JP2005350746A - Electrolytic method - Google Patents

Electrolytic method Download PDF

Info

Publication number
JP2005350746A
JP2005350746A JP2004174411A JP2004174411A JP2005350746A JP 2005350746 A JP2005350746 A JP 2005350746A JP 2004174411 A JP2004174411 A JP 2004174411A JP 2004174411 A JP2004174411 A JP 2004174411A JP 2005350746 A JP2005350746 A JP 2005350746A
Authority
JP
Japan
Prior art keywords
flow rate
electrolysis
treated
water
electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004174411A
Other languages
Japanese (ja)
Inventor
Shuichi Hida
秀一 飛田
Hisamune Kurihara
久宗 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ISIS KK
Original Assignee
ISIS KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ISIS KK filed Critical ISIS KK
Priority to JP2004174411A priority Critical patent/JP2005350746A/en
Publication of JP2005350746A publication Critical patent/JP2005350746A/en
Pending legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve generation efficiency for Cl<SB>2</SB>by preventing formed sodium hydroxide from causing a second-order reaction. <P>SOLUTION: An electrolytic method comprises: using an electrolytic apparatus with no diaphragm, circulating water to be treated containing NaCl at a flow rate of 0.3 mm<SP>3</SP>/A×sec or higher (flow rate per unit electric current). The electrolytic method inhibits the second order reaction from occurring on a cathode, because of the high flow rate of the water to be treated. The electrolytic method also includes adding such a material as to form a slightly soluble material through combining with hydroxide ions, to the water to be treated. Then, the method improves a generation efficiency of Cl<SB>2</SB>, because not only sodium ions but also the material for forming the slightly soluble material is combined with hydroxide ions on the cathode to form the slightly soluble material, which reduces an amount of forming NaOH and consequently reduces the sodium ions in a liquid. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、食塩水や海水の電気分解により効率よく次亜塩素酸ナトリウム溶液を得る電解方法に関するものである。   The present invention relates to an electrolysis method for efficiently obtaining a sodium hypochlorite solution by electrolysis of saline or seawater.

従来、次亜塩素酸ナトリウム溶液を得ることを目的とした電解は、バッチ式が主流であった。その理由は、流通式においては、電解開始直後における電解効率が悪いためである。すなわち、電解開始直後は被処理液がほとんどイオン化されていないために電気抵抗が高く、電解処理が進行しない。
また、食塩水に含まれる不純物により、陰極側に水酸化ナトリウム(NaOH)が生成され、生成された水酸化ナトリウムが溶液中に拡散して二次反応を起こし、Clの生成効率を低下させる。
Conventionally, the electrolysis aimed at obtaining a sodium hypochlorite solution has been mainly batch-type. The reason is that in the flow type, the electrolysis efficiency immediately after the start of electrolysis is poor. That is, immediately after the start of electrolysis, since the liquid to be treated is hardly ionized, the electric resistance is high and the electrolysis treatment does not proceed.
In addition, sodium hydroxide (NaOH) is generated on the cathode side due to impurities contained in the saline solution, and the generated sodium hydroxide diffuses into the solution to cause a secondary reaction, thereby reducing Cl 2 generation efficiency. .

食塩水や海水を無隔膜で電解し次亜塩素酸ナトリウム溶液を得る方法においては、陽極側には主にシリカが、陰極側には水酸化物が析出し、これらが電極の表面に付着することにより、電解効率が低下し、そのまま放置すると電解が停止するという問題点がある。そのために、定期的に電極をメンテナンスする必要がある。
また、被処理水に不純物が多ければ電極への付着も顕著となる。
そのために、効率的な電解を行うためにはより純粋なNaCl溶液が必要とされ、海水のように不純物の多いものは、処理に不適当とされている。
特開2003−313692号
In the method of obtaining sodium hypochlorite solution by electrolyzing saline solution or seawater with a diaphragm, silica is mainly deposited on the anode side, and hydroxide is deposited on the cathode side, and these adhere to the surface of the electrode. As a result, there is a problem in that the electrolysis efficiency is lowered and the electrolysis is stopped if left as it is. Therefore, it is necessary to periodically maintain the electrode.
Moreover, if there are many impurities in to-be-processed water, adhesion to an electrode will become remarkable.
Therefore, in order to perform efficient electrolysis, a more pure NaCl solution is required, and those having many impurities such as seawater are not suitable for treatment.
JP 2003-313692 A

上記課題を解決するものとして、特開2003−313692号の発明がある。この発明は、電解槽における電解が終了した後、電解槽内の被処理水のイオン化レベルが低下したときに、予備電解運転をすることにより、電解槽内の被処理水のイオン化レベルを維持し、電解開始時に即座に所定の電界効果が得られるようにするものである。   There exists invention of Unexamined-Japanese-Patent No. 2003-313692 as what solves the said subject. This invention maintains the ionization level of the water to be treated in the electrolytic cell by performing a preliminary electrolysis operation when the ionization level of the water to be treated in the electrolytic cell is lowered after the electrolysis in the electrolytic cell is completed. A predetermined electric field effect is obtained immediately at the start of electrolysis.

上記特許文献の発明においては、電解槽内のイオン化レベルを測定する必要があり、しかも電解時以外においても予備電解のために電力を必要とするなどの問題がある。   In the invention of the above-mentioned patent document, it is necessary to measure the ionization level in the electrolytic cell, and there is a problem that electric power is required for preliminary electrolysis even at times other than electrolysis.

この発明は、生成される水酸化ナトリウムの二次反応を防止して、Clの生成効率を向上させること、そして流通式の電解において、上記予備電解などをすることなく、電解開始後即座に所望の電解効率が得られるようにすることを課題とするものである。 The present invention prevents the secondary reaction of the generated sodium hydroxide to improve the generation efficiency of Cl 2 , and in the flow type electrolysis, immediately after the start of electrolysis without performing the above-mentioned pre-electrolysis and the like. An object is to obtain a desired electrolytic efficiency.

海水の無隔膜電解法において、以下の反応が生じる。
陽極では、2Cl→Cl+2e
陰極では、2HO+2e→H2+2OH
2Na+2OH→2NaOH
液中では、Cl+2NaOH→NaClO+NaCl+HO(二次反応)
ここで、液中におけるCl の反応により、電解によるCl の生成効率が低下する。そこで、この発明は、液中におけるClの反応を可及的に抑制することにより、Clの生成効率を向上させようとするものである。
The following reactions occur in the seawater membrane electrolysis method.
At the anode, 2Cl → Cl 2 + 2e
In the cathode, 2H 2 O + 2e → H 2 + 2OH
2Na + 2OH → 2NaOH
In the liquid, Cl 2 + 2NaOH → NaClO + NaCl + H 2 O (secondary reaction)
Here, due to the reaction of Cl 2 in the liquid, the generation efficiency of Cl 2 by electrolysis decreases. Therefore, the present invention is intended to improve the production efficiency of Cl 2 by suppressing the reaction of Cl 2 in the liquid as much as possible.

液中におけるClの反応を抑制する手段としては、被処理水の流速を速くして二次反応を未然に防止する方法と、液中でClと結合して二次反応を引き起こすNaOHの生成を可及的に減少させる方法とが考えられる。
請求項1の発明は前者の手法であり、請求項3の発明は後者の手法である。
As means for suppressing the reaction of Cl 2 in the liquid, there are a method of preventing the secondary reaction by increasing the flow rate of the water to be treated, and a NaOH that binds to Cl 2 in the liquid and causes the secondary reaction. A method for reducing the generation as much as possible is considered.
The invention of claim 1 is the former technique, and the invention of claim 3 is the latter technique.

請求項1の発明は、無隔膜式の電解装置を用い、NaClを含む被処理水を流速、0.3mm/A・sec(単位電流流速)以上で流通させることを特徴とする電解方法であり、請求項2の発明は、被処理水を海水とするものである。
この発明においては、被処理水の流速が速いので陰極における二次反応が抑制される。そして、請求項2のように被処理水に海水を用いると、海水には水酸化物として水に難容性となるマグネシウムイオン、カルシウムイオンなどの物質が含まれているので、NaOHの生成も抑制され、Clの生成効率は一層向上する。
The invention of claim 1 is an electrolysis method characterized by using a non-diaphragm electrolyzer and circulating water to be treated containing NaCl at a flow rate of 0.3 mm 3 / A · sec (unit current flow rate) or more. In the invention of claim 2, the water to be treated is seawater.
In this invention, since the flow rate of the water to be treated is fast, the secondary reaction at the cathode is suppressed. And when seawater is used for the water to be treated as in claim 2, the seawater contains substances such as magnesium ions and calcium ions that are difficult to water as hydroxides. The production efficiency of Cl 2 is further improved.

請求項3の発明は、被処理水に、水酸化イオンと結合して難溶性物質を生成する物質を添加するものである。
この発明においては、陰極において水酸化イオンがナトリウムイオンの他、前記難溶性物質を生成する物質と結合するので、NaOHの生成量が減少し難容性物質が生成されるので、液中のナトリウムイオンが減少し、Clの生成効率が向上する。
請求項4の発明は、流速を速くすることにより、二次反応が抑制されるのでClの生成効率は一層向上する。
In the invention of claim 3, a substance that binds to hydroxide ions to form a hardly soluble substance is added to the water to be treated.
In this invention, since hydroxide ions are combined with the substance that forms the hardly soluble substance in addition to sodium ions at the cathode, the amount of NaOH produced is reduced and a hardly tolerable substance is produced. The number of ions is reduced, and the generation efficiency of Cl 2 is improved.
Since the secondary reaction is suppressed by increasing the flow rate, the Cl 2 production efficiency is further improved.

前記「単位電流流速」とは、流速(mm/sec)を電極表面の電流密度(A/mm)で除したものである。
また、前記水酸化イオンと結合して不溶性物質を生成する物質の代表例は、マグネシウム、カルシウムであるが、その他マンガンなどを用いることもできる。
The “unit current flow rate” is obtained by dividing the flow rate (mm / sec) by the current density (A / mm 2 ) on the electrode surface.
Typical examples of the substance that forms an insoluble substance by combining with the hydroxide ions are magnesium and calcium, but other manganese can also be used.

請求項1の発明は、NaClを含む被処理水を流速、0.3mm/A・sec(単位電流流速)以上で流通させることにより、陰極側で生成されるNaOHが溶液中に分散するClと二次反応を起こす機会を減少させ、Clの生成効率を向上させることができる。
請求項2の発明は、被処理水中の物質が水酸化イオンと反応して難溶性物質を生成するので、NaOHの生成が抑制される。その結果、二次反応におけるNaイオンとClイオンとの結合が抑制されるので、Clの生成効率が向上する。
また、二次反応が抑制されるので、電解初期における電気抵抗も可及的に低く抑えられ、電解初期における電解効率も向上する。
According to the first aspect of the present invention, the water to be treated containing NaCl is flowed at a flow rate of 0.3 mm 3 / A · sec (unit current flow rate) or more, so that the NaOH generated on the cathode side is dispersed in the solution. The chance of causing a secondary reaction with 2 can be reduced, and the production efficiency of Cl 2 can be improved.
In the invention of claim 2, since the substance in the water to be treated reacts with the hydroxide ions to produce a hardly soluble substance, the production of NaOH is suppressed. As a result, since the binding between Na ions and Cl ions in the secondary reaction is suppressed, the generation efficiency of Cl 2 is improved.
In addition, since the secondary reaction is suppressed, the electrical resistance in the initial stage of electrolysis can be suppressed as low as possible, and the electrolysis efficiency in the initial stage of electrolysis can be improved.

電流密度と、電解電流及び電極面積とは以下の関係である。   The current density, the electrolytic current, and the electrode area have the following relationship.

そこで、電流密度を高めるためには、電極面積を小さくすることが有効である。
そして、単位電流流速(Vs)と流速(V)、電流密度(Is)は以下の関係にある。
Therefore, to increase the current density, it is effective to reduce the electrode area.
The unit current flow velocity (Vs), the flow velocity (V), and the current density (Is) have the following relationship.

実験の結果、単位電流流速とClO生成量の関係は表2のとおりであった。
実験条件は以下の通りである。
電解槽1の内径・・・・150mm
電解槽1の容積・・・・17662.5mm
電極の直径 ・・・・・・0.5mm
電極面積・・・・・・・・・・1413mm
電解電流・・・・・・・・・・DC20A、DC10A
電流密度・・・・・・・・・・14.2mA/mm (DC20A)
・・・・・・・・・・・7.08mA/mm (DV10A)
NaCl濃度(比重):1.04(水道水に食塩(純度99%)を溶解して調整
電解電圧 :DC12V
As a result of the experiment, the relationship between the unit current flow rate and the ClO generation amount was as shown in Table 2.
The experimental conditions are as follows.
Inside diameter of electrolytic cell 1 ... 150mm
Volume of electrolytic cell 1 ... 17662.5 mm 2
Electrode diameter: 0.5 mm
Electrode area 1413mm 2
Electrolytic current: DC20A, DC10A
Current density: 14.2 mA / mm 2 (DC20A)
・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ 7.08mA / mm 2 (DV10A)
NaCl concentration (specific gravity): 1.04 (adjusted by dissolving salt (purity 99%) in tap water) Electrolytic voltage: DC12V

図1は、表1をグラフに表したものである。
上記結果から、単位電流流速を大きくする(一般的には流量、流速も大きくなる)ことにより、Clの生成効率が向上することが理解できる。特に、単位電流流速0.3を境に飛躍的に効率がよくなることが分かる。
このような結果となる理由は、流速が速いことにより二次反応が抑制されることにあると考えられる。
FIG. 1 is a graph of Table 1.
From the above results, it can be understood that the Cl 2 generation efficiency is improved by increasing the unit current flow rate (generally, the flow rate and flow rate are also increased). In particular, it can be seen that the efficiency is dramatically improved at the unit current flow rate of 0.3.
The reason for such a result is considered to be that the secondary reaction is suppressed by the high flow rate.

また、この発明においては電極の電流密度を1mA/mm以上とすることにより、電解液のイオン化が進んでいない電解開始直後であっても、効率よく電解を行うことができ、従来の流通式電解法の欠点を解消することができる。 In the present invention, by setting the current density of the electrode to 1 mA / mm 2 or more, electrolysis can be performed efficiently even immediately after the start of electrolysis where ionization of the electrolytic solution has not progressed. The drawbacks of the electrolytic method can be eliminated.

請求項3の発明は、NaClを含む被処理水に、水酸化イオンと結合して難溶性物質を生成する物質であるマグネシウムイオン、カルシウムイオンなどを添加することにより、陰極において、通常の反応である
Na+OH→NaOH
に代えて、
Mg+2OH→Mg(OH)
Ca+OH→CaOH
などの反応が惹起され、NaOHの生成量は減少する。
ここで生成される水酸化マグネシウムや水酸化カルシウムは難溶性であるから、液中でイオン化し再度NaOHが生成されることはない。
したがって、Clの生成効率は向上する。
In the invention of claim 3, by adding magnesium ions, calcium ions, etc., which are substances that bind to hydroxide ions and generate hardly soluble substances to the water to be treated containing NaCl, a normal reaction is performed at the cathode. Yes Na + OH → NaOH
Instead of
Mg + 2OH → Mg (OH) 2
Ca + OH → CaOH
Reactions such as these are induced, and the amount of NaOH produced decreases.
Since magnesium hydroxide and calcium hydroxide produced here are hardly soluble, they are not ionized in the liquid and NaOH is not produced again.
Therefore, Cl 2 generation efficiency is improved.

実験の結果、マグネシウム、カルシウムの添加量と有効塩素(Cl)濃度との関係は、表2のとおりであった。
実験条件は以下のとおりである。
NaCl濃度・・・・1.04(比重)。水道水に食塩(純度99%)を希釈
電解電圧・・・・・DC12V
電解電流・・・・・DC20A
処理方法・・・・・バッジ式
被処理水1Lに、各々マグネシウムとカルシウムを表記の量添加して実験を行った。
なお、この実験におけるマグネシウムとカルシウムの比率は海水中における両者の比率に相当するものである。
As a result of the experiment, the relationship between the added amounts of magnesium and calcium and the effective chlorine (Cl 2 ) concentration was as shown in Table 2.
The experimental conditions are as follows.
NaCl concentration: 1.04 (specific gravity). Diluting salt (purity 99%) in tap water Electrolysis voltage DC12V
Electrolytic current: DC20A
Treatment Method: An experiment was conducted by adding the indicated amounts of magnesium and calcium to 1 L of badge-type treated water.
In this experiment, the ratio of magnesium and calcium corresponds to the ratio of both in seawater.

図2は、表2をグラフに表したものである。
上記結果から、水酸化イオンと結合して難溶性物質となるマグネシウム、カルシウムを添加することにより、有効塩素濃度が高くなることが分かる。特に、電解時間4時間を超えたところから、マグネシウム、カルシウムを添加した場合の有効塩素濃度の向上が顕著である。
マグネシウムなどを添加しない場合、有効塩素濃度が12000g/Kgで頭打ちとなっているところ、添加した場合はこれを大きく超える有効塩素濃度が得られている。
このような結果となる理由は、難容性物質の生成によって二次反応による水酸化ナトリウムの生成が抑制されることにあると考えられる。
FIG. 2 is a graph of Table 2.
From the above results, it is understood that the effective chlorine concentration is increased by adding magnesium and calcium which are hardly soluble substances by binding with hydroxide ions. In particular, when the electrolysis time exceeds 4 hours, the improvement in effective chlorine concentration when magnesium and calcium are added is remarkable.
When magnesium or the like is not added, the effective chlorine concentration reaches a peak at 12000 g / Kg, but when it is added, an effective chlorine concentration far exceeding this is obtained.
The reason for such a result is considered to be that the production of sodium hydroxide by the secondary reaction is suppressed by the production of the intolerable substance.

図3は、マグネシウムのみを添加した場合の実験結果である。   FIG. 3 shows the experimental results when only magnesium is added.

海水中には、マグネシウム、カルシウムが含まれているので、被処理水として海水を用いると、格別マグネシウムなどを添加することなく、上記表3に示すと同等の効果が得られる。   Since seawater contains magnesium and calcium, when seawater is used as the water to be treated, the same effects as shown in Table 3 can be obtained without adding special magnesium or the like.

円筒形の電解槽1の一端に海水の汲み上げポンプに連結したパイプ2と処理水の排出パイプ3を接続する。前記電解槽1内には2つの電極(陽極と陰極)4、5を対向設置してある。前記電極は白金ムクの線材である。
前記両電極の電流密度は14.2mA/mm 、電解電圧はDC12V、電解電流はDC20A、流量40L/min(単位電流流速2.6581min/mA・sec)に設定する。
A pipe 2 connected to a pump for pumping seawater and a discharge pipe 3 for treated water are connected to one end of a cylindrical electrolytic cell 1. In the electrolytic cell 1, two electrodes (anode and cathode) 4 and 5 are disposed facing each other. The electrode is a platinum wire.
The current density of both electrodes is set to 14.2 mA / mm 2 , the electrolysis voltage is set to DC 12 V, the electrolysis current is set to DC 20 A, and the flow rate is 40 L / min (unit current flow rate 2.6581 min 3 / mA · sec).

上記のように構成された装置に海水を流通させると、海水には不純物が多量に含まれているにもかかわらず、長時間、電極間抵抗が上昇することがなく、電極に析出物が付着することもなく、効率よく電解が継続され、排出側からは次亜塩素酸ナトリウム水溶液が排出される。   When seawater is circulated through the apparatus configured as described above, the seawater does not increase in resistance for a long time even though impurities are contained in the seawater, and deposits adhere to the electrodes. Therefore, the electrolysis is continued efficiently and the sodium hypochlorite aqueous solution is discharged from the discharge side.

上記実施形態においては、単位電流流速を十分に速くしたことによる陰極側における二次反応によるNaOH生成の抑制、海水に含まれるマグネシウム、カルシウムなどが水酸化イオンと結合することによるNaOH生成の抑制により、被処理水のアルカリ化が抑制されてClの生成が効率化されることに加えて、電極の電流密度を十分に高くしたことにより、生成物の電極への付着が防止され、長時間運転においても電解効率が低下しない。 In the above embodiment, by suppressing the generation of NaOH by secondary reaction on the cathode side by sufficiently increasing the unit current flow rate, by suppressing the generation of NaOH by combining magnesium, calcium, etc. contained in seawater with hydroxide ions. In addition to suppressing the alkalinization of the water to be treated and improving the efficiency of Cl 2 generation, the current density of the electrode is sufficiently increased, so that the product can be prevented from adhering to the electrode for a long time. Electrolysis efficiency does not decrease during operation.

実験の結果、電極の電流密度を1mA/mm 以上とした場合には、長時間の電解においても電極に析出物がほとんど付着しない。このことは、表4に示すように電極の電流密度を1mA/mm 以上の場合、1000時間の電解後においても、電極間抵抗がほとんど高くならないことからも裏付けられる。
電極間抵抗が2Ωを超えたとき、電極は付着物に覆われ、電解を継続するためには除去が必要な状態であった。そして、電解電流密度が1mA/mm の場合には、1000時間運転後においても電極間抵抗は2Ωを超えることがなく、電解を継続することができた。
As a result of the experiment, when the current density of the electrode is 1 mA / mm 2 or more, the deposit hardly adheres to the electrode even during long-time electrolysis. This is supported by the fact that when the current density of the electrode is 1 mA / mm 2 or more as shown in Table 4, the resistance between the electrodes hardly increases even after 1000 hours of electrolysis.
When the resistance between the electrodes exceeded 2Ω, the electrodes were covered with deposits and needed to be removed in order to continue electrolysis. When the electrolytic current density was 1 mA / mm 2 , the interelectrode resistance did not exceed 2Ω even after 1000 hours of operation, and electrolysis could be continued.

析出物が付着しない理由は、電極における電流密度が高いことにより、電極において水素又は酸素が大きな気泡となり、勢いよく浮上する。そのために電極近傍に上向きの強い流れが発生し、析出物も共に上昇して被処理水と共に装置から排出され、電極への付着が未然に防止されるものと考えられる。
なお、この効果は電極の電流密度を2mA/mm 以上としたときに一層顕著である。
The reason why the deposit does not adhere is that the current density at the electrode is high, so that hydrogen or oxygen becomes large bubbles at the electrode and rises vigorously. Therefore, it is considered that a strong upward flow is generated in the vicinity of the electrode, and the precipitates rise together and are discharged from the apparatus together with the water to be treated, thereby preventing the adhesion to the electrode.
This effect is more prominent when the current density of the electrode is 2 mA / mm 2 or more.

実験の結果、電解時間と電極間抵抗の関係は表3のとおりであった。
実験条件は以下の通りである。
NaCl濃度(比重):1.04(水道水に食塩(純度99%)を溶解して調整
電解電圧 :DC12V
電解電流 :DC10A〜
処理水流速 :1L/min
各電極は、電極間抵抗が約1.2Ωになるように電極間距離を調整した
As a result of the experiment, the relationship between the electrolysis time and the interelectrode resistance was as shown in Table 3.
The experimental conditions are as follows.
NaCl concentration (specific gravity): 1.04 (adjusted by dissolving salt (purity 99%) in tap water) Electrolytic voltage: DC12V
Electrolytic current: DC10A ~
Treatment water flow rate: 1L / min
The distance between the electrodes was adjusted so that the resistance between the electrodes was about 1.2Ω.

この発明は、単位電流流速を大きくすること(請求項1)又は被処理水に水酸化イオンと結合して難溶性物質を生成する物質を添加することにより、二次反応を抑制し、被処理液のアルカリ化を抑制し、効率よく有効塩素を得ることができるものであり、産業上の利用可能性を有するものである。   The present invention suppresses secondary reactions by increasing the unit current flow rate (Claim 1) or adding a substance that forms a poorly soluble substance by combining with hydroxide ions to the water to be treated. The alkalinization of the liquid can be suppressed and effective chlorine can be obtained efficiently, and it has industrial applicability.

単位電流流速とCl 生成量との関係を示すグラフGraph showing the relationship between unit current flow rate and Cl 2 production Mg,Ca添加時の有効塩素濃度の変化を示すグラフGraph showing changes in effective chlorine concentration when adding Mg and Ca Mg添加量と10時間電解時の有効塩素濃度の関係を示すグラフGraph showing the relationship between the amount of Mg added and the effective chlorine concentration during 10 hours of electrolysis この発明に用いる装置の概略図Schematic diagram of the device used in this invention

符号の説明Explanation of symbols

1 電解槽
2 パイプ
3 排出パイプ
4 電極
5 電極
1 Electrolyzer 2 Pipe 3 Discharge Pipe 4 Electrode 5 Electrode

Claims (4)

無隔膜式の電解装置を用い、NaClを含む被処理水を流速、0.3mm/A・sec(単位電流流速)以上で流通させることを特徴とする電解方法 An electrolysis method using a non-diaphragm electrolyzer and causing water to be treated containing NaCl to flow at a flow rate of 0.3 mm 3 / A · sec (unit current flow rate) or more. 被処理水は海水とした、請求項1記載の電解方法 The electrolysis method according to claim 1, wherein the water to be treated is seawater. 無隔膜式の電解装置を用い、NaClを含む被処理水被処理水に、水酸化イオンと結合して難溶性物質を生成する物質を添加することを特徴する電解方法 An electrolysis method characterized by using a non-diaphragm electrolyzer and adding a substance that forms a sparingly soluble substance by combining with hydroxide ions to the treated water containing NaCl. 被処理水を流速、0.3mm/A・sec(単位電流流速)以上で流通させることを特徴とする、請求項3記載の電解方法 The electrolysis method according to claim 3, wherein the water to be treated is circulated at a flow rate of 0.3 mm 3 / A · sec (unit current flow rate) or more.
JP2004174411A 2004-06-11 2004-06-11 Electrolytic method Pending JP2005350746A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004174411A JP2005350746A (en) 2004-06-11 2004-06-11 Electrolytic method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004174411A JP2005350746A (en) 2004-06-11 2004-06-11 Electrolytic method

Publications (1)

Publication Number Publication Date
JP2005350746A true JP2005350746A (en) 2005-12-22

Family

ID=35585464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004174411A Pending JP2005350746A (en) 2004-06-11 2004-06-11 Electrolytic method

Country Status (1)

Country Link
JP (1) JP2005350746A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103060840A (en) * 2013-01-25 2013-04-24 河北省电力建设调整试验所 Dynamic simulation test method for preparing sodium hypochlorite by electrolyzing seawater

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4947287A (en) * 1972-08-14 1974-05-07
JP2001276826A (en) * 2000-03-31 2001-10-09 Terumo Corp Production device of electrolyzed water

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4947287A (en) * 1972-08-14 1974-05-07
JP2001276826A (en) * 2000-03-31 2001-10-09 Terumo Corp Production device of electrolyzed water

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103060840A (en) * 2013-01-25 2013-04-24 河北省电力建设调整试验所 Dynamic simulation test method for preparing sodium hypochlorite by electrolyzing seawater
CN103060840B (en) * 2013-01-25 2016-05-11 河北省电力建设调整试验所 A kind of electrolytic seawater is produced clorox dynamic analog test method

Similar Documents

Publication Publication Date Title
US10259727B2 (en) Electrochemical system and method for on-site generation of oxidants at high current density
CN104152905A (en) Acidic copper chloride etching liquid electrolytic regeneration recycling and copper plate recovery device and method
WO2004080901A1 (en) Process for producing mixed electrolytic water
JPH09262583A (en) Preparation of acidic water and alkaline water
JP6869188B2 (en) Reduction water production equipment and reduction water production method
JP4986057B2 (en) Method for electrolytic purification of bismuth
KR20030009158A (en) Hypochlorous Acid Generating Method and Device
JP2001327934A (en) Cleaning device and cleaning method
JP2007301541A (en) Slightly acidic electrolyzed water generation method and apparatus
JP6891894B2 (en) Chlorine dioxide generator and chlorine dioxide generation method
JP2005350746A (en) Electrolytic method
JP5057424B2 (en) Hypohalous acid reduction mechanism and reduction method
TWI481567B (en) Drainage treatment method
JP2010156033A (en) Apparatus and method for producing persulfuric acid
JP2015196873A (en) Apparatus and method for production of radical oxygen water
WO2010091553A1 (en) Method and apparatus for electrolytically producing alkaline water and use of the alkaline water produced
JPH11128938A (en) Formation of electrolyzed water
TWI427189B (en) Method and apparatus for producing high concentration hypochlorochloride sterilized water
JP2005350745A (en) Electrolytic apparatus
CN110697949B (en) Method for reducing residual quantity of chloride ions in diaphragm-free electrolyzed water
JP2000104192A (en) Removing method of undesired deposit on electrode plate
JPH10286573A (en) Electrolytic cell for acidic water and alkaline water preparation
JP2007000827A (en) Water treatment method and apparatus
JP2008049245A (en) Water softener
JP2007289805A (en) Electrolytic water generator and electrolytic cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091016

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100226

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100310

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100402