JP6029011B2 - Anaerobic treatment method - Google Patents

Anaerobic treatment method Download PDF

Info

Publication number
JP6029011B2
JP6029011B2 JP2013068572A JP2013068572A JP6029011B2 JP 6029011 B2 JP6029011 B2 JP 6029011B2 JP 2013068572 A JP2013068572 A JP 2013068572A JP 2013068572 A JP2013068572 A JP 2013068572A JP 6029011 B2 JP6029011 B2 JP 6029011B2
Authority
JP
Japan
Prior art keywords
temperature
anaerobic treatment
water
organic waste
waste water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013068572A
Other languages
Japanese (ja)
Other versions
JP2014188485A (en
Inventor
美子 宍戸
美子 宍戸
珠坪 一晃
一晃 珠坪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Environmental Studies
Sumitomo Heavy Industries Ltd
Original Assignee
National Institute for Environmental Studies
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Environmental Studies, Sumitomo Heavy Industries Ltd filed Critical National Institute for Environmental Studies
Priority to JP2013068572A priority Critical patent/JP6029011B2/en
Publication of JP2014188485A publication Critical patent/JP2014188485A/en
Application granted granted Critical
Publication of JP6029011B2 publication Critical patent/JP6029011B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

本発明は、嫌気性処理方法に関するものである。   The present invention relates to an anaerobic treatment method.

従来、有機成分が含まれる有機性排水を嫌気的に処理して処理水を得る嫌気性処理方法として、例えば下記特許文献1に記載の嫌気性処理方法が知られている。この嫌気性処理装置は、有機性排水を前処理槽に導入して前処理を行った後、嫌気性処理槽においてメタン発酵処理を行うことで有機物を分解し、有機物濃度を低下させた処理水を得ている。   Conventionally, an anaerobic treatment method described in, for example, Patent Document 1 described below is known as an anaerobic treatment method for obtaining treated water by anaerobically treating organic wastewater containing organic components. This anaerobic treatment device treats organic matter by decomposing organic matter by introducing organic waste water into the pretreatment tank and pretreating it, and then decomposing the organic matter by performing methane fermentation treatment in the anaerobic treatment tank. Have gained.

特開2008−188504号公報JP 2008-188504 A

ここで、有機性排水を嫌気性処理する嫌気性処理方法として、低温でも十分な活性のあるメタン菌を用いる省エネ型メタン発酵が適用される場合がある。当該方法では、可能な限り投入エネルギーを減らす(可能な限り加温を行わない)ことが可能であり、例えば、気温が高い夏場では無加温での運転を行い、気温が低い冬場では最低限の加温での運転を行うことができる。しかしながら、当該方法では、メタン発酵の温度依存性が高く、気温の変化が大きい季節において、運転が安定しない場合がある。   Here, as an anaerobic treatment method for anaerobically treating organic wastewater, energy-saving methane fermentation using methane bacteria having sufficient activity even at low temperatures may be applied. In this method, it is possible to reduce the input energy as much as possible (do not heat as much as possible). For example, in summertime when the temperature is high, operation without heating is performed, and in winter when the temperature is low It is possible to operate with heating. However, in this method, the temperature dependence of methane fermentation is high, and the operation may not be stable in a season where the temperature changes greatly.

そこで、気温の変化に関わらず安定運転を行うことができる嫌気性処理方法を提供することを目的とする。   Then, it aims at providing the anaerobic processing method which can perform a stable driving | operation irrespective of the change of temperature.

本発明に係る嫌気性処理方法は、有機性排水を嫌気性処理する嫌気性処理槽を用いる嫌気性処理方法であって、有機性排水の水温を目標温度まで下げるための設定温度を設定する工程と、所定の測定箇所における温度を検出する温度検出工程と、温度検出工程での検出結果に基づいて、水温が設定温度よりも高いと判定される場合、または高くなると推定される場合、有機性排水を冷却する冷却工程と、を備える。   The anaerobic treatment method according to the present invention is an anaerobic treatment method using an anaerobic treatment tank for anaerobically treating organic wastewater, and a step of setting a set temperature for lowering the water temperature of the organic wastewater to a target temperature. If the water temperature is determined to be higher than the set temperature based on the temperature detection step for detecting the temperature at a predetermined measurement location and the detection result in the temperature detection step, A cooling step for cooling the waste water.

本発明に係る嫌気性処理方法は、温度検出工程での検出結果に基づいて、有機性排水の水温が設定温度よりも高いと判定される場合、または高くなると推定される場合、有機性排水を冷却する冷却工程を備えている。従って、有機性排水を目標温度まで下げる際に、嫌気性処理槽中の菌にとって適切な温度変化となるように設定温度を設定し、当該設定温度に基づいて有機性排水を冷却することができる。これによって、気温の変化が大きい季節であっても、嫌気性処理槽中の菌に対して、有機性排水の水温の急激な温度降下によるショックを少なくすることができると共に、積極的に低温に馴養させることができ、安定した運転を行うことが可能となる。これによって、気温の変化に関わらず安定運転を行うことができる。   When the anaerobic treatment method according to the present invention determines that the water temperature of the organic waste water is higher than the set temperature based on the detection result in the temperature detection step, or when it is estimated that the water temperature is higher, the organic waste water is removed. A cooling process for cooling is provided. Therefore, when lowering the organic wastewater to the target temperature, the set temperature can be set so that the temperature changes appropriate for the bacteria in the anaerobic treatment tank, and the organic wastewater can be cooled based on the set temperature. . This makes it possible to reduce the shock caused by a sudden drop in the temperature of the organic wastewater against bacteria in the anaerobic treatment tank even during the season when the temperature changes greatly, and actively lower the temperature. It can be acclimatized and stable operation is possible. As a result, stable operation can be performed regardless of changes in temperature.

また、本発明に係る嫌気性処理方法では、温度検出工程において、嫌気性処理槽の外の気温を検出し、冷却工程において、温度検出工程で検出された気温に基づくフィードフォワード制御によって有機性排水を冷却してよい。これによって、嫌気性処理槽の水温が気温の変化による影響を受ける前に、設定温度に従って水温を目標温度に向かって下げることができる。   In the anaerobic treatment method according to the present invention, the temperature outside the anaerobic treatment tank is detected in the temperature detection step, and the organic drainage is performed in the cooling step by feedforward control based on the temperature detected in the temperature detection step. May be cooled. Accordingly, the water temperature can be lowered toward the target temperature according to the set temperature before the water temperature of the anaerobic treatment tank is affected by the change in the air temperature.

本発明に係る嫌気性処理方法は、有機性排水を嫌気性処理する嫌気性処理槽を用いる嫌気性処理方法であって、有機性排水の水温を目標温度まで下げるための設定温度を設定する工程と、所定の測定箇所における温度を検出する温度検出工程と、有機性排水の水温が設定温度に基づいて変化するように、有機性排水を加熱する加熱工程と、を備え、設定温度を設定する工程では、予め予測される予測温度よりも高い温度に設定温度を設定し、加熱工程では、温度検出工程での検出結果に基づいて、加熱量を調整する。   The anaerobic treatment method according to the present invention is an anaerobic treatment method using an anaerobic treatment tank for anaerobically treating organic wastewater, and a step of setting a set temperature for lowering the water temperature of the organic wastewater to a target temperature. And a temperature detecting step for detecting the temperature at a predetermined measurement location, and a heating step for heating the organic waste water so that the water temperature of the organic waste water changes based on the set temperature, and setting the set temperature In the process, the set temperature is set to a temperature higher than the predicted temperature predicted in advance, and in the heating process, the heating amount is adjusted based on the detection result in the temperature detection process.

本発明に係る嫌気性処理方法は、有機性排水の水温が設定温度に基づいて変化するように、有機性排水を加熱する加熱工程と、を備え、設定温度を設定する工程では、予め予測される予測温度よりも高い温度に設定温度を設定し、加熱工程では、温度検出工程での検出結果に基づいて、加熱量を調整する。例えば、有機性排水の温度が急激に降下するものであると予測される場合に、当該予測温度よりも高い温度であって、緩やかに温度降下するような設定温度を設定しておき、水温が設定温度に基づいて変化するように加熱することで、水温を緩やかに変化させることが可能となる。すなわち、有機性排水を目標温度まで下げる際に、嫌気性処理槽中の菌にとって適切な温度変化となるように設定温度を設定し、当該設定温度に基づいて有機性排水を加熱することができる。これによって、気温の変化が大きい季節であっても、嫌気性処理槽中の菌に対して、有機性排水の水温の急激な温度降下によるショックを少なくすることができ、安定した運転を行うことが可能となる。これによって、気温の変化に応じて調整し、安定運転を行うことができる。   The anaerobic treatment method according to the present invention includes a heating step of heating the organic waste water so that the water temperature of the organic waste water changes based on the set temperature, and is predicted in advance in the step of setting the set temperature. The set temperature is set to a temperature higher than the predicted temperature, and in the heating process, the heating amount is adjusted based on the detection result in the temperature detection process. For example, when it is predicted that the temperature of the organic waste water will drop sharply, a set temperature that is higher than the predicted temperature and gradually drops is set. By heating so as to change based on the set temperature, the water temperature can be gradually changed. That is, when lowering the organic waste water to the target temperature, the set temperature can be set so that the temperature changes appropriate for the bacteria in the anaerobic treatment tank, and the organic waste water can be heated based on the set temperature. . This makes it possible to reduce shocks caused by a sudden drop in the temperature of the organic wastewater against bacteria in the anaerobic treatment tank, even during the season when the temperature changes greatly, and perform stable operation. Is possible. Thereby, it can adjust according to the change of temperature, and can perform a stable driving | operation.

本発明の嫌気性処理方法によれば、気温の変化に応じて調整し、安定運転を行うことができる。   According to the anaerobic treatment method of the present invention, it is possible to perform stable operation by adjusting according to a change in temperature.

本発明の実施形態に係る嫌気性処理方法を行う嫌気性処理システムを示す図である。It is a figure which shows the anaerobic processing system which performs the anaerobic processing method which concerns on embodiment of this invention. 本発明の実施形態に係る嫌気性処理方法に係る運転制御の一例を示すフローチャートである。It is a flowchart which shows an example of the operation control which concerns on the anaerobic processing method which concerns on embodiment of this invention. 設定温度の一例を示すグラフである。It is a graph which shows an example of preset temperature. メタン菌の発酵温度とメタン発酵必要日数の関係を示すグラフである。It is a graph which shows the relationship between the fermentation temperature of methane bacteria, and methane fermentation required days. 年間の気温の変動の一例を示すグラフである。It is a graph which shows an example of the fluctuation | variation of an annual temperature. 変形例に係る嫌気性処理方法を説明するための設定温度の一例を示すグラフである。It is a graph which shows an example of preset temperature for explaining the anaerobic processing method concerning a modification.

以下、図面を参照しながら本発明の好適な実施形態を説明する。なお、以下の説明においては、同一の要素には同一の符号を用いることとし、重複する説明は省略する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In the following description, the same reference numerals are used for the same elements, and duplicate descriptions are omitted.

図1は、本発明の第1実施形態に係る嫌気性処理システムの構成を示す概略図である。嫌気性処理システム1は、原水流入管L1を通ってきた有機性排水を受け入れる調整槽9と、その後段の酸生成槽11と、更にその後段の嫌気性処理槽12と、を備えている。   FIG. 1 is a schematic diagram showing a configuration of an anaerobic treatment system according to the first embodiment of the present invention. The anaerobic treatment system 1 includes an adjustment tank 9 that receives the organic wastewater that has passed through the raw water inflow pipe L1, an acid generation tank 11 at the subsequent stage, and an anaerobic treatment tank 12 at the subsequent stage.

調整槽9は、後段に送出する有機性排水の流量調整処理を行う槽である。調整槽9からは、送水管L2を通じて酸生成槽11に所定の流量で有機性排水が送られる。酸生成槽11は、酸生成菌により有機性排水に含まれる有機物を酢酸等に分解する。また、酸生成槽11において、中和剤としてアルカリ剤(例えば、水酸化ナトリウム)を添加してもよい。酸生成槽11には、送水管L3が接続されており、当該送水管L3に設けられたポンプP3によって、酸生成槽11内の有機性排水が上向流式嫌気性処理槽12に流入するようになっている。   The adjustment tank 9 is a tank that performs a flow rate adjustment process of the organic wastewater to be sent to the subsequent stage. From the adjustment tank 9, organic waste water is sent to the acid production tank 11 through the water pipe L2 at a predetermined flow rate. The acid generation tank 11 decomposes the organic matter contained in the organic waste water into acetic acid or the like by the acid generating bacteria. In the acid generation tank 11, an alkali agent (for example, sodium hydroxide) may be added as a neutralizing agent. A water supply pipe L3 is connected to the acid generation tank 11, and the organic waste water in the acid generation tank 11 flows into the upward flow anaerobic treatment tank 12 by a pump P3 provided in the water supply pipe L3. It is like that.

嫌気性処理槽12は、例えば直方体状の容器からなり、EGSB(Expanded Granular Sludge Bed)反応槽などと呼ばれるタイプの水処理槽を適用してよい。嫌気性処理槽12の下部には、流入部13が設けられている。流入部13は、送水管L3に連絡しており有機性排水Wを嫌気性処理槽12内に流入させる。流入部13は、例えば、長手方向に均一に穴部が設けられた送水管である。嫌気性処理槽12内には、嫌気性汚泥が粒状化してなるグラニュール汚泥が収納されている。有機性排水Wは、グラニュール汚泥に接触することにより、グラニュール汚泥中の嫌気性菌によって嫌気性処理される。このようなグラニュール汚泥が、有機性排水中で下部に沈降して溜まることにより、嫌気性処理槽12の下部にはグラニュール汚泥層14が形成されている。   The anaerobic treatment tank 12 is composed of, for example, a rectangular parallelepiped container, and a water treatment tank of a type called an EGSB (Expanded Granular Sludge Bed) reaction tank may be applied. An inflow portion 13 is provided at the lower portion of the anaerobic treatment tank 12. The inflow portion 13 communicates with the water supply pipe L3 and causes the organic waste water W to flow into the anaerobic treatment tank 12. The inflow portion 13 is, for example, a water pipe that is provided with holes uniformly in the longitudinal direction. In the anaerobic treatment tank 12, granular sludge formed by granulating anaerobic sludge is stored. The organic waste water W is anaerobically treated by anaerobic bacteria in the granule sludge by contacting the granule sludge. As such granular sludge settles and accumulates in the lower part in the organic waste water, a granular sludge layer 14 is formed in the lower part of the anaerobic treatment tank 12.

嫌気性処理槽12では、その下部に設けられた流入部13から有機性排水Wを内部に導入することによって上向きの流動を生じさせ、グラニュール汚泥層14に有機性排水Wを通して、有機性排水Wを嫌気性処理する。グラニュール汚泥層14の上部には、当該グラニュール汚泥層14を通過し嫌気性処理を経た有機性排水Wの液層が形成されている。この液層の有機性排水Wには、グラニュール汚泥層14から浮上した浮上グラニュール汚泥や、嫌気性処理によって発生したバイオガス(例えば、メタンガス)が含まれている。なお、浮上グラニュール汚泥は、グラニュール汚泥が浮いたものであり、例えば、グラニュール汚泥にガスが付着したり、ガスが内包されたりなどしたものである。バイオガスの主な構成成分はメタンと二酸化炭素であり、硫化水素、窒素、水素等の他の成分も少量含まれる。   In the anaerobic treatment tank 12, the organic waste water W is introduced into the inside from an inflow portion 13 provided in the lower portion thereof to cause upward flow, and the organic waste water W is passed through the granular sludge layer 14 to pass through the organic waste water. W is anaerobically treated. On the upper part of the granular sludge layer 14, a liquid layer of the organic waste water W that has passed through the granular sludge layer 14 and has undergone anaerobic treatment is formed. The organic drainage W of the liquid layer contains floating granular sludge that has floated from the granular sludge layer 14 and biogas (for example, methane gas) generated by anaerobic treatment. The floating granule sludge is one in which the granule sludge floats. For example, the gas sludge floats on the granule sludge or the gas is encapsulated therein. The main components of biogas are methane and carbon dioxide, and other components such as hydrogen sulfide, nitrogen, and hydrogen are also contained in small amounts.

また、嫌気性処理槽12の上部には、有機性排水Wと浮上グラニュール汚泥とバイオガスとを分離するための三相分離部18が、配置されている。   In addition, a three-phase separation unit 18 for separating the organic waste water W, the floating granular sludge, and the biogas is disposed in the upper portion of the anaerobic treatment tank 12.

三相分離部18の下端部には、有機性排水Wを三相分離部18の内部に導入する導入口18aが形成されている。この導入口18aに有機性排水Wを導くために、三相分離部18の下方であって導入口18aの周囲には、三相分離部18の底部に沿って設置された導入板19が設けられている。また、導入板19には、導入口18aに導入されなかった有機性排水Wを下側に返送するための返送口19aが形成されている。また、導入板19の更に下方には、導入板19の返送口19aを通って返送される有機性排水Wの流れを整えるための整流板20が設けられている。   At the lower end of the three-phase separation unit 18, an introduction port 18 a for introducing the organic waste water W into the three-phase separation unit 18 is formed. In order to guide the organic waste water W to the introduction port 18a, an introduction plate 19 installed along the bottom of the three-phase separation unit 18 is provided below the three-phase separation unit 18 and around the introduction port 18a. It has been. The introduction plate 19 is formed with a return port 19a for returning the organic waste water W that has not been introduced into the introduction port 18a downward. Further, a rectifying plate 20 for adjusting the flow of the organic waste water W returned through the return port 19 a of the introduction plate 19 is provided further below the introduction plate 19.

有機性排水Wは、上記グラニュール汚泥層14を通過し上向きに流動し、導入板19によって導入板19と三相分離部18との間に形成された導入路に外側から流入する。上記導入路を通った有機性排水Wの一部は、導入口18aから三相分離部18内に流入し、他の部分は、導入板19の返送口19aから下側に流れるようになっている。   The organic waste water W flows upward through the granular sludge layer 14 and flows into the introduction path formed between the introduction plate 19 and the three-phase separation portion 18 by the introduction plate 19 from the outside. Part of the organic waste water W that has passed through the introduction path flows into the three-phase separation part 18 from the introduction port 18a, and the other part flows downward from the return port 19a of the introduction plate 19. Yes.

三相分離部18内に流入した有機性排水Wは、三相分離部18の側壁18bから外側に溢れ、処理水として処理水排出部23に集められる。側壁18bの上端の高さに、有機性排水Wの液面Hが形成される。処理水排出部23の処理水の一部は、処理水返送路L4を通じて酸生成槽11に返送され、処理水排出部23の処理水の残部は、排水管L5を通じて系外に排出される。三相分離部18において、三相分離部18の側壁18bの内側には、導入口18aから流入した有機性排水Wが直接処理水排出部23に流入しないようにするための隔壁24が設けられている。   The organic waste water W that has flowed into the three-phase separation unit 18 overflows from the side wall 18b of the three-phase separation unit 18 and is collected in the treated water discharge unit 23 as treated water. The liquid level H of the organic waste water W is formed at the height of the upper end of the side wall 18b. Part of the treated water in the treated water discharge unit 23 is returned to the acid generation tank 11 through the treated water return path L4, and the remaining treated water in the treated water discharge unit 23 is discharged out of the system through the drain pipe L5. In the three-phase separation unit 18, a partition wall 24 is provided on the inner side of the side wall 18 b of the three-phase separation unit 18 so that the organic waste water W flowing from the inlet 18 a does not directly flow into the treated water discharge unit 23. ing.

また、嫌気性処理槽12内で、液面Hよりも上方の閉鎖空間には、前述のバイオガスが一時的に貯留される。この液面Hよりも上方の閉鎖空間を、以下、ガス貯留空間31と呼ぶ。これに対し、液面H下の有機性排水Wが貯留された空間を、以下、嫌気性処理空間33と呼ぶ。   In the anaerobic treatment tank 12, the aforementioned biogas is temporarily stored in a closed space above the liquid level H. Hereinafter, the closed space above the liquid level H is referred to as a gas storage space 31. On the other hand, the space in which the organic waste water W below the liquid level H is stored is hereinafter referred to as an anaerobic treatment space 33.

嫌気性処理槽12では、嫌気性処理空間33で有機性排水Wの嫌気性処理が行われ、バイオガスが発生する。当該バイオガスが浮上し液面Hまで到達することで、ガス貯留空間31にバイオガスが一時的に貯留される。ガス貯留空間31のバイオガスは、ガス回収ラインL6を通じて外部に排出され有用なエネルギー源として回収される。ここで、ガス回収ラインL6上には、ポンプ(排気手段)P6が設けられている。ポンプP6の駆動により、ガス貯留空間31を吸引排気して強制的にバイオガスを嫌気性処理槽12外に排出させることもできる。   In the anaerobic treatment tank 12, the anaerobic treatment of the organic waste water W is performed in the anaerobic treatment space 33, and biogas is generated. When the biogas rises and reaches the liquid level H, the biogas is temporarily stored in the gas storage space 31. The biogas in the gas storage space 31 is discharged to the outside through the gas recovery line L6 and recovered as a useful energy source. Here, a pump (exhaust means) P6 is provided on the gas recovery line L6. By driving the pump P6, the gas storage space 31 can be sucked and exhausted to forcibly discharge the biogas out of the anaerobic treatment tank 12.

続いて、上記嫌気性処理システム1による嫌気性処理方法の基本動作について説明する。   Next, the basic operation of the anaerobic processing method by the anaerobic processing system 1 will be described.

(酸生成槽処理工程)
調整槽9で調整された流量で、酸生成槽11に対し有機性排水が導入されると、酸生成槽11では、酸生成菌により有機性排水に含まれる有機物が酢酸等に分解される。これにより酢酸等の有機酸を多く含む有機性排水が、酸生成槽11から嫌気性処理槽12に送られる。
(Acid generation tank treatment process)
When the organic waste water is introduced into the acid generation tank 11 at the flow rate adjusted in the adjustment tank 9, in the acid generation tank 11, organic substances contained in the organic waste water are decomposed into acetic acid and the like by the acid generating bacteria. As a result, organic wastewater containing a large amount of organic acid such as acetic acid is sent from the acid generation tank 11 to the anaerobic treatment tank 12.

(嫌気性処理工程)
嫌気性処理槽12の流入部13から導入された有機性排水Wは、嫌気性処理空間33内を上向きに流動する。このとき、有機性排水Wは、グラニュール汚泥層14を通過しながらグラニュール汚泥に接触し、嫌気性処理される。
(Anaerobic treatment process)
The organic waste water W introduced from the inflow portion 13 of the anaerobic treatment tank 12 flows upward in the anaerobic treatment space 33. At this time, the organic waste water W comes into contact with the granular sludge while passing through the granular sludge layer 14 and is anaerobically treated.

(処理水排出工程)
その後、液面Hまで到達した有機性排水Wは、側壁18bの上端を越えて処理水排出部23に溢れ、処理水として排水管L5を通じて系外に排出される。なお、排出された処理水には、後段で更なる所定の水処理が施される。
(Processed water discharge process)
Thereafter, the organic waste water W that has reached the liquid level H overflows the treated water discharge part 23 beyond the upper end of the side wall 18b, and is discharged out of the system through the drain pipe L5 as treated water. The discharged treated water is subjected to further predetermined water treatment at a later stage.

(ガス貯留工程)
上記嫌気性処理工程では、嫌気性反応によるバイオガス(メタンガス、二酸化炭素等)が発生し、液面Hまで浮上することでガス貯留空間31に一時的に貯留される。通常時は、ポンプP6が駆動されずに、ガス貯留空間31のバイオガスが、ガス貯留空間31の圧力によってガス回収ラインL6を流動し排出される。
(Gas storage process)
In the anaerobic treatment step, biogas (methane gas, carbon dioxide, etc.) due to an anaerobic reaction is generated, and is temporarily stored in the gas storage space 31 by rising to the liquid level H. At normal times, the pump P6 is not driven, and the biogas in the gas storage space 31 flows through the gas recovery line L6 by the pressure in the gas storage space 31 and is discharged.

次に、本実施形態の嫌気性処理方法を実行するための嫌気性処理システム1の構成について、更に詳細に説明する。   Next, the configuration of the anaerobic processing system 1 for executing the anaerobic processing method of the present embodiment will be described in more detail.

本実施形態に係る嫌気性処理システム1は、低温でも十分な活性のあるメタン菌を用いる省エネ型メタン発酵を採用するシステムである。すなわち、嫌気性処理槽12内のグラニュール汚泥中には低温活性のメタン菌が含まれている。例えば図4に示すように、本実施形態に係る嫌気性処理槽12は、低温であってもメタン発酵が可能である。本実施形態に係る嫌気性処理システム1は、省エネ型メタン発酵を採用しても一年を通して安定運転が可能なシステムである。図1に示すように、嫌気性処理システム1は、嫌気性処理システム1の運転制御を実行する制御部50と、嫌気性処理システム1内の有機性排水を加熱する加熱部51と、嫌気性処理システム1内の有機性排水を冷却する冷却部52と、嫌気性処理システム1内の有機性排水の水温を検出する温度検出部53と、嫌気性処理槽12の外の気温を検出する温度検出部54と、を備えている。   The anaerobic treatment system 1 according to this embodiment is a system that employs energy-saving methane fermentation using methane bacteria that are sufficiently active even at low temperatures. That is, the granule sludge in the anaerobic treatment tank 12 contains low-temperature active methane bacteria. For example, as shown in FIG. 4, the anaerobic treatment tank 12 according to the present embodiment can perform methane fermentation even at a low temperature. The anaerobic treatment system 1 according to the present embodiment is a system capable of stable operation throughout the year even if energy-saving methane fermentation is employed. As shown in FIG. 1, the anaerobic treatment system 1 includes a control unit 50 that performs operation control of the anaerobic treatment system 1, a heating unit 51 that heats organic waste water in the anaerobic treatment system 1, and an anaerobic treatment. A cooling unit 52 that cools the organic wastewater in the treatment system 1, a temperature detection unit 53 that detects the water temperature of the organic wastewater in the anaerobic treatment system 1, and a temperature that detects the temperature outside the anaerobic treatment tank 12. And a detection unit 54.

加熱部51は、嫌気性処理システム1内の有機性排水を加熱する機能を有する。加熱部51は、有機性排水を加熱することができるものであれば特に限定されないが、電気式のヒーター、燃焼器などを適用してよい。図1に示す例では、嫌気性処理システム1は、調整槽9の有機性排水を加熱する加熱部51Aと、酸生成槽11の有機性排水を加熱する加熱部51Bと、嫌気性処理槽12の有機性排水を加熱する加熱部51Cと、を備えている。ただし、嫌気性処理システム1は、少なくとも嫌気性処理槽12の水温を上げることができる位置(嫌気性処理槽12の位置、または嫌気性処理槽12より上流側の位置)で有機性排水を加熱できる加熱部51を有していればよく、加熱部51A〜51Cのうちの少なくとも1つを有していればよく、ラインL1,L2,L3を流れる有機性排水を加熱する加熱部51を有していてもよい。   The heating unit 51 has a function of heating the organic waste water in the anaerobic treatment system 1. The heating unit 51 is not particularly limited as long as it can heat the organic waste water, but an electric heater, a combustor, or the like may be applied. In the example shown in FIG. 1, the anaerobic treatment system 1 includes a heating unit 51 </ b> A that heats the organic wastewater in the adjustment tank 9, a heating unit 51 </ b> B that heats the organic wastewater in the acid generation tank 11, and the anaerobic treatment tank 12. Heating unit 51C for heating the organic waste water. However, the anaerobic treatment system 1 heats the organic waste water at a position where the water temperature of the anaerobic treatment tank 12 can be raised at least (the position of the anaerobic treatment tank 12 or the position upstream of the anaerobic treatment tank 12). It is only necessary to have the heating part 51 that can be used, and it is sufficient to have at least one of the heating parts 51A to 51C, and the heating part 51 that heats the organic waste water flowing through the lines L1, L2, and L3 is provided. You may do it.

冷却部52は、嫌気性処理システム1内の有機性排水を冷却する機能を有する。冷却部52は、有機性排水を冷却することができるものであれば特に限定されないが、ヒートポンプ、熱交換器などを適用してよい。図1に示す例では、嫌気性処理システム1は、調整槽9の有機性排水を冷却する冷却部52Aと、酸生成槽11の有機性排水を冷却する冷却部52Bと、嫌気性処理槽12の有機性排水を冷却する冷却部52Cと、を備えている。ただし、嫌気性処理システム1は、少なくとも嫌気性処理槽12の水温を下げることができる位置(嫌気性処理槽12の位置、または嫌気性処理槽12より上流側の位置)で有機性排水を加冷却できる冷却部52を有していればよく、冷却部52A〜52Cのうちの少なくとも1つを有していればよく、ラインL1,L2,L3を流れる有機性排水を冷却する冷却部52を有していてもよい。   The cooling unit 52 has a function of cooling the organic waste water in the anaerobic treatment system 1. The cooling unit 52 is not particularly limited as long as it can cool the organic waste water, but a heat pump, a heat exchanger, or the like may be applied. In the example illustrated in FIG. 1, the anaerobic treatment system 1 includes a cooling unit 52 </ b> A that cools the organic wastewater in the adjustment tank 9, a cooling unit 52 </ b> B that cools the organic wastewater in the acid generation tank 11, and the anaerobic treatment tank 12. And a cooling section 52C for cooling the organic waste water. However, the anaerobic treatment system 1 adds organic waste water at a position where the water temperature of the anaerobic treatment tank 12 can be lowered (at a position of the anaerobic treatment tank 12 or a position upstream of the anaerobic treatment tank 12). What is necessary is just to have the cooling part 52 which can be cooled, what is necessary is just to have at least one of the cooling parts 52A-52C, and the cooling part 52 which cools the organic waste water which flows through the lines L1, L2, L3. You may have.

温度検出部53は、嫌気性処理システム1内の有機性排水の水温を検出する機能を有し、温度センサなどによって構成される。図1に示す例では、嫌気性処理システム1は、調整槽9の有機性排水の水温を検出する温度検出部53Aと、酸生成槽11の有機性排水の水温を検出する温度検出部53Bと、嫌気性処理槽12の有機性排水の水温を検出する温度検出部53Cと、を備えている。槽9,11,12内における各温度検出部53A,53B,53Cの位置は、水温を検出できる位置であれば特に限定されない。ただし、嫌気性処理システム1は、少なくとも嫌気性処理槽12の水温を計測可能な位置、または推定可能な位置(嫌気性処理槽12より上流側または下流側の位置)で有機性排水の水温を検出できる温度検出部53を有していればよく、温度検出部53A〜53Cのうちの少なくとも1つを有していればよく、ラインL1,L2,L3,L4,L5を流れる有機性排水の水温を検出する温度検出部53を有していてもよい。温度検出部54は、嫌気性処理槽12の外の気温を検出する機能を有し、温度センサなどによって構成される。温度検出部54の設置位置は特に限定されない。   The temperature detection unit 53 has a function of detecting the water temperature of the organic waste water in the anaerobic treatment system 1 and includes a temperature sensor or the like. In the example shown in FIG. 1, the anaerobic treatment system 1 includes a temperature detection unit 53A that detects the water temperature of the organic waste water in the adjustment tank 9, and a temperature detection unit 53B that detects the water temperature of the organic waste water in the acid generation tank 11. And a temperature detector 53C for detecting the water temperature of the organic waste water in the anaerobic treatment tank 12. The position of each temperature detection part 53A, 53B, 53C in the tank 9, 11, 12 will not be specifically limited if it is a position which can detect water temperature. However, the anaerobic treatment system 1 sets the water temperature of the organic waste water at least at a position where the water temperature of the anaerobic treatment tank 12 can be measured or estimated (position upstream or downstream from the anaerobic treatment tank 12). What is necessary is just to have the temperature detection part 53 which can be detected, and what is necessary is just to have at least one of the temperature detection parts 53A-53C, and the organic waste water which flows through lines L1, L2, L3, L4, L5. You may have the temperature detection part 53 which detects water temperature. The temperature detection unit 54 has a function of detecting the temperature outside the anaerobic treatment tank 12 and includes a temperature sensor or the like. The installation position of the temperature detection part 54 is not specifically limited.

制御部50は、嫌気性処理システム1全体の制御を行うものである。制御部50は、加熱部51A〜51C、冷却部52A〜52C、及び温度検出部53A〜53C,54と電気的に接続されている。制御部50は、温度検出部53,54の検出結果に基づいて、加熱部51及び冷却部52を制御することにより、年間の気温推移に合わせ、嫌気性処理槽12の水温を省エネ型メタン発酵において適切な温度とする。特に、制御部50は、秋から冬にかけて急激に気温が降下することによるショックを低減するために、嫌気性処理槽12の水温を積極的に低下させることで、嫌気性処理槽12内のメタン菌を積極的に低温に馴養させるような制御を行う。   The control unit 50 controls the entire anaerobic processing system 1. The control unit 50 is electrically connected to the heating units 51A to 51C, the cooling units 52A to 52C, and the temperature detection units 53A to 53C, 54. The control unit 50 controls the heating unit 51 and the cooling unit 52 based on the detection results of the temperature detection units 53 and 54, thereby adjusting the water temperature of the anaerobic treatment tank 12 to the energy-saving methane fermentation in accordance with the annual temperature transition. At an appropriate temperature. In particular, the control unit 50 actively reduces the water temperature of the anaerobic treatment tank 12 in order to reduce shock caused by a sudden drop in temperature from autumn to winter, thereby reducing the methane in the anaerobic treatment tank 12. Control is done to actively adapt the bacteria to low temperatures.

制御部50は、嫌気性処理槽12の水温を目標温度まで下げるための設定温度を設定する設定部として機能する。ここで、目標温度とは、冬場における嫌気性処理槽12の水温の設定値であり、例えば5〜25℃とすることができる。設定温度とは、嫌気性処理槽12の水温の急激な温度降下を避けるために、目標温度に向かって徐々に温度を低下させる際の水温の時間ごとの目標値である。図3に示すように、時間を横軸に設定し、温度を縦軸に設定した場合、設定温度DTは時間の経過とともに目標温度MTへ向けて徐々に低下するような直線(または曲線や階段状に減少するグラフでもよい)に係るグラフで示される。なお、設定温度DTは、冷却や加熱の要否を判断する際に用いられる(詳細は後述)が、演算の負荷や冷却部52、加熱部51の負荷を低減するために、当該判断が行われる際に設定温度に対して高温側及び低温側に許容範囲を有していてもよい。例えば、図3に示すように、基準設定温度STに対して高温側の許容値UBを設定し、基準設定温度STに対して低温側の許容値DBを設定してよい。この場合、許容値UBと許容値DBの間の範囲を設定温度DTとして演算してよい。なお、高温側の許容値UBと低温側の許容値DBの何れか一方のみでもよい。例えば、嫌気性処理槽12の水温の検出結果に基づいてフィードバック制御を行う際、嫌気性処理槽12の水温が基準設定温度STと一致していなくとも、設定温度DTの範囲に入っていれば加熱部51及び冷却部52を停止しておいてよい。   The control unit 50 functions as a setting unit that sets a set temperature for lowering the water temperature of the anaerobic treatment tank 12 to the target temperature. Here, the target temperature is a set value of the water temperature of the anaerobic treatment tank 12 in winter, and can be set to 5 to 25 ° C., for example. The set temperature is a target value for each time of the water temperature when the temperature is gradually lowered toward the target temperature in order to avoid a rapid temperature drop of the water temperature in the anaerobic treatment tank 12. As shown in FIG. 3, when the time is set on the horizontal axis and the temperature is set on the vertical axis, the set temperature DT is a straight line (or a curve or staircase) that gradually decreases toward the target temperature MT over time. It may be a graph that decreases in a shape). The set temperature DT is used when determining whether or not cooling or heating is necessary (details will be described later). However, in order to reduce the calculation load and the load on the cooling unit 52 and the heating unit 51, the determination is performed. In this case, an allowable range may be provided on the high temperature side and the low temperature side with respect to the set temperature. For example, as shown in FIG. 3, the allowable value UB on the high temperature side may be set with respect to the reference set temperature ST, and the allowable value DB on the low temperature side may be set with respect to the reference set temperature ST. In this case, a range between the allowable value UB and the allowable value DB may be calculated as the set temperature DT. Note that only one of the allowable value UB on the high temperature side and the allowable value DB on the low temperature side may be used. For example, when performing feedback control based on the detection result of the water temperature of the anaerobic treatment tank 12, even if the water temperature of the anaerobic treatment tank 12 does not coincide with the reference set temperature ST, it is within the range of the set temperature DT. The heating unit 51 and the cooling unit 52 may be stopped.

また、制御部50は、温度検出部53,54の検出結果に基づいて、加熱部51による加熱の要否を判定すると共に加熱処理を実行する機能と、冷却部52による冷却の要否を判定すると共に冷却処理を実行する機能を有している。例えば、制御部50は、温度検出部53,54での検出結果を取得し、当該検出結果に基づいて、嫌気性処理槽12の水温が設定温度よりも高くなるか否かの判定を行うと共に、低くなるか否かの判定を行ってよい。制御部50は、嫌気性処理槽12の水温が設定温度よりも高くなると判定したときに冷却部52による冷却を実行してよく、低くなると判定したときに加熱部51による加熱を実行してよい。また、制御部50は、温度検出部53,54での検出結果を取得し、当該検出結果に基づいて、嫌気性処理槽12の水温が設定温度よりも高くなることを推定してよく、低くなることを推定してよい。   In addition, the control unit 50 determines whether heating by the heating unit 51 is necessary based on the detection results of the temperature detection units 53 and 54, and also determines whether heating is performed by the cooling unit 52 and the function of executing the heating process. And a function of executing a cooling process. For example, the control unit 50 acquires the detection results of the temperature detection units 53 and 54 and determines whether or not the water temperature of the anaerobic treatment tank 12 is higher than the set temperature based on the detection results. It may be determined whether or not it becomes lower. The control unit 50 may perform cooling by the cooling unit 52 when it is determined that the water temperature of the anaerobic treatment tank 12 is higher than the set temperature, and may perform heating by the heating unit 51 when it is determined that the temperature is low. . Moreover, the control part 50 acquires the detection result in the temperature detection parts 53 and 54, and may estimate that the water temperature of the anaerobic processing tank 12 becomes higher than preset temperature based on the said detection result, and is low. It may be estimated that

次に、年間の気温推移に合わせた嫌気性処理システム1の運転制御方法の一例について説明する。なお、以下の運転制御は一例に過ぎず、地域や年によって適宜適切な制御を行ってよい。図5に示すように、1〜2月は気温が最も低い季節であり、制御部50は、最低限度の加熱によって運転を行うべく、嫌気性処理槽12の水温が10℃以上になるように、加熱部51によって常時加熱を行う。12月及び3〜4月は気温が低い季節であり、制御部50は、温度検出部53,54の検出結果に基づき、嫌気性処理槽12の水温が10℃以下になる場合のみ、加熱部51によって加熱を行う。5〜9月は気温が高い季節であるため、制御部50は加熱部51による加熱を行わない(無加温)。   Next, an example of the operation control method of the anaerobic processing system 1 according to the annual temperature change will be described. The following operation control is merely an example, and appropriate control may be performed as appropriate depending on the region and year. As shown in FIG. 5, January to February is the season when the temperature is the lowest, and the control unit 50 is set so that the water temperature of the anaerobic treatment tank 12 is 10 ° C. or higher so as to operate with the minimum heating. The heating unit 51 always performs heating. December and March to April are seasons when the temperature is low, and the control unit 50 is based on the detection results of the temperature detection units 53 and 54, and only when the water temperature of the anaerobic treatment tank 12 is 10 ° C. or less. Heat by 51. Since May to September is a season when the temperature is high, the control unit 50 does not perform heating by the heating unit 51 (no heating).

ここで、10〜11月は冬に向けて気温が急激に低下する季節であるため、急激な温度降下によるショックを少なくするため、制御部50は、所定の温度から設定温度を目標温度に向かって徐々に下げるように加熱部51による加熱及び冷却部52による冷却を行う。例えば、制御部50は、平均気温(約18℃)から目標温度(10℃)に向かって設定温度を一週間ごとに1℃下げるように冷却部52を制御し、水温が10℃以下になる場合は加熱部51で加熱を行ってよい。   Here, since October is a season in which the temperature suddenly decreases toward winter, the control unit 50 moves the set temperature from a predetermined temperature toward the target temperature in order to reduce a shock due to a rapid temperature drop. Then, heating by the heating unit 51 and cooling by the cooling unit 52 are performed so as to be gradually lowered. For example, the control unit 50 controls the cooling unit 52 to lower the set temperature by 1 ° C. every week from the average temperature (about 18 ° C.) toward the target temperature (10 ° C.), and the water temperature becomes 10 ° C. or less. In that case, the heating unit 51 may perform heating.

上述のような秋〜冬にかけての運転制御について、図2及び図3を参照してより詳細に説明する。図2は、秋〜冬にかけての運転制御の一例を示すフローチャートである。なお、図2の処理が開始される前段階において、制御部50は、嫌気性処理槽12の水温を目標温度MTまで下げるための所定時期における設定温度DTを設定しておく(設定温度を設定する工程)。図2に示すように、制御部50は、予め設定しておいた設定温度DTから、現在の設定温度DTの値を参照する(ステップS10)。次に、制御部は、温度検出部53,54の検出結果を取得する(ステップS20:温度検出工程)。   The operation control from autumn to winter as described above will be described in more detail with reference to FIGS. FIG. 2 is a flowchart showing an example of operation control from autumn to winter. In addition, before the process of FIG. 2 is started, the control unit 50 sets a set temperature DT at a predetermined time for lowering the water temperature of the anaerobic treatment tank 12 to the target temperature MT (set the set temperature). Process). As shown in FIG. 2, the control unit 50 refers to the value of the current set temperature DT from the preset temperature DT that has been set in advance (step S10). Next, a control part acquires the detection result of the temperature detection parts 53 and 54 (step S20: temperature detection process).

次に、制御部50は、S20で取得した検出結果に基づいて、有機性排水の冷却が必要か否かの判定を行う(ステップS30)。S30において冷却が必要であると判定されると、制御部50は、冷却部52を制御することによって有機性排水の冷却を行う(ステップS40:冷却工程)。S40の後、図2に示す処理が終了し、再びS10から処理が繰り返される。一方、S30において冷却が必要でないと判定されると、制御部50は、S20で取得した検出結果に基づいて、有機性排水の加熱が必要か否かの判定を行う(ステップS50)。S50において加熱が必要であると判定されると、制御部50は、加熱部51を制御することによって有機性排水の加熱を行う(ステップS60)。S60の後、図2に示す処理が終了し、再びS10から処理が繰り返される。一方、S50において加熱が必要でないと判定されると、冷却及び加熱は行われず、図2に示す処理が終了し、再びS10から処理が繰り返される。   Next, the control part 50 determines whether cooling of organic waste water is required based on the detection result acquired by S20 (step S30). If it determines with cooling being required in S30, the control part 50 will cool organic waste_water | drain by controlling the cooling part 52 (step S40: cooling process). After S40, the process shown in FIG. 2 ends, and the process is repeated from S10 again. On the other hand, if it determines with cooling not being required in S30, the control part 50 will determine whether heating of organic waste_water | drain is required based on the detection result acquired by S20 (step S50). If it determines with heating being required in S50, the control part 50 will heat the organic waste water by controlling the heating part 51 (step S60). After S60, the process shown in FIG. 2 ends, and the process is repeated again from S10. On the other hand, if it is determined in S50 that heating is not necessary, cooling and heating are not performed, the process shown in FIG. 2 is terminated, and the process is repeated from S10 again.

ここで、S20において温度検出部54で嫌気性処理槽12の外の気温を検出した検出結果を用いてS30〜S60の処理を行う場合の一例について具体的に説明する。制御部50は、S30及びS40において、S20で検出された気温に基づくフィードフォワード制御によって有機性排水を冷却してよい。すなわち、S30において、制御部50は、S20で検出された気温に基づいて、(冷却しなかった場合に)嫌気性処理槽12の水温が設定温度よりも高くなるか否かについて推定する。制御部50は、現時点における設定温度と気温の差や、気温の変動や、ガス発生量などに基づいて、当該推定を行うことができる。制御部50は、検出した気温に基づいて、嫌気性処理槽12の水温が設定温度よりも高くなると推定した場合に、冷却が必要であると判定すると共に、冷却部52による冷却量を演算する。また、制御部50は、S40において、当該冷却量に基づいて冷却部52の制御を行う。   Here, an example in the case of performing processing of S30-S60 using the detection result which detected the temperature outside the anaerobic processing tank 12 in the temperature detection part 54 in S20 is demonstrated concretely. In S30 and S40, the controller 50 may cool the organic wastewater by feedforward control based on the air temperature detected in S20. That is, in S30, the control unit 50 estimates whether or not the water temperature of the anaerobic treatment tank 12 is higher than the set temperature (when not cooled) based on the air temperature detected in S20. The control unit 50 can perform the estimation based on a difference between the set temperature and the temperature at the current time, a change in the temperature, a gas generation amount, and the like. When it is estimated that the water temperature of the anaerobic treatment tank 12 is higher than the set temperature based on the detected temperature, the control unit 50 determines that cooling is necessary and calculates the cooling amount by the cooling unit 52. . In S40, the control unit 50 controls the cooling unit 52 based on the cooling amount.

また、制御部50は、S50及びS60において、S20で検出された気温に基づくフィードフォワード制御によって有機性排水を加熱してよい。すなわち、S50において、制御部50は、S20で検出された気温に基づいて、(加熱しなかった場合に)嫌気性処理槽12の水温が設定温度よりも低くなるか否かについて推定する。制御部50は、現時点における設定温度と気温の差や、気温の変動や、ガス発生量などに基づいて、当該推定を行うことができる。制御部50は、検出した気温に基づいて、嫌気性処理槽12の水温が設定温度よりも低くなると推定した場合に、加熱が必要であると判定すると共に、加熱部53による加熱量を演算する。また、制御部50は、S50において、当該加熱量に基づいて加熱部51の制御を行う。あるいは、制御部50は、気温が急激に低下した場合などに、嫌気性処理槽12の水温が急激に低下することを推定し、予め加熱部53による加熱を行ってよい。あるいは、制御部50は、気温が所定の温度(例えば目標温度である10℃)を下回った場合は直ちに加熱を行ってよい。   Moreover, the control part 50 may heat organic waste_water | drain by feedforward control based on the air temperature detected by S20 in S50 and S60. That is, in S50, the control unit 50 estimates whether or not the water temperature of the anaerobic treatment tank 12 is lower than the set temperature (when not heated) based on the air temperature detected in S20. The control unit 50 can perform the estimation based on a difference between the set temperature and the temperature at the current time, a change in the temperature, a gas generation amount, and the like. When it is estimated that the water temperature of the anaerobic treatment tank 12 is lower than the set temperature based on the detected temperature, the control unit 50 determines that heating is necessary and calculates the heating amount by the heating unit 53. . Moreover, the control part 50 controls the heating part 51 based on the said heating amount in S50. Or control part 50 presumes that the water temperature of anaerobic processing tank 12 falls rapidly, when the temperature falls rapidly, and may heat by heating part 53 beforehand. Alternatively, the control unit 50 may perform heating immediately when the air temperature falls below a predetermined temperature (for example, 10 ° C. which is the target temperature).

制御部50は、S30及びS40において、S20で検出された有機性排水の水温に基づくフィードバック制御によって有機性排水を冷却してよい。すなわち、S30において、制御部50は、S20で検出された有機性排水の水温に基づいて、嫌気性処理槽12の水温が設定温度よりも高いか否かについて判定する。なお、嫌気性処理槽12の温度検出部53Cの検出結果を用いる場合は、検出結果に係る値をそのまま判定に用いてよい。他の槽9,11の検出結果を用いる場合は、検出結果に係る値から嫌気性処理槽12の水温の推定値を演算し、当該推定値を判定に用いてよい。制御部50は、検出した水温に基づいて、嫌気性処理槽12の水温が設定温度よりも高くなると判定した場合に、冷却が必要であると判定すると共に、冷却部52による冷却量を演算する。また、制御部50は、S40において、当該冷却量に基づいて冷却部52の制御を行う。なお、有機性排水の水温の検出結果に基づいて、嫌気性処理槽12の水温が設定温度よりも高くなることを推定してもよい。例えば、現時点では水温が設定温度より高くなくても、温度検出部53が水温の急激な上昇を検出した時などは、制御部50は、水温が設定温度よりも高くなると推定してよい。   In S30 and S40, the controller 50 may cool the organic wastewater by feedback control based on the water temperature of the organic wastewater detected in S20. That is, in S30, the control unit 50 determines whether or not the water temperature of the anaerobic treatment tank 12 is higher than the set temperature based on the water temperature of the organic wastewater detected in S20. In addition, when using the detection result of the temperature detection part 53C of the anaerobic processing tank 12, you may use the value which concerns on a detection result as it is for determination. When the detection results of the other tanks 9 and 11 are used, an estimated value of the water temperature of the anaerobic treatment tank 12 may be calculated from the value related to the detection results, and the estimated value may be used for the determination. When it is determined that the water temperature of the anaerobic treatment tank 12 is higher than the set temperature based on the detected water temperature, the control unit 50 determines that cooling is necessary and calculates the cooling amount by the cooling unit 52. . In S40, the control unit 50 controls the cooling unit 52 based on the cooling amount. Note that it may be estimated that the water temperature of the anaerobic treatment tank 12 is higher than the set temperature based on the detection result of the water temperature of the organic waste water. For example, even if the water temperature is not higher than the set temperature at the present time, the control unit 50 may estimate that the water temperature becomes higher than the set temperature when the temperature detection unit 53 detects a rapid rise in the water temperature.

制御部50は、S50及びS60において、S20で検出された有機性排水の水温に基づくフィードバック制御によって有機性排水を加熱してよい。すなわち、S50において、制御部50は、S20で検出された気温に基づいて、嫌気性処理槽12の水温が設定温度よりも低いか否かについて判定する。制御部50は、検出した水温に基づいて、嫌気性処理槽12の水温が設定温度よりも低くなると判定した場合に、加熱が必要であると判定すると共に、加熱部53による加熱量を演算する。また、制御部50は、S50において、当該加熱量に基づいて加熱部51の制御を行う。なお、有機性排水の水温の検出結果に基づいて、嫌気性処理槽12の水温が設定温度よりも低くなることを推定してもよい。例えば、現時点では水温が設定温度より低くなくても、温度検出部53が水温の急激な下降(例えば、図3では、破線で示す水温が局所的に急激に降下している)を検出した時などは、制御部50は、水温が設定温度よりも低くなると推定してよい。あるいは、制御部50は、嫌気性処理槽12の水温が所定の温度(例えば目標温度である10℃)を下回った場合は直ちに加熱を行ってよい。   In S50 and S60, the controller 50 may heat the organic waste water by feedback control based on the water temperature of the organic waste water detected in S20. That is, in S50, the control unit 50 determines whether or not the water temperature of the anaerobic treatment tank 12 is lower than the set temperature based on the air temperature detected in S20. When it is determined that the water temperature of the anaerobic treatment tank 12 is lower than the set temperature based on the detected water temperature, the control unit 50 determines that heating is necessary and calculates the heating amount by the heating unit 53. . Moreover, the control part 50 controls the heating part 51 based on the said heating amount in S50. In addition, you may estimate that the water temperature of the anaerobic processing tank 12 becomes lower than preset temperature based on the detection result of the water temperature of organic waste water. For example, even when the water temperature is not lower than the set temperature at the present time, when the temperature detection unit 53 detects a sudden drop in the water temperature (for example, in FIG. 3, the water temperature indicated by the broken line is drastically lowered locally). For example, the control unit 50 may estimate that the water temperature is lower than the set temperature. Or the control part 50 may heat immediately, when the water temperature of the anaerobic processing tank 12 falls below predetermined temperature (for example, 10 degreeC which is target temperature).

なお、制御部50は、S30において、気温を用いた判定及び有機性排水の水温を用いた判定の何れか一方のみを行ってもよく、両方を行ってもよい。また、制御部50は、S50において、気温を用いた判定及び有機性排水の水温を用いた判定の何れか一方のみを行ってもよく、両方を行ってもよい。   In S30, the control unit 50 may perform only one of the determination using the air temperature and the determination using the water temperature of the organic waste water, or may perform both. Moreover, the control part 50 may perform only any one of the determination using air temperature, the determination using the water temperature of organic waste_water | drain in S50, and may perform both.

続いて、以上説明した嫌気性処理システム1の嫌気性処理方法による作用効果について説明する。   Then, the effect by the anaerobic processing method of the anaerobic processing system 1 demonstrated above is demonstrated.

ここで、低温でも十分な活性のあるメタン菌を用いる省エネ型メタン発酵を適用する嫌気性処理方法では、可能な限り投入エネルギーを減らす(可能な限り加温を行わない)ことが可能であり、例えば、気温が高い夏場では無加温での運転を行い、気温が低い冬場では最低限の加温での運転を行うことができる。しかしながら、当該方法では、メタン発酵の温度依存性が高いため(例えば図4参照)、夏場や冬場は安定運転が可能である一方、特に秋〜冬にかけての気温の変化が大きい季節では、運転が安定しない場合がある。   Here, in the anaerobic treatment method that applies energy-saving methane fermentation using methane bacteria that are sufficiently active even at low temperatures, it is possible to reduce the input energy as much as possible (do not warm as much as possible), For example, driving without heating can be performed in summer when the temperature is high, and driving with minimum heating can be performed in winter when the temperature is low. However, in this method, since the temperature dependency of methane fermentation is high (see, for example, FIG. 4), stable operation is possible in summer and winter, while operation is particularly difficult in seasons when the temperature changes greatly from autumn to winter. It may not be stable.

これに対して、本実施形態に係る嫌気性処理方法は、S20の温度検出工程で取得した温度検出部53,54からの検出結果に基づいて、有機性排水の水温が設定温度よりも高いと判定される場合、または高くなると推定される場合、有機性排水を冷却するS40の冷却工程を備えている。従って、有機性排水を目標温度まで下げる際に、嫌気性処理槽12中のメタン菌にとって適切な温度変化となるように設定温度を設定し、当該設定温度に基づいて有機性排水を冷却することができる。これによって、気温の変化が大きい季節であっても、嫌気性処理槽12中のメタン菌に対して、有機性排水の水温の急激な温度降下によるショックを少なくすることができると共に、積極的に低温に馴養させることができ、安定した運転を行うことが可能となる。これによって、気温の変化に関わらず安定運転を行うことができる。   In contrast, in the anaerobic treatment method according to the present embodiment, when the water temperature of the organic waste water is higher than the set temperature based on the detection results from the temperature detection units 53 and 54 acquired in the temperature detection step of S20. If it is determined, or if it is estimated to be higher, the cooling step of S40 for cooling the organic waste water is provided. Therefore, when lowering the organic waste water to the target temperature, the set temperature is set so that the temperature changes appropriate for the methane bacteria in the anaerobic treatment tank 12, and the organic waste water is cooled based on the set temperature. Can do. This makes it possible to reduce the shock caused by a rapid temperature drop of the organic waste water against the methane bacteria in the anaerobic treatment tank 12 even in the season when the temperature changes greatly. It can be acclimatized to a low temperature and can be operated stably. As a result, stable operation can be performed regardless of changes in temperature.

また、本実施形態に係る嫌気性処理方法では、S20の温度検出工程において、嫌気性処理槽12の外の気温を検出し、S40の冷却工程において、S20で検出された気温に基づくフィードフォワード制御によって有機性排水を冷却している。これによって、嫌気性処理槽12の水温が気温の変化による影響を受ける前に、設定温度に従って水温を目標温度に向かって下げることができる。   Further, in the anaerobic treatment method according to the present embodiment, the temperature outside the anaerobic treatment tank 12 is detected in the temperature detection step of S20, and the feedforward control based on the temperature detected in S20 in the cooling step of S40. By cooling the organic wastewater. Accordingly, the water temperature can be lowered toward the target temperature according to the set temperature before the water temperature in the anaerobic treatment tank 12 is affected by the change in the air temperature.

本発明は、上述の実施形態に限定されるものではない。例えば嫌気性処理槽の構成は上述のような構成に限定されず、嫌気性処理を行うことができる限り、適宜構成を変更してよい。   The present invention is not limited to the embodiment described above. For example, the configuration of the anaerobic treatment tank is not limited to the configuration described above, and the configuration may be changed as appropriate as long as the anaerobic treatment can be performed.

また、上述の実施形態では、有機性排水の水温が急激に変化しないように積極的に冷却を行っていた。これに替えて、実際の有機性排水の水温が急激に低下する場合に、設定温度を高めに設定しておくことで加熱部51で加熱する状態としておき、時間の経過とともに加熱部51の加熱量を徐々に変化させることで、有機性排水の水温が緩やかに変化するようにしてもよい。この嫌気性処理方法は、有機性排水の水温を目標温度まで下げるための設定温度を設定する工程と、所定の測定箇所における温度を検出する温度検出工程と、有機性排水の水温が設定温度に基づいて変化するように、有機性排水を加熱する加熱工程と、を備えている。また、設定温度を設定する工程では、予め予測される予測温度よりも高い温度に設定温度を設定し、加熱工程では、温度検出工程での検出結果に基づいて、加熱量を調整する。   Moreover, in the above-mentioned embodiment, it cooled actively so that the water temperature of organic waste_water | drain does not change rapidly. Instead, when the water temperature of the actual organic waste water is drastically lowered, the heating unit 51 is kept in a state of being heated by setting the set temperature to be high, and the heating of the heating unit 51 with the passage of time. By gradually changing the amount, the water temperature of the organic waste water may change gradually. This anaerobic treatment method includes a step of setting a set temperature for lowering the temperature of the organic waste water to the target temperature, a temperature detecting step of detecting the temperature at a predetermined measurement location, and the temperature of the organic waste water at the set temperature. And a heating step for heating the organic waste water so as to change based on the above. In the step of setting the preset temperature, the preset temperature is set to a temperature higher than the predicted temperature predicted in advance, and in the heating step, the amount of heating is adjusted based on the detection result in the temperature detection step.

図6を参照して、積極的に冷却を行うことで水温を緩やかに変化させる方法と、加熱を行うことで水温を緩やかに変化させる方法について説明する。前述の実施形態のように、積極的に冷却を行う場合、例えば一点鎖線に示すような設定温度DT1を設定する。このような設定温度DT1は、気温や水温(加熱や冷却を何も行わないと仮定した場合の水温)の予測温度(図中、破線で示す)に基づいて設定することができる。設定温度DT1は、予測温度よりも低い温度であって、予測温度の変化度合い(低下度合い)よりも緩やかな変化度合いで変化するような温度に設定される。例えば、設定温度DT1の傾きや変化率を、予測温度の傾き(近似的な傾きであってよい)や変化率よりも小さいものに設定してよい。また、設定温度DT1の温度低下開始点P1を、予測温度の温度低下開始点P2(任意に設定可能であり、急激な温度低下が開始する点としてもよく、所定の温度となるタイミングに係る点としてもよい)よりも早い時期に設定してよい。なお、予測温度は、過去の気温のデータなどから予測してもよく、外部機関から発表されたデータなどを用いてもよい。このように、予測気温に基づいて設定温度を設定しておき、実際の運転時は温度検出部54の検出結果に基づいて、冷却部52による冷却量及び加熱部51による加熱量を調整することで、設定温度DT1に基づいて有機性排水を緩やかに目標温度MTまで低下させることができる。これにより、実際に水温が急激に低下するよりも前段階で、メタン菌を低温に馴養させることができ,安定した運転を行うことができる。   With reference to FIG. 6, a method for gradually changing the water temperature by actively cooling and a method for gradually changing the water temperature by heating will be described. When the cooling is positively performed as in the above-described embodiment, for example, the set temperature DT1 as shown by the alternate long and short dash line is set. Such a set temperature DT1 can be set based on the predicted temperature (indicated by a broken line in the figure) of the air temperature and the water temperature (water temperature when it is assumed that nothing is heated or cooled). The set temperature DT1 is set to a temperature that is lower than the predicted temperature and changes with a degree of change that is more gradual than the change degree (decrease degree) of the predicted temperature. For example, the slope or change rate of the set temperature DT1 may be set to be smaller than the slope of the predicted temperature (which may be an approximate slope) or the change rate. Further, the temperature decrease start point P1 of the set temperature DT1 may be set as the temperature decrease start point P2 of the predicted temperature (which can be arbitrarily set, and may be a point at which a rapid temperature decrease starts, and relates to the timing at which the predetermined temperature is reached. May be set earlier. The predicted temperature may be predicted from past temperature data or the like, or data published from an external organization may be used. In this way, the set temperature is set based on the predicted temperature, and the cooling amount by the cooling unit 52 and the heating amount by the heating unit 51 are adjusted based on the detection result of the temperature detection unit 54 during actual operation. Thus, the organic waste water can be gradually lowered to the target temperature MT based on the set temperature DT1. Thereby, it is possible to acclimate the methane bacterium to a low temperature before the water temperature actually drops rapidly, and a stable operation can be performed.

一方、加熱によって緩やかに温度変化をさせる場合、例えば実線に示すような設定温度DT2を設定する。このような設定温度DT2は、気温や水温の予測温度(図中、破線で示す)に基づいて設定することができる。設定温度DT2は、予測温度よりも高い温度であって、予測温度の変化度合い(低下度合い)よりも緩やかな変化度合いで変化するような温度に設定される。例えば、設定温度DT2の傾きや変化率を、予測温度の傾き(近似的な傾きであってよい)や変化率よりも小さいものに設定してよい。また、設定温度DT2の温度低下開始点P3を、予測温度の温度低下開始点P2よりも遅い時期に設定してよい。なお、予測温度に基づいて予め設定温度を設定していた場合でも、温度検出部53の検出結果に基づいて、設定温度を補正してもよい(例えば、予測温度よりも測定結果に係る実際の温度低下が早い場合は、設定温度DT2のグラフを全体的に左に寄せてよく、予測温度よりも測定結果に係る実際の温度低下が遅い場合は、設定温度DT2のグラフを全体的に右に寄せてよい)。このように、予測気温に基づいて設定温度を設定しておき、実際の運転時は温度検出部54の検出結果に基づいて、加熱部51による加熱量を調整することで、設定温度DT2に基づいて有機性排水を緩やかに目標温度MTまで低下させることができる。加熱部51は、測定温度が設定温度DT2よりも低い時(低いと推定される時)は加熱を行う。例えば、設定温度に対して気温などの測定温度が大きく低下する場合は加熱量を増加し、気温などが設定温度に近くなる場合は加熱量を減少させる。これにより、急激な温度低下によるショックを少なくし、安定した運転を行うことができる。なお、加熱部51のみでの制御が可能となるため、システムから冷却部52を省略することも可能である。ただし、冷却部52を補助的に用いてもよい(局所的に急激に気温が高くなる場合に、冷却してよい)。   On the other hand, when the temperature is gradually changed by heating, for example, a set temperature DT2 as shown by a solid line is set. Such set temperature DT2 can be set based on the predicted temperature of air temperature or water temperature (indicated by a broken line in the figure). The set temperature DT2 is set to a temperature that is higher than the predicted temperature and changes with a degree of change that is more gradual than the degree of change (decrease degree) of the predicted temperature. For example, the slope or change rate of the set temperature DT2 may be set to be smaller than the slope of the predicted temperature (which may be an approximate slope) or the change rate. Further, the temperature decrease start point P3 of the set temperature DT2 may be set at a time later than the temperature decrease start point P2 of the predicted temperature. Even when the preset temperature is set in advance based on the predicted temperature, the preset temperature may be corrected based on the detection result of the temperature detection unit 53 (for example, the actual temperature related to the measurement result rather than the predicted temperature). When the temperature drop is early, the graph of the set temperature DT2 may be moved to the left as a whole. When the actual temperature drop related to the measurement result is slower than the predicted temperature, the graph of the set temperature DT2 is moved to the right as a whole. You can send it.) In this way, the set temperature is set based on the predicted temperature, and during actual operation, the heating amount by the heating unit 51 is adjusted based on the detection result of the temperature detection unit 54, so that it is based on the set temperature DT2. Thus, the organic waste water can be gradually lowered to the target temperature MT. The heating unit 51 performs heating when the measured temperature is lower than the set temperature DT2 (when estimated to be low). For example, the heating amount is increased when the measured temperature such as the air temperature is greatly lowered with respect to the set temperature, and the heating amount is decreased when the air temperature is close to the set temperature. As a result, a shock due to a rapid temperature drop can be reduced and stable operation can be performed. In addition, since control only by the heating part 51 is attained, it is also possible to abbreviate | omit the cooling part 52 from a system. However, you may use the cooling part 52 supplementarily (it may cool, when temperature rises rapidly locally).

1…嫌気性処理システム、9…調整槽、11…酸生成槽、12…嫌気性処理槽、50…制御部、51…加熱部、52…冷却部、53…温度検出部、54…温度検出部、W…有機性排水。   DESCRIPTION OF SYMBOLS 1 ... Anaerobic processing system, 9 ... Adjustment tank, 11 ... Acid production tank, 12 ... Anaerobic processing tank, 50 ... Control part, 51 ... Heating part, 52 ... Cooling part, 53 ... Temperature detection part, 54 ... Temperature detection Department, W ... Organic waste water.

Claims (3)

有機性排水を嫌気性処理する嫌気性処理槽を用いる嫌気性処理方法であって、
前記有機性排水の水温を目標温度まで下げるための設定温度を設定する工程と、
嫌気性処理システム内の何れかの箇所における前記有機性排水の水温、及び前記嫌気性処理槽の外の気温の少なくとも一方を検出する温度検出工程と、
前記温度検出工程での検出結果に基づいて、前記水温が前記設定温度よりも高いと判定される場合、または高くなると推定される場合、前記有機性排水を冷却する冷却工程と、
を備え
前記設定温度を設定する工程では、時間の経過と共に前記目標温度へ向けて低下する時間ごとの目標値として前記設定温度を設定する、嫌気性処理方法。
An anaerobic treatment method using an anaerobic treatment tank for anaerobically treating organic wastewater,
Setting a set temperature for lowering the temperature of the organic waste water to a target temperature;
A temperature detection step for detecting at least one of the water temperature of the organic waste water at any point in the anaerobic treatment system and the temperature outside the anaerobic treatment tank ;
When it is determined that the water temperature is higher than the set temperature based on the detection result in the temperature detection step, or when it is estimated to be higher, a cooling step for cooling the organic waste water,
Equipped with a,
The anaerobic processing method of setting the set temperature as a target value for each time that decreases toward the target temperature as time elapses in the step of setting the set temperature .
前記温度検出工程において、前記嫌気性処理槽の外の気温を検出し、
前記冷却工程において、前記温度検出工程で検出された前記気温に基づくフィードフォワード制御によって前記有機性排水を冷却する、請求項1に記載の嫌気性処理方法。
In the temperature detection step, the temperature outside the anaerobic treatment tank is detected,
The anaerobic treatment method according to claim 1, wherein in the cooling step, the organic waste water is cooled by feedforward control based on the air temperature detected in the temperature detection step.
有機性排水を嫌気性処理する嫌気性処理槽を用いる嫌気性処理方法であって、
前記有機性排水の水温を目標温度まで下げるための設定温度を設定する工程と、
嫌気性処理システム内の何れかの箇所における前記有機性排水の水温、及び前記嫌気性処理槽の外の気温の少なくとも一方を検出する温度検出工程と、
前記有機性排水の前記水温が前記設定温度に基づいて変化するように、前記有機性排水を加熱する加熱工程と、を備え、
前記設定温度を設定する工程では、予め予測される予測温度よりも高い温度に前記設定温度を設定し、且つ、時間の経過と共に前記目標温度へ向けて低下する時間ごとの目標値として前記設定温度を設定し、
前記加熱工程では、前記温度検出工程での検出結果に基づいて、加熱量を調整する、嫌気性処理方法。
An anaerobic treatment method using an anaerobic treatment tank for anaerobically treating organic wastewater,
Setting a set temperature for lowering the temperature of the organic waste water to a target temperature;
A temperature detection step for detecting at least one of the water temperature of the organic waste water at any point in the anaerobic treatment system and the temperature outside the anaerobic treatment tank ;
A heating step of heating the organic waste water so that the water temperature of the organic waste water changes based on the set temperature,
In the step of setting the set temperature, set the set temperature to a temperature higher than the predicted temperature is predicted in advance, and the set temperature as a target value for each time that decreases toward the target temperature with the lapse of time Set
In the heating step, an anaerobic treatment method of adjusting a heating amount based on a detection result in the temperature detection step.
JP2013068572A 2013-03-28 2013-03-28 Anaerobic treatment method Active JP6029011B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013068572A JP6029011B2 (en) 2013-03-28 2013-03-28 Anaerobic treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013068572A JP6029011B2 (en) 2013-03-28 2013-03-28 Anaerobic treatment method

Publications (2)

Publication Number Publication Date
JP2014188485A JP2014188485A (en) 2014-10-06
JP6029011B2 true JP6029011B2 (en) 2016-11-24

Family

ID=51835371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013068572A Active JP6029011B2 (en) 2013-03-28 2013-03-28 Anaerobic treatment method

Country Status (1)

Country Link
JP (1) JP6029011B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6049937B1 (en) * 2016-07-04 2016-12-21 株式会社クボタ Methane fermentation treatment apparatus and methane fermentation treatment method
CN111977781A (en) * 2020-07-07 2020-11-24 镇江新纳环保材料有限公司 High-concentration wastewater pretreatment system applied to extraction of N-methylpyrrolidone

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5973100A (en) * 1982-10-20 1984-04-25 Toshiba Corp Temperature controller in equipment for anaerobic digestion
JPS59166295A (en) * 1983-03-11 1984-09-19 Toshiba Corp Heating device for digestion tank
JPS60222197A (en) * 1984-04-19 1985-11-06 Matsushita Electric Ind Co Ltd Methane fermentation device
JPS61103600A (en) * 1984-10-26 1986-05-22 Matsushita Electric Ind Co Ltd Methane fermentation apparatus
US4632758A (en) * 1985-09-06 1986-12-30 Commonwealth Engineering & Technology, Inc. Anaerobic wastewater treatment system
JP4516330B2 (en) * 2004-03-01 2010-08-04 荏原エンジニアリングサービス株式会社 Method and apparatus for anaerobic treatment of oil-containing contaminants
JP2007260604A (en) * 2006-03-29 2007-10-11 Sumitomo Heavy Industries Environment Co Ltd Method for producing organic acid, organic acid production device and waste water treatment equipment
JP5696372B2 (en) * 2010-04-23 2015-04-08 東京電力株式会社 Sewage treatment system
JP2012101186A (en) * 2010-11-11 2012-05-31 Univ Of Miyazaki Methane fermentation device using biomass as raw material and method of controlling temperature of methane fermentation vessel

Also Published As

Publication number Publication date
JP2014188485A (en) 2014-10-06

Similar Documents

Publication Publication Date Title
JP5044881B2 (en) Fuel cell system
KR101758303B1 (en) Energy efficient system and process for treating sludge
JP5198682B1 (en) Photosynthesis promotion system
JPWO2011033879A1 (en) Control device and control method for fuel cell system
JP2006202543A (en) Operation method of fuel cell system
WO2004102718A1 (en) Control of operation of fuel cell system
JP6029011B2 (en) Anaerobic treatment method
KR101838359B1 (en) Fuel cell system
JP2006324058A (en) Fuel cell system and purge control method of fuel cell system
JP2005334806A (en) Gas refining apparatus, power generating system and power generating method
CA3085415C (en) Co2 recovery device and co2 recovery method
JP6512571B2 (en) Anaerobic treatment system and anaerobic treatment method
JP2010153246A (en) Fuel cell system
CN110682821B (en) Method for solving problem of stopping charging of vehicle end caused by power reduction of charging pile
JP2007042566A (en) Fuel cell system and its starting method
JP2005310550A (en) Valve abnormality judgement control device of fuel cell
JP2013169523A (en) Methane fermentation apparatus, and water return control method at supply stop of stock solution in the same
KR101314336B1 (en) Anaerobic Digestion System
WO2015170564A1 (en) Drain recovery device
KR20150020952A (en) Fuel cell system and method for controlling concentration of fuel
JP2007263385A (en) Boiler water supply processing device, boiler device, and operation method of boiler water supply processing device
JP2005129459A (en) Fuel cell system
JP4908016B2 (en) Waste water treatment control system and control method
CN221171826U (en) Self-adaptive voltage stabilizing system suitable for closed water cooling device
JP5875444B2 (en) Fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160614

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161006

R150 Certificate of patent or registration of utility model

Ref document number: 6029011

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250