heat dissipation surface of the Peltier element exchanges heat with the inlet or outlet pipe of the indoor heat exchanger to cool the cooling surface of the Peltier element. This is used to cool or dehumidify room air.
According to the present embodiment, while using the indoor heat exchanger as an evaporator, the heat radiation surface of the Peltier element is exchanged with the inlet or outlet pipe of the indoor heat exchanger, and the cooling surface of the Peltier element is cooled. By cooling or dehumidifying the indoor air using a Peltier element, a lower temperature can be obtained.Therefore, by performing cooling and dehumidification using the lower temperature, the temperature in the indoor heat exchanger is reduced. The cooling load can be reduced, and an efficient cooling operation can be performed.
In a seventh embodiment according to the present invention, the indoor heat exchanger is used as a radiator, and the cooling surface of the Peltier element exchanges heat with the inlet or outlet pipe of the indoor heat exchanger, and the heat releasing surface of the Peltier element is removed. To heat room air.
According to the present embodiment, while using the indoor heat exchanger as a radiator, the cooling surface of the Peltier element exchanges heat with the inlet or outlet pipe of the indoor heat exchanger, and the radiating surface of the Peltier element By heating the indoor air using the Peltier element, a higher temperature can be obtained, and by using this higher temperature to perform heating, the heating load in the indoor heat exchanger is reduced. Thus, an efficient heating operation can be performed. The eighth embodiment according to the present invention has a switching means for switching between a cooling surface and a heat radiation surface of a Peltier element. When the indoor heat exchanger is used as an evaporator by the switching by the switching means, the Peltier element is used. When the heat radiation surface is exchanged with the inlet or outlet pipe of the indoor heat exchanger and the cooling surface of the Peltier element is used, when the indoor heat exchanger is a radiator, the cooling surface of the Peltier element is used as the indoor heat exchanger. In this method, heat is exchanged with the inlet or outlet pipe of the exchanger and the heat radiation surface of the Peltier element is used.
According to the present embodiment, when the indoor heat exchanger is an evaporator, the radiating surface of the Peltier element is placed on the inlet side of the indoor heat exchanger or while the indoor heat exchanger is used as the evaporator. By exchanging heat with the outlet side pipe and cooling or dehumidifying the indoor air using the cooling surface of the Peltier element, a lower temperature can be obtained in the Peltier element, so cooling using this lower temperature is used. By performing dehumidification and dehumidification, the cooling load on the indoor heat exchanger can be reduced, and an efficient cooling operation can be performed. When the indoor heat exchanger is used as a radiator, the cooling surface of the Peltier element exchanges heat with the inlet or outlet pipe of the indoor heat exchanger while the indoor heat exchanger is used as a radiator. By heating the indoor air using the radiating surface of the Peltier element, a higher temperature can be obtained in the Peltier element. The heating load on the exchanger can be reduced, and an efficient heating operation can be performed. In the ninth embodiment according to the present invention, a Peltier element is operated by electric power from a generator, and a pipe from an outlet of an auxiliary compressor to an inlet of a compressor is cooled by the Peltier element.
According to the present embodiment, the Peltier element is operated by the power from the power recovered by the expander, and the degree of heating can be adjusted by cooling the refrigerant at the outlet side of the auxiliary compressor. Power can be recovered as power in the auxiliary compressor, and the operating point of the compressor can be optimally adjusted to operate efficiently.
[0008]
【Example】
Hereinafter, a refrigeration cycle apparatus according to another embodiment of the present invention will be described with reference to the drawings, regarding a heat pump type cooling / heating type air conditioner.
FIG. 1 is a configuration diagram of a heat pump type cooling / heating type air conditioner according to the present embodiment.
As shown in the figure, the heat pump type cooling / heating type air conditioner according to the present embodiment uses CO 2 as a refrigerant. 2 The refrigerant circuit includes a refrigerant circuit that uses a refrigerant and connects the compressor 1 having the motor 11, the outdoor heat exchanger 3, the expander 6, and the indoor heat exchanger 8 with piping.
The drive shaft of the expander 6 is connected to the drive shaft of the generator 42, and converts the power recovered by the expander 6 into electric power.
In this refrigerant circuit, a first four-way valve 2 to which a discharge side pipe and a suction side pipe of the compressor 1 are connected, and a second four-way valve to which an inflow side pipe and an outflow side pipe of the expander 6 are connected 4 is provided.
Electric power from the generator 42 is supplied to the Peltier element 43. This Peltier element 43 has a cooling surface 43a and a heat radiation surface 43b.
Here, the cooling surface 43a of the Peltier element 43 cools the refrigerant flowing from the outlet of the expander 6 to the inlet of the indoor heat exchanger 8 acting as an evaporator. Note that the heat dissipation surface 43b of the Peltier element 43 emits heat outdoors. In the drawing, reference numeral 45 denotes a use side space such as a room. And although the cooling surface 43a is arrange | positioned in the utilization space 45, if it is arrange | positioned from the exit of the expander 6 to the entrance of the indoor side heat exchanger 8, it may be the outdoor side.
[0009]
The operation of the heat pump air conditioner according to this embodiment will be described below.
In this embodiment, the cooling operation mode for operating the Peltier element will be described, and the description of the heating operation mode will be omitted. In the cooling operation mode, the outdoor heat exchanger 3 is used as a radiator, and the indoor heat exchanger 8 is used as an evaporator. The flow of the refrigerant in the cooling operation mode is indicated by a solid line arrow in the figure.
The refrigerant in the cooling operation mode is compressed to a high temperature and a high pressure by the compressor 1 driven by the motor 11 and discharged, and is introduced into the outdoor heat exchanger 3 through the first four-way valve 2. In the outdoor heat exchanger 3, CO 2 Since the refrigerant is in a supercritical state, it does not enter a gas-liquid two-phase state but radiates heat to an external fluid such as air or water. Then CO 2 The refrigerant is introduced into the expander 6 via the second four-way valve 4 and decompressed. The power recovered by the expander 6 during this pressure reduction is converted into electric power by the generator 42.
CO decompressed by the expander 6 2 The refrigerant is further cooled by the cooling surface 43 a of the Peltier element 43 and guided to the indoor heat exchanger 8. Therefore, since the evaporation capacity in the indoor heat exchanger 8 is increased, the capacity in the compressor 1 can be reduced by the amount of cooling in the Peltier element 43. Cooling of the room is performed by heat absorption in the indoor heat exchanger 8, and the refrigerant after evaporation is sucked into the compressor 1.
As described above, according to the present embodiment, the Peltier device 43 is operated by the power from the power recovered by the expander 6, and the Peltier device 43 is used by the Peltier device 43 while the indoor heat exchanger 8 is used as an evaporator. By further cooling the refrigerant flowing through the heat exchanger 8, the cooling capacity of the indoor heat exchanger 8 can be increased.
[0010]
Hereinafter, a refrigeration cycle apparatus according to another embodiment of the present invention will be described with reference to the drawings, regarding a heat pump type cooling / heating type air conditioner.
FIG. 2 is a configuration diagram of the heat pump type cooling / heating type air conditioner according to the present embodiment.
As shown in the figure, the heat pump type cooling / heating type air conditioner according to the present embodiment uses CO 2 as a refrigerant. 2 The refrigerant circuit includes a refrigerant circuit that uses a refrigerant and connects the compressor 1 having the motor 11, the outdoor heat exchanger 3, the expander 6, and the indoor heat exchanger 8 with piping.
The drive shaft of the expander 6 is connected to the drive shaft of the generator 42, and converts the power recovered by the expander 6 into electric power.
In this refrigerant circuit, a first four-way valve 2 to which a discharge side pipe and a suction side pipe of the compressor 1 are connected, and a second four-way valve to which an inflow side pipe and an outflow side pipe of the expander 6 are connected 4 is provided.
Electric power from the generator 42 is supplied to the Peltier element 43. This Peltier element 43 has a cooling surface 43a and a heat radiation surface 43b.
Here, the heat radiation surface 43b of the Peltier element 43 heats the refrigerant flowing from the outlet of the compressor 1 to the inlet of the indoor heat exchanger 8 acting as a radiator. The cooling surface 43a of the Peltier element 43 absorbs heat outside the room. In the drawing, reference numeral 45 denotes a use side space such as a room. And although the heat radiation surface 43b is arrange | positioned in the utilization space 45, if it is arrange | positioned from the exit of the compressor 1 to the entrance of the indoor side heat exchanger 8, it may be outside the room.
[0011]
The operation of the heat pump air conditioner according to this embodiment will be described below.
In this embodiment, the heating operation mode for operating the Peltier element will be described, and the description of the cooling operation mode will be omitted. In the heating operation mode, the outdoor heat exchanger 3 is used as an evaporator, and the indoor heat exchanger 8 is used as a radiator. The flow of the refrigerant in the heating operation mode is indicated by a wavy arrow in the drawing.
The refrigerant in the heating operation mode is compressed and discharged to a high temperature and a high pressure by the compressor 1 driven by the motor 11, further heated by the heat radiation surface 43 b of the Peltier element 43, and introduced into the indoor heat exchanger 8. Accordingly, the heat radiation capability of the indoor heat exchanger 8 is increased, and the capability of the compressor 1 can be reduced by the amount of heat generated by the Peltier element 43. In the indoor heat exchanger 8, CO 2 Since the refrigerant is in a supercritical state, it does not enter a gas-liquid two-phase state, but radiates heat to an external fluid such as air or water, and uses the heat radiation to perform, for example, indoor heating. Then CO 2 The refrigerant is introduced into the expander 6 and decompressed. The power recovered by the expander 6 during this pressure reduction is converted into electric power by the generator 42.
CO decompressed by the expander 6 2 The refrigerant is guided to the outdoor heat exchanger 3 via the second four-way valve 4, evaporates and absorbs heat in the outdoor heat exchanger 3, and the evaporated refrigerant passes through the first four-way valve 2. And is sucked into the compressor 1.
As described above, according to the present embodiment, the Peltier element 43 is operated by the electric power from the power recovered by the expander 6, and the Peltier element 43 is used by the Peltier element 43 while the indoor heat exchanger 8 is used as a radiator. By further heating the refrigerant flowing through the heat exchanger 8, the heating capacity of the indoor heat exchanger 8 can be increased.
[0012]
Hereinafter, a refrigeration cycle apparatus according to another embodiment of the present invention will be described with reference to FIG. 3 and FIG.
FIG. 3 and FIG. 4 are configuration diagrams of the heat pump type cooling / heating type air conditioner according to the present embodiment.
As shown in the figure, the heat pump type cooling / heating type air conditioner according to the present embodiment uses CO 2 as a refrigerant. 2 The refrigerant circuit includes a refrigerant circuit that uses a refrigerant and connects the compressor 1 having the motor 11, the outdoor heat exchanger 3, the expander 6, and the indoor heat exchanger 8 with piping.
The drive shaft of the expander 6 is connected to the drive shaft of the generator 42, and converts the power recovered by the expander 6 into electric power.
In this refrigerant circuit, a first four-way valve 2 to which a discharge side pipe and a suction side pipe of the compressor 1 are connected, and a second four-way valve to which an inflow side pipe and an outflow side pipe of the expander 6 are connected 4 is provided.
Electric power from the generator 42 is supplied to the Peltier element 43. This Peltier element 43 has a cooling surface 43a and a heat radiation surface 43b. Further, a switching means 43c for switching between the cooling surface 43a and the heat radiation surface 43b of the Peltier element 43 is provided.
By the switching means 43c, the cooling surface 43a of the Peltier element 43 is used in the cooling operation mode, and the heat radiation surface 43b of the Peltier element 43 is used in the heating operation mode. In the drawing, reference numeral 45 denotes a use side space such as a room.
[0013]
The operation of the heat pump air conditioner according to this embodiment will be described below.
First, a cooling operation mode using the outdoor heat exchanger 3 as a radiator and the indoor heat exchanger 8 as an evaporator will be described with reference to FIG. The flow of the refrigerant in the cooling operation mode is indicated by a solid line arrow in the figure.
The refrigerant in the cooling operation mode is compressed to a high temperature and a high pressure by the compressor 1 driven by the motor 11 and discharged, and is introduced into the outdoor heat exchanger 3 through the first four-way valve 2. In the outdoor heat exchanger 3, CO 2 Since the refrigerant is in a supercritical state, it does not enter a gas-liquid two-phase state but radiates heat to an external fluid such as air or water. Then CO 2 The refrigerant is introduced into the expander 6 via the second four-way valve 4 and decompressed. The power recovered by the expander 6 during this pressure reduction is converted into electric power by the generator 42.
CO decompressed by the expander 6 2 The refrigerant is guided to the indoor heat exchanger 8 via the second four-way valve 4 and evaporates and absorbs heat in the indoor heat exchanger 8. This heat absorption cools the room. The evaporated refrigerant is drawn into the compressor 1 through the first four-way valve 2.
On the other hand, the Peltier element 43 is switched by the switching means 43c so that the cooling surface 43a is used indoors and the heat radiation surface 43b emits heat outside the room.
Therefore, the Peltier element 43 can cool and dehumidify the room air separately from the indoor heat exchanger 8 by cooling the room air with the electric power from the generator 42.
[0014]
Next, a heating operation mode in which the indoor heat exchanger 8 is used as a radiator and the outdoor heat exchanger 3 is used as an evaporator will be described with reference to FIG. The flow of the refrigerant in the heating operation mode is indicated by a wavy arrow in the drawing.
The refrigerant in the heating operation mode is compressed to a high temperature and a high pressure by the compressor 1 driven by the motor 11 and discharged, and is introduced into the indoor heat exchanger 8 through the first four-way valve 2. In the indoor heat exchanger 8, CO 2 Since the refrigerant is in a supercritical state, it does not enter a gas-liquid two-phase state, but radiates heat to an external fluid such as air or water, and uses the heat radiation to perform, for example, indoor heating. Then CO 2 The refrigerant is introduced into the expander 6 through the second four-way valve 4 and decompressed. The power recovered by the expander 6 during this pressure reduction is converted into electric power by the generator 42.
CO decompressed by the expander 6 2 The refrigerant is guided to the outdoor heat exchanger 3 via the second four-way valve 4, evaporates and absorbs heat in the outdoor heat exchanger 3, and the evaporated refrigerant passes through the first four-way valve 2. And is sucked into the compressor 1.
On the other hand, the Peltier element 43 uses the heat radiation surface 43b on the indoor side by the switching means 43c, and the cooling surface 43a is switched so as to absorb heat outside the room.
Therefore, the Peltier element 43 can heat the indoor air by the electric power from the generator 42, thereby performing heating separately from the indoor heat exchanger 8.
[0015]
Hereinafter, a refrigeration cycle apparatus according to another embodiment of the present invention will be described with reference to FIGS. 5 and 6 for a heat pump type cooling / heating type air conditioner.
FIG. 5 and FIG. 6 are configuration diagrams of the heat pump type cooling and heating type air conditioner according to the present embodiment.
As shown in the figure, the heat pump type cooling / heating type air conditioner according to the present embodiment uses CO 2 as a refrigerant. 2 The refrigerant circuit includes a refrigerant circuit that uses a refrigerant and connects the compressor 1 having the motor 11, the outdoor heat exchanger 3, the expander 6, and the indoor heat exchanger 8 with piping.
The drive shaft of the expander 6 is connected to the drive shaft of the generator 42, and converts the power recovered by the expander 6 into electric power.
In this refrigerant circuit, a first four-way valve 2 to which a discharge side pipe and a suction side pipe of the compressor 1 are connected, and a second four-way valve to which an inflow side pipe and an outflow side pipe of the expander 6 are connected 4 is provided.
Electric power from the generator 42 is supplied to the Peltier element 43. This Peltier element 43 has a cooling surface 43a and a heat radiation surface 43b. Further, a switching means 43c for switching between the cooling surface 43a and the heat radiation surface 43b of the Peltier element 43 is provided.
By the switching means 43c, the heat radiation surface 43b of the Peltier element 43 exchanges heat with the inlet side pipe of the indoor heat exchanger 8 in the cooling operation mode, and the cooling surface 43a of the Peltier element 43 is used. The cooling surface 43 a of 43 is exchanged with the outlet pipe of the indoor heat exchanger 8, and the heat radiation surface 43 b of the Peltier element 43 is used. In the drawing, reference numeral 45 denotes a use side space such as a room.
[0016]
The operation of the heat pump air conditioner according to this embodiment will be described below.
First, a cooling operation mode in which the outdoor heat exchanger 3 is used as a radiator and the indoor heat exchanger 8 is used as an evaporator will be described with reference to FIG. The flow of the refrigerant in the cooling operation mode is indicated by a solid line arrow in the figure.
The refrigerant in the cooling operation mode is compressed to a high temperature and a high pressure by the compressor 1 driven by the motor 11 and discharged, and is introduced into the outdoor heat exchanger 3 through the first four-way valve 2. In the outdoor heat exchanger 3, CO 2 Since the refrigerant is in a supercritical state, it does not enter a gas-liquid two-phase state but radiates heat to an external fluid such as air or water. Then CO 2 The refrigerant is introduced into the expander 6 via the second four-way valve 4 and decompressed. The power recovered by the expander 6 during this pressure reduction is converted into electric power by the generator 42.
CO decompressed by the expander 6 2 The refrigerant is guided to the indoor heat exchanger 8 via the second four-way valve 4 and evaporates and absorbs heat in the indoor heat exchanger 8. This heat absorption cools the room. The evaporated refrigerant is drawn into the compressor 1 through the first four-way valve 2.
On the other hand, the Peltier device 43 uses the switching means 43c to exchange heat between the radiation surface 43b of the Peltier device 43 and the inlet pipe of the indoor heat exchanger 8, and uses the cooling surface 43a of the Peltier device 43 for cooling or dehumidification indoors. I do.
According to the present embodiment, since a lower temperature can be obtained on the cooling surface 43a of the Peltier element 43, cooling and dehumidification are performed by using the lower temperature, thereby cooling the indoor heat exchanger. The load can be reduced.
[0017]
Next, a heating operation mode using the indoor heat exchanger 8 as a radiator and the outdoor heat exchanger 3 as an evaporator will be described with reference to FIG. The flow of the refrigerant in the heating operation mode is indicated by a wavy arrow in the drawing.
The refrigerant in the heating operation mode is compressed to a high temperature and a high pressure by the compressor 1 driven by the motor 11 and discharged, and is introduced into the indoor heat exchanger 8 through the first four-way valve 2. In the indoor heat exchanger 8, CO 2 Since the refrigerant is in a supercritical state, it does not enter a gas-liquid two-phase state, but radiates heat to an external fluid such as air or water, and uses the heat radiation to perform, for example, indoor heating. Then CO 2 The refrigerant is introduced into the expander 6 through the second four-way valve 4 and decompressed. The power recovered by the expander 6 during this pressure reduction is converted into electric power by the generator 42.
CO decompressed by the expander 6 2 The refrigerant is guided to the outdoor heat exchanger 3 via the second four-way valve 4, evaporates and absorbs heat in the outdoor heat exchanger 3, and the evaporated refrigerant passes through the first four-way valve 2. And is sucked into the compressor 1.
On the other hand, the Peltier device 43 causes the cooling surface 43a to exchange heat with the outlet pipe of the indoor heat exchanger 8 by the switching means 43c, and uses the heat radiation surface 43b of the Peltier device 43 for indoor heating.
According to the present embodiment, since a higher temperature can be obtained on the heat radiation surface 43b of the Peltier element 43, by performing heating using the higher temperature, the heating load in the indoor heat exchanger can be reduced. Can be reduced.
[0018]
Hereinafter, a refrigeration cycle apparatus according to another embodiment of the present invention will be described with reference to FIGS. 7 and 8 for a heat pump type cooling / heating type air conditioner.
7 and 8 are configuration diagrams of a heat pump type cooling and heating type air conditioner according to the present embodiment.
In this embodiment, in the cooling operation mode, the heat radiation surface 43b of the Peltier element 43 is exchanged with the outlet pipe of the indoor heat exchanger 8, and the cooling surface 43a of the Peltier element 43 is used. The heat exchange surface 43a of the Peltier element 43 is used by exchanging heat with the inlet side pipe of the indoor heat exchanger 8. In the drawing, reference numeral 45 denotes a use side space such as a room.
As shown in the present embodiment, the same operation and effect as those of the embodiment shown in FIGS. Play.
[0019]
Hereinafter, a refrigeration cycle apparatus according to another embodiment of the present invention will be described with reference to the drawings, regarding a heat pump type cooling / heating type air conditioner.
FIG. 9 is a configuration diagram of a heat pump type cooling / heating type air conditioner according to the present embodiment.
As shown in the figure, the heat pump type cooling / heating type air conditioner according to the present embodiment uses CO 2 as a refrigerant. 2 The refrigerant circuit includes a refrigerant circuit that uses a refrigerant and connects the compressor 1 having the motor 11, the outdoor heat exchanger 3, the expander 6, the indoor heat exchanger 8, and the auxiliary compressor 10 by piping. You.
The drive shaft of the expander 6 and the drive shaft of the auxiliary compressor 10 are connected, and the auxiliary compressor 10 is driven by the power recovered by the expander 6.
The drive shaft of the expander 6 is connected to the drive shaft of the generator 42, and converts the power recovered by the expander 6 into electric power.
A first four-way valve 2 to which a discharge pipe of the compressor 1 and a suction pipe of the auxiliary compressor 10 are connected, and an inflow pipe and an outflow pipe of the expander 6 are connected to this refrigerant circuit. And a second four-way valve 4.
Electric power from the generator 42 is supplied to the Peltier element 43. This Peltier element 43 has a cooling surface 43a and a heat radiation surface 43b.
Here, the cooling surface 43 a of the Peltier element 43 cools the refrigerant flowing from the outlet of the auxiliary compressor 10 to the suction port of the compressor 1. Note that the heat dissipation surface 43b of the Peltier element 43 emits heat outdoors.
[0020]
The operation of the heat pump air conditioner according to this embodiment will be described below.
First, a cooling operation mode in which the outdoor heat exchanger 3 is used as a radiator and the indoor heat exchanger 8 is used as an evaporator will be described. The flow of the refrigerant in the cooling operation mode is indicated by a solid line arrow in the figure.
The refrigerant in the cooling operation mode is compressed to a high temperature and a high pressure by the compressor 1 driven by the motor 11 and discharged, and is introduced into the outdoor heat exchanger 3 through the first four-way valve 2. In the outdoor heat exchanger 3, CO 2 Since the refrigerant is in a supercritical state, it does not enter a gas-liquid two-phase state but radiates heat to an external fluid such as air or water. Then CO 2 The refrigerant is introduced into the expander 6 and decompressed. The power recovered by the expander 6 during this pressure reduction is used to drive the auxiliary compressor 10 and is converted into electric power by the generator 42.
CO decompressed by the expander 6 2 The refrigerant is guided to the indoor heat exchanger 8 via the second four-way valve 4 and evaporates and absorbs heat in the indoor heat exchanger 8. This heat absorption cools the room. The evaporated refrigerant is guided to the auxiliary compressor 10 via the first four-way valve 2 and is supercharged (charged) by the auxiliary compressor 10. The refrigerant supercharged by the auxiliary compressor 10 is cooled by the cooling surface 43 a of the Peltier element 43 and is sucked into the compressor 1.
[0021]
Next, a heating operation mode using the outdoor heat exchanger 3 as an evaporator and the indoor heat exchanger 8 as a radiator will be described. The flow of the refrigerant in the heating operation mode is indicated by a wavy arrow in the drawing.
The refrigerant in the heating operation mode is compressed to a high temperature and a high pressure by the compressor 1 driven by the motor 11 and discharged, and is introduced into the indoor heat exchanger 8 through the first four-way valve 2. In the indoor heat exchanger 8, CO 2 Since the refrigerant is in a supercritical state, it does not enter a gas-liquid two-phase state, but radiates heat to an external fluid such as air or water, and uses the heat radiation to perform, for example, indoor heating. Then CO 2 The refrigerant is introduced into the expander 6 and decompressed. The power recovered by the expander 6 during this pressure reduction is used to drive the auxiliary compressor 10 and is converted into electric power by the generator 42.
CO decompressed by the expander 6 2 The refrigerant is guided to the outdoor heat exchanger 3 via the second four-way valve 4, evaporates and absorbs heat in the outdoor heat exchanger 3, and the evaporated refrigerant passes through the first four-way valve 2. The compressor is guided to the auxiliary compressor 10 and is supercharged (charged) by the auxiliary compressor 10. The refrigerant supercharged by the auxiliary compressor 10 is cooled by the cooling surface 43 a of the Peltier element 43 and is sucked into the compressor 1.
As described above, according to the present embodiment, the Peltier element 43 is operated by the electric power from the power recovered by the expander 6, and the refrigerant at the outlet side of the auxiliary compressor 10 is cooled to adjust the heating degree. Therefore, the power of the expander 6 can be recovered as the power of the auxiliary compressor 10, and the operating point of the compressor 1 can be optimally adjusted.
[0022]
In each of the above embodiments, the description has been made using the heat pump type air conditioner. However, the outdoor heat exchanger 3 is a first heat exchanger, the indoor heat exchanger 8 is a second heat exchanger, Other refrigeration cycle devices using the first heat exchanger and the second heat exchanger for a hot water chiller, a cold storage heat storage, and the like may be used.
[0023]
【The invention's effect】
As described above, according to the present invention, an efficient operation can be performed by operating the Peltier element with the electric power from the power collected by the expander and utilizing the cooling and heat radiation by the Peltier element.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a heat pump type cooling / heating type air conditioner according to an embodiment of the present invention.
FIG. 2 is a configuration diagram of a heat pump type cooling / heating type air conditioner according to another embodiment of the present invention.
FIG. 3 is a configuration diagram of a heat pump type air conditioner according to another embodiment of the present invention.
FIG. 4 is a configuration diagram of a heat pump type cooling / heating type air conditioner according to the embodiment.
FIG. 5 is a configuration diagram of a heat pump type air conditioner according to another embodiment of the present invention.
FIG. 6 is a configuration diagram of a heat pump type cooling / heating type air conditioner according to the embodiment.
FIG. 7 is a configuration diagram of a heat pump type cooling / heating type air conditioner according to another embodiment of the present invention.
FIG. 8 is a configuration diagram of a heat pump type cooling / heating type air conditioner according to the embodiment.
FIG. 9 is a configuration diagram of a heat pump type air conditioner according to another embodiment of the present invention.
[Explanation of symbols]
1 compressor
2 First four-way valve
3 outdoor heat exchanger
4 2nd 4-way valve
6 Expander
8. Indoor heat exchanger
10 Auxiliary compressor
11 Motor
42 generator
43 Peltier device
43a Cooling surface
43b Heat radiation surface

Claims (9)

冷媒として二酸化炭素を用い、圧縮機と室外側熱交換器と膨張機と室内側熱交換器とを備え、前記膨張機で回収した動力からの電力によってペルチェ素子を動作させる冷凍サイクル装置であって、前記室内側熱交換器を蒸発器とし、前記ペルチェ素子を用いて前記膨張機出口から前記室内側熱交換器の間で冷媒を冷却することを特徴とする冷凍サイクル装置。A refrigeration cycle apparatus that uses carbon dioxide as a refrigerant, includes a compressor, an outdoor heat exchanger, an expander, and an indoor heat exchanger, and operates a Peltier element with power from power recovered by the expander. A refrigerating cycle apparatus, wherein the indoor heat exchanger is an evaporator, and the refrigerant is cooled between the expander outlet and the indoor heat exchanger using the Peltier element. 冷媒として二酸化炭素を用い、圧縮機と室外側熱交換器と膨張機と室内側熱交換器とを備え、前記膨張機で回収した動力からの電力によってペルチェ素子を動作させる冷凍サイクル装置であって、前記室内側熱交換器を放熱器とし、前記ペルチェ素子を用いて前記圧縮機出口から前記室内側熱交換器の間で冷媒を加熱することを特徴とする冷凍サイクル装置。A refrigeration cycle apparatus that uses carbon dioxide as a refrigerant, includes a compressor, an outdoor heat exchanger, an expander, and an indoor heat exchanger, and operates a Peltier element with power from power recovered by the expander. A refrigeration cycle apparatus wherein the indoor heat exchanger is a radiator, and the refrigerant is heated from the compressor outlet to the indoor heat exchanger using the Peltier element. 冷媒として二酸化炭素を用い、圧縮機と室外側熱交換器と膨張機と室内側熱交換器とを備え、前記膨張機で回収した動力からの電力によってペルチェ素子を動作させる冷凍サイクル装置であって、前記室内側熱交換器を蒸発器とし、前記ペルチェ素子を用いて室内空気を冷却又は除湿することを特徴とする冷凍サイクル装置。A refrigeration cycle apparatus that uses carbon dioxide as a refrigerant, includes a compressor, an outdoor heat exchanger, an expander, and an indoor heat exchanger, and operates a Peltier element with power from power recovered by the expander. A refrigeration cycle apparatus, wherein the indoor heat exchanger is an evaporator, and the indoor air is cooled or dehumidified using the Peltier element. 冷媒として二酸化炭素を用い、圧縮機と室外側熱交換器と膨張機と室内側熱交換器とを備え、前記膨張機で回収した動力からの電力によってペルチェ素子を動作させる冷凍サイクル装置であって、前記室内側熱交換器を放熱器とし、前記ペルチェ素子を用いて室内空気を加熱することを特徴とする冷凍サイクル装置。A refrigeration cycle apparatus that uses carbon dioxide as a refrigerant, includes a compressor, an outdoor heat exchanger, an expander, and an indoor heat exchanger, and operates a Peltier element with power from power recovered by the expander. A refrigeration cycle apparatus characterized in that the indoor heat exchanger is a radiator and the indoor air is heated using the Peltier element. 冷媒として二酸化炭素を用い、圧縮機と室外側熱交換器と膨張機と室内側熱交換器とを備え、前記膨張機で回収した動力からの電力によってペルチェ素子を動作させる冷凍サイクル装置であって、前記ペルチェ素子の冷却面と放熱面とを切り替える切替手段を有し、前記切替手段による切り替えによって、前記室内側熱交換器を蒸発器とする場合には前記ペルチェ素子の冷却面を用い、前記室内側熱交換器を放熱器とする場合には前記ペルチェ素子の放熱面を用いることを特徴とする冷凍サイクル装置。A refrigeration cycle apparatus that uses carbon dioxide as a refrigerant, includes a compressor, an outdoor heat exchanger, an expander, and an indoor heat exchanger, and operates a Peltier element with power from power recovered by the expander. Having switching means for switching between a cooling surface and a heat radiation surface of the Peltier element, and using the cooling surface of the Peltier element when the indoor heat exchanger is an evaporator by switching by the switching means. When the indoor heat exchanger is a radiator, the radiating surface of the Peltier element is used. 冷媒として二酸化炭素を用い、圧縮機と室外側熱交換器と膨張機と室内側熱交換器とを備え、前記膨張機で回収した動力からの電力によってペルチェ素子を動作させる冷凍サイクル装置であって、前記室内側熱交換器を蒸発器とし、前記ペルチェ素子の放熱面を前記室内側熱交換器の入口側又は出口側配管と熱交換させ、前記ペルチェ素子の冷却面を用いて室内空気を冷却又は除湿することを特徴とする冷凍サイクル装置。A refrigeration cycle apparatus that uses carbon dioxide as a refrigerant, includes a compressor, an outdoor heat exchanger, an expander, and an indoor heat exchanger, and operates a Peltier element with power from power recovered by the expander. The indoor heat exchanger is an evaporator, the heat radiation surface of the Peltier element is exchanged with the inlet or outlet pipe of the indoor heat exchanger, and the indoor air is cooled using the cooling surface of the Peltier element. Or, a refrigeration cycle device characterized by dehumidification. 冷媒として二酸化炭素を用い、圧縮機と室外側熱交換器と膨張機と室内側熱交換器とを備え、前記膨張機で回収した動力からの電力によってペルチェ素子を動作させる冷凍サイクル装置であって、前記室内側熱交換器を放熱器とし、前記ペルチェ素子の冷却面を前記室内側熱交換器の入口側又は出口側配管と熱交換させ、前記ペルチェ素子の放熱面を用いて室内空気を加熱することを特徴とする冷凍サイクル装置。A refrigeration cycle apparatus that uses carbon dioxide as a refrigerant, includes a compressor, an outdoor heat exchanger, an expander, and an indoor heat exchanger, and operates a Peltier element with power from power recovered by the expander. The indoor-side heat exchanger is used as a radiator, and the cooling surface of the Peltier device is exchanged with the inlet or outlet pipe of the indoor-side heat exchanger, and the indoor air is heated using the heat-radiating surface of the Peltier device. A refrigeration cycle device characterized by: 冷媒として二酸化炭素を用い、圧縮機と室外側熱交換器と膨張機と室内側熱交換器とを備え、前記膨張機で回収した動力からの電力によってペルチェ素子を動作させる冷凍サイクル装置であって、前記ペルチェ素子の冷却面と放熱面とを切り替える切替手段を有し、前記切替手段による切り替えによって、前記室内側熱交換器を蒸発器とする場合には前記ペルチェ素子の放熱面を前記室内側熱交換器の入口側又は出口側配管と熱交換させるとともに前記ペルチェ素子の冷却面を用い、前記室内側熱交換器を放熱器とする場合には前記ペルチェ素子の冷却面を前記室内側熱交換器の入口側又は出口側配管と熱交換させるとともに前記ペルチェ素子の放熱面を用いることを特徴とする冷凍サイクル装置。A refrigeration cycle apparatus that uses carbon dioxide as a refrigerant, includes a compressor, an outdoor heat exchanger, an expander, and an indoor heat exchanger, and operates a Peltier element with power from power recovered by the expander. A switching means for switching between a cooling surface and a heat radiation surface of the Peltier element, and when the indoor heat exchanger is used as an evaporator by switching by the switching means, the heat radiation surface of the Peltier element is set to the indoor side. When heat is exchanged with the inlet or outlet pipe of the heat exchanger and the cooling surface of the Peltier element is used, and when the indoor heat exchanger is a radiator, the cooling surface of the Peltier element is exchanged with the indoor heat exchange. A refrigeration cycle apparatus wherein heat is exchanged with an inlet or outlet pipe of the vessel and a heat dissipation surface of the Peltier element is used. 冷媒として二酸化炭素を用い、圧縮機と室外側熱交換器と膨張機と室内側熱交換器と補助圧縮機とを備え、前記膨張機で回収した動力によって前記補助圧縮機を駆動するとともに発電機を駆動する冷凍サイクル装置であって、前記発電機からの電力によってペルチェ素子を動作させ、前記ペルチェ素子によって前記補助圧縮機の出口から前記圧縮機の入口に至る配管を冷却することを特徴とする冷凍サイクル装置。Using carbon dioxide as a refrigerant, a compressor, an outdoor heat exchanger, an expander, an indoor heat exchanger, and an auxiliary compressor, wherein the power recovered by the expander drives the auxiliary compressor and a generator A refrigeration cycle device that drives a Peltier element by electric power from the generator, and cools a pipe from an outlet of the auxiliary compressor to an inlet of the compressor by the Peltier element. Refrigeration cycle equipment.
JP2002310452A 2002-10-25 2002-10-25 Refrigeration cycle device Withdrawn JP2004144399A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002310452A JP2004144399A (en) 2002-10-25 2002-10-25 Refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002310452A JP2004144399A (en) 2002-10-25 2002-10-25 Refrigeration cycle device

Publications (1)

Publication Number Publication Date
JP2004144399A true JP2004144399A (en) 2004-05-20

Family

ID=32455937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002310452A Withdrawn JP2004144399A (en) 2002-10-25 2002-10-25 Refrigeration cycle device

Country Status (1)

Country Link
JP (1) JP2004144399A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005103584A1 (en) * 2004-04-27 2005-11-03 Matsushita Electric Industrial Co., Ltd. Heat pump device
EP1669697A1 (en) * 2004-12-09 2006-06-14 Delphi Technologies, Inc. Thermoelectrically enhanced CO2 cycle
WO2006112157A1 (en) * 2005-04-14 2006-10-26 Matsushita Electric Industrial Co., Ltd. Refrigeration cycle device and method of operating the same
JP2007183078A (en) * 2006-01-10 2007-07-19 Ebara Corp Refrigerating machine and refrigerating device
EP1946024A1 (en) * 2005-11-09 2008-07-23 Emerson Climate Technologies, Inc. Refrigeration system including thermoelectric module
EP2085720A2 (en) 2008-01-25 2009-08-05 Hitachi Ltd. Cryogenic container with built-in refrigerator
JP2009210249A (en) * 2008-02-06 2009-09-17 Daikin Ind Ltd Fluid machine
EP2163838A1 (en) * 2007-05-25 2010-03-17 Mitsubishi Electric Corporation Refrigeration cycle device
JP2012503757A (en) * 2008-09-25 2012-02-09 ビーイー・エアロスペース・インコーポレーテッド Cooling system and method for coupling a cooling system to a liquid cooling system of a vehicle
CN105698271A (en) * 2016-04-01 2016-06-22 浙江嘉熙科技有限公司 Temperature difference electric heat pump type air conditioner
JP2017005141A (en) * 2015-06-11 2017-01-05 ファナック株式会社 Laser oscillation part, air cooler, and laser equipment for cooling dehumidifier by common cooling water
CN107940563A (en) * 2017-11-14 2018-04-20 海信(山东)空调有限公司 A kind of indoor apparatus of air conditioner and air-conditioning
WO2023279873A1 (en) * 2021-07-09 2023-01-12 青岛海尔空调器有限总公司 Method and apparatus for air conditioner control, and air conditioner

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7669430B2 (en) 2004-04-27 2010-03-02 Matsushita Electric Industrial Co., Ltd. Heat pump apparatus
WO2005103584A1 (en) * 2004-04-27 2005-11-03 Matsushita Electric Industrial Co., Ltd. Heat pump device
EP1669697A1 (en) * 2004-12-09 2006-06-14 Delphi Technologies, Inc. Thermoelectrically enhanced CO2 cycle
WO2006112157A1 (en) * 2005-04-14 2006-10-26 Matsushita Electric Industrial Co., Ltd. Refrigeration cycle device and method of operating the same
EP1946024A1 (en) * 2005-11-09 2008-07-23 Emerson Climate Technologies, Inc. Refrigeration system including thermoelectric module
EP1946024A4 (en) * 2005-11-09 2012-07-11 Emerson Climate Technologies Refrigeration system including thermoelectric module
JP2007183078A (en) * 2006-01-10 2007-07-19 Ebara Corp Refrigerating machine and refrigerating device
EP2163838A1 (en) * 2007-05-25 2010-03-17 Mitsubishi Electric Corporation Refrigeration cycle device
EP2163838A4 (en) * 2007-05-25 2013-11-06 Mitsubishi Electric Corp Refrigeration cycle device
US9086230B2 (en) 2007-05-25 2015-07-21 Mitsubishi Electric Corporation Refrigeration cycle device
EP2085720A2 (en) 2008-01-25 2009-08-05 Hitachi Ltd. Cryogenic container with built-in refrigerator
JP2009210249A (en) * 2008-02-06 2009-09-17 Daikin Ind Ltd Fluid machine
JP2012503757A (en) * 2008-09-25 2012-02-09 ビーイー・エアロスペース・インコーポレーテッド Cooling system and method for coupling a cooling system to a liquid cooling system of a vehicle
JP2017005141A (en) * 2015-06-11 2017-01-05 ファナック株式会社 Laser oscillation part, air cooler, and laser equipment for cooling dehumidifier by common cooling water
CN105698271A (en) * 2016-04-01 2016-06-22 浙江嘉熙科技有限公司 Temperature difference electric heat pump type air conditioner
CN105698271B (en) * 2016-04-01 2019-07-16 浙江嘉熙科技有限公司 Thermoelectric heat pump type air conditioner
CN107940563A (en) * 2017-11-14 2018-04-20 海信(山东)空调有限公司 A kind of indoor apparatus of air conditioner and air-conditioning
WO2023279873A1 (en) * 2021-07-09 2023-01-12 青岛海尔空调器有限总公司 Method and apparatus for air conditioner control, and air conditioner

Similar Documents

Publication Publication Date Title
JP3897681B2 (en) Method for determining high-pressure refrigerant pressure of refrigeration cycle apparatus
JP3863480B2 (en) Refrigeration cycle equipment
CN102753914B (en) Air conditioner and air-conditioning hot-water-supplying system
JP2010216783A (en) Air conditioning system
JP2006170537A (en) Heat exchange system
JP2004144399A (en) Refrigeration cycle device
JP4298990B2 (en) Refrigeration equipment using carbon dioxide as refrigerant
JP2006292313A (en) Geothermal unit
JP2008275214A (en) Compression type heat pump device
JP2010025503A (en) Heat pump air conditioning system
JP2010107181A (en) Refrigeration system
KR100622604B1 (en) Gas engine heat pump with an enhanced accumulator
JP2003185290A (en) Hot-water supply and air conditioning device
JP3933076B2 (en) Air conditioner
JP2001108317A (en) Heat pump cooling and heating type air conditioner carbon dioxide refrigerant
JP3863555B2 (en) Refrigeration cycle equipment
KR101170712B1 (en) Using a gas engine heat pump geothermal heating and cooling systems
JP2004189069A (en) Refrigeration cycle device
CN210980087U (en) Cold plate radiation type multifunctional air conditioning device
JP2004251557A (en) Refrigeration device using carbon dioxide as refrigerant
JP2005030708A (en) Cooling structure for semiconductor for controlling geothermal heat pump
KR100613502B1 (en) Heat pump type air conditioner
JP2000257982A (en) Low-temperature gas generator and cold-blast machining device using the same
CN220524386U (en) Double-cooling combined heat pump unit
JP2004239453A (en) Heat pump cycle using supercritical cooling medium

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060110