JP2005334806A - Gas refining apparatus, power generating system and power generating method - Google Patents

Gas refining apparatus, power generating system and power generating method Download PDF

Info

Publication number
JP2005334806A
JP2005334806A JP2004159226A JP2004159226A JP2005334806A JP 2005334806 A JP2005334806 A JP 2005334806A JP 2004159226 A JP2004159226 A JP 2004159226A JP 2004159226 A JP2004159226 A JP 2004159226A JP 2005334806 A JP2005334806 A JP 2005334806A
Authority
JP
Japan
Prior art keywords
gas
liquid
absorption
tower
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004159226A
Other languages
Japanese (ja)
Inventor
Yutaka Mori
豊 森
Kazuo Kinoshita
和夫 木下
Noboru Makita
昇 牧田
Masao Murai
正夫 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2004159226A priority Critical patent/JP2005334806A/en
Publication of JP2005334806A publication Critical patent/JP2005334806A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Gas Separation By Absorption (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas refining apparatus and a power generating system with a small fluctuation of methane concentration by reducing the fluctuation width of a supply gas pressure of a refined gas and maintaining the liquid seal of a supply tower. <P>SOLUTION: In the gas refining apparatus 200 which obtains the refined gas 9 by removing an acid gas contained in a raw digestion gas 1 or in a fuel cell power generating system 100 employing the gas refining apparatus 200, first, a bypass piping 105 returning to an inlet piping 104 is installed on an outlet piping 8 for the refined gas 9, and the output of a gas blower 2 for blowing the raw gas 1 into an absorption tower 7 is controlled by detecting the supply gas pressure of the refined gas 9. Second, a refluent flow amount is adjusted by detecting the level of an absorption liquid 4 stored in the absorption tower 7 and by providing an automatic opening/closing valve 116 on a bypass refluent passage 114. Third, when starting up a fuel cell 103, a DEA (diethanolamine) aqueous solution 44 in a regeneration tower 40 is kept at the normal temperature and the DEA aqueous solution 44 is heated using the exhaust heat generated in conjunction with the power generation in the fuel cell 103 so that the methane concentration in the refined digestion gas 9 is controlled to a nearly constant value. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ガス精製装置、発電システム及び発電方法に関し、特に吸収装置と再生装置を使用し、塩基性の吸収液を循環使用して消化ガス等に含まれる炭酸ガス等の酸性ガスを除去するガス精製装置、そのガス精製装置を用いた発電システム及び発電方法に関する。   The present invention relates to a gas purification device, a power generation system, and a power generation method, and in particular, an absorption device and a regeneration device are used, and acidic gas such as carbon dioxide contained in digestion gas is removed by using a basic absorption liquid. The present invention relates to a gas purification device, a power generation system and a power generation method using the gas purification device.

図11に従来のガス精製製装置210を示す。原料ガス1を吸収塔7へ導入し、吸収液をスプレーノズル5から流下させ、原料ガス1と充填材で構成する対向流部6で気液接触させ炭酸ガスを吸収させる。炭酸ガスを吸収した吸収液は吸収塔7の底部に位置する液溜3に貯留し、液溜3に溜めた吸収液4は、ポンプ10により吸収液熱交換器11と出口配管14を経由して再生塔22の上部へ液送される。この吸収液熱交換器11は温水12を温水配管15に通すことにより吸収液を加熱するように構成されている。再生ガス31を、ガスブロワ32を挿入した配管33を介して再生塔22へ導入し、吸収液をスプレーノズル16から流下させ、再生ガス31と充填材で構成する対向流部19で気液接触させ炭酸ガスを放出させる。液溜21に溜めた吸収液を、ポンプ24により液配管23、25、27、及び熱交換器26を経由して吸収塔7の上部へ液送し、循環させて再使用するように構成されている。この熱交換器26は冷却水28を冷却水配管29、30に通すことにより吸収液を冷却するように構成されている。   FIG. 11 shows a conventional gas purification apparatus 210. The raw material gas 1 is introduced into the absorption tower 7, the absorption liquid is caused to flow down from the spray nozzle 5, and gas-liquid contact is made at the counterflow portion 6 formed of the raw material gas 1 and the filler to absorb the carbon dioxide gas. The absorbing liquid that has absorbed the carbon dioxide gas is stored in the liquid reservoir 3 located at the bottom of the absorption tower 7, and the absorbing liquid 4 stored in the liquid reservoir 3 passes through the absorbing liquid heat exchanger 11 and the outlet pipe 14 by the pump 10. Then, the liquid is sent to the upper part of the regeneration tower 22. The absorption liquid heat exchanger 11 is configured to heat the absorption liquid by passing warm water 12 through a warm water pipe 15. The regeneration gas 31 is introduced into the regeneration tower 22 through a pipe 33 in which a gas blower 32 is inserted, and the absorbing liquid is caused to flow down from the spray nozzle 16 and is brought into gas-liquid contact with the counterflow portion 19 composed of the regeneration gas 31 and the filler. Release carbon dioxide. The absorption liquid stored in the liquid reservoir 21 is sent to the upper part of the absorption tower 7 via the liquid pipes 23, 25, 27 and the heat exchanger 26 by the pump 24, circulated and reused. ing. The heat exchanger 26 is configured to cool the absorbing liquid by passing the cooling water 28 through the cooling water pipes 29 and 30.

このようなガス精製装置210は、吸収液の再生処理を行うが、これは吸熱反応であり化学平衡論的に吸収液の温度が高いほど再生効率が向上するため、温水12若しくは水蒸気を吸収液熱交換器11に供給し、吸収液温度を上昇させている。例えば、吸収液熱交換器11の出口配管14の吸収液温度は通常70℃から120℃に調整されている。   Such a gas purification apparatus 210 performs a regeneration process of the absorption liquid. This is an endothermic reaction, and the higher the temperature of the absorption liquid in terms of chemical equilibrium, the higher the regeneration efficiency. It supplies to the heat exchanger 11 and raises absorption liquid temperature. For example, the absorption liquid temperature of the outlet pipe 14 of the absorption liquid heat exchanger 11 is normally adjusted from 70 ° C to 120 ° C.

一方、原料ガス1の精製処理は、発熱反応であり吸収液温度が低いほど吸収効率が向上するため、吸収塔7へ液送する吸収液は熱交換器26に供給される冷却水28により冷却される。例えば、熱交換器26の出口配管27の吸収液温度は通常30℃から40℃に調整されている。   On the other hand, the purification treatment of the raw material gas 1 is an exothermic reaction, and the absorption efficiency is improved as the absorption liquid temperature is lower. Therefore, the absorption liquid fed to the absorption tower 7 is cooled by the cooling water 28 supplied to the heat exchanger 26. Is done. For example, the absorption liquid temperature of the outlet pipe 27 of the heat exchanger 26 is normally adjusted from 30 ° C. to 40 ° C.

ガス精製装置210は、上述したように吸収液を吸収塔7と再生塔22との間で循環させるために2台のポンプ10、24が必要であり、吸収塔7と再生塔22の双方に溜める吸収液の液位制御に複雑なコントロールを要していた。   As described above, the gas purification apparatus 210 requires two pumps 10 and 24 to circulate the absorption liquid between the absorption tower 7 and the regeneration tower 22, and both the absorption tower 7 and the regeneration tower 22 have both. Complicated control was required to control the liquid level of the absorbed liquid.

そこで、発明者達は、吸収液を循環させる揚水装置の台数を減少でき、吸収液の液位制御の安定性に優れたガス精製装置、及びそのガス精製装置を用いた発電システムを提案した(特許文献1参照)。   Therefore, the inventors have proposed a gas purification device that can reduce the number of pumping devices that circulate the absorption liquid and that is excellent in the stability of liquid level control of the absorption liquid, and a power generation system using the gas purification apparatus ( Patent Document 1).

上記提案発明によれば、ガス精製装置(図1参照)は、吸収塔では、塩基性の吸収液S1を流下させて、流下する吸収液S1に対して原料ガスM1を流し、吸収液S1に酸性ガスを吸収させ、吸収塔7から流出する吸収液を水頭差により再生塔40に流入させ、再生塔40では、吸収塔7から流入する吸収液を溜め、溜められた吸収液44に再生ガス31を吹き込み、酸性ガスを吸収した吸収液を再生し、再生塔40から吸収塔7へポンプ24などで液送して、吸収液を循環させる。   According to the proposed invention, the gas purifier (see FIG. 1) is configured to cause the basic absorption liquid S1 to flow down in the absorption tower, and the raw material gas M1 to flow into the flowing-down absorption liquid S1 to the absorption liquid S1. The acidic gas is absorbed, and the absorption liquid flowing out from the absorption tower 7 is caused to flow into the regeneration tower 40 due to a water head difference. In the regeneration tower 40, the absorption liquid flowing in from the absorption tower 7 is stored, 31 is blown to regenerate the absorption liquid that has absorbed the acid gas, and the liquid is sent from the regeneration tower 40 to the absorption tower 7 by a pump 24 or the like to circulate the absorption liquid.

このように構成すると、吸収塔7から流出する吸収液4を、水頭差60により再生塔40へ自然流入させることができるので、吸収液の揚水装置の個数を減少させ、吸収液の液位制御の安定性に優れたガス精製装置を提供することが可能となる。
特開1003−327981号公報(段落0021〜0095、図10〜図15)
If comprised in this way, since the absorption liquid 4 which flows out from the absorption tower 7 can be naturally flowed into the regeneration tower 40 by the head difference 60, the number of pumping apparatuses of absorption liquid can be reduced, and the liquid level control of an absorption liquid It is possible to provide a gas purification apparatus having excellent stability.
JP 1003-327981 A (paragraphs 0021 to 0095, FIGS. 10 to 15)

しかしながら、第1に、上記提案発明だけでなく図11の従来例においても、ガス精製装置とガス消費設備としての燃料電池とを組み合わせた発電システムにおいて、燃料電池のガス消費量はその運転状態に応じて頻繁に増減する場合があり、消化ガス供給ブロワの出力を一定として運転を行い、消化ガス精製装置と燃料電池とを直結した場合、その運転状態に応じて燃料電池への精製ガスの圧力が変動することがある。更に燃料電池が急に運転停止に至った場合、供給ブロワの停止に至るまでに精製ガスの圧力が急増することがある。   However, first, not only in the proposed invention but also in the conventional example of FIG. 11, in a power generation system that combines a gas purification device and a fuel cell as a gas consuming facility, the fuel cell gas consumption is in its operating state. Depending on the operating conditions, the pressure of the refined gas to the fuel cell may be increased or decreased frequently. May fluctuate. Furthermore, if the fuel cell suddenly stops operating, the pressure of the purified gas may increase rapidly before the supply blower stops.

第2に、上記提案発明は、吸収塔から再生塔への返流に自然流下方式を採用する。また、装置の構成上、吸収塔に吸収液による液封がなければ、吸収塔に導入された消化ガスは再生塔へと流れていき、そのまま再生塔の排気系統を通って外部へと流出してしまう。図11の従来の方式では吸収塔と再生塔の間に手動弁(図示しない)を設けて、吸収塔に液封が確保できるよう調整していた。しかしながら、提案発明の方式では、精製ガスの圧力変動や再生塔の液位変動などの影響により、吸収塔側と再生塔側の圧力バランスが崩れてしまい、長時間運転時などに液封が保てなる場合や液面が上昇しすぎる場合が生じ得る。   Secondly, the proposed invention employs a natural flow-down system for returning from the absorption tower to the regeneration tower. In addition, if the absorption tower is not liquid-sealed with the absorption liquid due to the structure of the apparatus, the digestion gas introduced into the absorption tower flows to the regeneration tower and flows out to the outside through the exhaust system of the regeneration tower as it is. End up. In the conventional system shown in FIG. 11, a manual valve (not shown) is provided between the absorption tower and the regeneration tower so as to ensure a liquid seal in the absorption tower. However, in the method of the proposed invention, the pressure balance between the absorption tower side and the regeneration tower side is lost due to the effect of fluctuations in the pressure of the purified gas and the liquid level in the regeneration tower, and the liquid seal is maintained during long-time operation. Or the liquid level may rise too much.

第3に、上記提案発明だけでなく図11の従来の運転方法においても、再生塔に起動用ヒータを具備し、燃料電池を起動する前に再生塔内の吸収液を所定の温度まで加熱しておき、燃料電池の起動初期の段階から吸収液の吸収性能を高くする運転制御を実施していた。このため、特に、吸収液としてジエタノールアミン水溶液を用いる場合、燃料電池起動時で燃料消費が少ない段階においてガス精製装置の見かけ上の精製性能が良くなり、起動時における精製メタン濃度が計画値よりも高くなっていた。   Third, not only the above-described proposed invention but also the conventional operation method of FIG. 11 is provided with a starter heater in the regeneration tower, and the absorbent in the regeneration tower is heated to a predetermined temperature before starting the fuel cell. In addition, the operation control for increasing the absorption performance of the absorbing liquid has been performed from the early stage of starting the fuel cell. For this reason, especially when an aqueous solution of diethanolamine is used as the absorbing solution, the apparent purification performance of the gas purification device is improved at the stage where fuel consumption is low at the start of the fuel cell, and the concentration of purified methane at startup is higher than the planned value. It was.

本発明は、第1に、燃料電池などのガス消費設備のガス消費量の変動にともなう精製ガスの供給ガス圧の変動幅を小さくし、ガス精製装置及びガス消費設備の安定した運転やガス消費設備の安定した起動を可能とする、第2に、精製ガスの供給ガス圧変動や再生塔の液位変動などの影響により、吸収塔側と再生塔側の圧力バランスが崩れた場合でも、吸収塔の液封を保つことができる、第3に、燃料電池起動時及び起動後において、メタン濃度の変動が少なく、安定した発熱量をもった精製ガスを供給できるようにすることを目的とする。   The present invention firstly reduces the fluctuation range of the supply gas pressure of the purified gas accompanying the fluctuation of the gas consumption amount of the gas consuming equipment such as the fuel cell, so that the stable operation and gas consumption of the gas purifying apparatus and the gas consuming equipment are achieved. Secondly, it enables stable start-up of equipment. Second, even if the pressure balance between the absorption tower side and the regeneration tower side is lost due to fluctuations in the supply gas pressure of the refined gas and the liquid level fluctuation in the regeneration tower, absorption is performed. Thirdly, it is possible to keep the liquid seal of the tower. Thirdly, the purpose is to supply purified gas having a stable calorific value with little fluctuation in methane concentration at and after the start of the fuel cell. .

上記目的を達成するために、請求項1に係る発明によるガス精製装置は、例えば図1及び図4に示すように、原料ガス1中に含まれる酸性ガスを除去して精製ガス9を得るガス精製装置200において、流下する塩基性の吸収液S1に対して原料ガスM1を流すことにより、吸収液に酸性ガスを吸収させ、酸性ガスを吸収した吸収液を流出させる吸収塔7と、吸収塔7から流出する吸収液を溜め、溜められた吸収液44に再生ガス31を吹き込むことにより、酸性ガスを吸収した吸収液を再生する再生塔40と、吸収塔7と再生塔40との間で吸収液を循環させる循環経路23,24,25,42と、精製ガス9の吸収塔7からガス消費設備103への出口配管8と、原料ガス1を吸収塔7に送風するガスブロワ2を途中に挿入した入口配管104と、精製ガス9のガス消費設備103への供給圧力を検知するガス圧検知手段107と、ガス圧検知手段107の出力信号に基きガスブロワ2の出力を制御する供給ガス圧制御手段108とを備える。   In order to achieve the above object, the gas purification apparatus according to the first aspect of the present invention is a gas for obtaining a purified gas 9 by removing an acidic gas contained in a raw material gas 1 as shown in FIGS. In the refining apparatus 200, by flowing the raw material gas M1 with respect to the basic absorbing liquid S1 that flows down, the absorbing tower 7 absorbs the acidic gas and causes the absorbing liquid that has absorbed the acidic gas to flow out, and the absorbing tower Between the absorption tower 7 and the regeneration tower 40, which regenerates the absorption liquid that has absorbed the acidic gas by blowing the regeneration gas 31 into the stored absorption liquid 44. The circulation paths 23, 24, 25, and 42 for circulating the absorption liquid, the outlet pipe 8 of the purified gas 9 from the absorption tower 7 to the gas consuming equipment 103, and the gas blower 2 for blowing the raw material gas 1 to the absorption tower 7 are provided on the way. Inserted inlet piping 04, a gas pressure detection means 107 for detecting the supply pressure of the purified gas 9 to the gas consumption facility 103, and a supply gas pressure control means 108 for controlling the output of the gas blower 2 based on the output signal of the gas pressure detection means 107. Prepare.

このように構成すると、燃料電池などのガス消費設備103のガス消費量の変動にともなう精製ガス9の供給ガス圧の変動幅を小さくでき、ガス精製装置200及びガス消費設備103の安定した運転やガス消費設備103の安定した起動が可能となる。また、精製ガス9の供給圧力は吸収塔7内の吸収液の液位に影響するので、吸収塔7内の吸収液の液位の安定した制御が可能となる。   If comprised in this way, the fluctuation | variation range of the supply gas pressure of the refined gas 9 with the fluctuation | variation of the gas consumption of gas consumption equipment 103, such as a fuel cell, can be made small, and the stable operation | movement of the gas purification apparatus 200 and the gas consumption equipment 103 can be performed. Stable start-up of the gas consuming equipment 103 is possible. Further, since the supply pressure of the purified gas 9 affects the liquid level of the absorption liquid in the absorption tower 7, the liquid level of the absorption liquid in the absorption tower 7 can be stably controlled.

また、請求項2に係る発明は、請求項1に記載のガス精製装置において、例えば図4に示すように、出口配管8から分岐して取り出した精製ガスを入口配管104に戻すバイパス配管105と、バイパス配管105の途中に開閉弁106を設け、ガス圧検知手段107が精製ガス9のガス消費設備103への供給圧力の急増を検知した場合に、供給ガス圧制御手段108は開閉弁106を開く。   Further, the invention according to claim 2 is the gas purification apparatus according to claim 1, wherein, for example, as shown in FIG. 4, the bypass pipe 105 returns the purified gas branched and taken out from the outlet pipe 8 to the inlet pipe 104. The on-off valve 106 is provided in the middle of the bypass pipe 105, and when the gas pressure detecting means 107 detects a sudden increase in the supply pressure of the purified gas 9 to the gas consuming equipment 103, the supply gas pressure control means 108 sets the on-off valve 106. open.

このように構成すると、燃料電池103などのガス消費設備の停止時等に生じ得る、精製ガス供給圧力の急激な増加を抑制でき、ガス配管系に使用する機器の劣化を防止できる。   If comprised in this way, the rapid increase of refined gas supply pressure which may arise at the time of the stop of gas consumption facilities, such as the fuel cell 103, can be suppressed, and deterioration of the apparatus used for a gas piping system can be prevented.

また、請求項3に係る発明は、請求項1又は請求項2に記載のガス精製装置において、例えば図1に示すように、循環経路は、吸収塔7から流出する吸収液を、水頭差により再生塔40に流入させる水頭差流路46を有する。   Further, the invention according to claim 3 is the gas purification device according to claim 1 or 2, wherein, for example, as shown in FIG. A water head differential flow path 46 that flows into the regeneration tower 40 is provided.

ここにおいて、水頭差には水溶液の液位差に限られず、液体間の液位差を含むものとするこのように構成すると、吸収工程を経た吸収液を再生塔へ自然流下させ、吸収液を循環させる揚水装置の台数を減少させて、簡易で且つ高効率のガス精製装置を提供できる。   Here, the water head difference is not limited to the liquid level difference of the aqueous solution, and includes the liquid level difference between the liquids. When configured in this way, the absorption liquid that has undergone the absorption process is allowed to flow naturally down to the regeneration tower and the absorption liquid is circulated. A simple and highly efficient gas purification device can be provided by reducing the number of pumping devices.

上記目的を達成するために、請求項4に係る発明によるガス精製装置は、例えば図1及び図6に示すように、原料ガス1中に含まれる酸性ガスを除去して精製ガス9を得るガス精製装置200において、流下する塩基性の吸収液S1に対して原料ガスM1を流すことにより、吸収液S1に酸性ガスを吸収させ、酸性ガスを吸収した吸収液を流出させる吸収塔7と、吸収塔7から流入する吸収液を溜め、溜められた吸収液44に再生ガス31を吹き込むことにより、酸性ガスを吸収した吸収液を再生する再生塔40と、吸収塔7と再生塔40との間で吸収液を循環させる循環経路23,24,25,42とを備え、循環経路42に、吸収塔7に溜められた吸収液4の液位を検出する液位検出器111と、吸収塔7から再生塔40へ流下する返流路42にバイパス返流路114を設け、バイパス返流路114に、液位検出器111の信号に基いて返流流量を調整する自動開閉弁116を設ける。   In order to achieve the above object, the gas purifier according to the invention of claim 4 is a gas for obtaining purified gas 9 by removing acidic gas contained in source gas 1 as shown in FIGS. 1 and 6, for example. In the purifier 200, by flowing the raw material gas M1 with respect to the flowing down basic absorption liquid S1, the absorption tower 7 absorbs the acidic gas into the absorption liquid S1 and flows out the absorption liquid that has absorbed the acidic gas, and the absorption The absorption liquid flowing in from the tower 7 is stored, and the regeneration gas 31 is blown into the stored absorption liquid 44 to regenerate the absorption liquid that has absorbed the acid gas, and between the absorption tower 7 and the regeneration tower 40. , And a liquid level detector 111 for detecting the liquid level of the absorbent 4 stored in the absorption tower 7 in the circulation path 42, and the absorption tower 7. Returning to the regeneration tower 40 from 42 the bypass return flow passage 114 provided in the bypass return flow passage 114, providing the automatic opening and closing valve 116 to adjust the return flow rate based on the signal of the liquid level detector 111.

このように構成すると、精製ガスの供給ガス圧変動や再生塔の液位変動などの影響により、吸収塔側と再生塔側の圧力バランスが崩れた場合でも、吸収液の返流流量を調整することにより吸収塔の液封を保つことができる。また、自動開閉弁116の取り付け位置をバイパス返流路114としたことにより、頻繁な開/閉を防止する事ができ自動開閉弁116の寿命を延ばすことができる。   With this configuration, the return flow rate of the absorbing liquid is adjusted even when the pressure balance between the absorption tower side and the regeneration tower side is disrupted due to fluctuations in the supply gas pressure of the purified gas and the liquid level fluctuation in the regeneration tower. Thus, the liquid seal of the absorption tower can be maintained. Further, since the attachment position of the automatic opening / closing valve 116 is the bypass return flow path 114, frequent opening / closing can be prevented and the life of the automatic opening / closing valve 116 can be extended.

また、請求項5に係る発明は、請求項1乃至請求項4のいずれか1項に記載のガス精製装置において、例えば図1に示すように、循環経路23,24,25,42は、再生塔40で再生された吸収液44をそのまま吸収塔7に供給する。   Further, the invention according to claim 5 is the gas purification device according to any one of claims 1 to 4, wherein, for example, as shown in FIG. 1, the circulation paths 23, 24, 25, and 42 are regenerated. The absorption liquid 44 regenerated in the tower 40 is supplied to the absorption tower 7 as it is.

ここで、吸収液44をそのままとは、再生塔40と吸収塔7との間に例えば水冷熱交換器のような積極的に温度を変動させる装置を設置せずに、吸収液44を再生塔40から吸収塔7へ直接的に液送する態様をいう。吸収液温度が大気温度より高い場合には、循環経路23,24,25,42の中で液送される吸収液44が液配管内で自然放熱するような態様をいう。   Here, the absorption liquid 44 as it is means that the absorption liquid 44 is not directly installed between the regeneration tower 40 and the absorption tower 7 without, for example, a device that actively changes the temperature such as a water-cooled heat exchanger. A mode in which the liquid is directly fed from 40 to the absorption tower 7. When the absorption liquid temperature is higher than the atmospheric temperature, the absorption liquid 44 fed in the circulation paths 23, 24, 25, and 42 naturally dissipates heat in the liquid pipe.

このように構成すると、循環経路23,24,25,42に吸収液44を冷却する冷却源を追加する必要がなく、システム構成を簡易化できる。   With this configuration, it is not necessary to add a cooling source for cooling the absorbent 44 to the circulation paths 23, 24, 25, and 42, and the system configuration can be simplified.

上記目的を達成するために、請求項6に係る発明による発電システムは、例えば図4に示すように、請求項1乃至請求項5のいずれか1項に記載のガス精製装置200と、ガス精製装置200で精製された精製ガス9を燃料とし、燃料と酸化剤との電気化学的反応により発電する燃料電池103とを備える。   In order to achieve the above object, a power generation system according to a sixth aspect of the present invention includes, for example, a gas purification device 200 according to any one of the first to fifth aspects and a gas purification unit as shown in FIG. A fuel cell 103 that uses the purified gas 9 purified by the apparatus 200 as a fuel and generates electric power by an electrochemical reaction between the fuel and an oxidant is provided.

このように構成すると、請求項1乃至請求項5のいずれか1項に記載のガス精製装置で精製された精製ガス9をを利用した発電が可能となる。また、燃料電池103はガス精製装置で精製されたガスを脱炭酸処理を施す手間が省け、高効率の燃料電池発電ができる。さらに、燃料電池103で発生した排熱で吸収液44を加熱する熱交換器を備えれば、排熱を回収し有効利用することができる。   If comprised in this way, the electric power generation using the refined gas 9 refine | purified with the gas purification apparatus of any one of Claim 1 thru | or 5 will be attained. In addition, the fuel cell 103 saves time and effort to decarboxylate the gas purified by the gas purifier, and can perform highly efficient fuel cell power generation. Furthermore, if a heat exchanger that heats the absorbing liquid 44 with exhaust heat generated in the fuel cell 103 is provided, the exhaust heat can be recovered and effectively used.

上記目的を達成するために、請求項7に係る発明による発電システムは、例えば図1、図4及び図8に示すように、原料ガス1中に含まれる酸性ガスを除去して精製ガス9を得るガス精製装置200と、ガス精製装置200で精製された精製ガス9を燃料とし、燃料と酸化剤との電気化学的反応により発電する燃料電池103とを備える発電システム100であって、ガス精製装置200は、流下する塩基性の吸収液S1としてのジエタノールアミン(以下、DEAという。)水溶液に対して原料ガスM1を流すことにより、吸収液S1に酸性ガスを吸収させ、酸性ガスを吸収した吸収液を流出させる吸収塔7と、吸収塔7から流入する吸収液を溜め、溜められた吸収液44に再生ガス31を吹き込むことにより、酸性ガスを吸収した吸収液を再生する再生塔40と、吸収塔7と再生塔40との間で吸収液を循環させる循環経路23,24,25,42と、燃料電池103の起動時には、再生塔40内の吸収液44を常温に保持し、燃料電池103の発電に伴って生じる排熱を利用して吸収液44の加熱を行ない、精製ガス9のメタン濃度をほぼ一定に制御するメタン濃度制御手段とを備える。   In order to achieve the above object, the power generation system according to the invention according to claim 7 removes the acidic gas contained in the raw material gas 1 and removes the purified gas 9 as shown in FIGS. 1, 4 and 8, for example. A power generation system 100 comprising: a gas purification device 200 to be obtained; and a fuel cell 103 that uses the purified gas 9 purified by the gas purification device 200 as a fuel and generates electricity by an electrochemical reaction between the fuel and an oxidant. The apparatus 200 absorbs the acidic gas by absorbing the acidic gas by flowing the raw material gas M1 into the diethanolamine (hereinafter referred to as DEA) aqueous solution as the basic absorbing liquid S1 that flows down. Absorption tower 7 for letting out the liquid and absorption liquid flowing in from absorption tower 7 are stored, and regeneration gas 31 is blown into the stored absorption liquid 44 to absorb the acid gas. At the time of start-up of the regeneration tower 40 to regenerate, the circulation paths 23, 24, 25, and 42 for circulating the absorbent between the absorption tower 7 and the regeneration tower 40, and the fuel cell 103, the absorbent 44 in the regeneration tower 40 is removed. There is provided a methane concentration control means for maintaining the room temperature and heating the absorbent 44 using exhaust heat generated by the power generation of the fuel cell 103 to control the methane concentration of the purified gas 9 to be substantially constant.

このように構成すると、起動用の電気ヒータを省略することができ、ガス精製装置を小型化でき、運転コストを低減化ができる。また、燃料電池起動時において、メタン濃度の変動が少なく、安定した発熱量をもった消化ガスを供給できる。また、燃料電池起動後は燃料電池の排熱を利用して再生塔の温度を維持でき、エネルギー消費が少なく、運転コストも低減できる。   If comprised in this way, the electric heater for starting can be abbreviate | omitted, a gas purification apparatus can be reduced in size, and an operating cost can be reduced. Further, when the fuel cell is started, the digestion gas having a stable calorific value with little fluctuation in the methane concentration can be supplied. In addition, after the fuel cell is started, the temperature of the regeneration tower can be maintained by using the exhaust heat of the fuel cell, energy consumption is reduced, and the operation cost can be reduced.

また、請求項8に係る発明は、請求項6又は請求項7に記載の発電システムにおいて、前記燃料電池が固体高分子型燃料電池である。   According to an eighth aspect of the present invention, in the power generation system according to the sixth or seventh aspect, the fuel cell is a polymer electrolyte fuel cell.

このように構成すると、固体高分子型燃料電池は、室温から100℃近くまでの比較的低い温度で作動し、また、高い出力密度が得られるので、起動性に優れ、小型化が可能である。また、幅広い応用が期待される。   When configured in this manner, the polymer electrolyte fuel cell operates at a relatively low temperature from room temperature to nearly 100 ° C., and can obtain a high output density, so that it has excellent startability and can be miniaturized. . A wide range of applications is also expected.

上記目的を達成するために、請求項9に係る発明による発電方法は、例えば図3及び図9に示すように、原料ガス1中に含まれる酸性ガスを除去して精製ガス9を得るガス精製工程と、前記ガス精製工程で精製された精製ガス9を燃料とし、燃料と酸化剤との電気化学的反応により燃料電池103にて発電する発電工程とを備える発電方法において、ガス精製工程は、吸収液としてDEA水溶液を用い、流下する塩基性の吸収液S1に対して原料ガスM1を流し、吸収液S1に酸性ガスを吸収させる吸収工程と、酸性ガスを吸収した吸収液に再生ガス31を吹き込み、吸収液を再生する再生工程と、吸収工程と再生工程との間で、吸収液を循環させる循環工程とを備え、発電工程は、燃料電池103の起動時には、再生塔40内の吸収液44を常温に保持し(ステップS301)、燃料電池103の発電に伴って生じる排熱を利用して吸収液44の加熱を行ない(ステップS302、ステップS303)、精製ガス9のメタン濃度をほぼ一定に制御する(ステップS304)工程を備える。   In order to achieve the above object, the power generation method according to the invention according to claim 9 is a gas purification method for obtaining a purified gas 9 by removing acidic gas contained in the raw material gas 1 as shown in FIGS. 3 and 9, for example. In the power generation method comprising: a process and a power generation process in which the refined gas 9 purified in the gas purification process is used as a fuel, and the fuel cell 103 generates power by an electrochemical reaction between the fuel and the oxidant, the gas purification process includes: The DEA aqueous solution is used as the absorbing liquid, the raw material gas M1 is passed through the flowing basic absorbing liquid S1, and the absorbing gas S1 absorbs the acid gas, and the regeneration gas 31 is absorbed into the absorbing liquid that has absorbed the acidic gas. And a regeneration step for regenerating the absorption liquid and a circulation step for circulating the absorption liquid between the absorption step and the regeneration step. The power generation step is performed when the fuel cell 103 is started up. 44 The temperature is kept at room temperature (step S301), and the absorption liquid 44 is heated using exhaust heat generated by the power generation of the fuel cell 103 (step S302, step S303), and the methane concentration of the purified gas 9 is controlled to be substantially constant. (Step S304) is provided.

このように構成すると、起動用の電気ヒータを省略することができ、ガス精製装置を小型化でき、運転コストを低減化できる。また、燃料電池起動時において、メタン濃度の変動が少なく、安定した発熱量をもった消化ガスを供給できる。また、燃料電池起動後は燃料電池の排熱を利用して再生塔の温度を維持でき、エネルギー消費が少なく、運転コストも低減できる。   If comprised in this way, the electric heater for starting can be abbreviate | omitted, a gas purification apparatus can be reduced in size, and operating cost can be reduced. Further, when the fuel cell is started, the digestion gas having a stable calorific value with little fluctuation in the methane concentration can be supplied. In addition, after the fuel cell is started, the temperature of the regeneration tower can be maintained by using the exhaust heat of the fuel cell, energy consumption is reduced, and the operation cost can be reduced.

以上のように本発明によれば、第1に、燃料電池などのガス消費設備のガス消費量の変動にともなう精製ガスの供給ガス圧の変動幅を小さくでき、ガス精製装置及びガス消費設備の安定した運転やガス消費設備の安定した起動が可能になる。   As described above, according to the present invention, firstly, the fluctuation range of the supply gas pressure of the purified gas accompanying the fluctuation of the gas consumption of the gas consuming equipment such as the fuel cell can be reduced. Stable operation and stable startup of gas consuming equipment are possible.

第2に、精製ガスの供給ガス圧変動や再生塔の液位変動などの影響により、吸収塔側と再生塔側の圧力バランスが崩れた場合でも、吸収塔の液封を保つことができる。   Second, even when the pressure balance between the absorption tower side and the regeneration tower side is lost due to fluctuations in the supply gas pressure of the purified gas and the liquid level fluctuation in the regeneration tower, the liquid sealing of the absorption tower can be maintained.

第3に、燃料電池起動時及び起動後において、メタン濃度の変動が少なく、安定した発熱量をもった精製ガスを供給できるようになる。   Thirdly, the purified gas having a stable calorific value can be supplied with little fluctuation in the methane concentration at and after the start of the fuel cell.

以下、本発明の実施の形態について、図面を参照して説明する。なお、各図において互いに同一あるいは相当する部材には同一符号または類似符号を付し、重複した説明は省略する。以下の実施の形態では、精製対象の被処理ガスに消化ガスを用い、循環経路に水頭差流路を用い、発電は精製ガスを燃料とする燃料電池を用いる例について説明する。   Embodiments of the present invention will be described below with reference to the drawings. In addition, in each figure, the same code | symbol or a similar code | symbol is attached | subjected to the mutually same or equivalent member, and the overlapping description is abbreviate | omitted. In the following embodiment, an example will be described in which a digestion gas is used as a gas to be purified, a head differential flow path is used as a circulation path, and a fuel cell using purified gas as fuel is used for power generation.

図1にガス精製装置200の主要部の構成例を示す。図1を参照して、本発明による第1の実施の形態であるガス精製装置としての消化ガス精製装置200を説明する。図1には主要部として、吸収塔7、再生塔40、循環経路23,24,25,42を示す。   FIG. 1 shows a configuration example of a main part of the gas purification device 200. With reference to FIG. 1, a digestion gas purification apparatus 200 as a gas purification apparatus according to a first embodiment of the present invention will be described. FIG. 1 shows an absorption tower 7, a regeneration tower 40, and circulation paths 23, 24, 25, and 42 as main parts.

消化ガス精製装置200は、消化ガス源から酸性ガスとしての炭酸ガス等を含む消化ガスの供給を受ける。消化ガスとは、バイオマスや有機性廃棄物等の発酵によって得られるメタンガス等を主成分とするガスである。バイオマスとは、藻類、稲がら、砂糖きび粕、アルコール発酵粕等であり、有機性廃棄物とは、食品製造廃液、畜産排水や下水処理等で発生する余剰汚泥等である。   The digestion gas purification apparatus 200 is supplied with a digestion gas containing carbon dioxide gas or the like as an acid gas from a digestion gas source. Digestion gas is a gas mainly composed of methane gas or the like obtained by fermentation of biomass, organic waste or the like. Biomass is algae, rice paddy, sugar cane lees, alcohol fermented lees, etc., and organic waste is surplus sludge, etc. generated in food manufacturing wastewater, livestock wastewater, sewage treatment, and the like.

有機物のメタン発酵によって得られる消化ガスは、有機物の種類やメタン発酵条件によって異なるが、一般に主成分としてメタンが50〜70%、二酸化炭素が30〜50%、水素が0〜2%、窒素が0〜2%含まれ、また、微量成分として硫化水素及び塩化水素が数十〜数百ppmの範囲において含まれている。一方、例えば水素製造工程に供給する精製ガス9としては、硫化水素や炭酸ガス等の酸性ガスの濃度を低くすることが要求される。特に炭酸ガスは所定の濃度以下とすることが要求される。   Digestion gas obtained by methane fermentation of organic matter varies depending on the kind of organic matter and methane fermentation conditions, but generally 50 to 70% methane, 30 to 50% carbon dioxide, 0 to 2% hydrogen, and 0 to 2% nitrogen as main components 0 to 2% is contained, and hydrogen sulfide and hydrogen chloride are contained in the range of several tens to several hundred ppm as trace components. On the other hand, for example, the purified gas 9 supplied to the hydrogen production process is required to reduce the concentration of acidic gas such as hydrogen sulfide or carbon dioxide. In particular, the carbon dioxide gas is required to be a predetermined concentration or less.

消化ガス精製装置200は、ガスブロワ2を挿入配置する原料ガス配管で消化ガス源と接続された吸収装置としての吸収塔7を備える。吸収塔7は円筒状の容器として構成された塔であり、地上に円筒の中心軸を鉛直方向にして設置されている。円筒状の容器の上下方向中央部には気液接触層6が設けられ、その上方の空間には、塩基性の吸収液S1を気液接触層6の上部に散布するスプレーノズル5が設置され、吸収液S1は気液接触層6を流下して、気液接触層6の下部から上昇する原料ガスとしての原料消化ガスM1と接触する。また吸収塔7の円筒状容器の底部は、塩基性吸収液4を溜める液溜としてのタンク3となっている。   The digestion gas purification apparatus 200 includes an absorption tower 7 as an absorption apparatus connected to a digestion gas source through a raw material gas pipe into which the gas blower 2 is inserted. The absorption tower 7 is a tower configured as a cylindrical container, and is installed on the ground with the central axis of the cylinder in the vertical direction. A gas-liquid contact layer 6 is provided at the center of the cylindrical container in the vertical direction, and a spray nozzle 5 for spraying the basic absorbent S1 on the upper part of the gas-liquid contact layer 6 is installed in the upper space. The absorbing liquid S1 flows down the gas-liquid contact layer 6 and comes into contact with the raw material digestion gas M1 as the raw material gas rising from the lower part of the gas-liquid contact layer 6. The bottom of the cylindrical container of the absorption tower 7 is a tank 3 as a liquid reservoir for storing the basic absorbent 4.

なお吸収装置は、図示のようなスプレーノズル5と気液接触層6を備える吸収塔7に限らず、タンク3内の底部に設けられた不図示のガス吹き込みノズルを備えるものであってもよい。この場合は、ノズルから原料ガス1を吸収液4に吹き込むことにより、原料ガス1が吸収液4内を泡状に上昇する間に、酸性ガスが吸収液4に吸収される。   The absorption device is not limited to the absorption tower 7 including the spray nozzle 5 and the gas-liquid contact layer 6 as illustrated, but may include a gas blowing nozzle (not illustrated) provided at the bottom of the tank 3. . In this case, by blowing the raw material gas 1 from the nozzle into the absorbing liquid 4, the acidic gas is absorbed by the absorbing liquid 4 while the raw material gas 1 rises in the absorbent liquid 4 in a bubble shape.

消化ガス精製装置200は、吸収塔7に隣接して低位置に設置された再生塔40を備える。再生塔40は、円筒状の容器として構成されたタンクであり、地上に円筒の中心軸を鉛直方向にして設置されており、円筒状のタンクに吸収液44を溜めて、その上方には、再生ガス31と炭酸ガスを収容する空間48を有する。また再生塔40の円筒状タンクの下部から再生ガス31を噴射する再生ガス噴射管61が設置され、バブル状の再生ガス62を噴出させている。   The digestion gas purification apparatus 200 includes a regeneration tower 40 installed at a low position adjacent to the absorption tower 7. The regeneration tower 40 is a tank configured as a cylindrical container, and is installed on the ground with the central axis of the cylinder in the vertical direction. The absorption liquid 44 is stored in the cylindrical tank, and above that, A space 48 for accommodating the regeneration gas 31 and carbon dioxide gas is provided. Further, a regeneration gas injection pipe 61 for injecting the regeneration gas 31 from the lower part of the cylindrical tank of the regeneration tower 40 is installed, and bubble-like regeneration gas 62 is ejected.

ここで吸収液は、吸収塔7内を流下する液S1を酸性ガス吸収前の吸収液と呼び、液溜のタンク3に溜まった液を便宜上、酸性ガスを吸収した吸収液と呼ぶ、この呼び方によれば、スプレーノズル5で散布される液は酸性ガス吸収前の吸収液であり、液溜のタンク3中の液は酸性ガスを吸収した吸収液ということになる。再生塔40に溜める液は酸性ガスを吸収した吸収液と炭酸ガス吸収率を回復した吸収液との混合吸収液である。これらを区別する必要のないときは、総称して吸収液と呼ぶ。   Here, as the absorbing liquid, the liquid S1 flowing down in the absorption tower 7 is referred to as an absorbing liquid before absorbing the acid gas, and the liquid accumulated in the tank 3 of the liquid reservoir is referred to as an absorbing liquid that has absorbed the acidic gas for convenience. According to the method, the liquid sprayed by the spray nozzle 5 is an absorption liquid before the acid gas absorption, and the liquid in the liquid tank 3 is an absorption liquid that has absorbed the acid gas. The liquid stored in the regeneration tower 40 is a mixed absorption liquid of an absorption liquid that has absorbed acid gas and an absorption liquid that has recovered the carbon dioxide absorption rate. When it is not necessary to distinguish these, they are collectively called absorption liquids.

図中では、吸収液4は、液溜のタンク3に溜まった液を示している。気液接触層6上部の、未だ酸性ガスを吸収する前の吸収液S1は、タンク3内の吸収液よりも酸性ガスの吸収能力が高く、再生塔40に溜まっている吸収液44と同程度の濃度である。   In the figure, the absorbing liquid 4 indicates the liquid stored in the liquid storage tank 3. The absorption liquid S1 before absorbing the acid gas at the upper part of the gas-liquid contact layer 6 has higher acid gas absorption capacity than the absorption liquid in the tank 3, and is almost the same as the absorption liquid 44 accumulated in the regeneration tower 40. Concentration.

再生塔40についても同様であり、図中では、吸収液44とは、再生塔40に溜まった液を示しているが、配管42を自然流下して吸収塔7から再生塔40に供給される液は、未だ再生される前の酸性ガスを吸収した吸収液であり、再生塔40中の吸収液44は再生処理中又は再生処理後の吸収液で、スプレーノズル5で散布される吸収液と同程度の濃度ということになる。   The same applies to the regeneration tower 40. In the drawing, the absorption liquid 44 indicates the liquid accumulated in the regeneration tower 40. However, the absorption liquid 44 naturally flows down the pipe 42 and is supplied from the absorption tower 7 to the regeneration tower 40. The liquid is an absorption liquid that has absorbed the acid gas before being regenerated, and the absorption liquid 44 in the regeneration tower 40 is an absorption liquid during or after the regeneration process, and is absorbed by the spray nozzle 5. That is the same concentration.

吸収塔7の液溜のタンク3と再生塔40の水頭差流路46は、液配管42で構成されている。液配管42には、吸収塔7側の液溜のタンク3に溜まった吸収液4の液面と再生塔40内の吸収液の液面の水頭差60により、吸収液4が自然流下する。従って、液配管42の系統にはポンプによる液送機構が不要である。   The liquid reservoir tank 3 of the absorption tower 7 and the head differential flow path 46 of the regeneration tower 40 are constituted by a liquid pipe 42. In the liquid pipe 42, the absorption liquid 4 naturally flows down due to a water head difference 60 between the liquid level of the absorption liquid 4 accumulated in the liquid tank 3 on the absorption tower 7 side and the liquid level of the absorption liquid in the regeneration tower 40. Therefore, a liquid feeding mechanism using a pump is not necessary for the system of the liquid piping 42.

再生塔40と吸収塔7のスプレーノズル5とは、液配管23と液配管25との間に挿入配置されたポンプ24で構成される循環経路で接続されている。ポンプ24は不図示の電動機で駆動される。該電動機は例えばインバータから供給される周波数の調節された電源により駆動される。インバータは、制御装置からの信号に基いて周波数を調節する。周波数の調節により、ポンプ24の回転速度を調節し、液配管23と液配管25を流れる吸収液の流量(循環量)を調節する。   The regeneration tower 40 and the spray nozzle 5 of the absorption tower 7 are connected by a circulation path constituted by a pump 24 inserted and disposed between the liquid pipe 23 and the liquid pipe 25. The pump 24 is driven by an electric motor (not shown). The electric motor is driven by a power source with a frequency adjusted, for example, supplied from an inverter. The inverter adjusts the frequency based on a signal from the control device. By adjusting the frequency, the rotational speed of the pump 24 is adjusted, and the flow rate (circulation amount) of the absorbent flowing through the liquid pipe 23 and the liquid pipe 25 is adjusted.

液配管25に不図示の液流量検出器を挿入配置し、吸収塔7と再生塔40との間の吸収液循環量を検出して再生塔40の出力側のポンプ24を制御してもよい。   A liquid flow rate detector (not shown) may be inserted into the liquid pipe 25 and the pump 24 on the output side of the regeneration tower 40 may be controlled by detecting the amount of circulating absorbent liquid between the absorption tower 7 and the regeneration tower 40. .

また、吸収塔7の気液接触層6上方の部分には、精製ガスの出口配管8が接続されており、気液接触層6上方の空間から精製ガス9を送出するように構成されている。精製ガスとしてのメタン濃縮ガス9は、消化ガス源と吸収塔7との間の原料ガス1の入口配管に挿入配置したガスブロワ2による吹き込み圧力により吸収塔7から送出される。   In addition, a purified gas outlet pipe 8 is connected to a portion of the absorption tower 7 above the gas-liquid contact layer 6 so that the purified gas 9 is sent out from the space above the gas-liquid contact layer 6. . The methane enriched gas 9 as the purified gas is sent out from the absorption tower 7 by the blowing pressure by the gas blower 2 inserted in the inlet pipe of the raw material gas 1 between the digestion gas source and the absorption tower 7.

さらに吸収塔7頂部のガス配管8に、不図示の酸性ガス濃度検出器を設置してメタン濃縮度を検出する。但し、酸性ガス濃度検出器の設置位置は、ここに限らず濃度検出に適した位置であれば、吸収塔7の気液接触層6上方の空間であってもよい。但し、出口配管8に設ければ、滞留部分と違って均一化された濃度を検出できる利点がある。   Further, an acid gas concentration detector (not shown) is installed in the gas pipe 8 at the top of the absorption tower 7 to detect the methane concentration. However, the installation position of the acid gas concentration detector is not limited to this, and may be a space above the gas-liquid contact layer 6 of the absorption tower 7 as long as the position is suitable for concentration detection. However, providing the outlet pipe 8 has an advantage that a uniform concentration can be detected unlike the staying portion.

吸収塔7の気液接触層6に充填材を装填してもよく、充填材の材料の種類としては、十分な耐食性及び耐熱性、そして高い接触効率を有するものであれば何でもよい。構造としては、吸収液S1を流下させながら、上昇する原料ガスM1と向流接触させやすい構造であればよく、例えば、金属又は合成樹脂製の繊維を充填材充填構造とすることができる。   The gas-liquid contact layer 6 of the absorption tower 7 may be filled with a filler, and any kind of filler material may be used as long as it has sufficient corrosion resistance and heat resistance and high contact efficiency. The structure may be any structure as long as it is easy to make countercurrent contact with the rising raw material gas M1 while causing the absorption liquid S1 to flow down. For example, a metal or synthetic resin fiber may be used as a filler-filled structure.

再生塔40中に配置された再生ガス噴射管61から細かい気泡状の再生ガス62を吹き込み、吹き込まれた再生ガス62は微細な気泡状態で吸収液44中を上昇し、さらに吸収液面から再生塔40の上方空間48に滞留し、その後、頂部出口配管17から再生ガスと酸性ガスとの混合ガス18として排出される。   A fine bubble-like regeneration gas 62 is blown from a regeneration gas injection pipe 61 arranged in the regeneration tower 40. The blown regeneration gas 62 rises in the absorbing liquid 44 in a fine bubble state, and further regenerates from the surface of the absorbing liquid. It stays in the upper space 48 of the tower 40 and is then discharged from the top outlet pipe 17 as a mixed gas 18 of regeneration gas and acid gas.

さらに再生塔40底部に鉛直方向に設置された隔壁50は、再生ガス噴射管61から放出される再生ガス62の気泡と吸収液44を分離して循環経路23内への気泡混入を防止する。また、水頭差流路46も再生ガスの気泡が混入しないように、先端部を吸収液面方向に配向するように設置している。   Further, the partition wall 50 installed in the vertical direction at the bottom of the regeneration tower 40 separates the bubbles of the regeneration gas 62 released from the regeneration gas injection pipe 61 and the absorbing liquid 44 to prevent the bubbles from entering the circulation path 23. Further, the water head differential flow path 46 is also installed so that the front end portion is oriented in the absorption liquid surface direction so that bubbles of the regeneration gas do not enter.

消化ガス精製装置200は、さらに再生塔40から吸収塔7に供給する液の流量を制御する不図示の制御装置を備えることができ、制御装置は、ポンプ24を制御して循環経路23に流れる吸収液の流量をコントロールする。制御装置は、例えば、酸性ガス濃度検出器からの濃度信号、液流量検出器からの流量信号、液温度検出器からの温度信号を受信して、制御信号をインバータに送信することにより液流量をコントロールする。   The digestion gas purification device 200 can further include a control device (not shown) that controls the flow rate of the liquid supplied from the regeneration tower 40 to the absorption tower 7. The control device controls the pump 24 and flows to the circulation path 23. Control the flow rate of absorbent. The control device receives, for example, a concentration signal from the acid gas concentration detector, a flow signal from the liquid flow detector, and a temperature signal from the liquid temperature detector, and sends the control signal to the inverter to control the liquid flow rate. To control.

図2に第1の実施の形態によるガス精製装置の変形例201の主要部の構成例を示す。この変形例201では、図1における再生塔40の上下中間位置に充填材68を装填したものである。充填材68の材料の種類としては、十分な耐食性及び耐熱性、そして高い接触効率を有するものであれば何でもよい。   FIG. 2 shows a configuration example of a main part of a modification 201 of the gas purification device according to the first embodiment. In this modification 201, a packing material 68 is loaded at the upper and lower intermediate positions of the regeneration tower 40 in FIG. Any kind of material may be used for the filler 68 as long as it has sufficient corrosion resistance and heat resistance and high contact efficiency.

構造としては、再生ガス噴射管61から噴射する微細気泡の浮上を制限する繊維構造であって、微細気泡と吸収液44との気液接触時間を増大させる通路を提供し、複数の微細気泡が結合し粒度を増大しようとする気泡を分断して吸収液44中を浮上する再生ガス62の微細気泡を維持する充填材構造であればよく、例えば、金属又は合成樹脂製の繊維を充填材充填構造とすることができる。充填材の繊維により浮上通路が狭くなり、再生ガス62の吸収液44液面に達するまでの到達時間を延長させる。   The structure is a fiber structure that restricts the floating of fine bubbles injected from the regeneration gas injection pipe 61, and provides a passage that increases the gas-liquid contact time between the fine bubbles and the absorbing liquid 44. Any filler structure may be used as long as it can maintain the fine bubbles of the regenerative gas 62 that breaks up the bubbles to be bonded and increase the particle size and floats in the absorption liquid 44. For example, the filler is filled with metal or synthetic resin fibers. It can be a structure. The floating passage is narrowed by the fibers of the filler, and the time required for the regeneration gas 62 to reach the absorption liquid 44 is extended.

再生塔40中に配置された再生ガス噴射管61から細かい気泡状の再生ガス62を吹き込み、吹き込まれた再生ガス62は微細な気泡状態で吸収液44中を上昇し、充填材68を通過し、充填材上方の吸収液中に放出される。ガスはさらに吸収液面から再生塔40の上方空間48に滞留し、その後、頂部出口配管17から再生ガスと酸性ガスとの混合ガス18として排出される。   A fine bubble-like regeneration gas 62 is blown from a regeneration gas injection pipe 61 arranged in the regeneration tower 40, and the blown regeneration gas 62 rises in the absorbing liquid 44 in a fine bubble state and passes through the filler 68. , Released into the absorbent above the filler. The gas further stays in the upper space 48 of the regeneration tower 40 from the absorption liquid level, and is then discharged from the top outlet pipe 17 as a mixed gas 18 of the regeneration gas and the acid gas.

また、再生ガス噴射管から放出した複数の再生ガス62の微細気泡は、吸収液を浮上中に相互に結合して徐々に粒度が大きくなり、吸収液44と再生ガス62との気液接触が低下するが、図2に示した充填材68により気泡を分断し、気泡の粒度増大を阻止すると共に、吸収液44の液面に達するまで微細気泡状態を維持するため、良好な気液接触状態を形成することができる。充填材68は、金属若しくは合成樹脂の繊維を再生ガスの気泡が通過する程度の密度で織り込んで円筒状に構成し、再生塔の容器内壁に密着するように装填する。   Further, the fine bubbles of the plurality of regenerative gases 62 discharged from the regenerative gas injection pipe are combined with each other while the absorbing liquid is levitated to gradually increase the particle size, and the gas-liquid contact between the absorbing liquid 44 and the regenerating gas 62 is increased. Although it is reduced, the air bubbles are divided by the filler 68 shown in FIG. 2 to prevent an increase in the particle size of the air bubbles, and the fine air bubble state is maintained until the liquid level of the absorbing liquid 44 is reached. Can be formed. The packing material 68 is formed in a cylindrical shape by weaving metal or synthetic resin fibers at a density that allows bubbles of the regeneration gas to pass, and is loaded so as to be in close contact with the inner wall of the container of the regeneration tower.

再度図1に戻り、第1の実施の形態について説明する。小規模の燃料電池に適用する消化ガス精製装置について、本願発明者は、吸収液の吸収能力及び再生能力を試験研究した結果、吸収液温度を40℃から55℃の範囲に設定し循環使用させることで吸収塔7及び再生塔40がバランス良く、それぞれ吸収作用と再生作用を行うことを見出した。   Returning to FIG. 1 again, the first embodiment will be described. The inventor of the present application conducted a study on the absorption capacity and regeneration capacity of the absorption liquid for a digestion gas purification apparatus applied to a small-scale fuel cell. As a result, the absorption liquid temperature was set in the range of 40 ° C. to 55 ° C. and used in circulation. Thus, it has been found that the absorption tower 7 and the regeneration tower 40 perform an absorption action and a regeneration action, respectively, in good balance.

吸収液が40℃以下の場合には、気液平衡の温度依存性から炭酸ガス吸収能力が高いが、40℃以下の液温では再生塔40内の再生反応が十分に進行しないため、再生処理中の吸収液44中の炭酸ガス分圧が高く、このまま吸収塔7へ吸収液44を循環させると酸性ガス吸収前の吸収液としての良好な炭酸ガス等の吸収反応が期待できず、吸収塔7の炭酸ガス吸収性能が低下する。   When the absorption liquid is 40 ° C. or lower, the carbon dioxide absorption capacity is high due to the temperature dependence of gas-liquid equilibrium. However, the regeneration reaction in the regeneration tower 40 does not proceed sufficiently at a liquid temperature of 40 ° C. or lower, so that the regeneration treatment When the absorbent 44 is circulated to the absorption tower 7 as it is, a good absorption reaction of carbon dioxide etc. as an absorbent before absorption of the acidic gas cannot be expected. 7 carbon dioxide absorption performance is reduced.

これに対して、吸収液温度を上昇させると再生能力は向上するが、炭酸ガス等の吸収能力が低下し液温が55℃を超える吸収液では吸収塔7内の吸収反応が十分に進行しないため、炭酸ガス吸収性能が著しく低下し、燃料電池が要求する燃料としてのメタン濃縮度を満たすことが困難となる。また、再生塔40の再生温度を上昇させると、システム全体の所要熱量の増大を招くため、エネルギー効率の点からも好ましくない。そこで、循環使用する吸収液温度を40℃から55℃の範囲に制御して、吸収液の炭酸ガス等の吸収と吸収液の再生を両立させることが望ましい。   On the other hand, when the absorption liquid temperature is raised, the regeneration capacity is improved, but the absorption capacity of carbon dioxide gas or the like is decreased, and the absorption reaction in the absorption tower 7 does not proceed sufficiently with the absorption liquid whose liquid temperature exceeds 55 ° C. For this reason, the carbon dioxide absorption performance is remarkably lowered, and it becomes difficult to satisfy the methane enrichment as the fuel required by the fuel cell. Further, raising the regeneration temperature of the regeneration tower 40 increases the required heat amount of the entire system, which is not preferable from the viewpoint of energy efficiency. Therefore, it is desirable to control the absorption liquid temperature to be circulated in the range of 40 ° C. to 55 ° C. so as to achieve both absorption of carbon dioxide gas etc. in the absorption liquid and regeneration of the absorption liquid.

再生塔40から吸収塔7へ液送される処理液は、大気温度との差から循環経路内で自然冷却されるが、略40℃以上の吸収液を吸収塔7へ供給する。ここで、吸収液温度は、例えば再生塔40側では大気温度より高い約55℃の吸収液温度に設定し、液配管23、ポンプ24、液配管25で構成される循環経路を流れる間に自然冷却されるが、吸収塔7のスプレーノズル5から散布される吸収液の温度は約45℃で供給される。従って、吸収塔7と再生塔40の双方の吸収液温度は40℃から55℃の温度範囲に制御され、吸収作用と再生作用を行うことができる。   The processing liquid fed from the regeneration tower 40 to the absorption tower 7 is naturally cooled in the circulation path due to the difference from the atmospheric temperature, but supplies an absorption liquid of approximately 40 ° C. or higher to the absorption tower 7. Here, the absorption liquid temperature is set to an absorption liquid temperature of about 55 ° C., which is higher than the atmospheric temperature, on the regeneration tower 40 side, for example, and naturally flows through the circulation path composed of the liquid pipe 23, the pump 24, and the liquid pipe 25. Although cooled, the temperature of the absorbing liquid sprayed from the spray nozzle 5 of the absorption tower 7 is supplied at about 45 ° C. Therefore, the absorption liquid temperature of both the absorption tower 7 and the regeneration tower 40 is controlled within a temperature range of 40 ° C. to 55 ° C., and the absorption action and the regeneration action can be performed.

図3に本実施の形態におけるガス精製工程のフロー例を示す。流下する塩基性の吸収液S1に対して原料ガスM1を流し、吸収液S1に酸性ガスを吸収させる吸収工程(ステップS001)と、酸性ガスを吸収した吸収液に再生ガス31を吹き込み、吸収液を再生する再生工程(ステップS003)と、吸収工程と再生工程との間で、吸収液を循環させる循環工程(ステップS002及びステップS004)とを備える。ガス精製工程でこれらの工程(ステップS001〜ステップS004)が繰り返される。   FIG. 3 shows a flow example of the gas purification process in the present embodiment. An absorption step (step S001) in which the raw material gas M1 is flowed to the flowing down basic absorption liquid S1 to absorb the acidic gas in the absorption liquid S1, and the regeneration gas 31 is blown into the absorption liquid that has absorbed the acidic gas. A regeneration process (step S003), and a circulation process (step S002 and step S004) for circulating the absorbent between the absorption process and the regeneration process. These steps (steps S001 to S004) are repeated in the gas purification step.

図4に消化ガス精製装置200を用いた発電システム100の構成例を示す。図4を参照して、発電システムを説明する。発電システム100は、ガス精製装置200と、ガス精製装置200に原料ガスとしての消化ガス1を供給する原料ガス供給装置としてのメタン発酵処理設備102と、ガス精製装置200で精製されたメタン濃縮ガス9を燃料とし、燃料と酸化剤との電気化学的反応により発電する燃料電池103とを備える。   FIG. 4 shows a configuration example of the power generation system 100 using the digestion gas purification apparatus 200. The power generation system will be described with reference to FIG. The power generation system 100 includes a gas purification device 200, a methane fermentation treatment facility 102 as a raw material gas supply device that supplies the gas purification device 200 with the digestion gas 1 as a raw material gas, and a methane concentrated gas purified by the gas purification device 200. And a fuel cell 103 that generates electricity by an electrochemical reaction between the fuel and an oxidant.

このように構成すると、酸性ガスを除去されたガスを燃料電池103に供給することができ、ガス精製装置で精製されたガスを燃料とし、燃料と酸化剤との電気化学的反応により発電する燃料電池103を備えるので、ガスを利用した発電が可能となり、燃料電池103で発生した排熱で吸収液を加熱する熱交換器109を備えるので、排熱を回収し有効利用することができる。燃料電池103はガス精製装置200で精製されたガスを脱炭酸処理する手間が省け、高効率の燃料電池発電ができる。排熱は別の熱利用にも供される。   With this configuration, the gas from which the acid gas has been removed can be supplied to the fuel cell 103, and the fuel purified by the gas purification device is used as fuel, and the fuel generates electricity by the electrochemical reaction between the fuel and the oxidant. Since the battery 103 is provided, it is possible to generate power using gas, and since the heat exchanger 109 that heats the absorbing liquid by the exhaust heat generated in the fuel cell 103 is provided, the exhaust heat can be recovered and effectively used. The fuel cell 103 can save time and effort for decarboxylation of the gas purified by the gas purification apparatus 200, and can perform highly efficient fuel cell power generation. Waste heat is also used for other heat utilization.

発電システム100では、燃料電池103からの直流の電力を昇圧器に入力して所定の直流電圧に昇圧し、昇圧された直流電力を直流交流変換器に入力して固定周波数の交流電力に変換し、変換された交流電力は系統電力線を介して電力グリッドに供給され又は負荷に供給される。例えば、昇圧器、直流交流変換器及び燃料電池103はコントローラとしてのマイクロコンピュータを使用して制御される。   In the power generation system 100, the DC power from the fuel cell 103 is input to the booster to boost the voltage to a predetermined DC voltage, and the boosted DC power is input to the DC / AC converter to convert it to fixed frequency AC power. The converted AC power is supplied to the power grid or supplied to the load via the system power line. For example, the booster, the DC / AC converter, and the fuel cell 103 are controlled using a microcomputer as a controller.

精製消化ガスとしてのメタン濃縮ガス9の出口配管8と原料消化ガス1の入口配管104との間にバイパス配管105と自動開閉弁106を設ける。出口配管8にはガス圧検知手段としての圧力センサ107を設けて、精製消化ガス9のガス圧をモニタして、供給ガス圧制御手段108に送信し、供給ガス圧制御手段108は自動開閉弁106及びガスブロワ2を制御する。   A bypass pipe 105 and an automatic opening / closing valve 106 are provided between the outlet pipe 8 of the methane concentrated gas 9 as the purified digestion gas and the inlet pipe 104 of the raw material digestion gas 1. The outlet pipe 8 is provided with a pressure sensor 107 as a gas pressure detecting means, and monitors the gas pressure of the purified digested gas 9 and transmits it to the supply gas pressure control means 108. The supply gas pressure control means 108 is an automatic opening / closing valve. 106 and the gas blower 2 are controlled.

燃料電池103のガス消費量が減った場合、供給ガス圧制御手段108は、精製消化ガス9の供給ガス圧を所定の圧力に調整しようとして、ガスブロワ2の出力を下げるように制御するが、それでもなお精製消化ガス9の供給ガス圧が所定の圧力以上になると、バイパス配管105に設置した自動開閉弁106を開けて精製消化ガス9の圧力を逃がし、ガスブロワ2の出力を下げすぎることなく、供給ガス圧を所定の圧力に調整する。   When the gas consumption of the fuel cell 103 decreases, the supply gas pressure control means 108 controls to reduce the output of the gas blower 2 in an attempt to adjust the supply gas pressure of the purified digestion gas 9 to a predetermined pressure. When the supply gas pressure of the purified digestion gas 9 exceeds a predetermined pressure, the automatic on-off valve 106 installed in the bypass pipe 105 is opened to release the pressure of the purified digestion gas 9 and supply without reducing the output of the gas blower 2 too much. The gas pressure is adjusted to a predetermined pressure.

また、燃料電池103のガス消費量が増えた場合、供給ガス圧制御手段108は、精製消化ガス9の供給ガス圧を所定の圧力に調整しようとして、ガスブロワ2の出力を上げるように制御するが、それでもなお精製消化ガス9の供給ガス圧が所定の圧力以下になると、バイパス配管105に設置した自動開閉弁106を閉じて精製消化ガスの圧力を逃がさないようにし、ガスブロワ2の出力を上げすぎることなく、供給ガス圧を所定の圧力範囲に調整する。   When the gas consumption of the fuel cell 103 increases, the supply gas pressure control means 108 controls to increase the output of the gas blower 2 in an attempt to adjust the supply gas pressure of the purified digestion gas 9 to a predetermined pressure. However, if the supply gas pressure of the purified digestion gas 9 still falls below a predetermined pressure, the automatic open / close valve 106 installed in the bypass pipe 105 is closed so as not to release the pressure of the purified digestion gas, and the output of the gas blower 2 is increased too much. Without adjusting, the supply gas pressure is adjusted to a predetermined pressure range.

また、燃料電池103が急停止した場合にも、供給ガス圧制御手段108は、自動開閉弁106を開けることにより、精製消化ガス9の配管8に圧力がこもらないように調整する。   Even when the fuel cell 103 stops suddenly, the supply gas pressure control means 108 opens the automatic opening / closing valve 106 so that the pressure is not accumulated in the pipe 8 of the purified digestion gas 9.

本実施の形態では、吸収液としてDEA水溶液110を用い、循環経路25に分岐を設けて、DEA水溶液110の一部を熱交換器109に導き、燃料電池103の排熱温水でDEA水溶液110を加熱し、再生塔40に戻し、再生塔40内のDEA水溶液44を昇温させている。この場合、燃料電池103の起動時には再生塔40内のDEA水溶液44は常温であり、燃料電池103に精製消化ガス9が供給されて、排熱量が増加するにつれてDEA水溶液44の温度が上昇し、燃料電池103の運転が安定した状態で、精製消化ガス9の供給量、燃料電池103からの排熱量が安定し、DEA水溶液44の温度が一定になる。これにより、後述するように燃料電池103の起動時から安定運転状態まで精製消化ガス9のメタン濃度がほぼ一定になる。   In the present embodiment, the DEA aqueous solution 110 is used as the absorbing liquid, a branch is provided in the circulation path 25, a part of the DEA aqueous solution 110 is guided to the heat exchanger 109, and the DEA aqueous solution 110 is discharged with the exhaust heat hot water of the fuel cell 103. It is heated and returned to the regeneration tower 40, and the DEA aqueous solution 44 in the regeneration tower 40 is heated. In this case, when the fuel cell 103 is started, the DEA aqueous solution 44 in the regeneration tower 40 is at room temperature, and the purified digestion gas 9 is supplied to the fuel cell 103, and the temperature of the DEA aqueous solution 44 increases as the amount of exhaust heat increases. In a state where the operation of the fuel cell 103 is stable, the supply amount of the purified digestion gas 9 and the exhaust heat amount from the fuel cell 103 are stabilized, and the temperature of the DEA aqueous solution 44 becomes constant. As a result, as will be described later, the methane concentration of the purified digestion gas 9 becomes substantially constant from the start of the fuel cell 103 to the stable operation state.

燃料電池103へ供給するメタン濃縮ガス9中の炭酸ガス濃度が許容範囲となるように、吸収液温度を選択する。即ち、熱交換器109により再生塔40内の再生処理中又は再生処理後の吸収液44の温度を約40℃から55℃の範囲に設定し、気泡状の再生ガス62と気液接触させて炭酸ガス等を放出させ再生処理を施す。   The absorbent temperature is selected so that the concentration of carbon dioxide in the methane enriched gas 9 supplied to the fuel cell 103 falls within an allowable range. That is, the temperature of the absorption liquid 44 during or after the regeneration process in the regeneration tower 40 is set to a range of about 40 ° C. to 55 ° C. by the heat exchanger 109 and brought into gas-liquid contact with the bubble-shaped regeneration gas 62. Carbon dioxide gas or the like is released to regenerate.

この再生処理中又は再生処理後の吸収液44を循環経路の液配管23を経由して吸収塔7内のスプレーノズル5から散布し、塔内を上昇する原料ガスM1と気液接触させ炭酸ガス等の吸収処理を施し、メタン濃縮ガス9を生成する。約40℃から55℃の範囲に設定された吸収液S1は、燃料電池103の燃料としてのメタン濃度を満足する程度に原料消化ガス1から炭酸ガス等を除去して、燃料電池103に精製消化ガス9を供給ことができる。   The absorption liquid 44 during or after the regeneration process is sprayed from the spray nozzle 5 in the absorption tower 7 via the liquid pipe 23 in the circulation path, and is brought into gas-liquid contact with the raw material gas M1 that rises in the tower to generate carbon dioxide. The methane concentrated gas 9 is generated by performing an absorption process such as the above. The absorbent S1 set in the range of about 40 ° C. to 55 ° C. removes carbon dioxide from the raw material digestion gas 1 to the extent that the methane concentration as the fuel of the fuel cell 103 is satisfied, and purifies the digestion into the fuel cell 103. Gas 9 can be supplied.

図5に本実施の形態における供給ガス圧制御工程のフロー例を示す。ガス圧検知手段107で精製ガス9のガス消費設備としての燃料電池103への供給ガス圧を検知する供給ガス圧検知工程(ステップS101)と、ガス圧検知手段107の出力信号に基きガス消費設備103への供給ガス圧が一定となるように制御する供給ガス圧制御工程(ステップS102、ステップS103)とを備える。供給ガス圧制御工程は、精製ガスのガス消費設備103への供給ガス圧を検知するガス圧検知手段107の出力信号(ガス圧)に基き、吸収塔7に送風するガスブロワ2の出力を制御する(ステップS102)とともに、吸収塔7からガス消費設備103への出口配管8から分岐して取り出した精製ガスを吸収塔7への入口配管104に戻すバイパス配管105の途中に開閉弁106を設け、精製ガスのガス消費設備103への供給ガス圧の急増を検知した場合に、開閉弁106を開いて、精製ガス9の一部を原料ガス1に戻す(ステップS103)。   FIG. 5 shows a flow example of the supply gas pressure control step in the present embodiment. Supply gas pressure detection step (step S101) in which the gas pressure detection means 107 detects the supply gas pressure to the fuel cell 103 as the gas consumption equipment of the purified gas 9, and the gas consumption equipment based on the output signal of the gas pressure detection means 107 A supply gas pressure control step (step S102, step S103) for controlling the supply gas pressure to 103 to be constant. In the supply gas pressure control step, the output of the gas blower 2 blown to the absorption tower 7 is controlled based on the output signal (gas pressure) of the gas pressure detection means 107 that detects the supply gas pressure of the purified gas to the gas consumption facility 103. (Step S102), an on-off valve 106 is provided in the middle of the bypass pipe 105 for returning the purified gas branched off from the outlet pipe 8 from the absorption tower 7 to the gas consumption facility 103 and returned to the inlet pipe 104 to the absorption tower 7. When a rapid increase in the pressure of the supply gas of the purified gas to the gas consumption facility 103 is detected, the on-off valve 106 is opened and a part of the purified gas 9 is returned to the raw material gas 1 (step S103).

図6に吸収塔の液位制御系の構成例を示す。吸収塔7の円筒状容器の底部は、液溜としての角柱状のタンク3となっている。吸収塔7の外部には、液溜3の液位を検出する液位検出器としての液位センサー111と、検出された液位検出器111の信号に基いて液位を所定の液位設定値に制御する液位調節器112とを設置する。なお、液位調節器112は前述の吸収液の流量をコントロールする制御装置に組み込んでも良い。   FIG. 6 shows a configuration example of the liquid level control system of the absorption tower. The bottom of the cylindrical container of the absorption tower 7 is a prismatic tank 3 serving as a liquid reservoir. Outside the absorption tower 7, a liquid level sensor 111 as a liquid level detector for detecting the liquid level in the liquid reservoir 3, and a predetermined liquid level is set based on a signal from the detected liquid level detector 111. A liquid level adjuster 112 for controlling the value is installed. The liquid level adjuster 112 may be incorporated in a control device that controls the flow rate of the absorption liquid.

また、原料消化ガス1又は精製消化ガス9の圧力変動や再生塔40の液位変動などの影響により、吸収塔7側と再生塔40側の圧力バランスが崩れてしまい液封を保てなくなる欠点を解消するために、吸収塔7から再生塔40へ返流する配管(返流路)42に手動弁113を設け、さらにバイパス返流管(バイパス返流路)114と、バイパス返流管114に手動弁115及び自動開閉弁としての電磁弁116を設けて、通常は手動弁113、115を開にしておき、液位検出器111により液位H以上を検知したときに、液位調節器112は自動開閉弁116を開とすることによってバイパス返流路114を開き、液位検出器111により液位L以下を検知したときに、液位調節器112は自動開閉弁116を閉とすることによってバイパス返流路114を閉じ、バイパス返流管114を流れる吸収液の流量を調整することにより、常に液封を保つことができる。   Further, the pressure balance between the absorption tower 7 side and the regeneration tower 40 side is lost due to the influence of the pressure fluctuation of the raw material digestion gas 1 or the purified digestion gas 9 and the liquid level fluctuation of the regeneration tower 40, and the liquid seal cannot be maintained. In order to solve this problem, a manual valve 113 is provided in a pipe (return flow path) 42 returning from the absorption tower 7 to the regeneration tower 40, and further, a bypass return pipe (bypass return flow path) 114 and a bypass return flow pipe 114 are provided. Are provided with a manual valve 115 and an electromagnetic valve 116 as an automatic opening / closing valve. Normally, the manual valves 113 and 115 are opened, and when the liquid level detector 111 detects the liquid level H or higher, the liquid level controller 112 opens the bypass return flow path 114 by opening the automatic opening / closing valve 116, and when the liquid level detector 111 detects the liquid level L or lower, the liquid level controller 112 closes the automatic opening / closing valve 116. By vipa Close Kaeryuro 114, by adjusting the flow rate of the absorption liquid flowing in the bypass return flow tube 114 can be always maintained the liquid seal.

また、本実施の形態では自動開閉弁116の頻繁な開/閉を防ぐために自動開閉弁116の取り付け位置を返流路の本管42ではなく、バイパス配管114を増設してそこに取り付けるようにした。これにより自動開閉弁116が閉まっている場合でも本管42から所定量の吸収液(DEA水溶液)が再生塔40へ返送される為、レベルHに達する間隔を長くする事ができる。   Further, in the present embodiment, in order to prevent frequent opening / closing of the automatic opening / closing valve 116, the attachment position of the automatic opening / closing valve 116 is not the main pipe 42 of the return flow path but the bypass pipe 114 is added and attached thereto. did. As a result, even when the automatic opening / closing valve 116 is closed, a predetermined amount of absorbing liquid (DEA aqueous solution) is returned from the main pipe 42 to the regeneration tower 40, so that the interval to reach the level H can be lengthened.

自動開閉弁を配管42に直接設置しオンオフ制御とした場合、自動開閉弁が閉のときは再生塔40への返流がストップしてしまい、タンク3内の水位はすぐにレベルHに達してしまう。また、自動開閉弁を開とすると、今度はタンク3内の水位は急激に低下しレベルLに達する。バイパス114を設けない場合はこのように自動開閉弁は頻繁なオンオフを繰り返すことになる。バイパス114を設け、そこに自動開閉弁116を設置することにより、常時配管42から再生塔40への返流を実施し、配管42に設けた手動弁113は自動開閉弁が閉となっているときにタンク3内の水位が徐々に上昇するように調整する。また、水位がレベルHに達したときに自動開閉弁116を開とし、タンク3の水位が徐々に下降するように調整することで、水位の上昇、下降のスピードを大幅に抑えることができ、自動開閉弁116の開閉の回数を抑えることができる。なお、自動開閉弁116を電磁弁とした場合、組み合わせる液位センサー111は電極式のセンサーで良い。   When the automatic open / close valve is directly installed in the pipe 42 and the on / off control is performed, when the automatic open / close valve is closed, the return flow to the regeneration tower 40 is stopped, and the water level in the tank 3 immediately reaches the level H. End up. When the automatic opening / closing valve is opened, the water level in the tank 3 is rapidly lowered and reaches level L. When the bypass 114 is not provided, the automatic opening / closing valve is frequently turned on and off in this way. By providing the bypass 114 and installing the automatic opening / closing valve 116 there, the return flow from the piping 42 to the regeneration tower 40 is always performed, and the automatic opening / closing valve of the manual valve 113 provided in the piping 42 is closed. Sometimes, the water level in the tank 3 is adjusted to gradually rise. Also, by opening the automatic opening / closing valve 116 when the water level reaches level H and adjusting the water level of the tank 3 to gradually decrease, the speed of rising and lowering the water level can be greatly suppressed, The number of times of opening / closing the automatic opening / closing valve 116 can be suppressed. When the automatic opening / closing valve 116 is an electromagnetic valve, the liquid level sensor 111 to be combined may be an electrode type sensor.

図7に本実施の形態における吸収塔7の液位調整工程のフロー例を示す。液位調整工程は、吸収塔7から流出する吸収液を、水頭差により再生塔40に流入させる循環工程(ステップS002)において行なわれ、液位検出器111で吸収塔7に溜められた吸収液の液位を検出し(ステップS201)、液位検出器111が所定の液位高さ以上を検出した場合に自動開閉弁116を開き、液位検出器111が所定の液位高さ以下を検出した場合に自動開閉弁116を閉じ、吸収塔7に溜められた吸収液の液位を一定範囲内に維持する(ステップS202)。   FIG. 7 shows a flow example of the liquid level adjustment process of the absorption tower 7 in the present embodiment. The liquid level adjustment step is performed in a circulation step (step S002) in which the absorption liquid flowing out from the absorption tower 7 flows into the regeneration tower 40 due to a head difference, and the absorption liquid stored in the absorption tower 7 by the liquid level detector 111. When the liquid level detector 111 detects a level higher than a predetermined liquid level, the automatic opening / closing valve 116 is opened, and the liquid level detector 111 detects that the liquid level detector 111 is below the predetermined liquid level height. When detected, the automatic opening / closing valve 116 is closed, and the liquid level of the absorbent stored in the absorption tower 7 is maintained within a certain range (step S202).

図8に本実施の形態及び従来例における精製ガスのメタン濃度の経時変化例を比較して示す。図8(a)は、本実施の形態における例であり、図8(b)は従来例である。説明の符号については図4を参照されたい。   FIG. 8 shows a comparison of changes over time in the methane concentration of purified gas in the present embodiment and the conventional example. FIG. 8A is an example in the present embodiment, and FIG. 8B is a conventional example. Refer to FIG. 4 for the reference numerals.

吸収液としてDEA水溶液110を用いる。燃料電池103に精製ガス9を供給し始めるときには燃料電池103からの排熱がないため、DEA水溶液44の温度が常温であり、吸収には有利となるものの再生には不利な状況にある。しかしながら発明者達は燃料電池103の起動時の燃料消費量変化を検討した結果、燃料電池103起動時の燃料消費量であれば、常温のDEA水溶液であってもその二酸化炭素吸収に対する能力は十分なレベルであることに着目し、且つ燃料電池103が発電運転に移行し、燃料消費量が増加しても、そこに至るまでの運転によってDEA水溶液は十分に再生されるため、その温度が常温に近い状態であっでも二酸化炭素を吸収できることに想到し、実験を行い本発明を案出した。   The DEA aqueous solution 110 is used as the absorbing solution. Since there is no exhaust heat from the fuel cell 103 when supplying the purified gas 9 to the fuel cell 103, the temperature of the DEA aqueous solution 44 is normal temperature, which is advantageous for absorption but is disadvantageous for regeneration. However, as a result of examining the change in fuel consumption when the fuel cell 103 is started, the inventors have a sufficient ability to absorb carbon dioxide even if a DEA aqueous solution at room temperature is used if the fuel consumption is when the fuel cell 103 is started. Even if the fuel cell 103 shifts to the power generation operation and the fuel consumption increases, the DEA aqueous solution is sufficiently regenerated by the operation up to that point, so that the temperature is room temperature. The present inventors have devised an experiment and devised the present invention, thinking that carbon dioxide can be absorbed even in a state close to.

燃料電池103は起動開始時から次第に燃料消費量が増加し、最高出力運転等の安定運転に到達した後は燃料消費量が一定になる。この燃料消費量の一部は排熱温水として熱交換器を介して再生塔40に供給され、吸収液としてのDEA水溶液44を加熱する。従来は、図8(b)に示すように、燃料電池の起動開始時からDEA水溶液44を加熱し、二酸化炭素吸収能力を増加させていたので、燃料電池103の起動開始時から最高出力運転に到達するまでの間は、精製消化ガス9の実際のメタン濃度は、計画値をかなり上回っていた。   The fuel consumption of the fuel cell 103 gradually increases from the start of startup, and the fuel consumption becomes constant after reaching a stable operation such as a maximum output operation. A part of this fuel consumption is supplied to the regeneration tower 40 through a heat exchanger as exhaust hot water, and heats the DEA aqueous solution 44 as an absorbing solution. Conventionally, as shown in FIG. 8 (b), the DEA aqueous solution 44 is heated from the start of the start of the fuel cell to increase the carbon dioxide absorption capacity, so that the maximum output operation is started from the start of the start of the fuel cell 103. In the meantime, the actual methane concentration of the purified digestion gas 9 was well above the planned value.

これに対し、本実施の形態では図8(a)に示すように、起動用ヒータを取り外し、燃料電池起動前はDEA水溶液110を常温で循環させ、その二酸化炭素吸収性能を抑えて、燃料電池103が起動し発電運転がはじまり燃料消費量が増加してからは、燃料電池103からの排熱温水を利用してDEA水溶液を44加熱し、次第に温度を上げて、その二酸化炭素吸収能力を次第に向上させることにより、精製消化ガス9中のメタン濃度を計画値近傍となるように維持できる。   On the other hand, in the present embodiment, as shown in FIG. 8A, the starting heater is removed, and the DEA aqueous solution 110 is circulated at room temperature before starting the fuel cell to suppress its carbon dioxide absorption performance. After the start of the power generation operation and the fuel consumption increase, the DEA aqueous solution 44 is heated using the exhaust heat hot water from the fuel cell 103, and the temperature is gradually raised to gradually increase its carbon dioxide absorption capacity. By improving, the methane concentration in the refined digestion gas 9 can be maintained to be close to the planned value.

典型的には、燃料電池103への精製消化ガス9の供給量の増加に比例して、燃料電池103からの排熱量が増加し、排熱量の増加に比例して再生塔40内のDEA水溶液44の温度が上昇する。そして、燃料電池103の運転が安定した状態で、精製消化ガス9の供給量、燃料電池103からの排熱量が安定し、DEA水溶液44の温度が一定になる。これにより、精製消化ガス9のメタン濃度は、燃料電池103の起動時から安定運転状態を通してほぼ一定に制御される。なお、液温度検出器、酸性ガス濃度検出器を設けて、吸収液の温度及び精製消化ガス9のメタン濃度をモニタし、前述の制御装置で精密制御しても良い。   Typically, the amount of exhaust heat from the fuel cell 103 increases in proportion to the increase in the amount of purified digested gas 9 supplied to the fuel cell 103, and the DEA aqueous solution in the regeneration tower 40 increases in proportion to the increase in the amount of exhaust heat. The temperature of 44 rises. Then, in a state where the operation of the fuel cell 103 is stable, the supply amount of the purified digestion gas 9 and the amount of exhaust heat from the fuel cell 103 are stabilized, and the temperature of the DEA aqueous solution 44 becomes constant. As a result, the methane concentration of the purified digestion gas 9 is controlled to be substantially constant from the start of the fuel cell 103 through the stable operation state. A liquid temperature detector and an acid gas concentration detector may be provided to monitor the temperature of the absorption liquid and the methane concentration of the purified digestion gas 9, and may be precisely controlled by the aforementioned control device.

また、本実施の形態における発電システムは、燃料電池103の起動時には、再生塔40内のDEA水溶液44を常温に保持し、燃料電池103の発電に伴って生じる排熱を利用してDEA水溶液44の加熱を行ない、精製ガス9のメタン濃度をほぼ一定に制御するメタン濃度制御手段を備える。メタン濃度制御手段は、排熱温水を利用してDEA水溶液44の加熱を行なう熱交換器109又は後述する熱交換チューブ54と、排熱温水の供給量や温度、精製ガスのメタン濃度を制御する制御系(液温度検出器、酸性ガス濃度検出器、後述する温度コントローラ53やバルブ55など)が該当する。ただし、再生塔40内のDEA水溶液44を常温から加熱できるように構成されていることが肝要であり、また、制御系は必ずしも必要ではない。   Further, in the power generation system according to the present embodiment, when the fuel cell 103 is started, the DEA aqueous solution 44 in the regeneration tower 40 is maintained at a normal temperature, and the DEA aqueous solution 44 is utilized by using the exhaust heat generated by the power generation of the fuel cell 103. And a methane concentration control means for controlling the methane concentration of the purified gas 9 to be substantially constant. The methane concentration control means controls the heat exchanger 109 that heats the DEA aqueous solution 44 using the exhaust heat water or the heat exchange tube 54 described later, the supply amount and temperature of the exhaust heat water, and the methane concentration of the purified gas. This corresponds to a control system (liquid temperature detector, acid gas concentration detector, temperature controller 53 and valve 55 described later). However, it is important that the DEA aqueous solution 44 in the regeneration tower 40 is configured to be heated from room temperature, and a control system is not necessarily required.

図9に本実施の形態における精製ガスのメタン濃度制御工程のフロー例を示す。メタン濃度制御工程は、前記燃料と酸化剤との電気化学的反応により燃料電池にて発電する発電工程において行なわれ、発電工程は、吸収液としてDEA水溶液110を用い、燃料電池103の起動時には、再生塔40内のDEA水溶液44を常温に保持し(ステップS301)、燃料電池103の発電に伴って生じる排熱を利用してDEA水溶液44の加熱を行ない(ステップS302、ステップS303)、精製ガス9のメタン濃度をほぼ一定に制御する(ステップS304)工程を備える。DEA水溶液44の加熱ステップは、燃料電池103起動後に、燃料電池103への精製消化ガス9の供給量の増加に比例して、燃料電池103からの排熱量が増加し、排熱量の増加に比例して再生塔40内のDEA水溶液44の温度が上昇する第1段階(ステップS302)と、燃料電池103の運転が安定した状態で、精製消化ガス9の供給量、燃料電池103からの排熱量が安定し、DEA水溶液44の温度が一定になる第2段階(ステップS303)を備える。   FIG. 9 shows a flow example of the process for controlling the methane concentration of purified gas in the present embodiment. The methane concentration control step is performed in a power generation step in which power is generated in the fuel cell by an electrochemical reaction between the fuel and the oxidant. The power generation step uses the DEA aqueous solution 110 as an absorbing solution, and when the fuel cell 103 is started up, The DEA aqueous solution 44 in the regeneration tower 40 is kept at room temperature (step S301), and the DEA aqueous solution 44 is heated using exhaust heat generated by the power generation of the fuel cell 103 (step S302, step S303), and purified gas. 9 includes a step of controlling the methane concentration of 9 to be substantially constant (step S304). In the heating step of the DEA aqueous solution 44, after the fuel cell 103 is started, the amount of exhaust heat from the fuel cell 103 increases in proportion to the increase in the supply amount of the purified digestion gas 9 to the fuel cell 103, and is proportional to the increase in the amount of exhaust heat. Then, in the first stage (step S302) in which the temperature of the DEA aqueous solution 44 in the regeneration tower 40 rises and the operation of the fuel cell 103 is stable, the supply amount of the purified digested gas 9 and the amount of heat exhausted from the fuel cell 103 Is stabilized and the temperature of the DEA aqueous solution 44 becomes constant.

図10に本発明の第2の実施の形態による消化ガス精製装置202の主要部の構成を示す。図1とは、液配管25から吸収塔7の間にラジエータ58と液配管27が付設配置されている点、及び再生塔40内の吸収液44を加熱するために、熱交換器109に代えて再生塔40内に配設された熱交換チューブ54及びコントローラ53を備え、さらにまた、熱交換チューブ54へ供給する燃料電池103からの排熱温水52は、コントローラ53に接続されたバルブ55により流量が制御される点が異なる。   FIG. 10 shows the configuration of the main part of a digestion gas purification apparatus 202 according to the second embodiment of the present invention. 1 is different from the heat exchanger 109 in that a radiator 58 and a liquid pipe 27 are additionally provided between the liquid pipe 25 and the absorption tower 7 and the absorbent 44 in the regeneration tower 40 is heated. In addition, a heat exchange tube 54 and a controller 53 disposed in the regeneration tower 40 are provided. Further, exhaust hot water 52 from the fuel cell 103 supplied to the heat exchange tube 54 is supplied by a valve 55 connected to the controller 53. The difference is that the flow rate is controlled.

液配管27と液配管25の間には、ラジエータ58が付設配置されている。ラジエータ58は、空冷又は水冷方式を用いることができるが、望ましくは、設備を小型にするため自然空冷若しくはファンによる強制空冷方式を用いるとよい。このラジエータ58により液配管25内の吸収液は所定の温度勾配をもって徐々に冷却される。   A radiator 58 is additionally provided between the liquid pipe 27 and the liquid pipe 25. The radiator 58 can use an air cooling method or a water cooling method, but it is desirable to use a natural air cooling method or a forced air cooling method using a fan in order to reduce the size of the equipment. The absorbent 58 in the liquid pipe 25 is gradually cooled by the radiator 58 with a predetermined temperature gradient.

温度コントローラ53により、吸収液温度を制御する。温度コントローラ53は、吸収液温度検出器を再生塔40内部に挿入して吸収液44の液温を検出し、検出した液温情報に基づき排熱温水52の流入量をバルブ55で制御して、40℃から55℃の温度範囲で任意に吸収液44の液温をコントロールする。   The temperature controller 53 controls the absorption liquid temperature. The temperature controller 53 inserts the absorption liquid temperature detector into the regeneration tower 40 to detect the liquid temperature of the absorption liquid 44, and controls the inflow amount of the exhaust heat hot water 52 with the valve 55 based on the detected liquid temperature information. The liquid temperature of the absorbing solution 44 is arbitrarily controlled within a temperature range of 40 ° C. to 55 ° C.

またポンプ24系統に接続され、ラジエータ58の下流に位置する液配管27に、不図示の温度検出器としての吸収液温度検出器を設置し、上述した温度コントローラ53へ吸収液温度信号を出力し、吸収液の酸性ガス吸収能力が高い温度、例えば、液配管27中の吸収液を40℃から50℃の液温に設定するように構成しても良い。この場合、冷却された吸収液の検出液温に基づき、熱交換チューブ54へ供給する排熱温水52等の流量を制御して、再生塔40内の吸収液温度を50℃より高い液温にコントロールするとよい。なお、温度コントローラ53は前述の制御装置に組み込んでも良い。   In addition, an absorption liquid temperature detector (not shown) is installed in the liquid pipe 27 connected to the pump 24 system and located downstream of the radiator 58, and the absorption liquid temperature signal is output to the temperature controller 53 described above. The absorption liquid may have a high acid gas absorption capacity, for example, the absorption liquid in the liquid pipe 27 may be set to a liquid temperature of 40 ° C. to 50 ° C. In this case, based on the detected liquid temperature of the cooled absorption liquid, the flow rate of the exhaust hot water 52 supplied to the heat exchange tube 54 is controlled so that the absorption liquid temperature in the regeneration tower 40 is higher than 50 ° C. Control it. The temperature controller 53 may be incorporated in the control device described above.

第2の実施の形態に対しても、図4〜図9で説明した、発電システムの構成、供給精製消化ガス圧の制御、再生塔の液位レベルの調整、燃料電池起動時の常温DEA水溶液を用いる精製消化ガスのメタン濃度のコントロールを適用できる。   Also for the second embodiment, the configuration of the power generation system, the control of the feed refined digestion gas pressure, the adjustment of the liquid level of the regeneration tower, the room temperature DEA aqueous solution at the start of the fuel cell, as described in FIGS. The control of the methane concentration of purified digestion gas using can be applied.

本発明の第1の実施の形態であるガス精製装置の主要部の構成例を示す図である。It is a figure which shows the structural example of the principal part of the gas purification apparatus which is the 1st Embodiment of this invention. 本発明の第1の実施の形態であるガス精製装置の変形例の主要部の構成を示す図である。It is a figure which shows the structure of the principal part of the modification of the gas purification apparatus which is the 1st Embodiment of this invention. 本発明の第1の実施の形態におけるガス精製工程のフロー例を示す図である。It is a figure which shows the example of a flow of the gas purification process in the 1st Embodiment of this invention. 本発明の第1の実施の形態であるガス精製装置を用いた発電システムの構成例を示す図である。It is a figure which shows the structural example of the electric power generation system using the gas purification apparatus which is the 1st Embodiment of this invention. 本発明の第1の実施の形態における供給ガス圧制御工程のフロー例を示す図である。It is a figure which shows the example of a flow of the supply gas pressure control process in the 1st Embodiment of this invention. 本発明の第1の実施の形態における吸収塔の液位制御系の構成例を示す図である。It is a figure which shows the structural example of the liquid level control system of the absorption tower in the 1st Embodiment of this invention. 本発明の第1の実施の形態における吸収塔の液位調整工程のフロー例を示す図である。It is a figure which shows the example of a flow of the liquid level adjustment process of the absorption tower in the 1st Embodiment of this invention. 本発明の第1の実施の形態及び従来例における精製ガスのメタン濃度の経時変化例を比較して示す図である。It is a figure which compares and shows the temporal change example of the methane density | concentration of the refined gas in the 1st Embodiment of this invention and a prior art example. 本発明の第1の実施の形態における精製ガスのメタン濃度制御工程のフロー例を示す図である。It is a figure which shows the example of a flow of the methane concentration control process of the refined gas in the 1st Embodiment of this invention. 本発明の第2の実施の形態であるガス精製装置の主要部の構成例を示す図である。It is a figure which shows the structural example of the principal part of the gas purification apparatus which is the 2nd Embodiment of this invention. 従来のガス精製装置の構成を示す図である。It is a figure which shows the structure of the conventional gas purification apparatus.

符号の説明Explanation of symbols

1 原料ガス
2 ガスブロワ
3 液溜
4 吸収液
5 スプレーノズル
6 対向流部(気液接触層)
7 吸収塔
8 出口配管
9 精製ガス(メタン濃縮ガス)
10 ポンプ
11 吸収液熱交換器
12 温水
14 出口配管
15 温水配管
16 スプレーノズル
17 頂部出口配管
18 混合ガス
19 対向流部(気液接触層)
21 液溜
22 再生塔
23 液配管
24 ポンプ
25 液配管
26 熱交換器
27 液配管
28 冷却水
29、30 冷却水配管
31 再生ガス
32 ガスブロワ
33 配管
40 再生塔
42 液配管
44 吸収液
46 水頭差流路
48 空間
52 排熱温水
53 温度コントローラ
54 熱交換チューブ
55 バルブ
58 ラジエータ
60 水頭差
61 再生ガス噴射管
62 再生ガス
68 充填材
100 発電システム
102 メタン発酵処理設備
103 燃料電池
104 入口配管
105 バイパス配管
106 自動開閉弁
107 ガス圧検知手段
108 供給ガス圧制御手段
109 熱交換器
110 DEA水溶液
111 液位検出器
112 液位調節器
113 手動弁
114 バイパス返流管
115 手動弁
116 自動開閉弁
200〜202、210 ガス精製装置
M1 原料ガス
S1 吸収液
1 Raw material gas 2 Gas blower 3 Liquid reservoir 4 Absorbing liquid 5 Spray nozzle 6 Counterflow part (gas-liquid contact layer)
7 Absorption tower 8 Outlet piping 9 Purified gas (methane enriched gas)
DESCRIPTION OF SYMBOLS 10 Pump 11 Absorption liquid heat exchanger 12 Hot water 14 Outlet piping 15 Hot water piping 16 Spray nozzle 17 Top outlet piping 18 Mixed gas 19 Counterflow part (gas-liquid contact layer)
21 Reservoir 22 Regeneration tower 23 Liquid piping 24 Pump 25 Liquid piping 26 Heat exchanger 27 Liquid piping 28 Cooling water 29, 30 Cooling water piping 31 Regenerating gas 32 Gas blower 33 Piping 40 Regenerating tower 42 Liquid piping 44 Absorbing liquid 46 Head differential flow Path 48 Space 52 Waste hot water 53 Temperature controller 54 Heat exchange tube 55 Valve 58 Radiator 60 Water head difference 61 Recycled gas injection pipe 62 Recycled gas 68 Filler 100 Power generation system 102 Methane fermentation treatment facility 103 Fuel cell 104 Inlet pipe 105 Bypass pipe 106 Automatic open / close valve 107 Gas pressure detection means 108 Supply gas pressure control means 109 Heat exchanger 110 DEA aqueous solution 111 Liquid level detector 112 Liquid level controller 113 Manual valve 114 Bypass return pipe 115 Manual valve 116 Automatic open / close valves 200 to 202 210 Gas refiner M1 Absorption of raw material gas S1

Claims (9)

原料ガス中に含まれる酸性ガスを除去して精製ガスを得るガス精製装置において;
流下する塩基性の吸収液に対して前記原料ガスを流すことにより、前記吸収液に前記酸性ガスを吸収させ、前記酸性ガスを吸収した吸収液を流出させる吸収塔と;
前記吸収塔から流入する吸収液を溜め、溜められた吸収液に再生ガスを吹き込むことにより、前記酸性ガスを吸収した吸収液を再生する再生塔と;
前記吸収塔と前記再生塔との間で前記吸収液を循環させる循環経路と;
前記精製ガスの前記吸収塔からガス消費設備への出口配管と;
前記原料ガスを前記吸収塔に送風するガスブロワを途中に挿入した入口配管と;
前記精製ガスの前記ガス消費設備への供給ガス圧を検知するガス圧検知手段と;
前記ガス圧検知手段の出力信号に基き前記ガスブロワの出力を制御する供給ガス圧制御手段とを備える;
ガス精製装置。
In a gas purification apparatus that removes acidic gas contained in a raw material gas to obtain a purified gas;
An absorption tower for causing the absorption liquid to absorb the acidic gas and causing the absorption liquid that has absorbed the acidic gas to flow out by flowing the raw material gas against the flowing basic absorption liquid;
A regenerating tower for regenerating the absorbing liquid that has absorbed the acidic gas by storing the absorbing liquid flowing in from the absorbing tower and blowing the regenerating gas into the stored absorbing liquid;
A circulation path for circulating the absorption liquid between the absorption tower and the regeneration tower;
An outlet pipe of the purified gas from the absorption tower to a gas consuming facility;
An inlet pipe into which a gas blower for blowing the source gas to the absorption tower is inserted;
A gas pressure detecting means for detecting a supply gas pressure of the purified gas to the gas consuming equipment;
Supply gas pressure control means for controlling the output of the gas blower based on the output signal of the gas pressure detection means;
Gas purification device.
前記出口配管から分岐して取り出した精製ガスを前記入口配管に戻すバイパス配管と;
前記バイパス配管の途中に開閉弁を設け;
前記ガス圧検知手段が前記精製ガスの前記ガス消費設備への供給圧力の急増を検知した場合に、前記供給ガス圧制御手段は前記開閉弁を開く;
請求項1に記載のガス精製装置。
A bypass pipe that returns the purified gas branched off from the outlet pipe to the inlet pipe;
An on-off valve is provided in the middle of the bypass pipe;
The supply gas pressure control means opens the on-off valve when the gas pressure detection means detects a sudden increase in supply pressure of the purified gas to the gas consuming equipment;
The gas purification apparatus according to claim 1.
前記循環経路は、前記吸収塔から流出する吸収液を、水頭差により前記再生塔に流入させる水頭差流路を有する;
請求項1又は請求項2に記載のガス精製装置。
The circulation path has a head differential flow path for allowing the absorption liquid flowing out from the absorption tower to flow into the regeneration tower by a head differential;
The gas purification apparatus according to claim 1 or 2.
原料ガス中に含まれる酸性ガスを除去して精製ガスを得るガス精製装置において;
流下する塩基性の吸収液に対して前記原料ガスを流すことにより、前記吸収液に前記酸性ガスを吸収させ、前記酸性ガスを吸収した吸収液を流出させる吸収塔と;
前記吸収塔から流入する吸収液を溜め、溜められた吸収液に再生ガスを吹き込むことにより、前記酸性ガスを吸収した吸収液を再生する再生塔と;
前記吸収塔と前記再生塔との間で前記吸収液を循環させる循環経路とを備え;
前記循環経路に、前記吸収塔に溜められた吸収液の液位を検出する液位検出器と、
前記吸収塔から前記再生塔へ流下する返流路にバイパス返流路を設け、;
前記バイパス返流路に、前記液位検出器の信号に基いて返流流量を調整する自動開閉弁を設ける;
ガス精製装置。
In a gas purification apparatus that removes acidic gas contained in a raw material gas to obtain a purified gas;
An absorption tower for causing the absorption liquid to absorb the acidic gas and causing the absorption liquid that has absorbed the acidic gas to flow out by flowing the raw material gas against the flowing basic absorption liquid;
A regenerating tower for regenerating the absorbing liquid that has absorbed the acidic gas by storing the absorbing liquid flowing in from the absorbing tower and blowing the regenerating gas into the stored absorbing liquid;
A circulation path for circulating the absorption liquid between the absorption tower and the regeneration tower;
A liquid level detector for detecting the liquid level of the absorbent stored in the absorption tower in the circulation path;
Providing a bypass return channel in the return channel flowing down from the absorption tower to the regeneration tower;
An automatic opening / closing valve for adjusting a return flow rate based on a signal of the liquid level detector is provided in the bypass return flow path;
Gas purification device.
前記循環経路は、前記再生塔で再生された吸収液をそのまま前記吸収塔に供給する;
請求項1乃至請求項4のいずれか1項に記載のガス精製装置。
The circulation path supplies the absorption liquid regenerated in the regeneration tower as it is to the absorption tower;
The gas purification apparatus according to any one of claims 1 to 4.
請求項1乃至請求項5のいずれか1項に記載のガス精製装置と;
前記ガス精製装置で精製された精製ガスを燃料とし、前記燃料と酸化剤との電気化学的反応により発電する燃料電池とを備える;
発電システム。
A gas purifier according to any one of claims 1 to 5;
A fuel cell that uses the purified gas purified by the gas purifier as a fuel and generates electricity by an electrochemical reaction between the fuel and an oxidant;
Power generation system.
原料ガス中に含まれる酸性ガスを除去して精製ガスを得るガス精製装置と、
前記ガス精製装置で精製された精製ガスを燃料とし、前記燃料と酸化剤との電気化学的反応により発電する燃料電池と、
を備える発電システムであって;
前記ガス精製装置は、
流下する塩基性の吸収液としてのジエタノールアミン水溶液に対して前記原料ガスを流すことにより、前記吸収液に前記酸性ガスを吸収させ、前記酸性ガスを吸収した吸収液を流出させる吸収塔と、
前記吸収塔から流入する吸収液を溜め、溜められた吸収液に再生ガスを吹き込むことにより、前記酸性ガスを吸収した吸収液を再生する再生塔と、
前記吸収塔と前記再生塔との間で前記吸収液を循環させる循環経路と、
前記燃料電池の起動時には、前記再生塔内の吸収液を常温に保持し、前記燃料電池の発電に伴って生じる排熱を利用して前記吸収液の加熱を行ない、前記精製ガスのメタン濃度をほぼ一定に制御するメタン濃度制御手段とを備える;
発電システム。
A gas purifier that removes the acidic gas contained in the raw material gas and obtains a purified gas;
A fuel cell that uses the purified gas purified by the gas purifier as a fuel, and generates electricity by an electrochemical reaction between the fuel and an oxidant;
A power generation system comprising:
The gas purification device is
An absorption tower for causing the absorption liquid to absorb the acidic gas and causing the absorption liquid that has absorbed the acidic gas to flow out by flowing the raw material gas against a diethanolamine aqueous solution as a basic absorption liquid flowing down;
Regenerating tower for regenerating the absorbing liquid that has absorbed the acidic gas by storing the absorbing liquid flowing in from the absorbing tower and blowing the regenerating gas into the stored absorbing liquid;
A circulation path for circulating the absorption liquid between the absorption tower and the regeneration tower;
At the start of the fuel cell, the absorption liquid in the regeneration tower is kept at room temperature, and the absorption liquid is heated using exhaust heat generated by the power generation of the fuel cell, and the methane concentration of the purified gas is increased. A methane concentration control means for controlling the pressure substantially constant;
Power generation system.
前記燃料電池が固体高分子型燃料電池である;
請求項6又は請求項7に記載の発電システム。
The fuel cell is a polymer electrolyte fuel cell;
The power generation system according to claim 6 or 7.
原料ガス中に含まれる酸性ガスを除去して精製ガスを得るガス精製工程と、
前記ガス精製工程で精製された精製ガスを燃料とし、前記燃料と酸化剤との電気化学的反応により燃料電池にて発電する発電工程とを備える発電方法において;
前記ガス精製工程は、
吸収液としてジエタノールアミン水溶液を用い、
流下する塩基性の前記吸収液に対して前記原料ガスを流し、前記吸収液に前記酸性ガスを吸収させる吸収工程と、
前記酸性ガスを吸収した吸収液に再生ガスを吹き込み、前記吸収液を再生する再生工程と、
前記吸収工程と前記再生工程との間で、前記吸収液を循環させる循環工程とを備え;
前記発電工程は、
前記燃料電池の起動時には、前記再生塔内の吸収液を常温に保持し、前記燃料電池の発電に伴って生じる排熱を利用して前記吸収液の加熱を行ない、前記精製ガスのメタン濃度をほぼ一定に制御する工程を備える;
発電方法。


A gas purification step for obtaining a purified gas by removing the acid gas contained in the raw material gas;
In a power generation method comprising: a power generation step of generating power in a fuel cell by an electrochemical reaction between the fuel and an oxidant using the purified gas purified in the gas purification step as a fuel;
The gas purification step includes
Using an aqueous diethanolamine solution as the absorbing solution,
An absorption step of flowing the raw material gas with respect to the basic absorption liquid flowing down, and allowing the absorption liquid to absorb the acidic gas;
A regeneration step of regenerating the absorbent by blowing a regeneration gas into the absorbent that has absorbed the acid gas;
A circulation step of circulating the absorption liquid between the absorption step and the regeneration step;
The power generation process includes
At the start of the fuel cell, the absorption liquid in the regeneration tower is kept at room temperature, and the absorption liquid is heated using exhaust heat generated by power generation of the fuel cell, and the methane concentration of the purified gas is increased. Providing a substantially constant process;
Power generation method.


JP2004159226A 2004-05-28 2004-05-28 Gas refining apparatus, power generating system and power generating method Withdrawn JP2005334806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004159226A JP2005334806A (en) 2004-05-28 2004-05-28 Gas refining apparatus, power generating system and power generating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004159226A JP2005334806A (en) 2004-05-28 2004-05-28 Gas refining apparatus, power generating system and power generating method

Publications (1)

Publication Number Publication Date
JP2005334806A true JP2005334806A (en) 2005-12-08

Family

ID=35488940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004159226A Withdrawn JP2005334806A (en) 2004-05-28 2004-05-28 Gas refining apparatus, power generating system and power generating method

Country Status (1)

Country Link
JP (1) JP2005334806A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008063392A (en) * 2006-09-05 2008-03-21 Kanbe Ichi Method for recovering methane and apparatus for purifying digestive gas
JP2008078078A (en) * 2006-09-25 2008-04-03 Suzuki Motor Corp Fuel cell system
JP2010110749A (en) * 2008-09-23 2010-05-20 Ifp Gas deacidizing method using absorbent solution with demixing control
CN102242059A (en) * 2011-04-25 2011-11-16 青岛天人环境股份有限公司 Device and method for preparing automobile fuel gas by utilizing organic wastes
KR101187004B1 (en) 2012-08-28 2012-10-02 (주)대우건설 Selective multiphase absorption device and method for highly refining bio gas
JP2014088524A (en) * 2012-10-31 2014-05-15 Tokyo Gas Co Ltd Method for producing high purity methane, and production device therefor
CN105806986A (en) * 2016-06-07 2016-07-27 四川出入境检验检疫局检验检疫技术中心 Device and method for treating acid gases through wet digestion before heavy metal measurement
KR101750902B1 (en) * 2015-07-23 2017-06-26 삼성중공업 주식회사 Apparatus for treating gas combined with fuel cell unit
KR101844282B1 (en) * 2015-09-23 2018-04-03 삼성중공업 주식회사 Apparatus for treating gas combined with fuel cell unit
JP2019198825A (en) * 2018-05-16 2019-11-21 株式会社東芝 Carbon dioxide collection system and method for operation thereof
CN111948553A (en) * 2020-08-19 2020-11-17 华霆(合肥)动力技术有限公司 Battery explosion detection system and method
CN113019259A (en) * 2019-12-25 2021-06-25 中蓝晨光化工有限公司 Vacuum adjusting method for polycondensation reaction device and vacuum system used by same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008063392A (en) * 2006-09-05 2008-03-21 Kanbe Ichi Method for recovering methane and apparatus for purifying digestive gas
JP2008078078A (en) * 2006-09-25 2008-04-03 Suzuki Motor Corp Fuel cell system
JP2010110749A (en) * 2008-09-23 2010-05-20 Ifp Gas deacidizing method using absorbent solution with demixing control
CN102242059A (en) * 2011-04-25 2011-11-16 青岛天人环境股份有限公司 Device and method for preparing automobile fuel gas by utilizing organic wastes
KR101187004B1 (en) 2012-08-28 2012-10-02 (주)대우건설 Selective multiphase absorption device and method for highly refining bio gas
JP2014088524A (en) * 2012-10-31 2014-05-15 Tokyo Gas Co Ltd Method for producing high purity methane, and production device therefor
KR101750902B1 (en) * 2015-07-23 2017-06-26 삼성중공업 주식회사 Apparatus for treating gas combined with fuel cell unit
KR101844282B1 (en) * 2015-09-23 2018-04-03 삼성중공업 주식회사 Apparatus for treating gas combined with fuel cell unit
CN105806986A (en) * 2016-06-07 2016-07-27 四川出入境检验检疫局检验检疫技术中心 Device and method for treating acid gases through wet digestion before heavy metal measurement
JP2019198825A (en) * 2018-05-16 2019-11-21 株式会社東芝 Carbon dioxide collection system and method for operation thereof
JP7013322B2 (en) 2018-05-16 2022-01-31 株式会社東芝 Carbon dioxide capture system and its operation method
CN113019259A (en) * 2019-12-25 2021-06-25 中蓝晨光化工有限公司 Vacuum adjusting method for polycondensation reaction device and vacuum system used by same
CN113019259B (en) * 2019-12-25 2022-11-04 中蓝晨光化工有限公司 Vacuum adjusting method for polycondensation reaction device and vacuum system used by same
CN111948553A (en) * 2020-08-19 2020-11-17 华霆(合肥)动力技术有限公司 Battery explosion detection system and method

Similar Documents

Publication Publication Date Title
US7052790B2 (en) Fuel cell system and operation method having a condensed water tank open to atmosphere
JP4022555B2 (en) Biogas purification method and biogas purification equipment
CA2689453C (en) Co2 recovering apparatus and method
JP2005334806A (en) Gas refining apparatus, power generating system and power generating method
JP2006036849A (en) System for treating and utilizing biomass and method for treating and utilizing biomass gas
CN101416338A (en) Operation of fuel battery by low-temperature hydrogen vaporisation during unused time
JP2002275482A (en) Method for power generation by digested gas and power generation system
EP2452917B1 (en) Fuel cell system
KR101459849B1 (en) Oscillation operation for fuel cell system
JP2009179842A (en) Hydrogen generation system
JP2007188847A (en) Fuel cell system
JP5280063B2 (en) Fuel cell water purification system
JP2009104814A (en) Fuel cell power generation system
JP2008300058A (en) Fuel cell device
JP2003327981A (en) Gas purification apparatus and power generation system
JP4338928B2 (en) Gas purification method, gas purification system and power generation system
JP2006093157A (en) Solid polymer fuel cell system
JP2023068025A (en) Carbon dioxide recovery system
US20080044699A1 (en) Fuel processor having carbon monoxide removing unit and method of operating the same
JP2008198400A (en) Fuel cell power generation system
JP6512571B2 (en) Anaerobic treatment system and anaerobic treatment method
JP6029011B2 (en) Anaerobic treatment method
JP5287368B2 (en) Fuel cell system
US20130084508A1 (en) Operation method of fuel cell system
JP2009163970A (en) Power generation system

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070807