WO2004080901A1 - Process for producing mixed electrolytic water - Google Patents

Process for producing mixed electrolytic water Download PDF

Info

Publication number
WO2004080901A1
WO2004080901A1 PCT/JP2004/002639 JP2004002639W WO2004080901A1 WO 2004080901 A1 WO2004080901 A1 WO 2004080901A1 JP 2004002639 W JP2004002639 W JP 2004002639W WO 2004080901 A1 WO2004080901 A1 WO 2004080901A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
electrolyzed water
electrolytic
mixed
chloride
Prior art date
Application number
PCT/JP2004/002639
Other languages
French (fr)
Japanese (ja)
Inventor
Kokichi Hanaoka
Original Assignee
Mikuni Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mikuni Corporation filed Critical Mikuni Corporation
Priority to EP04716791A priority Critical patent/EP1602629A1/en
Priority to US10/547,405 priority patent/US20060163085A1/en
Publication of WO2004080901A1 publication Critical patent/WO2004080901A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/4618Devices therefor; Their operating or servicing for producing "ionised" acidic or basic water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4612Controlling or monitoring
    • C02F2201/46125Electrical variables
    • C02F2201/4613Inversing polarity

Definitions

  • the present invention relates to a method for producing a mixed electrolyzed water of an anode-side electrolyzed water and a cathode-side electrolyzed water, which has enhanced sterilizing power.
  • hypochlorous acid is generated in the anode-side electrolyzed water
  • the anode-side electrolyzed water is used for sterilization and disinfection using the strong oxidizing and chlorinating actions of hypochlorous acid.
  • Such usage is widely used in medical institutions and the like.
  • cathodic electrolyzed water (alkaline water) generated on the cathodic side is obtained by electrolyzing tap water instead of dilute electrolyte solution, and is conventionally used for drinking.
  • the present inventor found that when the acidic electrolyte aqueous solution to which chloride salts were added was electrolyzed while keeping the gap between the inert electrodes within 2 mm, the anode side electrolyzed water and It has been found that the electrolyzed water on the cathode side is efficiently mixed, and oxygen generated on the anode side and hydrogen generated on the cathode side react with each other quickly to form water.
  • the inventors have found that by further electrolyzing the generated sodium hypochlorite, it is possible to produce electrolyzed water having a high disinfecting power with enhanced dissociation of water and hypochlorous acid. This production method is an ideal method for producing electrolyzed water because it can efficiently produce mixed electrolyzed water and does not discharge waste water.
  • an object of the present invention is to provide a method for producing mixed electrolyzed water having improved sterilization ability and the like.
  • Chloride salts are sodium chloride, potassium chloride, The method for producing mixed electrolyzed water according to [1], wherein the mixed electrolyzed water is lucidum or magnesium chloride.
  • an electrolytic aqueous solution containing a chloride salt and an inorganic acid is electrolyzed, and the resulting anode-side electrolyzed water and cathode-side electrolyzed water are mixed.
  • the mixed electrolyzed water can be used for various purposes such as sterilization, granulation, health maintenance, and beauty.
  • the production is performed in a state where the electrolyzed water on the cathode side and the electrolyzed water on the cathode side are mixed, so that the production apparatus is simplified unlike the conventional method of extracting the electrolyzed water on one electrode side.
  • FIG. 1 is a schematic configuration diagram showing an example of a mixed electrolyzed water production apparatus used in the mixed electrolyzed water production method of the present invention.
  • FIG. 2 is a schematic configuration diagram showing another example of the mixed electrolyzed water production apparatus used in the method for producing mixed electrolyzed water of the present invention.
  • a method for generating electrolyzed water there are a diaphragm method in which a diaphragm is interposed between both electrodes for electrolysis, and a diaphragm-free method in which electrolysis is performed in the absence of a diaphragm.
  • the diaphragm method has been widely used, and the use of the diaphragmless method has been very few.
  • the electrolysis method of the present invention belongs to the diaphragmless method, in the absence of a diaphragm. To produce oxidized water (mixed electrolytic water).
  • the oxidation-reduction potential E 1.63-0.0591 In [HO C 1] In [C 1 2 ] (6)
  • the oxidation-reduction potential E is affected by the concentrations of dissolved oxygen and dissolved hydrogen, and is basically expressed by equation (6).
  • the oxidation-reduction potential E is 100 OmV or more in terms of the relative potential (potential not converted to a value for the hydrogen electrode) by the reference electrode.
  • the anode-side electrolysis product and the cathode-side electrolysis product can be efficiently mixed.
  • the electrolytic solution produced by the diaphragm-free method is composed of the anode-side electrolytic water produced by using the diaphragm method or the laminar flow diaphragm-free method so that the anode-side electrolyzed water and the cathode-side electrolyzed water are not mixed. Similar hypochlorous acid is produced.
  • the amount of free chlorine, the PH value, the amount of dissolved oxygen, and the like determined by the concentration of the solute in the aqueous electrolyte solution can be arbitrarily set by changing the concentration of the solute. However, increasing the dissociation of water in the electrolyte solution can only be achieved by electrolysis.
  • the increased water dissociation due to electrolysis is the same between the diaphragmless method and the diaphragm method, and thus the increased water dissociation can be obtained by the diaphragmless method as in the case of the diaphragm method.
  • the pH of the electrolytic mixed water can be arbitrarily set by adding an inorganic acid to the electrolyte solution in advance. Therefore, by adding an inorganic acid to the aqueous electrolyte solution so that the pH of the electrolytic mixed water is on the acidic side and subjecting it to non-diaphragm electrolysis, highly dissociated electrolytic water containing hypochlorous acid can be efficiently produced. Can be generated.
  • FIG. 1 is a schematic view showing an example of an electrolysis apparatus used in the method for producing mixed electrolyzed water of the present invention.
  • reference numeral 2 denotes an electrolytic raw water tank, in which an aqueous electrolyte solution (electrolytic raw water) 4 is stored.
  • the electrolyte aqueous solution 4 contains 0.5 to 100 mM, preferably 5 to 50 mM, of chloride salts as electrolytes, and 0.1 to 5 mM, preferably 0.5 to 3 mM of inorganic acids. are doing. If the chloride salt concentration is less than 0.1 mM, electrolysis becomes difficult due to low conductivity. If the chloride salt concentration exceeds 10 O mM, the resulting mixed electrolyzed water will feel sticky when applied to the skin, etc. for the purpose of sterilization, etc., which may be inconvenient depending on the application method. .
  • alkali metal or alkaline earth chlorides are preferable. Specific examples include sodium chloride, potassium chloride, calcium chloride, and magnesium chloride.
  • Examples of the inorganic acid include hydrochloric acid, sulfuric acid, nitric acid, and phosphoric acid.
  • chloride salts and inorganic acids are dissolved in tap water, well water, or purified water (pure water) such as distilled water or deionized water within the above concentration range.
  • purified water purified water
  • Reference numeral 6 denotes a pump interposed in the electrolyte aqueous solution supply pipe 8. By operating the pump 6, the aqueous electrolyte solution 4 is sent to the non-diaphragm electrolytic cell 10 through the supply pipe 8.
  • the non-diaphragm electrolytic cell 10 has a pair of electrodes 12 and 14 facing each other at a predetermined interval.
  • the interval between the pair of electrodes 12 and 14 is formed to be 2 mm or less, preferably 1.5 to 0.05 mm, and more preferably 1.0 to 0.1 mm.
  • the distance between the electrodes exceeds 2 mm.
  • Mixing of the anode-side electrolyzed water and the cathode-side electrolyzed water generated by electrolysis becomes insufficient.
  • the resulting mixed electrolyzed water is sufficiently filled with hypochlorous acid and water.
  • the antibacterial and bactericidal actions of the mixed electrolyzed water are insufficient.
  • the electrodes 12 and 14 are formed of an electrochemically inert metal material.
  • the electrode material platinum, a platinum alloy or the like is preferable.
  • a pair of electrodes is used.
  • the present invention is not limited to this.
  • a plurality of electrode pairs may be provided in the electrolytic cell to increase the electrolysis efficiency.
  • Reference numeral 16 denotes an electrolytic power source, and its positive terminal and negative terminal are connected to the electrodes 12 and 14 by wires 18 and 20, respectively.
  • the polarity of the electric power applied to each electrode is switched at predetermined time intervals. By switching the polarity of the applied electric power every predetermined time, the cathode-side electrolyzed water and the cathode-side electrolyzed water are efficiently generated because the cathode-side electrolyzed water and the anode-side electrolyzed water are generated alternately at one electrode.
  • the polarity switching time interval is preferably 2 to 1200 times Z minutes, more preferably 120 to 600 times / minute. Switching the polarity effectively prevents the scale from adhering to the electrodes.
  • the electrolyte solution 4 sent to the non-diaphragm electrolytic cell 10 through the electrolyte solution supply pipe 8 is electrolyzed here.
  • the electrolytic current density is preferably from 0.003 to 0.3 A / cm 2 , and particularly preferably from 0.01 to 0.02 AZ cm 2 . If the electrolytic current density is less than 0.003 A / cm 2 , the dissociation of hypochlorous acid and water in the obtained mixed electrolytic water will not be sufficiently high. If the electrolytic current density exceeds 0.03 AZ cm 2 , the dissociation of hypochlorous acid and water in the mixed electrolytic water obtained according to the current value does not increase, which is uneconomical.
  • the dissociation of hypochlorous acid or water in the mixed electrolyzed water flowing out from the electrolyte can be 1.1 times or more, preferably 1.2 times or more compared with that before electrolysis.
  • the anode-side electrolyzed water and the cathode-side electrolyzed water generated during electrolysis in the electrolyzer are naturally mixed, and the mixed electrolyzed water in which both electrolyzed waters are mixed is It is continuously extracted outside through the mixed electrolysis water extraction pipe 22.
  • FIG. 2 shows another example of the electrolysis apparatus.
  • the aqueous electrolyte solution was not continuously supplied to the electrolytic cell.
  • reference numeral 30 denotes a diaphragm-free electrolytic cell in which a pair of electrodes 32 and 34 are arranged in parallel with each other.
  • Reference numeral 36 denotes an electrolytic power supply for supplying electrolytic power to the electrodes 32 and 34.
  • the electrolytic bath is filled with an aqueous electrolyte solution 38, and by supplying power from the electrolytic power source 36 to both electrodes 32, 34, the organic electrolyte aqueous solution 38 is electrolyzed.
  • the details of the configuration are the same as above, and a description thereof will be omitted.
  • the aqueous electrolyte solution was electrolyzed using the electrolysis apparatus shown in FIG.
  • a pair of electrodes coated with platinum on 10 ⁇ 10 cm titanium was mounted in the electrolytic cell. The distance between the electrodes was 2 mm.
  • the electrolytic cell was a rectangular parallelepiped with a length of 15 cm, a width of 10 cm, and a height of 13 cm.
  • An aqueous solution of sodium chloride having a concentration of 40 mM was prepared, and the concentration of hydrochloric acid was adjusted to 3.3 mM, and then 1500 ml of the aqueous solution was filled in the electrolytic cell.
  • a current of 3.5 A was applied to both electrodes to perform electrolysis.
  • Electrolysis was performed by changing the polarity of the voltage applied to the electrode every 30 seconds after the start of electrolysis. Electrolytically generated
  • ORP redox potential
  • DO dissolved oxygen
  • EC electrical conductivity
  • Table 1 shows that the ORP increases and the free chlorine increases with the passage of the electrolysis time. In addition, pH is almost unchanged compared to 0 seconds (raw water), but DO is gradually increasing. Furthermore, the electrolysis shows that EC tends to increase gradually. Note that the potential of 0 RP in this embodiment is the potential of a comparative electrode made of a platinum electrode. Sterilization test example 1
  • Example 2 A sterilization test for general bacteria and Escherichia coli was performed using the electrolysis apparatus of Example 1 above.
  • An aqueous sodium chloride solution having the same concentration (4 O mM) as that used in Example 1 was prepared and used as raw water.
  • the number of Escherichia coli and general bacteria in raw water was measured, and the results are shown in Table 2.
  • hydrochloric acid was added to the raw water to adjust the hydrochloric acid concentration to 3.3 mM, and the number of E. coli and general bacteria was measured.
  • the numbers of these bacteria are shown in Table 2 as the number of bacteria at an electrolysis time of 0 seconds.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

A process for producing a mixed electrolytic water consisting of a cathode-side electrolytic water and an anode-side electrolytic water, comprising feeding an aqueous solution of electrolyte containing a chloride salt and an inorganic acid in a diaphragm-free electrolytic cell furnished with at least one pair of inert electrodes of 2 mm or less inter-electrode spacing and performing electrolysis, characterized in that the polarity of electric power applied between the at least one pair of inert electrodes is alternately switched twice or more per minute.

Description

明細 : 混合電解水の製造方法 技術分野 Details : Method for producing mixed electrolyzed water
本発明は、 殺菌力を高めた、 陽極側電解水と陰極側電解水との混合 電解水の製造方法に関する。 背景技術  The present invention relates to a method for producing a mixed electrolyzed water of an anode-side electrolyzed water and a cathode-side electrolyzed water, which has enhanced sterilizing power. Background art
隔膜を介して白金あるいは白金合金等からなる不活性電極を内部に 配置した電解槽を用いてアル力リ金属の塩化物の希薄電解質水溶液を 電解し、 陽極側で電解生成される p Hの低い陽極側電解水 (酸性水) を取出し、 これを殺菌や消毒に利用する技術は既に良く知られている t 隔膜としては、 イオン交換樹脂を膜状にした荷電膜やマイクロポーラ ス構造を有する非荷電膜等が用いられている。 Electrolyte a dilute aqueous electrolyte solution of chloride of aluminum alloy using an electrolytic tank with an inert electrode made of platinum or a platinum alloy inside via a diaphragm, and low pH generated electrolytically on the anode side extraction anode electrolytic water (acidic water), as the t diaphragm technology is already well known to use this sterilization or disinfection, non having charged membrane and Micropolar scan structure in which an ion exchange resin in membrane form A charged film or the like is used.
陽極側電解水中には次亜塩素酸が生成されているので、 次亜塩素酸 の強力な酸化作用と塩素化作用を利用する殺菌や消毒に陽極側電解水 は利用されている。 この様な利用方法は医療機関等で普及している。  Since hypochlorous acid is generated in the anode-side electrolyzed water, the anode-side electrolyzed water is used for sterilization and disinfection using the strong oxidizing and chlorinating actions of hypochlorous acid. Such usage is widely used in medical institutions and the like.
また陽極側電解水中に微量に含まれるオゾンゃ溶存酸素は肉芽生成 促進作用を有することから、 外科治療の補助としての利用も研究され ている。  Since a small amount of ozone and dissolved oxygen contained in the electrolyzed water on the anode side has a granulation-promoting effect, its use as an aid for surgical treatment is also being studied.
一方、 陰極側で生成されるの陰極側電解水 (アルカリ水) は、 希薄 電解質溶液の代りに水道水を用いてこれを電解することにより得られ 従来飲用等に利用されている。  On the other hand, cathodic electrolyzed water (alkaline water) generated on the cathodic side is obtained by electrolyzing tap water instead of dilute electrolyte solution, and is conventionally used for drinking.
また、 塩化ナトリウムを添加した水と、 塩酸を添加した水とを混合 し、 これを無隔膜電解槽で電気分解し、 得られる電解水を水で希釈し て残留塩素濃度を 1 . 0〜 2 0 0 0 p p m、 11を 3〜 7に調整する 殺菌水の製造方法が知られている (特許第 2 6 2 7 1 0 0号公報 (請 求項 1 ) ) 。 この方法によれば、 殺菌力の強い次亜塩素酸を含む殺菌 水が簡単な装置で安全に製造できることが記載されている。 しかし、 食品産業等では更に強力な殺菌作用を有する殺菌水を簡単な装置で製 造する方法が求められている。 発明の開示 In addition, water containing sodium chloride and water containing hydrochloric acid are mixed, electrolyzed in a non-diaphragm electrolytic cell, and the resulting electrolytic water is diluted with water to reduce the residual chlorine concentration to 1.0 to 2%. 0 0 0 ppm, adjust 11 to 3 to 7 A method for producing sterilized water is known (Japanese Patent No. 2627100 (claim 1)). According to this method, it is described that sterilized water containing hypochlorous acid having a strong sterilizing power can be safely produced with a simple device. However, in the food industry, etc., there is a demand for a method for producing sterilized water having a stronger sterilizing action with a simple apparatus. Disclosure of the invention
本発明者は上記問題を解決するために種々検討した結果、 不活性電 極の間隙を 2 m m以内に保った状態で塩化物塩類を添加した酸性電解 質水溶液を電解すると、 陽極側電解水と、 陰極側電解水とが効率よく 混合され、 陽極側で生成する酸素と、 陰極側で生成する水素とが互い に迅速に反応して水になることを見出した。 また、 生成する次亜塩素 酸ナトリウムを更に電解することにより、 水及び次亜塩素酸の解離を 高めた殺菌力の高い電解水を製造できることを見出した。 この製造方 法は、 混合電解水を効率よく製造でき、 廃液等も放出しないので理想 的な電解水製造方法である。  As a result of various studies to solve the above problem, the present inventor found that when the acidic electrolyte aqueous solution to which chloride salts were added was electrolyzed while keeping the gap between the inert electrodes within 2 mm, the anode side electrolyzed water and It has been found that the electrolyzed water on the cathode side is efficiently mixed, and oxygen generated on the anode side and hydrogen generated on the cathode side react with each other quickly to form water. In addition, the inventors have found that by further electrolyzing the generated sodium hypochlorite, it is possible to produce electrolyzed water having a high disinfecting power with enhanced dissociation of water and hypochlorous acid. This production method is an ideal method for producing electrolyzed water because it can efficiently produce mixed electrolyzed water and does not discharge waste water.
本発明は、 上記発見に基づいて完成するに至ったものである。 従つ て、 本発明の目的とするところは殺菌能力等を高めた混合電解水の製 造方法を提供することにある。  The present invention has been completed based on the above findings. Accordingly, an object of the present invention is to provide a method for producing mixed electrolyzed water having improved sterilization ability and the like.
本発明は、 以下に記載するものである。  The present invention is described below.
〔 1〕 電極間距離が 2 m m以下の少なく とも一対の不活性電極 を有する無隔膜電解槽に塩化物塩類と無機酸とを含む電解質水溶液を 供給して電気分解をする陰極側電解水と陽極側電解水との混合電解水 の製造方法であって、 少なく とも一対の不活性電極間に供給する電力 の極性を毎分 2回以上互いに変えることを特徴とする混合電解水の製 造方法。  [1] Cathode-side electrolyzed water and anode for electrolysis by supplying an aqueous electrolyte solution containing chloride salts and inorganic acids to a non-diaphragm electrolytic cell having at least a pair of inert electrodes with a distance between electrodes of 2 mm or less A method for producing mixed electrolyzed water with side electrolyzed water, wherein the polarity of electric power supplied between a pair of inactive electrodes is mutually changed at least twice per minute.
〔 2〕 塩化物塩類が、 塩化ナトリウム、 塩化カリウム、 塩化力 ルシゥム、 又は塩化マグネシウムである 〔 1〕 に記載の混合電解水の 製造方法。 [2] Chloride salts are sodium chloride, potassium chloride, The method for producing mixed electrolyzed water according to [1], wherein the mixed electrolyzed water is lucidum or magnesium chloride.
〔 3〕 無機酸が、 塩酸、 硫酸、 硝酸、 又は燐酸である 〔 1〕 に 記載の混合電解水の製造方法。  [3] The method for producing mixed electrolyzed water according to [1], wherein the inorganic acid is hydrochloric acid, sulfuric acid, nitric acid, or phosphoric acid.
本発明においては、 塩化物塩類と、 無機酸とを含む電解質水溶液を 電解し、 得られる陽極側電解水と陰極側電解水とを混合させるように したので、 得られる混合電解水は、 殺菌作用、 抗菌作用等に優れる。 この混合電解水は殺菌消毒、 肉芽生成、 健康保持、 美容等の各種用 途に有用なものとして利用できる。 また、 本製造方法においては、 陽 極側電解水と陰極側電解水とを混合した状態で製造するので、 従来の 一方の電極側の電解水を取出すのとは異なり、 製造装置が簡単になる t 図面の簡単な説明 In the present invention, an electrolytic aqueous solution containing a chloride salt and an inorganic acid is electrolyzed, and the resulting anode-side electrolyzed water and cathode-side electrolyzed water are mixed. Excellent antibacterial action. The mixed electrolyzed water can be used for various purposes such as sterilization, granulation, health maintenance, and beauty. In addition, in the present production method, the production is performed in a state where the electrolyzed water on the cathode side and the electrolyzed water on the cathode side are mixed, so that the production apparatus is simplified unlike the conventional method of extracting the electrolyzed water on one electrode side. a brief description of the drawings t
第 1図は、 本発明の混合電解水の製造方法に使用する混合電解水製 造装置の一例を示す概略構成図である。 第 2図は、 本発明混合電解水 の製造方法に使用する混合電解水製造装置の他の例を示す概略構成図 、ある。  FIG. 1 is a schematic configuration diagram showing an example of a mixed electrolyzed water production apparatus used in the mixed electrolyzed water production method of the present invention. FIG. 2 is a schematic configuration diagram showing another example of the mixed electrolyzed water production apparatus used in the method for producing mixed electrolyzed water of the present invention.
2は電解原水タンク ; 4は電解質水溶液 ; 6はポンプ; 8は電解質 水溶液供給管 ; 1 0は無隔膜電解槽 ; 1 2 、 1 4は電極 ; 1 6は電解 電源 ; 1 8 、 2 0は配線 ; 2 2は混合電解水取出し管 ; 3 0は無隔膜 電解槽 ; 3 2 、 3 4は電極 ; 3 6は電解電源; 3 8は電解質水溶液 発明を実施するための最良の形態  2 is an electrolytic raw water tank; 4 is an aqueous electrolyte solution; 6 is a pump; 8 is an aqueous electrolyte solution supply pipe; 10 is a non-diaphragm electrolytic cell; 12 and 14 are electrodes; 16 is an electrolytic power supply; Wiring; 22 is a mixed electrolytic water discharge pipe; 30 is a non-diaphragm electrolytic cell; 32 and 34 are electrodes; 36 is an electrolytic power supply; 38 is an aqueous electrolyte solution.
一般に、 電解水を生成する方法として、 両電極間に隔膜を介装して 電解する有隔膜法と、 隔膜の不存在下に電解する無隔膜法とがある。 従来は隔膜法が多く採用されており、 無隔膜法の採用例は極めて少な い。 本発明の電解方法は、 無隔膜法に属するもので、 隔膜の不存在下 で酸化水 (混合電解水) を製造する。 Generally, as a method for generating electrolyzed water, there are a diaphragm method in which a diaphragm is interposed between both electrodes for electrolysis, and a diaphragm-free method in which electrolysis is performed in the absence of a diaphragm. Conventionally, the diaphragm method has been widely used, and the use of the diaphragmless method has been very few. The electrolysis method of the present invention belongs to the diaphragmless method, in the absence of a diaphragm. To produce oxidized water (mixed electrolytic water).
無隔膜法でアルカリ金属の塩化物 (塩化物塩類) を水に溶解した電 解質水溶液を電解すると、 陽極近傍では次の反応が起きる。  When an electrolyte solution in which alkali metal chlorides (chloride salts) are dissolved in water is electrolyzed by the diaphragmless method, the following reaction occurs near the anode.
2 H20 02 + 4 e— ( 1 )2 H 2 0 2 + 4 e— (1)
C 1 2 + H20 HC 1 + HO C 1 C 1 2 + H 2 0 HC 1 + HO C 1
^ HC 1 + H+ + O C 1 ( 2 ) また、 陰極近傍では次の反応が起きる。  ^ HC 1 + H + + OC 1 (2) The following reaction occurs near the cathode.
2 H20 + 2 e― H 2 + 2 OH ( 3 ) N a + + OH— → N a 0 H (4) 更に、 無隔膜法では隔膜がないため、 陽極近傍と陰極近傍とで生成 された電極反応生成物が反応して次の反応式で示す塩を生成する。 2 H 2 0 + 2 e-H 2 + 2 OH (3) Na + + OH-→ Na 0 H (4) In addition, since there is no diaphragm in the diaphragmless method, it is generated near the anode and near the cathode. The electrode reaction product reacts to produce a salt represented by the following reaction formula.
N a 0 H + H 0 C 1 N a O C 1 ( 5 ) ここで、 電解質水溶液の p Hが低い場合、 N a 0 C 1 は H〇 C 1 と なり、 隔膜法による陽極側電解生成物と同じ化合物が生成する。 無隔 膜法の場合は電解液が混合しやすいので、 陽極近傍で生成される溶存 酸素と、 陰極近傍で生成される溶存水素とが電解水中に混在する。 ネ ルンストの式によれば、 電解水の酸化還元電位 Eは下記式 ( 6 ) によ り示される。 Na 0 H + H 0 C 1 Na OC 1 (5) Here, when the pH of the aqueous electrolyte solution is low, Na 0 C 1 becomes H〇C 1, and the anode-side electrolytic product obtained by the diaphragm method is The same compound is produced. In the case of the diaphragmless method, since the electrolytic solution is easily mixed, dissolved oxygen generated near the anode and dissolved hydrogen generated near the cathode are mixed in the electrolytic water. According to the Nernst equation, the oxidation-reduction potential E of the electrolytic water is expressed by the following equation (6).
E =1.63 - 0.0591 In [HO C 1 ] In [C 1 2] ( 6 ) 上記酸化還元電位 Eは溶存酸素と溶存水素との濃度の影響を受ける が、 基本的には式 ( 6 ) で表される。 この酸化還元電位 Eは比較電極 による相対電位 (水素電極に対する値に変換していない電位) で示す と 1 0 0 O m V以上になる。 E = 1.63-0.0591 In [HO C 1] In [C 1 2 ] (6) The oxidation-reduction potential E is affected by the concentrations of dissolved oxygen and dissolved hydrogen, and is basically expressed by equation (6). The oxidation-reduction potential E is 100 OmV or more in terms of the relative potential (potential not converted to a value for the hydrogen electrode) by the reference electrode.
更に、 電極の極性を交互に変化させることにより、 陽極側電解生成 物と陰極側電解生成物とを効率よく混合することができる。 その結果、 本無隔膜法により生成する電解液は、 隔膜法や、 層流無隔膜法を採用 して陽極側電解水と陰極側電解水とが混合しないようにして製造した 陽極側電解水と同様の次亜塩素酸が生成される。  Further, by alternately changing the polarity of the electrode, the anode-side electrolysis product and the cathode-side electrolysis product can be efficiently mixed. As a result, the electrolytic solution produced by the diaphragm-free method is composed of the anode-side electrolytic water produced by using the diaphragm method or the laminar flow diaphragm-free method so that the anode-side electrolyzed water and the cathode-side electrolyzed water are not mixed. Similar hypochlorous acid is produced.
電解質水溶液中の溶質の濃度により定る遊離塩素量や、 P H値、 溶 存酸素量等は溶質の濃度等を変えることにより任意に設定できる。 し かし、 電解質溶液中の水の解離を増加させることは電解によってのみ 実現できるものである。  The amount of free chlorine, the PH value, the amount of dissolved oxygen, and the like determined by the concentration of the solute in the aqueous electrolyte solution can be arbitrarily set by changing the concentration of the solute. However, increasing the dissociation of water in the electrolyte solution can only be achieved by electrolysis.
電解エネルギーが同じであれば、 無隔膜法と隔膜法とでは電解によ り増加する水の解離は同じであるので、 無隔膜法によっても隔膜法と 同様に増加した解離の水が得られる。  If the electrolysis energy is the same, the increased water dissociation due to electrolysis is the same between the diaphragmless method and the diaphragm method, and thus the increased water dissociation can be obtained by the diaphragmless method as in the case of the diaphragm method.
無機酸を電解質溶液に予め添加することにより、 電解混合水の P H を任意に設定できる。 従って、 電解混合水の p Hが酸性側になるよう に無機酸を電解質水溶液中に添加し、 これを無隔膜電解することによ り、 次亜塩素酸を含む解離の大きい電解水を効率よく生成することが できる。  The pH of the electrolytic mixed water can be arbitrarily set by adding an inorganic acid to the electrolyte solution in advance. Therefore, by adding an inorganic acid to the aqueous electrolyte solution so that the pH of the electrolytic mixed water is on the acidic side and subjecting it to non-diaphragm electrolysis, highly dissociated electrolytic water containing hypochlorous acid can be efficiently produced. Can be generated.
本発明においては、 塩化物塩類と無機酸とを溶質として溶解する電 解質水溶液を電極間距離が 2 m m以下の電極を用いて電解し、 得られ る陽極側電解水と陰極側電解水とが混合した混合電解水を得るもので ある。 得られる混合電解水は、 次亜塩素酸及び水の解離が高められた 電解水であり、 このものは殺菌、 消毒、 スキンケア等の各種用途に利 用できる。 第 1図は、 本発明の混合電解水の製造方法に使用する電解装置の一 例を示す概略図である。 In the present invention, an electrolytic aqueous solution in which chloride salts and an inorganic acid are dissolved as solutes is electrolyzed using an electrode having a distance between the electrodes of 2 mm or less, and the obtained anode-side electrolytic water and cathode-side electrolytic water are obtained. To obtain mixed electrolyzed water. The obtained mixed electrolyzed water is electrolyzed water in which the dissociation of hypochlorous acid and water is increased, and can be used for various uses such as sterilization, disinfection, and skin care. FIG. 1 is a schematic view showing an example of an electrolysis apparatus used in the method for producing mixed electrolyzed water of the present invention.
第 1図中、 2は電解原水タンクで、 その内部には電解質水溶液 (電 解原水) 4が貯留されている。  In FIG. 1, reference numeral 2 denotes an electrolytic raw water tank, in which an aqueous electrolyte solution (electrolytic raw water) 4 is stored.
前記電解質水溶液 4は、 電解質として塩化物塩類を 0. 5〜 1 0 0 mM、 好ましくは 5〜 5 0 mM、 及び無機酸を 0. l〜 5 mM、 好ま しくは 0. 5〜 3 mM含有している。 塩化物塩類の濃度が 0. I mM 未満の場合は、 導電率が低いので電解が困難になる。 塩化物塩類の濃 度が 1 0 O mMを超える場合は、 得られる混合電解水を殺菌等の目的 で皮膚等に適用する際にべたつき感が感じられ、 適用方法によっては 不都合な場合が起る。  The electrolyte aqueous solution 4 contains 0.5 to 100 mM, preferably 5 to 50 mM, of chloride salts as electrolytes, and 0.1 to 5 mM, preferably 0.5 to 3 mM of inorganic acids. are doing. If the chloride salt concentration is less than 0.1 mM, electrolysis becomes difficult due to low conductivity. If the chloride salt concentration exceeds 10 O mM, the resulting mixed electrolyzed water will feel sticky when applied to the skin, etc. for the purpose of sterilization, etc., which may be inconvenient depending on the application method. .
塩化物塩類としては、 アルカリ金属、 又はアル力リ土類の塩化物が 好ましい。 具体的には塩化ナトリウム、 塩化力リウム、 塩化カルシゥ ム、 又は塩化マグネシウム等を例示できる。  As the chloride salts, alkali metal or alkaline earth chlorides are preferable. Specific examples include sodium chloride, potassium chloride, calcium chloride, and magnesium chloride.
無機酸としては、 塩酸、 硫酸、 硝酸、 又は燐酸等を例示できる。  Examples of the inorganic acid include hydrochloric acid, sulfuric acid, nitric acid, and phosphoric acid.
このような電解質水溶液 4の調製方法としては、 水道水、 井水 更 には蒸留水、 脱イオン水等の精製水 (純水) に、 塩化物塩類及び無機 酸を上記濃度範囲内に溶解する方法が例示される。  As a method for preparing such an electrolyte aqueous solution 4, chloride salts and inorganic acids are dissolved in tap water, well water, or purified water (pure water) such as distilled water or deionized water within the above concentration range. A method is illustrated.
6は電解質水溶液供給管 8に介装されたポンプである。 このポンプ 6を作動させることによりにより、 電解質水溶液 4は供給管 8を通つ て無隔膜電解槽 1 0に送られる。  Reference numeral 6 denotes a pump interposed in the electrolyte aqueous solution supply pipe 8. By operating the pump 6, the aqueous electrolyte solution 4 is sent to the non-diaphragm electrolytic cell 10 through the supply pipe 8.
前記無隔膜電解槽 1 0は、 所定間隔離れて互いに対向する一対の電 極 1 2、 1 4を内部に有する。 前記一対の電極 1 2、 1 4の間隔は、 2 mm以下に形成してあり、 1. 5〜 0. 0 5 mmが好ましく、 1. 0〜 0. 1 mmがより好ましい。 電極間距離が 2 mmを超える場合は. 電解により生成する陽極側電解水と陰極側電解水との混合が不十分に なる。 その結果、 得られる混合電解水は次亜塩素酸及び水の解離が充 分高くならず、 この混合電解水の抗菌作用や殺菌作用は不充分なもの である。 The non-diaphragm electrolytic cell 10 has a pair of electrodes 12 and 14 facing each other at a predetermined interval. The interval between the pair of electrodes 12 and 14 is formed to be 2 mm or less, preferably 1.5 to 0.05 mm, and more preferably 1.0 to 0.1 mm. When the distance between the electrodes exceeds 2 mm. Mixing of the anode-side electrolyzed water and the cathode-side electrolyzed water generated by electrolysis becomes insufficient. As a result, the resulting mixed electrolyzed water is sufficiently filled with hypochlorous acid and water. However, the antibacterial and bactericidal actions of the mixed electrolyzed water are insufficient.
また、 電解槽 1 0内の両電極 1 2 、 1 4間に隔膜が存在する場合も、 電解により生成する陽極側電解水と陰極側電解水との混合が不十分に なり好ましくない。  Also, when a diaphragm is present between the electrodes 12 and 14 in the electrolytic cell 10, mixing of the anode-side electrolyzed water and the cathode-side electrolyzed water generated by the electrolysis becomes insufficient, which is not preferable.
前記電極 1 2 、 1 4は電気化学的に不活性な金属材料で形成されて いる。 電極材料としては、 白金、 白金合金等が好ましい。 なお、 上記 説明においては、 電極は一対としたが、 これに限られず、 複数の電極 対を電解槽に配備し、 電解効率を高めるようにしても良い。  The electrodes 12 and 14 are formed of an electrochemically inert metal material. As the electrode material, platinum, a platinum alloy or the like is preferable. In the above description, a pair of electrodes is used. However, the present invention is not limited to this. A plurality of electrode pairs may be provided in the electrolytic cell to increase the electrolysis efficiency.
1 6は電解電源で、 そのプラス端子及びマイナス端子と、 前記両電 極 1 2、 1 4とはそれぞれ配線 1 8 、 2 0により接続されている。 上 記各電極に印加する電力の極性は所定時間間隔で互いに切り替るもの である。 印可する電力の極性を所定時間毎に切替えることにより、 陰 極側電解水と陽極側電解水とが 1の電極において交互に生成されるの で、 陽極側電解水と陰極側電解水とが効率よく混合される。 極性の切 替え時間間隔は、 2〜; 1 2 0 0回 Z分が好ましく、 1 2 0〜 6 0 0回 /分がより好ましい。 また極性を切替えることにより電極にスケール が付着することを有効に防止する。  Reference numeral 16 denotes an electrolytic power source, and its positive terminal and negative terminal are connected to the electrodes 12 and 14 by wires 18 and 20, respectively. The polarity of the electric power applied to each electrode is switched at predetermined time intervals. By switching the polarity of the applied electric power every predetermined time, the cathode-side electrolyzed water and the cathode-side electrolyzed water are efficiently generated because the cathode-side electrolyzed water and the anode-side electrolyzed water are generated alternately at one electrode. Well mixed. The polarity switching time interval is preferably 2 to 1200 times Z minutes, more preferably 120 to 600 times / minute. Switching the polarity effectively prevents the scale from adhering to the electrodes.
前記電解質水溶液供給管 8を通って無隔膜電解槽 1 0に送られる電 解質水溶液 4は、 ここで電気分解される。 電解電流密度は、 0 . 0 0 3〜 0 · 0 3 A / c m 2が好ましく、 0 . 0 1 〜 0 . 0 2 A Z c m 2が 特に好ましい。 電解電流密度が 0 . 0 0 3 A / c m 2未満の場合は、 得 られる混合電解水中の次亜塩素酸及び水の解離が充分高くならない。 また電解電流密度が 0 . 0 3 A Z c m 2を超える場合は、 電流値に応じ て得られる混合電解水中の次亜塩素酸及び水の解離が高くならないの で、 不経済である。 The electrolyte solution 4 sent to the non-diaphragm electrolytic cell 10 through the electrolyte solution supply pipe 8 is electrolyzed here. The electrolytic current density is preferably from 0.003 to 0.3 A / cm 2 , and particularly preferably from 0.01 to 0.02 AZ cm 2 . If the electrolytic current density is less than 0.003 A / cm 2 , the dissociation of hypochlorous acid and water in the obtained mixed electrolytic water will not be sufficiently high. If the electrolytic current density exceeds 0.03 AZ cm 2 , the dissociation of hypochlorous acid and water in the mixed electrolytic water obtained according to the current value does not increase, which is uneconomical.
従って、 上記範囲内の電解電流密度に制御することにより、 電解槽 から流出する混合電解水中の次亜塩素酸又は水の解離を電解前のそれ と比較し 1. 1倍以上、 好ましくは 1. 2 5倍以上にすることができ る。 Therefore, by controlling the electrolytic current density within the above range, the electrolytic cell The dissociation of hypochlorous acid or water in the mixed electrolyzed water flowing out from the electrolyte can be 1.1 times or more, preferably 1.2 times or more compared with that before electrolysis.
上記のようにして電解することにより、 電解槽内で電解中に生成す る陽極側電解水と陰極側電解水とが自然に混合にされ、 両電解水が混 合した混.合電解水が混合電解水取出し管 2 2を通って連続的に外部に 取出される。  By performing electrolysis as described above, the anode-side electrolyzed water and the cathode-side electrolyzed water generated during electrolysis in the electrolyzer are naturally mixed, and the mixed electrolyzed water in which both electrolyzed waters are mixed is It is continuously extracted outside through the mixed electrolysis water extraction pipe 22.
第 2図は、 電解装置の他の例を示すものである。 この例においては、 電解質水溶液は、 電解槽に連続的に供給していない。 第 2図において、 3 0は無隔膜電解槽で、 その内部に 1対の電極 3 2、 3 4を互いに対 向して平行に配設してある。 3 6は、 電解電源で、 前記電極 3 2、 3 4に電解電力を供給する。 電解槽内には電解質水溶液 3 8が満たされ ており、 電解電源 3 6から両電極 3 2、 3 4に電力を供給することに より、 有機電解質水溶液 3 8が電解される。 構成の詳細については、 上記と同様であるので、 その説明を省略する。 実施例  FIG. 2 shows another example of the electrolysis apparatus. In this example, the aqueous electrolyte solution was not continuously supplied to the electrolytic cell. In FIG. 2, reference numeral 30 denotes a diaphragm-free electrolytic cell in which a pair of electrodes 32 and 34 are arranged in parallel with each other. Reference numeral 36 denotes an electrolytic power supply for supplying electrolytic power to the electrodes 32 and 34. The electrolytic bath is filled with an aqueous electrolyte solution 38, and by supplying power from the electrolytic power source 36 to both electrodes 32, 34, the organic electrolyte aqueous solution 38 is electrolyzed. The details of the configuration are the same as above, and a description thereof will be omitted. Example
以下、 実施例により本発明を更に具体的に説明する。  Hereinafter, the present invention will be described more specifically with reference to examples.
実施例 1  Example 1
第 2図に示す電解装置を用いて電解質水溶液を電解した。  The aqueous electrolyte solution was electrolyzed using the electrolysis apparatus shown in FIG.
1 0 X 1 0 c mのチタンに白金をコ一ティ ングした 1対の電極を電 解槽中に取りつけた。 電極間距離は 2 mmとした。 電解槽は縦 1 5 c m、 横 1 0 c m、 高さ 1 3 c mの直方体状であった。 濃度 4 0 mMの 塩化ナトリウム水溶液を調製し、 塩酸濃度を 3. 3 mMとした後、 そ の 1 5 0 0 m 1 を前記電解槽に満たした。 電解質水溶液を攪拌しなが ら 3. 5 Aの電流を両電極に流し電解した。 電解開始から 3 0秒間経 過する毎に電極に印可する電圧の極性を変えて電解した。 電解生成さ れた混合電解水の p H、 酸化還元電位 (O R P ) 溶存酸素量 (D O) 、 電気伝導度 (E C) を表 1に示した。 A pair of electrodes coated with platinum on 10 × 10 cm titanium was mounted in the electrolytic cell. The distance between the electrodes was 2 mm. The electrolytic cell was a rectangular parallelepiped with a length of 15 cm, a width of 10 cm, and a height of 13 cm. An aqueous solution of sodium chloride having a concentration of 40 mM was prepared, and the concentration of hydrochloric acid was adjusted to 3.3 mM, and then 1500 ml of the aqueous solution was filled in the electrolytic cell. While stirring the electrolyte aqueous solution, a current of 3.5 A was applied to both electrodes to perform electrolysis. Electrolysis was performed by changing the polarity of the voltage applied to the electrode every 30 seconds after the start of electrolysis. Electrolytically generated The pH, redox potential (ORP), dissolved oxygen (DO), and electrical conductivity (EC) of the mixed electrolyzed water are shown in Table 1.
Figure imgf000011_0001
表 1から、 電解時間の経過と共に O R Pは増加し、 遊離塩素が増加 していることが分る。 また、 p Hは 0秒 (原水) と比較して殆ど変化 がみられないが、 D Oは徐々に増加していることが分る。 更に、 電解 することにより、 E Cは徐々に増加している傾向が分る。 尚、 本実施 例における 0 R Pの電位は、 白金電極による比較電極の電位である。 殺菌試験例 1
Figure imgf000011_0001
Table 1 shows that the ORP increases and the free chlorine increases with the passage of the electrolysis time. In addition, pH is almost unchanged compared to 0 seconds (raw water), but DO is gradually increasing. Furthermore, the electrolysis shows that EC tends to increase gradually. Note that the potential of 0 RP in this embodiment is the potential of a comparative electrode made of a platinum electrode. Sterilization test example 1
上記実施例 1の電解装置を用いて一般細菌及び大腸菌の殺菌試験を 行った。 実施例 1で用いたのと同じ濃度 (4 O mM) の塩化ナトリウ ム水溶液を調製し、 これを原水とした。 原水中の大腸菌、 一般細菌数 を測定し、 結果を表 2に示した。  A sterilization test for general bacteria and Escherichia coli was performed using the electrolysis apparatus of Example 1 above. An aqueous sodium chloride solution having the same concentration (4 O mM) as that used in Example 1 was prepared and used as raw water. The number of Escherichia coli and general bacteria in raw water was measured, and the results are shown in Table 2.
次に、 原水に塩酸を加えて塩酸濃度を 3. 3 mMとした後、 大腸菌. 一般細菌数を測定した。 これらの菌数を電解時間 0秒の細菌数として 表 2に示した。  Next, hydrochloric acid was added to the raw water to adjust the hydrochloric acid concentration to 3.3 mM, and the number of E. coli and general bacteria was measured. The numbers of these bacteria are shown in Table 2 as the number of bacteria at an electrolysis time of 0 seconds.
以後、 3 0秒ごとに極性を変えて電解を続け、 菌数を測定した。 結 果を表 2に示した。 表 2 Thereafter, the electrolysis was continued while changing the polarity every 30 seconds, and the number of bacteria was measured. Table 2 shows the results. Table 2
Figure imgf000012_0001
原水 (N a C l のみを含む) の場合は、 大腸菌及び一般細菌は殆ど 殺菌されていない。 これに塩酸を加えて p Hを 2 . 4 9にすると大腸 菌及び一般細菌の菌数はそれぞれ 1 0 3以下 (電解時間 0秒) になった が、 殺菌効果は不十分であった。 次に、 電解を 3 0秒間行うことに より、 大腸菌及び一般細菌数はそれぞれ 3 0個、 2 0個となった (電 解時間 3 0秒) 。 しかし、 完全に細菌数を 0にすることはできなかつ た。 その後、 極性を変えることにより塩素濃度は同じであっても、 菌 数は 0 となった (電解時間 6 0秒、 9 0秒) 。 即ち、 極性を変えるこ とにより、 殺菌効果が大きく向上した。
Figure imgf000012_0001
In the case of raw water (containing only NaCl), Escherichia coli and general bacteria are hardly killed. This becomes 2 p H by adding hydrochloric acid. Respectively when the 4 9 E. coli and the number of bacteria in general bacteria 1 0 3 or less (electrolysis time 0 sec), but bactericidal effect was insufficient. Next, the electrolysis was performed for 30 seconds, so that the numbers of Escherichia coli and general bacteria were 30 and 20, respectively (electrolysis time was 30 seconds). However, the number of bacteria could not be completely reduced to zero. After that, the number of bacteria decreased to 0 (electrolysis time 60 seconds, 90 seconds) even if the chlorine concentration was the same by changing the polarity. That is, by changing the polarity, the bactericidal effect was greatly improved.

Claims

請求の範囲 The scope of the claims
1 . 電極間距離が 2 m m以下の少なく とも一対の不活性電極を有す る無隔膜電解槽に塩化物塩類と無機酸とを含む電解質水溶液を供給し て電気分解をする陰極側電解水と陽極側電解水との混合電解水の製造 方法であって、 少なく とも一対の不活性電極間に供給する電力の極性 を毎分 2回以上互いに変えることを特徴とする混合電解水の製造方法,1. Cathode-side electrolyzed water that is electrolyzed by supplying an aqueous electrolyte solution containing chloride salts and inorganic acids to a diaphragm-free electrolytic cell having at least one pair of inert electrodes with a distance between the electrodes of 2 mm or less. A method for producing mixed electrolyzed water with anode side electrolyzed water, wherein the polarity of electric power supplied between at least a pair of inert electrodes is mutually changed at least twice per minute,
2 . 塩化物塩類が、 塩化ナトリウム、 塩化カリウム、 塩化カルシゥ ム、 又は塩化マグネシウムである請求の範囲第 1項に記載の混合電解 水の製造方法。 2. The method for producing mixed electrolyzed water according to claim 1, wherein the chloride salt is sodium chloride, potassium chloride, calcium chloride, or magnesium chloride.
3 . 無機酸が、 塩酸、 硫酸、 硝酸、 又は燐酸である請求の範囲第 1 項に記載の混合電解水の製造方法。  3. The method for producing mixed electrolyzed water according to claim 1, wherein the inorganic acid is hydrochloric acid, sulfuric acid, nitric acid, or phosphoric acid.
PCT/JP2004/002639 2003-03-11 2004-03-03 Process for producing mixed electrolytic water WO2004080901A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP04716791A EP1602629A1 (en) 2003-03-11 2004-03-03 Process for producing mixed electrolytic water
US10/547,405 US20060163085A1 (en) 2003-03-11 2004-03-03 Process for producing mixed electrolytic water

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003064484A JP2004267956A (en) 2003-03-11 2003-03-11 Method for producing mixed electrolytic water
JP2003/64484 2003-03-11

Publications (1)

Publication Number Publication Date
WO2004080901A1 true WO2004080901A1 (en) 2004-09-23

Family

ID=32984473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/002639 WO2004080901A1 (en) 2003-03-11 2004-03-03 Process for producing mixed electrolytic water

Country Status (5)

Country Link
US (1) US20060163085A1 (en)
EP (1) EP1602629A1 (en)
JP (1) JP2004267956A (en)
TW (1) TW200420505A (en)
WO (1) WO2004080901A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008000029A1 (en) * 2006-06-27 2008-01-03 Poolrite Research Pty Ltd Improved water treatment method
US20100092399A1 (en) * 2006-01-20 2010-04-15 Oculus Innovative Sciences, Inc. Methods of treating or preventing inflammation and hypersensitivity with oxidative reductive potential water solution
US8840873B2 (en) 2005-03-23 2014-09-23 Oculus Innovative Sciences, Inc. Method of treating second and third degree burns using oxidative reductive potential water solution
US9551162B2 (en) 2010-04-29 2017-01-24 Zodiac Group Australia Pty Ltd. Method for water treatment
US10342825B2 (en) 2009-06-15 2019-07-09 Sonoma Pharmaceuticals, Inc. Solution containing hypochlorous acid and methods of using same

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1721868A1 (en) * 2005-05-13 2006-11-15 Osg Corporation Co., Ltd. Additive solution for use in the production of electrolyzed hypochlorous acid-containing sterilizing water
JP2007301540A (en) * 2006-05-09 2007-11-22 Hokuetsu:Kk Slightly acidic electrolyzed water generation apparatus
CA2750024A1 (en) * 2009-02-13 2010-08-19 Mass Technology (H.K.) Limited Method and apparatus for electrolytically producing alkaline water and use of the alkaline water produced
US20110135562A1 (en) * 2009-11-23 2011-06-09 Terriss Consolidated Industries, Inc. Two stage process for electrochemically generating hypochlorous acid through closed loop, continuous batch processing of brine
CN102822099A (en) * 2009-11-30 2012-12-12 普利特研究私人有限公司 Method for water sanitisation
US20110168567A1 (en) * 2010-01-11 2011-07-14 Ecolab Usa Inc. Control of hard water scaling in electrochemical cells
US8557178B2 (en) 2010-12-21 2013-10-15 Ecolab Usa Inc. Corrosion inhibition of hypochlorite solutions in saturated wipes
US8603392B2 (en) 2010-12-21 2013-12-10 Ecolab Usa Inc. Electrolyzed water system
US8114344B1 (en) 2010-12-21 2012-02-14 Ecolab Usa Inc. Corrosion inhibition of hypochlorite solutions using sugar acids and Ca
US10023483B2 (en) 2011-07-11 2018-07-17 Zodiac Group Australia Pty Ltd. Liquid chemical composition
WO2013065661A1 (en) * 2011-11-01 2013-05-10 株式会社昭和 Washing method and washing device
JP5238899B1 (en) * 2012-07-13 2013-07-17 稔 菅野 Disinfecting water generating apparatus and disinfecting cleaning method
US9815714B2 (en) * 2012-12-11 2017-11-14 Slate Group, Llc Process for generating oxygenated water
US10194665B2 (en) * 2013-08-30 2019-02-05 Epios Co., Ltd. Cleaning solution and manufacturing method therefor
JP2015192972A (en) * 2014-03-31 2015-11-05 Toto株式会社 Sterilized water generator
JP6582323B2 (en) * 2015-04-15 2019-10-02 エア・ウォーター・バイオデザイン株式会社 Cleaning device and cleaning method
JP6794205B2 (en) * 2016-09-28 2020-12-02 義久 石井 Hypochlorous acid vaporizer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6316093A (en) * 1986-07-08 1988-01-23 Katsumi Ishii Apparatus for producing chlorine water
EP0470841A2 (en) * 1990-08-10 1992-02-12 Omco Co. Ltd. Method of and apparatus for producing sterilized water
EP0792584A1 (en) * 1994-07-29 1997-09-03 Toto Ltd. Strongly acidic sterile water containing low-concentration hypochlorous acid, method of forming strongly acidic sterile water containing low-concentration hypochlorous acid, apparatus therefor, and apparatus for forming and delivering strongly acidic sterile water containing low-concentration hypoch
JP2002219463A (en) * 2001-01-24 2002-08-06 Mitsubishi Plastics Ind Ltd Electrolytic disinfection method for water

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6627053B2 (en) * 1999-12-14 2003-09-30 Sanyo Electric Co., Ltd. Water treatment device
US6638364B2 (en) * 2000-09-08 2003-10-28 Electric Aquagenics Unlimited System to clean and disinfect carpets, fabrics, and hard surfaces using electrolyzed alkaline water produced from a solution of NaCl

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6316093A (en) * 1986-07-08 1988-01-23 Katsumi Ishii Apparatus for producing chlorine water
EP0470841A2 (en) * 1990-08-10 1992-02-12 Omco Co. Ltd. Method of and apparatus for producing sterilized water
EP0792584A1 (en) * 1994-07-29 1997-09-03 Toto Ltd. Strongly acidic sterile water containing low-concentration hypochlorous acid, method of forming strongly acidic sterile water containing low-concentration hypochlorous acid, apparatus therefor, and apparatus for forming and delivering strongly acidic sterile water containing low-concentration hypoch
JP2002219463A (en) * 2001-01-24 2002-08-06 Mitsubishi Plastics Ind Ltd Electrolytic disinfection method for water

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8840873B2 (en) 2005-03-23 2014-09-23 Oculus Innovative Sciences, Inc. Method of treating second and third degree burns using oxidative reductive potential water solution
US20100092399A1 (en) * 2006-01-20 2010-04-15 Oculus Innovative Sciences, Inc. Methods of treating or preventing inflammation and hypersensitivity with oxidative reductive potential water solution
US9072726B2 (en) * 2006-01-20 2015-07-07 Oculus Innovative Sciences, Inc. Methods of treating or preventing inflammation and hypersensitivity with oxidative reductive potential water solution
US20150306137A1 (en) * 2006-01-20 2015-10-29 Oculus Innovative Sciences, Inc. Methods of treating or preventing inflammation and hypersensitivity with oxidative reductive potential water solution
US9782434B2 (en) * 2006-01-20 2017-10-10 Sonoma Pharmaceuticals, Inc. Methods of treating or preventing inflammation and hypersensitivity with oxidative reductive potential water solution
WO2008000029A1 (en) * 2006-06-27 2008-01-03 Poolrite Research Pty Ltd Improved water treatment method
US10342825B2 (en) 2009-06-15 2019-07-09 Sonoma Pharmaceuticals, Inc. Solution containing hypochlorous acid and methods of using same
US9551162B2 (en) 2010-04-29 2017-01-24 Zodiac Group Australia Pty Ltd. Method for water treatment
US9637398B2 (en) 2010-04-29 2017-05-02 Zodiac Group Australia Pty Ltd. Method for water treatment

Also Published As

Publication number Publication date
TW200420505A (en) 2004-10-16
US20060163085A1 (en) 2006-07-27
EP1602629A1 (en) 2005-12-07
JP2004267956A (en) 2004-09-30

Similar Documents

Publication Publication Date Title
WO2004080901A1 (en) Process for producing mixed electrolytic water
JP3913923B2 (en) Water treatment method and water treatment apparatus
JP3602773B2 (en) Anode electrolyzed water and method for producing the same
US20100310672A1 (en) Disinfectant based on aqueous; hypochlorous acid (hoci)-containing solutions; method for the production thereof and use thereof
JP3785219B2 (en) Method for producing acidic water and alkaline water
JP5640266B1 (en) Electrolyzed water production apparatus and electrolyzed water production method using the same
JP2002301476A (en) Ascorbylglucosamine electrolyzed water and method for making the same
JP4929430B2 (en) Electrolyzed water production apparatus and electrolyzed water production method
JP2007007502A (en) Manufacturing method of low sodium chloride electrolytic water and manufacturing device thereof
JP2000226680A (en) Production of sterilizing electrolytic water and device therefor
CN100343179C (en) Method for producing mixed electrolyzed water
JPH0673675B2 (en) Method for producing sterilized water containing hypochlorous acid by electrolysis
JP4181170B2 (en) Drinking electrolyzed water and method for producing the same
JPH0938655A (en) Electrolytic hypochlorous bactericide water containing ozone, its production and device therefor
KR100956872B1 (en) High Efficient method for manufacturing of aqueous chlorine dioxide using un-divided electrochemical cell
CN101391832B (en) Method for preparing acidic high oxidation water
JPH11319831A (en) Production of electrolytic function water and its apparatus
JP2005152867A (en) Electrolytic water manufacturing means
RU2702650C1 (en) Method of electrochemical treatment of water and device for its implementation
JP2605642B2 (en) Electrolytic ionic water generating apparatus and electrolytic ionic water generating method
KR100658409B1 (en) Electrolyzed water of anode side and process for production thereof
JP2000070947A (en) Electrolyzed water forming device
CN116732535A (en) Method and system for producing hypochlorous acid water by reverse-electrode electrolysis of sodium chloride
KR20200089325A (en) Method and apparatus for oxidant concentration control
TW202016026A (en) Method and apparatus for forming sterilized water by electrolysis

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2006163085

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10547405

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004716791

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004716791

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10547405

Country of ref document: US