JP2006010053A - Separation hub type clutch damper mechanism - Google Patents

Separation hub type clutch damper mechanism Download PDF

Info

Publication number
JP2006010053A
JP2006010053A JP2004209224A JP2004209224A JP2006010053A JP 2006010053 A JP2006010053 A JP 2006010053A JP 2004209224 A JP2004209224 A JP 2004209224A JP 2004209224 A JP2004209224 A JP 2004209224A JP 2006010053 A JP2006010053 A JP 2006010053A
Authority
JP
Japan
Prior art keywords
torque
plate
friction
hub
friction plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004209224A
Other languages
Japanese (ja)
Inventor
Mamoru Shibata
守 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HATA GIKEN KK
Original Assignee
HATA GIKEN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HATA GIKEN KK filed Critical HATA GIKEN KK
Priority to JP2004209224A priority Critical patent/JP2006010053A/en
Publication of JP2006010053A publication Critical patent/JP2006010053A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Mechanical Operated Clutches (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a clutch damper mechanism using a separation type hub wherein a mechanism to hold a boss outer diameter of an output shaft hub by a plain bearing is adopted so that hysteresis torque of a first step which absorbs vibration by a small spring stabilizes while being used in a long period of time. <P>SOLUTION: In the clutch damper mechanism, a friction plate 8 provides a torque part 81 of which friction coefficient is μ<SB>1</SB>at a position r<SB>1</SB>apart from a center axis and stable hysteresis torque of the first step is generated. Excessive torque generated by radial pressing load caused by disturbance of the output shaft hub can suppress its influence by a low friction coefficient μ<SB>0</SB>(μ<SB>0</SB>≪μ<SB>1</SB>) of a bearing part 82 sufficiently. A middle material plate 5 is energized by a friction plate 9 provided with a torque part 91 of which friction coefficient is μ<SB>2</SB>and thus generate hysteresis torque of a second step can be generated stably. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は自動車のクラッチのダンパ−機構、特に2段階の捩り特性を持つダンパ−機構に関する。  The present invention relates to a damper mechanism for an automobile clutch, and more particularly to a damper mechanism having a two-stage torsional characteristic.

背景の技術Background technology

自動車のクラッチに用いられるクラッチディスク組立体はエンジン側の回転力を入力可能な入力部材と出力軸側に回転力を出力とするための出力部材で構成される。入力部材としては、入力プレ−ト,リテイニングプレ−ト,クッショニングプレ−ト及びフリクションフェ−ジング等から成り、出力部材としては、外周にフランジを一体に有する出力軸ハブがあり、そのフランジ部を入力プレ−ト及びリテイニングプレ−トでコイルスプリングを介して弾性的に相対回転自在に組み付けている。さらに、このフランジの外側部分を中間部材としてのプレ−トとして切り離して存在させた分離ハブ型クラッチディスク組立体も提供されている。  A clutch disk assembly used for a clutch of an automobile includes an input member that can input torque on the engine side and an output member that outputs torque on the output shaft side. The input member consists of an input plate, retaining plate, cushioning plate, friction fading, etc., and the output member has an output shaft hub having a flange integrally on its outer periphery, and its flange portion Are assembled with an input plate and a retaining plate through a coil spring so as to be relatively rotatable relative to each other. Further, a separation hub type clutch disk assembly is also provided in which the outer portion of the flange is separated as a plate as an intermediate member.

この分離ハブ型クラッチディスク組立体のダンパ−機構部はその入力側部材として、主に入力プレ−ト及びリテイニングプレ−トそして出力側部材として円筒状ボスとそれに一体に外周に形成されたフランジを持つ出力軸ハブとそのフランジの外側に分離された中間材プレ−トから構成されている。例えば図3は、その様な分離出力部材の平面図である。入力プレ−ト及びリテイニングプレ−トに挟まれて、中間材プレ−トはその窓部に大コイルスプリング(図示されていない)を介し相対回転自在に取付けられる。さらに中間材プレ−トと出力軸ハブは小コイルスプリングにより円周方向に連結されている。つまり、出力及び入力側の相対回転において、捩り角が小さい時は、出力軸ハブが回転し、出力側の中間材プレ−トと入力側部材は一体化されている。そして、大きな捩り角では、出力軸ハブと中間材プレ−トが一体化して、入力部材に対して回転する事になる。結果として低剛性と高剛性の2段階の捩り特性を広い捩り角度において出力部材は入力側に対して持つ事が出来る。  The damper mechanism portion of the separated hub type clutch disk assembly is mainly composed of an input plate and a retaining plate as an input side member, and a cylindrical boss as an output side member and a flange formed integrally therewith on the outer periphery. And an intermediate plate separated on the outside of the flange. For example, FIG. 3 is a plan view of such a separate output member. The intermediate plate is sandwiched between the input plate and the retaining plate, and is attached to the window portion through a large coil spring (not shown) so as to be relatively rotatable. Further, the intermediate material plate and the output shaft hub are connected in the circumferential direction by a small coil spring. That is, when the torsional angle is small in the relative rotation between the output side and the input side, the output shaft hub rotates, and the output side intermediate material plate and the input side member are integrated. When the torsion angle is large, the output shaft hub and the intermediate material plate are integrated and rotated with respect to the input member. As a result, the output member can have two-stage torsional characteristics of low rigidity and high rigidity with respect to the input side at a wide twist angle.

これらの入力部材と出力部材の間には、摩擦板がコ−ンスプリングを介して装着され、クラッチの断続時にコイルスプリングの伸縮運動に伴なう捩り振動を減衰するヒステリシストルク発生機構として組込まれている。この場合、ヒステリシストルクのレベルも2段階の発生が出来る様に設計する事が好ましく、1段目の低トルクレベルは、小スプリングの捩り振動をそして2段目の高トルク発生が大スプリングの捩り振動に対応してそれぞれの振動を減衰できる様に2段階の反応を持つダンパ−機構が働く事が望ましい。  A friction plate is mounted between these input member and output member via a cone spring, and is incorporated as a hysteresis torque generating mechanism that attenuates torsional vibrations accompanying the expansion and contraction of the coil spring when the clutch is engaged. ing. In this case, it is preferable to design the hysteresis torque level so that it can be generated in two stages. The low torque level in the first stage is torsional vibration of a small spring, and the generation of high torque in the second stage is torsion of a large spring. It is desirable that a damper mechanism having a two-step reaction works so that each vibration can be attenuated in response to the vibration.

上記分離ハブ型クラッチディスク組立体のダンパ−機構では、分離ハブのフランジ面を両側から摩擦する摩擦板A及びBとそれらを付勢する小コ−ンスプリングさらに、中間材のプレ−ト面を両側から摩擦する摩擦板C及びDとそれらを付勢する大コ−ンスプリングが配置されている。所定のヒステリシストルク反応を得るためには当然前記摩擦板AとBは安定した摩擦係数を持つ同一樹脂材料である事、及びCとDも同一なさらに別の樹脂材料でかつ前記AとBより高い摩擦係数を持つ事が好ましい。  In the damper mechanism of the separation hub type clutch disk assembly, the friction plates A and B that rub against the flange surface of the separation hub from both sides, the small cone spring that urges them, and the plate surface of the intermediate material Friction plates C and D that rub from both sides and large cone springs that urge them are arranged. Of course, in order to obtain a predetermined hysteresis torque response, the friction plates A and B are made of the same resin material having a stable friction coefficient, and C and D are also the same another resin material and It is preferable to have a high coefficient of friction.

従来の分離ハブ型クラッチディスク組立体において前述の様に、摩擦板のトルク発生部に2種類の合成樹脂材料を適用してダンパ−機構を構成した時、長期使用中に1段目のヒステリシストルクが上昇しすぎてダンパ−機構部の性能を損なう事例があった。この不具合の対策として(1)材料設計のうえで耐摩耗性を意図的に下げて、摩擦板の摩耗速度を上げ、結果としてコ−ンスプリングの付勢圧Pが時間経過とともに下がる様にする事、又(2)摩耗とともに摩擦板のトルク半径が小さくなる様な形状を取る事、さらに(3)トルク発生部の摩擦板表面にコ−ティング等の表面処理をして初期摩擦係数を高めておく事等が行なわれている。しかし、これらの対策は摩耗粉の大量発生の問題、又摩擦板の断面形状の普遍性ある設計が困難である事さらに表面処理層の摩耗予測が困難である事を考慮すると安定したダンパ−機構の提供にはなっていなかった。  As described above, in the conventional separation hub type clutch disk assembly, when the damper mechanism is configured by applying two kinds of synthetic resin materials to the torque generating part of the friction plate, the first stage hysteresis torque is used during long-term use. In some cases, the temperature of the damper increases so much that the performance of the damper mechanism is impaired. As countermeasures against this problem, (1) The wear resistance is intentionally lowered after the material design, and the wear speed of the friction plate is increased. As a result, the urging pressure P of the cone spring decreases with time. (2) Take a shape that reduces the torque radius of the friction plate with wear. (3) Increase the initial friction coefficient by surface treatment such as coating on the friction plate surface of the torque generator. Things to keep are done. However, these countermeasures are stable damper mechanisms considering the problem of large amount of wear powder generation, the universal design of the cross-sectional shape of the friction plate, and the difficulty of predicting the wear of the surface treatment layer. Was not provided.

前記の1段目ヒステリシストルクが上昇しすぎるトラブルの原因の1つは、トルクを発生させる摩擦板Aの摩擦係数が使用途中で初期値に較べて上昇しすぎるためと考えられる。複雑な形状を取る摩擦板全体を1色の樹脂材料で成形する時、出力部材と摩擦する摺動面の平面度が悪く、使用初期は受圧面積(S)が小さく、面圧p(=P/S)が高い状態となる場合がある。樹脂材料では一般に摩擦係数μは面圧pに依存する事が多く、pが高いとμが低い傾向にある。つまり使用経過とともに摺動面の当りが改善されて、Sの増加からpが減少してμの上昇につながると考えられる。  One of the causes of the trouble that the first-stage hysteresis torque is excessively increased is considered that the friction coefficient of the friction plate A that generates torque is excessively increased compared to the initial value during use. When the entire friction plate having a complicated shape is molded with a resin material of one color, the flatness of the sliding surface that is in friction with the output member is poor, the pressure receiving area (S) is small at the initial stage of use, and the surface pressure p (= P / S) may be high. In resin materials, the friction coefficient μ generally depends on the surface pressure p, and when p is high, μ tends to be low. In other words, it is considered that the sliding surface contact improves with the progress of use, and p decreases from the increase in S, leading to an increase in μ.

又別のμの上昇理由として、摩擦板の材質に相手材としての出力部材への攻撃性も考慮する必要がある。このケ−スでは、使用中に相手材の表面粗さが変化してその結果μの上昇に至る事も考えられる。  As another reason for the increase of μ, it is necessary to consider the aggressiveness of the friction plate material against the output member as the counterpart material. In this case, it is conceivable that the surface roughness of the mating material changes during use, resulting in an increase in μ.

これらの摩擦係数の長期使用中の不具合は摩擦板の形状を適切に設計する事及び摩擦板の材料構成を適切に考慮する事により十分に満足行く程度に改善できる。例えば摩擦板として、フレ−ム部材と摺動部材に分けて構成する複合摩擦板の採用は有効な手段と考えられる。つまり、ヒステリシストルクを発生するトルク部材と発生トルクを入力部材に伝達するフレ−ム部材を別々の合成樹脂で成形し、トルク部材として、相手材に対する攻撃性がなく平面度の良い形状を成形できると言う特徴があり、長期使用中も安定したμが得られる事が期待できる。その時トルク部材としては、所定の摩擦係数及び耐摩耗性、さらに相手材を攻撃しないと言った摩擦特性を中心に材料設計を行なうのは当然である。  Problems caused by these friction coefficients during long-term use can be improved to a satisfactory level by appropriately designing the shape of the friction plate and properly considering the material configuration of the friction plate. For example, the use of a composite friction plate that is divided into a frame member and a sliding member as the friction plate is considered an effective means. In other words, the torque member that generates hysteresis torque and the frame member that transmits the generated torque to the input member are molded from different synthetic resins, and the torque member can be molded with a high degree of flatness without being aggressive against the mating material. It can be expected that a stable μ can be obtained even during long-term use. At that time, as a torque member, it is natural to design a material centering on a predetermined friction coefficient, wear resistance, and friction characteristics such as not to attack the counterpart material.

但し分離ハブ型クラッチディスク組立体には、出力部材を中間材プレ−トと出力軸ハブに分割したためにさらに別の問題点が存在している。フランジ板(プレ−ト)が出力軸ハブと一体となっている従来の一体型ハブの時は、入力部材と出力部材のフランジを連結している複数ケの高剛性のコイルスプリングは、出力部材のクラッチ中心軸に対しての位置決め機能もはたしていた。ところが、分離型ハブでは、図3に示した様に、中間材プレ−トとハブを連結するコイルスプリングは小型であり、そのバネ剛性は低い。その結果、出力軸ハブは、各種の外乱要因により、クラッチ中心軸に対してその位置を容易にずらす状態に至る。例えば、クラッチの断続時に発生するモ−メントのアンバランスは、分離ハブが出力中心軸に対して片寄る力を発生させ、ハブの円筒状ボスが摩擦板内径に接触する事等によりモ−メント・バランスを取る事になる。従来の分離型ハブのクラッチディスク組立体では、摩擦板A又はBの内径部にハブの円筒状ボスの保持をまかせていた。ヒステリシストルクを発生させる摩擦材料では、この軸受機能が十分でなく長期使用中のヒステリシストルクの上昇の原因の1つとなっていた。本発明の目的は、この問題を滑り軸受を使用する事で解決し、ヒステリシストルクの発生が安定した分離ハブタイプのクラッチダンパ−機構を提供する事である。  However, the separated hub type clutch disk assembly has another problem because the output member is divided into the intermediate material plate and the output shaft hub. In the case of the conventional integrated hub in which the flange plate (plate) is integrated with the output shaft hub, the plurality of high-rigidity coil springs connecting the input member and the flange of the output member are connected to the output member. The positioning function with respect to the clutch central axis was also achieved. However, in the separation type hub, as shown in FIG. 3, the coil spring that connects the intermediate plate and the hub is small, and its spring rigidity is low. As a result, the output shaft hub easily shifts its position with respect to the clutch center shaft due to various disturbance factors. For example, the moment unbalance that occurs when the clutch is engaged or disengaged is caused by the separation hub generating a biasing force with respect to the output center shaft and the hub's cylindrical boss contacting the friction plate inner diameter. You will be balanced. In a conventional clutch disk assembly of a separate hub, the hub's cylindrical boss is held on the inner diameter portion of the friction plate A or B. In a friction material that generates hysteresis torque, this bearing function is not sufficient, which has been one of the causes of an increase in hysteresis torque during long-term use. An object of the present invention is to solve this problem by using a sliding bearing and to provide a separated hub type clutch damper mechanism in which the generation of hysteresis torque is stable.

ここで従来の様に摩擦板Aの内径部が出力軸ハブの円筒状ボスを保持する設計の場合のクラッチダンパ−機構でのトルク発生状況について説明する。分離型ハブを用いたクラッチダンパ−機構の1段目のヒステリシストルクTは前記ハブのトルク発生面の両方を押圧する摩擦板AとBの材質が同一の場合、次式で書ける。Here, the torque generation state in the clutch damper mechanism in the case where the inner diameter portion of the friction plate A is designed to hold the cylindrical boss of the output shaft hub as in the prior art will be described. Clutch damper using the separation hub - when the material of the hysteresis torque T 1 of the first stage of the mechanism friction plates A and B to press both of the torque generating surface of the hub are the same, written by the following equation.

数1Number 1

=2×2×μ×P×r T 1 = 2 × 2 × μ 1 × P 1 × r 1

ここにμは摩擦板Aのトルク部の摩擦係数、Pはこれらを出力部材に対して付勢するコ−ンスプリングの押し付け荷重、そしてrは摩擦板Aのトルク部の平均トルク半径である。係数2が2度Here, μ 1 is the friction coefficient of the torque portion of the friction plate A, P 1 is the pressing load of the cone spring that urges these against the output member, and r 1 is the average torque radius of the torque portion of the friction plate A. It is. Factor 2 is 2 degrees

数1Number 1

式にあるのは、ヒステリシストルクは正逆回転の和である事と出力軸ハブのフランジ面の両側で等しいトルクが発生しているとしたためである。The reason is that the hysteresis torque is the sum of forward and reverse rotations, and that equal torque is generated on both sides of the flange surface of the output shaft hub.

これらの摩擦板の片方の内径部とハブの円筒状ボス表面が外乱によって摩擦する場合に、前述の設計のT以外に余分のトルクΔTが発生し、その値は次式で表される。When the inner diameter portion of one of these friction plates and the cylindrical boss surface of the hub rub against each other due to disturbance, an extra torque ΔT is generated in addition to T 1 of the above-described design, and the value is expressed by the following equation.

数2Number 2

ΔT=2×μ×F×r ΔT = 2 × μ 0 × F × r 0

ここにμは出力軸ハブの円筒状ボスを保持する部分の摩擦係数、Fは外乱要因により発生する出力軸ハブのラジアル方向に働く押し付け力、又rは摩擦板内径部の半径である。Here, μ 0 is the friction coefficient of the portion of the output shaft hub that holds the cylindrical boss, F is the pressing force acting in the radial direction of the output shaft hub caused by disturbance factors, and r 0 is the radius of the friction plate inner diameter portion. .

数2Number 2

式の係数2は正逆回転時の和を考慮しているからである。This is because the coefficient 2 in the equation considers the sum during forward and reverse rotation.

従来の様に1段目のヒステリシストルクを発生させる摩擦板が1色で成形され、トルク部も内径部も同一材料であるケ−スでは、μ=μである。又rとして例えばrの80%の形状を想定し、Tの使用中の上昇率の許容上限を50%と仮定すれば、1段目のヒステリシストルクの発生時にハブの円筒状ボスの外径部が摩擦板Aの内径と接触している場合に、Fがコ−ンスプリングの押し圧Pの125%のレベルに達するとΔTの大きさがTの50%になる。つまり、Pを代表例として32kgfを想定すれば、F=40kgfの外乱によるラジアル押し付け力で、1段目のヒステリシストルクの許容上限値に到達してしまう。In the case where the friction plate for generating the first stage hysteresis torque is molded in one color as in the prior art and the torque part and the inner diameter part are made of the same material, μ 0 = μ 1 . Also, assuming that the shape of 80% of r 1 is assumed as r 0 and that the allowable upper limit of the rate of increase during use of T 1 is 50%, the cylindrical boss of the hub is generated when the first stage hysteresis torque is generated. When the outer diameter portion is in contact with the inner diameter of the friction plate A, the magnitude of ΔT becomes 50% of T 1 when F reaches a level of 125% of the cone spring pressing pressure P 1 . In other words, assuming 32 kgf with P 1 as a representative example, the allowable upper limit value of the first stage hysteresis torque is reached by the radial pressing force due to the disturbance of F = 40 kgf.

一方本発明では、請求項1で記述されてる様に、出力軸ハブの円筒状ボスは、滑り軸受によって保持されている。そしてその軸受部の摩擦係数μは、ヒステリシストルクを発生させるトルク部摩擦係数μより低い事を特徴としている。ここで軸受部の摩擦係数としてμが1段目のヒステリシストルクの発生部のμの40%とすれば(これは、1段目ヒステリシストルク発生用の典型的な例としてμ=0.30,及び一般的に良好な滑り軸受け材料のμ=0.12に相当するケ−スである),Tの50%上昇限に達するのは、前述の様にPとして32kgfの時、Fは100kgfとなり前述のF=40kgfに比較して、外乱による余分なトルク値の発生に対して2倍以上許容範囲が向上した優れたダンパ−機構を作る事ができる。On the other hand, in the present invention, as described in claim 1, the cylindrical boss of the output shaft hub is held by a sliding bearing. Further, the friction coefficient μ 0 of the bearing part is characterized by being lower than the torque part friction coefficient μ 1 for generating the hysteresis torque. Here, if μ 0 is 40% of μ 1 of the first-stage hysteresis torque generating portion as the friction coefficient of the bearing portion (this is μ 1 = 0 as a typical example for generating the first-stage hysteresis torque). .30, and generally Ke corresponding to mu 0 = 0.12 good sliding bearing materials - a scan), reach 50% increase limit of T 1 is the 32kgf as P 1 as described above At that time, F becomes 100 kgf, and it is possible to make an excellent damper mechanism in which the allowable range is improved more than twice with respect to the generation of an extra torque value due to the disturbance as compared with F = 40 kgf described above.

出力軸ハブの円筒状ボス部を支持する軸受が片側にある場合に外乱による余分なトルクΔTは前述の  When the bearing supporting the cylindrical boss portion of the output shaft hub is on one side, the extra torque ΔT due to the disturbance is

数2Number 2

式で表現できるのであるが、前記円筒状ボスの両側で保持する機構では、ハブに働らく押し付け力Fは、F=F+Fと書ける。ここにF及びFはそれぞれの軸受に働らく外乱要因の押し付け力の反力である。つまりAs can be expressed by the equation, in the mechanism that is held on both sides of the cylindrical boss, the pressing force F acting on the hub can be written as F = F 1 + F 2 . Here, F 1 and F 2 are reaction forces of the pressing force of disturbance factors acting on the respective bearings. That is

数2Number 2

式は、両持ちの軸受の場合にも、発生する余分なトルクの両側の軸受部の合計値として表現できる。The equation can be expressed as the total value of the bearing portions on both sides of the extra torque generated even in the case of a double-end bearing.

次に本発明の滑り軸受部をクラッチダンパ−機構部のどこへ配置するかについて説明する。まず請求項2にある様に滑り軸受を入力部材に直接係止する場合がある。つまり、主なる入力部材として滑り軸受付入力プレ−ト及び(又は)滑り軸受付リテイニングプレ−トがその部品構成となる。また別な配置構成としては請求項3にある様に、出力軸ハブと当接する摩擦板の内周に滑り軸受を係止する方法である。この場合、前述の複合摩擦板方式を採用すると好都合となる。つまり摩擦板の構造体となるフレ−ム部とヒステリシストルクを発生するトルク部さらに出力軸ハブのボス外径を保持する軸受部の3つの部分からなる複合摩擦板である。その際、それぞれの部材に最適な材料を選択する事で摩擦板に要求される機能が十分にはたされる。つまりフレ−ム部材には主に強度を中心に、そしてトルク部材及び軸受部材は摩擦係数と耐摩耗性及び相手材を攻撃しないと言った摩擦特性を中心に材料設計を行なう。  Next, where the sliding bearing portion of the present invention is arranged in the clutch damper mechanism portion will be described. First, the sliding bearing may be directly locked to the input member as described in claim 2. That is, as a main input member, an input plate with a sliding bearing and / or a retaining plate with a sliding bearing is the component configuration. As another arrangement, the sliding bearing is locked to the inner periphery of the friction plate in contact with the output shaft hub. In this case, it is convenient to employ the above-described composite friction plate method. In other words, it is a composite friction plate comprising three parts: a frame portion that forms the structure of the friction plate, a torque portion that generates hysteresis torque, and a bearing portion that holds the boss outer diameter of the output shaft hub. In that case, the function requested | required of a friction plate is fully fulfilled by selecting the optimal material for each member. That is, the material design is performed mainly on the strength of the frame member, and on the frictional properties such that the torque member and the bearing member do not attack the friction coefficient, wear resistance, and counterpart material.

発明の効果The invention's effect

以上説明した様に分離型ハブを用いるクラッチダンパ−機構において、本発明の趣旨に沿って滑り軸受が出力軸ハブのボス外径を保持する機構を採用すれば、小スプリングによる振動を吸収するべき1段目のヒステリシストルクが長期使用中においても安定化する事が期待できる。その結果分離型ハブを組込んだクラッチディスク組立体の性能が向上する。  As described above, in the clutch damper mechanism using the separation type hub, if the mechanism in which the sliding bearing holds the boss outer diameter of the output shaft hub is adopted in accordance with the spirit of the present invention, vibration by a small spring should be absorbed. It can be expected that the first stage hysteresis torque is stabilized even during long-term use. As a result, the performance of the clutch disk assembly incorporating the separable hub is improved.

以下に本発明の実施形態を、それぞれの実施例に基づき、図面を参照して詳細に説明する。  Embodiments of the present invention will be described below in detail with reference to the drawings based on the respective examples.

図1は本発明の一実施形態を取る滑り軸受付摩擦板を採用した分離型ハブのクラッチディスク組立体のダンパ−機構部を拡大した部分拡大図である。このクラッチ組立体1は、主な人力部材として入力プレ−ト2とリテイニングプレ−ト3があり、出力部材として出力軸ハブ4と中間材プレ−ト5から成る。この出力部材は図3に示される様にハブ4とプレ−ト5に分離されている。そしてハブ4とプレ−ト5とは小コイルスプリング6で円周方向に連結されている。一方中間材プレ−ト5は大コイルスプリング7をプレ−ト窓部(図3の5a)に介して入力部材の2と3により回転自在に組付けられている。つまり入力と出力部材の相対捩じり角度が小さな範囲では入力部材2と3及び中間材プレ−ト5は一体回転し、それらと出力軸ハブ4の間に小コイルスプリング6を圧縮しながら相対回転が生じる。相対捩じり角度が大きくなると、出力軸ハブ4と中間材プレ−ト5が一体回転し、それらと入力部材2と3の間で相対回転が生じる。  FIG. 1 is an enlarged partial enlarged view of a damper mechanism portion of a clutch hub assembly of a separation type hub that employs a friction plate with a sliding bearing according to an embodiment of the present invention. The clutch assembly 1 includes an input plate 2 and a retaining plate 3 as main human power members, and includes an output shaft hub 4 and an intermediate material plate 5 as output members. This output member is separated into a hub 4 and a plate 5 as shown in FIG. The hub 4 and the plate 5 are connected in the circumferential direction by a small coil spring 6. On the other hand, the intermediate material plate 5 is rotatably assembled by input members 2 and 3 through a large coil spring 7 through a plate window (5a in FIG. 3). In other words, the input members 2 and 3 and the intermediate material plate 5 rotate together in a range where the relative torsion angle between the input and output members is small, and the small coil spring 6 is compressed between the input members 2 and 3 and the output shaft hub 4 relative to each other. Rotation occurs. When the relative torsion angle increases, the output shaft hub 4 and the intermediate material plate 5 rotate integrally, and relative rotation occurs between them and the input members 2 and 3.

つまり図1の2つのコイルスプリング6と7の存在により、出力部材は入力部材に対してその相対回転時に2段階の捩り特性を持つ事が出来る。ハブのフランジ面4aは両側を2枚の摩擦板A(図1では摩擦板8)に挟まれ小コ−ンスプリング11が摩擦板8をフランジ面に押圧している。この摩擦板8は複合摩擦板であり、その平面図は図2に示される。出力部材と摩擦してトルクを発生するトルク部81と、そのトルク部を保持しつつ入力部材へトルク係合をする役目をするフレ−ム部83に分れている。材質選択に関して言えばトルク部81は摩擦特性を、そしてフレ−ム部83では強度特性を主眼として材料設計が行われる。このフレ−ム部83はその内周部に本発明の特徴である軸受部82を保持する。つまり1段目のヒステリシストルクは、出力軸ハブのフランジ面の両側をトルク部81が摩擦する事で発生し、外乱によるハブのラジアル方向への押し付け力は両側の軸受82によって支えられる。トルク部81の摩擦係数をμ、軸受82の摩擦係数をμとすれば、1段目のヒステリシストルクはThat is, due to the presence of the two coil springs 6 and 7 in FIG. 1, the output member can have a two-stage torsional characteristic when the output member rotates relative to the input member. The flange surface 4a of the hub is sandwiched between two friction plates A (the friction plate 8 in FIG. 1) on both sides, and a small cone spring 11 presses the friction plate 8 against the flange surface. The friction plate 8 is a composite friction plate, and a plan view thereof is shown in FIG. It is divided into a torque part 81 that generates torque by friction with the output member, and a frame part 83 that serves to engage the input member with torque while holding the torque part. With regard to material selection, material design is performed with the torque portion 81 as a main feature and the frame portion 83 as a strength property. This frame portion 83 holds a bearing portion 82 which is a feature of the present invention on its inner peripheral portion. That is, the first stage hysteresis torque is generated by the friction of the torque portions 81 on both sides of the flange surface of the output shaft hub, and the pressing force in the radial direction of the hub due to disturbance is supported by the bearings 82 on both sides. If the friction coefficient of the torque part 81 is μ 1 and the friction coefficient of the bearing 82 is μ 0 , the first stage hysteresis torque is

数1Number 1

式のTのレベルを保持しその時ハブのラジアル方向の押し付け力FによるHolding the level of expression of T 1 by the pressing force F in the radial direction of the time the hub

数2Number 2

式で表現される余分なトルク発生分はμ《μの条件により出来るだけ低くする事が可能となる。The extra torque generation expressed by the equation can be made as low as possible under the condition of μ 0 << μ 1 .

中間材プレ−ト5の両面は摩擦板C(図1では摩擦板9)の2枚によって挟まれ大コ−ンスプリング12によって付勢されている。この中間材プレ−ト5にセットされるコイルスプリング7はその剛性も高く、その振動を減衰させるため摩擦板9のトルク部91の摩擦係数は、前記摩擦板Aのトルク部81のそれより当然高い値を持つ材料設計が望まれる。図1の摩擦板Cも複合摩擦板の形態を採用しており、そのフレ−ム部材93は入力部材とのトルク係合部を持つが、出力部材と摩擦接触はしてない。又中間材プレ−ト5は、その窓部にコイルスプリング7を介して入力部材と連結されているため、中間材プレ−ト自体の位置決め機能はコイルスプリング7によってなされている。2段目のヒステリシストルクが作動する時、出力部材のハブと中間材プレ−トは一体となって回転する。この場合、出力軸ハブと摩擦板Aの接触による余分なトルク発生分は、2段目のヒステリシストルクの作動レベルが高いのでそれに及ぼす影響が少ない。補足として記述すれば、この2段目のヒステリシストルクTは、Both surfaces of the intermediate material plate 5 are sandwiched between two sheets of friction plates C (the friction plates 9 in FIG. 1) and are urged by a large cone spring 12. The coil spring 7 set on the intermediate plate 5 has high rigidity, and the friction coefficient of the torque portion 91 of the friction plate 9 is naturally higher than that of the torque portion 81 of the friction plate A in order to attenuate the vibration. A material design with a high value is desired. The friction plate C of FIG. 1 also employs a composite friction plate, and its frame member 93 has a torque engaging portion with the input member, but is not in frictional contact with the output member. Further, since the intermediate material plate 5 is connected to an input member via a coil spring 7 at the window portion, the positioning function of the intermediate material plate itself is provided by the coil spring 7. When the second stage hysteresis torque is activated, the hub of the output member and the intermediate material plate rotate together. In this case, the excess torque generated by the contact between the output shaft hub and the friction plate A has little effect on the operation level of the second stage hysteresis torque. As a supplement, this second stage hysteresis torque T 2 is

数3Number 3

式の様に表現できる。It can be expressed like an expression.

数3Number 3

=2×2×(μ×P×r+μ×P×rT 2 = 2 × 2 × (μ 1 × P 1 × r 1 + μ 2 × P 2 × r 2 )

ここにμは摩擦板Cのトルク部91が持つ摩擦係数、Pは大コ−ンスプリング12の付勢力、そしてrはトルク部91の平均トルク半径を表わす。Here, μ 2 is a friction coefficient of the torque portion 91 of the friction plate C, P 2 is an urging force of the large cone spring 12, and r 2 is an average torque radius of the torque portion 91.

以上説明した様に、図1の分離ハブを使ったクラッチダンパ−機構において、1段目のヒステリシストルクは、2枚の摩擦板Aによりハブのフランジを押圧して  As described above, in the clutch damper mechanism using the separation hub of FIG. 1, the first stage hysteresis torque is obtained by pressing the flange of the hub with the two friction plates A.

数1Number 1

式に表示されるTとして安定した値が得られる、又それぞれの摩擦板に付属する軸受部82により、ハブのボス外径が保持され、ハブにかかるラジアル荷重により発生する余分なトルクは、該軸受部の低い摩擦係数によって出来るだけ影響を押える事が可能となる。又図1の中間材プレ−トの両面に接する2枚の複合摩擦板CによりA stable value is obtained as T 1 displayed in the equation, and the hub boss outer diameter is held by the bearing portion 82 attached to each friction plate, and the excessive torque generated by the radial load applied to the hub is The influence can be suppressed as much as possible by the low friction coefficient of the bearing portion. Also, two composite friction plates C in contact with both sides of the intermediate plate shown in FIG.

数3Number 3

式で表されるTとして安定した2段目のヒステリシストルク値レベルを提供できる。本発明で使用される分離型ハブのクラッチディスク組立体における摩擦板で出力部材に接する摺動部材の摩擦係

Figure 2006010053
ある。A stable second level hysteresis torque value level can be provided as T 2 represented by the equation. Friction engagement of a sliding member in contact with an output member by a friction plate in a clutch disk assembly of a separation type hub used in the present invention
Figure 2006010053
is there.

前記実施例では4枚の摩擦板が、分割された2つの出力部材を挟んで、ヒステリシストルクを2段階に発生できる様に設計されている。そこに用いられている複合摩擦板のさらなる発展した利用を考えると、入力プレ−トと出力部材の間に入る摩擦板のフレ−ム部材を共通化すれば入力プレ−ト側として1枚の複合摩擦板Eが介装され、クラッチディスク組立体としては3枚の複合摩擦板で構成する事が出来るので組立が容易となる。その時、リテイニングプレ−ト側の2枚は図1で用いたのと同様に出力軸ハブに対して摩擦板A、そして中間材プレ−トに対しては摩擦板Cを対向させてそれぞれコ−ンスプリングで押圧する。図4は摩擦板E(図4では摩擦板100)の平面図である。本発明の趣旨にそってその内径部には滑り軸受部200が配置され、ハブと摺動する箇所にはピン形状のトルク部110、さらに中間材プレ−トと摺動する箇所にはピン形状のトルク部120が配置される。これら各摺動材110、120及び200は、フレ−ム部材130によって保持され、該フレ−ム部材がもつトルク係合部により入力プレ−トへトルク伝達される。図1の場合と同様に軸受部材200の摩擦係数はμ、トルク部材110はμそしてトルク部材120はμとする事は当然である。つまり複合摩擦板Eを出力部材の片側に配置した時、出力軸ハブのフランジ面の両面は、μの摩擦係数を持つトルク部材で挟まれ、中間材プレ−トの両面はμの摩擦係数を持つトルク部材で挟まれて、2段階のヒステリシストルクを安定して発生させる事が出来る。その際、出力軸ハブのラジアル押し付け荷重による余分なトルク発生分は、μ《μの条件により影響を出来るだけ押え込む事が可能となる。In the above-described embodiment, the four friction plates are designed so that hysteresis torque can be generated in two stages with the two divided output members interposed therebetween. Considering the further development of the composite friction plate used there, if the frame member of the friction plate that is inserted between the input plate and the output member is made common, one sheet as the input plate side is provided. The composite friction plate E is interposed, and the clutch disk assembly can be composed of three composite friction plates, so that assembly is facilitated. At that time, the two plates on the retaining plate side are respectively coated with the friction plate A facing the output shaft hub and the friction plate C facing the intermediate plate as in the case of FIG. -Press with a spring. 4 is a plan view of the friction plate E (the friction plate 100 in FIG. 4). In accordance with the gist of the present invention, a sliding bearing portion 200 is arranged on the inner diameter portion thereof, a pin-shaped torque portion 110 is slid with the hub, and a pin shape is slid with the intermediate plate. Torque part 120 is arranged. These sliding members 110, 120, and 200 are held by a frame member 130, and torque is transmitted to the input plate by a torque engaging portion of the frame member. As in the case of FIG. 1, the friction coefficient of the bearing member 200 is μ 0 , the torque member 110 is μ 1, and the torque member 120 is naturally μ 2 . That is, when placing the composite friction plate E on one side of the output member, both surfaces of the flange surface of the output shaft hub is sandwiched between the torque member having a friction coefficient mu 1, intermediate material pre - DOO both sides mu 2 friction Two stages of hysteresis torque can be stably generated by being sandwiched between torque members having coefficients. At that time, the extra torque generated by the radial pressing load of the output shaft hub can be suppressed as much as possible under the condition of μ 0 << μ 1 .

図5は、本発明のさらに別な実施形態を取るクラッチダンパ−機構の部分拡大図である。この場合、本発明の主眼となる分離ハブのボス外径を保持する滑り軸受は、入力部材に係止配置するとした請求項2に沿った実施例である。このクラッチ組立体500の入力部材である入力プレ−ト502とリテイニングプレ−ト503には滑り軸受501がそれぞれの内周部に係止配置されている。入力プレ−ト及びリテイニングプレ−トの内周孔の形状としては、例えば均一な円弧ではなく、一部がくびれたトルク係合が可能な形状でありそれに軸受部501の外周形状を合せて、圧入結合にしてある。軸受部の内径は2×rであり、その材質の摩擦係数はμである。FIG. 5 is a partially enlarged view of a clutch damper mechanism according to still another embodiment of the present invention. In this case, the sliding bearing which holds the outer diameter of the boss of the separation hub, which is the main object of the present invention, is an embodiment according to claim 2 in which the sliding bearing is arranged to be engaged with the input member. The input plate 502 and the retaining plate 503, which are input members of the clutch assembly 500, are provided with sliding bearings 501 engaged with the inner peripheral portions thereof. The shape of the inner peripheral hole of the input plate and the retaining plate is not a uniform arc, for example, and is a shape that can be partly constricted with torque, and the outer peripheral shape of the bearing portion 501 is matched with this. , Press-fit. The inner diameter of the bearing portion is 2 × r 0 , and the friction coefficient of the material is μ 0 .

ヒステリシストルクを発生する摩擦板を説明すると、複合摩擦板方式で図4の摩擦板Eで説明したのと同様にクラッチ組立体500は3枚の複合摩擦板で構成されている。入力プレ−ト502と出力部材の間に複合摩擦板F(図5では摩擦板530)が配置され、リテイニングプレ−ト側には、複合摩擦板G(図5では摩擦板540)と複合摩擦板H(図5では摩擦板550)がそれぞれ出力部材として出力軸ハブ504のフランジ面と、中間材プレ−ト505にそれぞれ対向して配置されている。図6は複合摩擦板Fの平面図であり、図7と8はそれぞれ複合摩擦板GとHの平面図である。図6の複合摩擦板Fには回転中心からrの距離に出力軸ハブのフランジ面と摩擦するトルク部531が配置され、中心からrの距離には中間材プレ−トと摩擦するトルク部532が配置され、それらを共通のフレ−ム部材533で保持している。フレ−ム部材533はその一部に入力プレ−ト502の孔とトルク係合する爪部533aを持っている。一方図7に示される複合摩擦板Gは回転中心からrの距離にトルク部541をもち、フレ−ム部543はその外周に複合摩擦板Hの内周部の凹と係合する凸部543bを有している。前記のトルク部531と541は、供に同一の樹脂材料から成りその摩擦係数はμである。本発明の趣旨に沿って当然μ《μとなる材料選択が行なわれる。又図8に示される複合摩擦板Hは、回転中心からrの距離にトルク部551が配置され、フレ−ム部553によって保持されている。フレ−ム部553はその内周に摩擦板Gの外周凸とトルク係合できる凹部553bを有している。さらにフレ−ム部553の一部にはリテイニングプレ−ト502の孔とトルク係合する爪部553aが存在する。出力軸ハブ504のフランジ面はトルク部531と541で挟まれ小コ−ンスプリング511で付勢されている。一方中間材プレ−ト505の両面にはトルク部532と551が配置され、大コ−ンスプリング512で付勢されて

Figure 2006010053
The friction plate that generates the hysteresis torque will be described. The clutch assembly 500 is composed of three composite friction plates in the same manner as the friction plate E shown in FIG. A composite friction plate F (the friction plate 530 in FIG. 5) is disposed between the input plate 502 and the output member, and the composite friction plate G (the friction plate 540 in FIG. 5) and the composite plate are disposed on the retaining plate side. Friction plates H (friction plates 550 in FIG. 5) are disposed as output members so as to face the flange surface of the output shaft hub 504 and the intermediate material plate 505, respectively. 6 is a plan view of the composite friction plate F, and FIGS. 7 and 8 are plan views of the composite friction plates G and H, respectively. In the composite friction plate F of FIG. 6, a torque portion 531 that rubs against the flange surface of the output shaft hub is disposed at a distance r 1 from the center of rotation, and a torque that rubs against the intermediate plate at a distance r 2 from the center. A portion 532 is disposed and held by a common frame member 533. The frame member 533 has a claw portion 533a that is torque-engaged with the hole of the input plate 502 at a part thereof. On the other hand, the composite friction plate G shown in FIG. 7 has a torque portion 541 at a distance r 1 from the center of rotation, and the frame portion 543 has a convex portion engaged with the concave portion of the inner peripheral portion of the composite friction plate H on its outer periphery. 543b. It said torque portions 531 and 541, the friction coefficient made of the same resin material test is mu 1. In accordance with the spirit of the present invention, material selection that naturally satisfies μ 0 << μ 1 is performed. In the composite friction plate H shown in FIG. 8, a torque portion 551 is disposed at a distance of r 2 from the center of rotation, and is held by a frame portion 553. The frame portion 553 has a concave portion 553b on its inner circumference that can be torque-engaged with the outer circumferential projection of the friction plate G. Further, a claw portion 553 a that is torque-engaged with the hole of the retaining plate 502 exists in a part of the frame portion 553. The flange surface of the output shaft hub 504 is sandwiched between torque portions 531 and 541 and is urged by a small cone spring 511. On the other hand, torque portions 532 and 551 are arranged on both surfaces of the intermediate plate 505 and are urged by a large cone spring 512.
Figure 2006010053

このクラッチダンパ−機構の作動も、基本的には図1の実施例と同様であり、出力部材と入力部材の相対捩り角度がせまい範囲では、ヒステリシストルクとして  The operation of this clutch damper mechanism is basically the same as that of the embodiment of FIG. 1, and as a hysteresis torque in the range where the relative torsion angle between the output member and the input member is narrow.

数1Number 1

式で示されるTが発生して、小コイルスプリング506の振動を吸収する。捩り角度が大きくなると、T 1 expressed by the equation is generated to absorb the vibration of the small coil spring 506. When the twist angle increases,

数3Number 3

式で示されるTが発生して、大コイルスプリング507の振動を吸収できる構造となっている。一方外乱要因により発生する余分なトルクΔTは出力軸ハブのラジアル押し付け力FとすればT 2 expressed by the equation is generated, and the structure can absorb the vibration of the large coil spring 507. On the other hand, if the excess torque ΔT generated by the disturbance factor is the radial pressing force F of the output shaft hub,

数2Number 2

式で表現できるトルクレベルとなり、μ《μの条件下で1段目のヒステリシストルクTに比較してその影響を出来るだけ下げる事が可能となる。The torque level can be expressed by the equation, and the influence can be reduced as much as possible as compared with the hysteresis torque T 1 in the first stage under the condition of μ 0 << μ 1 .

以上前記の本発明の実施例では、ハブの円筒状ボスを保持する滑り軸受部は両持ち構造であるが、片側だけに軸受部をセットした片持ち構造にも本発明の適用は可能である。  In the above-described embodiments of the present invention, the sliding bearing portion that holds the cylindrical boss of the hub has a double-sided structure. However, the present invention can also be applied to a cantilever structure in which the bearing portion is set only on one side. .

本発明の一実施形態による滑り軸受付摩擦板を分離型ハブとともに組込んだクラッチディスク組立体におけるダンパ−機構の部分拡大図  The elements on larger scale of the damper mechanism in the clutch disc assembly which incorporated the friction board with a slide bearing by one Embodiment of this invention with the separated type hub. 図1に使用される滑り軸受付摩擦板Aの平面図  Plan view of friction plate A with sliding bearing used in FIG. 分離ハブ型クラッチディスク組立体の出力部材の平面図  Plan view of output member of separation hub type clutch disk assembly 本発明の別な実施例に係る滑り軸受付複合摩擦板Eの平面図  The top view of the composite friction board E with a sliding bearing which concerns on another Example of this invention. 本発明のさらに別な実施例における滑り軸受付入力部材を用いたクラッチダンパ−機構の部分拡大図  The elements on larger scale of the clutch damper mechanism using the input member with a sliding bearing in another Example of this invention. 図5に使用される摩擦板Fの平面図  Plan view of the friction plate F used in FIG. 図5に使用される摩擦板Gの平面図  Plan view of friction plate G used in FIG. 図5に使用される摩擦板Hの平面図  Plan view of friction plate H used in FIG.

符号の説明Explanation of symbols

8 滑り軸受付摩擦板(摩擦板A)
81 トルク部
82 軸受部
83 フレ−ム部
9 中間材プレ−ト用摩擦板(摩擦板C)
91 トルク部
93 フレ−ム部
100 滑り軸受付共通タイプ摩擦板(摩擦板E)
110,120 トルク部
130 フレ−ム部
200 軸受部
501 軸受部
530 複合摩擦板F
531,532 トルク部
533 フレ−ム部
540 複合摩擦板G
541 トルク部
543 フレ−ム部
550 複合摩擦板H
551 トルク部
553 フレ−ム部
8 Friction plate with sliding bearing (friction plate A)
81 Torque part 82 Bearing part 83 Frame part 9 Friction plate for intermediate material plate (friction plate C)
91 Torque part 93 Frame part 100 Common type friction plate with sliding bearing (friction plate E)
110, 120 Torque part 130 Frame part 200 Bearing part 501 Bearing part 530 Composite friction plate F
531, 532 Torque part 533 Frame part 540 Composite friction plate G
541 Torque part 543 Frame part 550 Composite friction plate H
551 Torque part 553 Frame part

Claims (3)

出力側回転体に連結される出力軸ハブが中間材プレ−トから切り離されている分離ハブ型クラッチディスク組立体において、前記出力軸ハブの円筒状ボスの両側又は片側の外径を保持する役目を持つ滑り軸受部が組込まれ、前記軸受部の材質の摩擦係数は前記出力軸ハブと当接する摩擦板のヒステリシストルクを発生するトルク部の材質が持つ摩擦係数と比較するとより低い値を持つ事を特徴とする滑り軸受を備えたクラッチダンパ−機構。  In the separated hub type clutch disk assembly in which the output shaft hub connected to the output side rotating body is separated from the intermediate material plate, it serves to maintain the outer diameters on both sides or one side of the cylindrical boss of the output shaft hub. The friction coefficient of the material of the bearing part is lower than the friction coefficient of the material of the torque part that generates the hysteresis torque of the friction plate in contact with the output shaft hub. A clutch damper mechanism having a sliding bearing characterized by the above. 前記軸受部は、その一部がクラッチディスク組立体の入力部材に係止配置されている事を特徴とする請求項1に記載のクラッチダンパ−機構。  2. The clutch damper mechanism according to claim 1, wherein a part of the bearing portion is engaged with an input member of the clutch disk assembly. 前記軸受部は、前記出力軸ハブと当接する摩擦板の内周に係止配置されている事を特徴とする請求項1に記載のクラッチダンパ−機構。  2. The clutch damper mechanism according to claim 1, wherein the bearing portion is engaged with an inner periphery of a friction plate that contacts the output shaft hub.
JP2004209224A 2004-06-21 2004-06-21 Separation hub type clutch damper mechanism Pending JP2006010053A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004209224A JP2006010053A (en) 2004-06-21 2004-06-21 Separation hub type clutch damper mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004209224A JP2006010053A (en) 2004-06-21 2004-06-21 Separation hub type clutch damper mechanism

Publications (1)

Publication Number Publication Date
JP2006010053A true JP2006010053A (en) 2006-01-12

Family

ID=35777518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004209224A Pending JP2006010053A (en) 2004-06-21 2004-06-21 Separation hub type clutch damper mechanism

Country Status (1)

Country Link
JP (1) JP2006010053A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007083674A1 (en) 2006-01-18 2007-07-26 Mitsubishi Kagaku Media Co., Ltd. Optical recording medium
US11619282B2 (en) 2019-03-15 2023-04-04 Exedy Corporation Damper device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007083674A1 (en) 2006-01-18 2007-07-26 Mitsubishi Kagaku Media Co., Ltd. Optical recording medium
US11619282B2 (en) 2019-03-15 2023-04-04 Exedy Corporation Damper device

Similar Documents

Publication Publication Date Title
JP4978321B2 (en) Torque fluctuation absorber
JP5385413B2 (en) Clutch disk and clutch device
JP4489822B2 (en) Flywheel assembly
JP5742326B2 (en) Torque fluctuation absorber
JP6965566B2 (en) Torque fluctuation absorber
JP3975719B2 (en) Auto tensioner
JP2006010053A (en) Separation hub type clutch damper mechanism
JP5131369B2 (en) Torque fluctuation absorber
JP2006144861A (en) Clutch disc
US10895303B2 (en) Damper device
JP7375213B2 (en) damper device
JPH09152007A (en) Damper device
JP2009228736A (en) Clutch damper mechanism
JP2010031933A (en) Damper device and damper spring
JP2005282651A (en) Torsional vibration reduction device
JP4576327B2 (en) Clutch cover assembly
JP2001263371A (en) Clutch device
JP2009150431A (en) Torsional vibration reducing device
JPS58156726A (en) Clutch disc
JPH0727133A (en) Thrust bearing
JP2002161968A (en) Lock up damping device
JP2024006534A (en) damper device
JPH11173381A (en) Damper
JPS58142032A (en) Clutch disc
JP2019215066A (en) Clutch cover and clutch device