JP2005322582A - Microwave heating device - Google Patents

Microwave heating device Download PDF

Info

Publication number
JP2005322582A
JP2005322582A JP2004141079A JP2004141079A JP2005322582A JP 2005322582 A JP2005322582 A JP 2005322582A JP 2004141079 A JP2004141079 A JP 2004141079A JP 2004141079 A JP2004141079 A JP 2004141079A JP 2005322582 A JP2005322582 A JP 2005322582A
Authority
JP
Japan
Prior art keywords
fluid
cavity resonator
circular tube
side wall
microwave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004141079A
Other languages
Japanese (ja)
Other versions
JP4759668B2 (en
Inventor
Tadashi Okamoto
正 岡本
Eiji Matsuo
英治 松尾
Masateru Nishioka
将輝 西岡
Fujio Mizukami
富士夫 水上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IDX CORP
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
IDX CORP
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IDX CORP, National Institute of Advanced Industrial Science and Technology AIST filed Critical IDX CORP
Priority to JP2004141079A priority Critical patent/JP4759668B2/en
Publication of JP2005322582A publication Critical patent/JP2005322582A/en
Application granted granted Critical
Publication of JP4759668B2 publication Critical patent/JP4759668B2/en
Anticipated expiration legal-status Critical
Active legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new means for efficiently and evenly heating a cylindrical or columnar heating object by a microwave. <P>SOLUTION: A space to be introduced with the microwave is formed in a cylindrical cavity resonator 1. In the cavity resonator 1, a magnetic field that is constant in a circumferential direction and an axial direction with respect to an axis of a tube 4, and directed in the axial direction, or hugging a circumference is generated with respect to the heating object such as the tube 4 of coaxially arranged dielectrics, or a fluid A housed in the tube 4. Even, efficient, and rotationally symmetric heating of the tube 4 or the fluid in the tube 4 is made possible. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、物質にマイクロ波を照射し、これを加熱するマイクロ波加熱装置に係り、特にマイクロ波加熱によって円管状の誘電体、またはこの円管に接する流体を加熱し、それによって化学反応を促進するマイクロ波加熱装置に関する。   The present invention relates to a microwave heating apparatus that irradiates a substance with microwaves and heats the substance, and in particular, heats a cylindrical dielectric or a fluid in contact with the circular pipe by microwave heating, thereby causing a chemical reaction. It relates to a microwave heating device that promotes.

マイクロ波は、電子レンジを始め、産業用の加熱炉の加熱源として広く利用されている。マイクロ波は、物質に含まれる水を加熱するだけでなく、極性をもつ誘電物質に作用してこれを選択的に加熱するので、被加熱物の直接加熱が可能で、短時間で効率よく被加熱物を加熱する能力を持っている。
加熱には周波数が2,450MHzのマイクロ波を使用するのが一般的である。この周波数のマイクロ波は、波長が12cm程度であるため、通常、加熱温度にムラが生じ、これを均一化することが求められている。加熱均一化の目的を果たすために、マイクロ波の反射を時間的に変化させたり、被加熱物を移動させる等を行って、マイクロ波と物質の相互の位置関係を時間的に変える手段が一般に用いられている。
一方、化学反応を促進する場合、加熱は品質を左右する重要な操作因子であり、また、最もエネルギーを消費する操作の一つである。
一般に加熱は、反応装置内に物質を置いて行われる。この場合、反応装置全体を加熱しなければならず、多大な無駄なエネルギーを消費する要因となっている。また、触媒反応の場合、重要なのは触媒とその触媒の近傍にある物質の温度であり、そのような部分のみを選択的に加熱加熱することが望ましいが、このようなことが従来の加熱手段で不可能であったことも、加熱に余計なエネルギーを消費する要因となっていた。
化学反応を促進するための加熱操作をマイクロ波加熱により行う技術が近年提案されている。例えば、特許文献1には、マイクロ波発生器、マイクロ波をアプリケータに誘導する導波路、処理されるサンプルを保持するアプリケータと、これらの導波路、サンプル、アプリケータと協働して共振空胴を形成する回転可能なデフレクタを含むマイクロ波加熱装置が開示されている。このシステムは加熱プロセス中にデフレクタを回転させ、誘電率が変動するサンプルに対し、単一モードの共振条件を満たすように工夫している。デフレクタはマイクロ波の反射を計測してそれを利用して調整されるが、この方法では、共振状態のほかに負荷変動に伴うインピーダンスの変化も含んでしまうので的確な方法とは言えない。
ところで、一般に、化学反応を促したい流体を流す管は通常、円形断面を呈している。このような流体にマイクロ波を照射して選択加熱が行えれば、エネルギー消費の大幅な削減が期待できる。マイクロ波による流体加熱については、通常の用途、例えば水負荷のような形態では特に均一加熱の必要はないが、化学反応を主目的とする用途では、一般に、温度が反応に大きく関係するので、均一に加熱することが強い要求となってくる。しかし、流体を流通させる円管あるいはこれに接する流体に対して、マイクロ波による均一加熱を実行できる加熱装置に関する文献は、出願人の調査の限りにおいて見出すことができない。
特表2003−523612公報
Microwaves are widely used as heating sources for industrial heating furnaces including microwave ovens. Microwave not only heats water contained in a substance, but also acts on a dielectric substance having polarity to selectively heat it, so that the object to be heated can be directly heated, and it can be efficiently covered in a short time. Has the ability to heat heated objects.
In general, microwaves having a frequency of 2,450 MHz are used for heating. Since the microwave of this frequency has a wavelength of about 12 cm, the heating temperature is usually uneven, and it is required to make it uniform. In order to achieve the purpose of uniform heating, a means to change the positional relationship between the microwave and the substance in time by changing the reflection of the microwave in time or moving the object to be heated is generally used. It is used.
On the other hand, when promoting chemical reactions, heating is an important operating factor that affects quality, and is one of the most energy consuming operations.
In general, heating is performed by placing a substance in a reaction apparatus. In this case, the entire reaction apparatus must be heated, which is a factor that consumes a large amount of wasted energy. In the case of catalytic reaction, what is important is the temperature of the catalyst and the substance in the vicinity of the catalyst, and it is desirable to selectively heat and heat only such a portion. It was also impossible to consume extra energy for heating.
In recent years, a technique for performing a heating operation for promoting a chemical reaction by microwave heating has been proposed. For example, Patent Document 1 discloses a microwave generator, a waveguide that guides a microwave to an applicator, an applicator that holds a sample to be processed, and a resonance in cooperation with these waveguide, sample, and applicator. A microwave heating apparatus is disclosed that includes a rotatable deflector that forms a cavity. This system is devised to rotate the deflector during the heating process to satisfy the single mode resonance condition for samples with varying dielectric constant. The deflector measures the reflection of the microwave and adjusts it using it. However, this method is not an accurate method because it includes not only the resonance state but also a change in impedance accompanying a load change.
By the way, generally, the pipe | tube which flows the fluid which wants to accelerate | stimulate a chemical reaction usually has a circular cross section. If selective heating can be performed by irradiating such a fluid with microwaves, a significant reduction in energy consumption can be expected. For fluid heating by microwaves, there is no need for uniform heating in normal applications, for example, in the form of water load, but in applications where the main purpose is a chemical reaction, the temperature is generally related to the reaction. Uniform heating is a strong demand. However, literature relating to a heating device capable of performing uniform heating by microwaves on a circular pipe through which a fluid flows or a fluid in contact with the circular pipe cannot be found as far as the applicant's investigation.
Special table 2003-523612 gazette

この発明は、上記のような背景と要求のもとになされたものであり、マイクロ波によって、円管に接する流体を高効率で均一に加熱する新しい手段を提供することを目的とする。   The present invention has been made based on the background and demands described above, and an object thereof is to provide a new means for uniformly and efficiently heating a fluid in contact with a circular tube by a microwave.

請求項1に記載された発明においては、上記課題を解決するため、マイクロ波が導入される空間を円筒状の空胴共振器内に形成し、その中に誘電体の円管を同軸的に配設する。空胴共振器内に、大きさが円周に沿って一定で軸方向に対しても変化せず、向きが中心軸に平行な軸対象マイクロ波電界を発生させることによって円管を加熱し、これに接する流体の化学反応を促進させるようにマイクロ波加熱装置を構成する。   In the invention described in claim 1, in order to solve the above-mentioned problem, a space into which the microwave is introduced is formed in a cylindrical cavity resonator, and a dielectric circular tube is coaxially formed therein. Arrange. In the cavity resonator, the tube is heated by generating an axial target microwave electric field whose size is constant along the circumference and does not change with respect to the axial direction, and whose direction is parallel to the central axis, The microwave heating device is configured to promote the chemical reaction of the fluid in contact therewith.

請求項2に記載された発明は、マイクロ波が導入される空間を円筒状の空胴共振器内に形成し、その中に、流体に接する誘電体の円管を同軸的に配設する。空胴共振器内に、円周に沿って一定で軸方向に対しても変化せず、電気力線が円周に沿いあるいはこの円周と同軸状となる軸対称電界を発生させることによって、円管を加熱し、これに接する流体の化学反応を行わせるようにマイクロ波加熱装置を構成する。   According to the second aspect of the present invention, a space into which a microwave is introduced is formed in a cylindrical cavity resonator, and a dielectric circular tube in contact with the fluid is coaxially disposed therein. By generating an axisymmetric electric field in the cavity resonator that is constant along the circumference and does not change in the axial direction, and the electric lines of force are along the circumference or coaxial with the circumference, A microwave heating apparatus is configured to heat a circular tube and cause a chemical reaction of a fluid in contact with the circular tube.

請求項3に記載された発明は、請求項1または2に記載のマイクロ波加熱装置において、空胴共振器の端部側壁に開口を設け、この開口を円管が貫通して空胴共振器の外部へ伸びるように構成する。その際、開口の大きさを電磁波が遮断状態となるように設定する。この円管内に流体を流通させ、円管をマイクロ波で加熱することにより流体を間接加熱し、この流体の化学反応を回転対称的に促進するようにした。   According to a third aspect of the present invention, in the microwave heating apparatus according to the first or second aspect, an opening is provided in an end side wall of the cavity resonator, and a circular tube passes through the opening to form the cavity resonator. It is configured to extend to the outside. At that time, the size of the opening is set so that the electromagnetic wave is cut off. A fluid was circulated in this circular tube, and the circular tube was heated with microwaves to indirectly heat the fluid, and the chemical reaction of this fluid was promoted rotationally symmetrically.

請求項4に記載された発明は、請求項1ないし3の何れかに記載のマイクロ波化学反応装置において、空胴共振器に対し、金属または誘電体からなる共振周波数調整部材を、空胴共振器内への突出量を調整可能に挿入することにより、空胴共振器の共振周波数を調整可能とした。   According to a fourth aspect of the present invention, there is provided the microwave chemical reaction device according to any one of the first to third aspects, wherein a resonance frequency adjusting member made of a metal or a dielectric is provided with respect to the cavity resonator. The resonant frequency of the cavity resonator can be adjusted by inserting the amount of protrusion into the chamber in an adjustable manner.

請求項5に記載された発明は、請求項1ないし4の何れかに記載のマイクロ波加熱装置において、空胴共振器内に、電磁界を検出する検出素子を挿入し、その検出した電磁界強度に基づいて共振周波数を手動又は自動調整できるようにした。   According to a fifth aspect of the present invention, in the microwave heating apparatus according to any one of the first to fourth aspects, a detection element for detecting an electromagnetic field is inserted into the cavity resonator, and the detected electromagnetic field The resonance frequency can be adjusted manually or automatically based on the intensity.

請求項6に記載された発明は、請求項1ないし3の何れかに記載のマイクロ波加熱装置において、円管の少なくとも一部に、マイクロ波を吸収して昇温する昇温物質を塗工、含浸、膜生成するなどして担持させ、これを空胴共振器内に発生するマイクロ波電界によって、回転対称的に加熱し、円管内の流体の化学反応を促進するようにした。   A sixth aspect of the present invention is the microwave heating apparatus according to any one of the first to third aspects, wherein a temperature rising material that absorbs microwaves and raises the temperature is applied to at least a part of the circular tube. It was carried by impregnation, film formation, etc., and this was heated in a rotationally symmetrical manner by a microwave electric field generated in the cavity resonator to promote the chemical reaction of the fluid in the circular tube.

請求項7に記載された発明は、請求項1ないし3の何れかに記載のマイクロ波加熱装置において、円管の少なくとも一部に、流体の化学反応を促進するための触媒を塗工、含浸、膜生成するなどして担持させ、この触媒を選択的に加熱することにより流体の化学反応を促進するようにした。   The invention described in claim 7 is the microwave heating apparatus according to any one of claims 1 to 3, wherein at least a part of the circular tube is coated with a catalyst for promoting a chemical reaction of a fluid, and impregnated. The catalyst was supported by forming a film and the catalyst was selectively heated to promote the chemical reaction of the fluid.

請求項8に記載された発明は、請求項1ないし3の何れかに記載のマイクロ波加熱装置において、円管の少なくとも一部に、マイクロ波を吸収して昇温する昇温物質と流体の化学反応を促進するための触媒とを塗工、含浸、膜生成するなどして担持させた。   According to an eighth aspect of the present invention, there is provided the microwave heating apparatus according to any one of the first to third aspects, wherein at least a part of the circular tube absorbs the microwave and raises a temperature rising substance and a fluid. A catalyst for promoting a chemical reaction was supported by coating, impregnating, or forming a film.

請求項9に記載された発明は、請求項1ないし5の何れかに記載のマイクロ波加熱装置において、円管の少なくとも一部を、誘電体からなる外側円管で同軸的に包囲させ、この両円管を空胴端部側壁と気密となるように構成することによって、外側円管と円管との間に他の流体を収容する流体空間を形成し、かつ円管は流体空間内において少なくとも一部をポーラスにし、円管内に収容された流体と流体空間内に収容された他の流体とを、円管のポーラスな部位を介して合流可能となるように構成した。   According to a ninth aspect of the present invention, in the microwave heating apparatus according to any one of the first to fifth aspects, at least a part of the circular tube is coaxially surrounded by an outer circular tube made of a dielectric material. By constructing both the circular tubes so as to be airtight with the cavity end side wall, a fluid space for accommodating other fluid is formed between the outer circular tube and the circular tube, and the circular tubes are formed in the fluid space. At least a part is made porous, and the fluid accommodated in the circular tube and the other fluid accommodated in the fluid space are configured to be able to merge through the porous portion of the circular tube.

請求項10に記載された発明は、請求項9に記載のマイクロ波加熱装置において、円管の流体空間内における少なくとも一部に、マイクロ波を吸収して昇温する昇温物質を塗工、含浸、膜生成するなどして担持させ、空胴共振器内に発生するマイクロ波電界によって、この昇温物質を選択的に加熱するようにした。   The invention described in claim 10 is the microwave heating device according to claim 9, wherein at least a part of the fluid space of the circular pipe is coated with a temperature rising substance that absorbs microwaves and raises the temperature. The temperature rising material is selectively heated by a microwave electric field generated in the cavity resonator by being impregnated or formed into a film.

請求項11に記載された発明は、請求項9に記載のマイクロ波加熱装置において、円管の流体空間内における少なくとも一部に、流体の化学反応を促進するための触媒を塗工、含浸、膜生成する構成にした。   The invention described in claim 11 is the microwave heating apparatus according to claim 9, wherein at least a part of the fluid space of the circular pipe is coated with, and impregnated with, a catalyst for promoting a chemical reaction of the fluid. It was set as the structure which produces | generates a film | membrane.

請求項12に記載された発明は、請求項9に記載のマイクロ波加熱装置において、円管の流体空間内における少なくとも一部に、マイクロ波を吸収して昇温する物質と前記流体の化学反応を促進するための触媒とを塗工、含浸、膜生成する構成にした。   The invention described in claim 12 is the microwave heating apparatus according to claim 9, wherein at least a part of the fluid space of the circular tube absorbs the microwave and raises the temperature to react with the fluid. And a catalyst for promoting the coating, impregnation, and film formation.

請求項13に記載された発明においては、上記課題を解決するため、マイクロ波が導入される空間を円筒状の空胴共振器内に形成し、その中に、誘電体の円管を同軸的に配設する。空胴共振器内に、円周に沿って一定で軸方向に対しても変化せず、電気力線が軸方向に向かう電界を発生させ、これにより円管内に収容された流体を加熱するようにマイクロ波加熱装置を構成する。   According to the thirteenth aspect of the present invention, in order to solve the above-described problem, a space into which a microwave is introduced is formed in a cylindrical cavity resonator, and a dielectric circular tube is coaxially formed therein. It arranges in. In the cavity resonator, a constant electric field along the circumference does not change in the axial direction, and an electric field line generates an electric field directed in the axial direction, thereby heating the fluid contained in the circular tube. A microwave heating apparatus is configured in the above.

請求項1に記載された発明においては、空胴共振器内において、円周に沿って一定で、軸方向に向かう電界を発生させ、流体に接する円管の均一で効率的な回転対称加熱を可能とした。   In the first aspect of the present invention, a uniform and efficient rotationally symmetric heating of the circular tube in contact with the fluid is generated in the cavity resonator by generating a constant electric field in the axial direction along the circumference. It was possible.

請求項2に記載された発明においては、空胴共振器内において、流体が接する誘電体の円管に対し、円管の円周に沿って一定な、円周に沿う電界を発生させ、均一で効率的な回転対称加熱を可能とした。   In the invention described in claim 2, in the cavity resonator, a constant electric field is generated along the circumference of the dielectric tube in contact with the fluid, and is uniform along the circumference of the tube. This enables efficient rotationally symmetric heating.

請求項3に記載された発明においては、円管内に被加熱物としての流体を流通させて、均一で選択的に直接又は間接加熱することができるので高効率で均一な処理が可能になる。   In the invention described in claim 3, since a fluid as an object to be heated can be circulated in the circular pipe and can be uniformly and selectively directly or indirectly heated, high-efficiency and uniform processing becomes possible.

請求項4に記載された発明においては、被加熱物の性質や加熱状態に応じて変化する共振周波数を調整する手段を提供することで、常に最適の加熱効率が得られる。   In the invention described in claim 4, the optimum heating efficiency can always be obtained by providing means for adjusting the resonance frequency that changes according to the property of the object to be heated and the heating state.

請求項5に記載された発明においては、空胴共振器内の電磁界を検出素子で検出しこれに基づき共振周波数を手動又は自動調整することで、常に最適の加熱効率が得られる。   In the invention described in claim 5, the optimum heating efficiency can always be obtained by detecting the electromagnetic field in the cavity resonator with the detection element and manually or automatically adjusting the resonance frequency based on this.

請求項6に記載された発明においては、例えば、円管内に収容された流体がマイクロ波を吸収しない物質であるような場合でも、円管が担持する昇温物質が選択的に加熱されるので、これによって円管内の流体等の被加熱物を間接加熱することができるとともに、回転対称的に化学反応を行わせることができる。   In the invention described in claim 6, for example, even when the fluid accommodated in the circular pipe is a substance that does not absorb microwaves, the temperature rising substance carried by the circular pipe is selectively heated. As a result, an object to be heated such as a fluid in the circular tube can be indirectly heated, and a chemical reaction can be performed rotationally symmetrically.

請求項7に記載された発明においては、円管が担持する触媒により、流体の化学反応を促進することができる。   In the invention described in claim 7, the chemical reaction of the fluid can be promoted by the catalyst carried by the circular pipe.

請求項8に記載された発明においては、円管が担持する触媒と昇温物質により、流体に対する触媒作用と加熱操作を確実に並立させることができる。   In the invention described in claim 8, the catalytic action and the heating operation for the fluid can be reliably juxtaposed by the catalyst and the temperature rising material carried by the circular pipe.

請求項9に記載された発明においては、異なる2流体を隔てる円管をポーラスなものとすることにより、このポーラスな部位を介して2流体を合流させ化学反応を行わせることができる。   In the invention described in claim 9, by making the circular pipe separating the two different fluids porous, the two fluids can be joined through this porous portion to cause a chemical reaction.

請求項10に記載された発明においては、異なる2流体を合流させ、円管が担持する昇温物質で確実に2流体を間接加熱して化学反応を促進することができる。   In the invention described in claim 10, two different fluids can be merged, and the chemical reaction can be promoted by surely indirectly heating the two fluids with the temperature rising material carried by the circular pipe.

請求項11に記載された発明においては、異なる2流体を合流させ、円管が担持する触媒の作用で、2流体の化学反応を促進することができる。   In the invention described in claim 11, two different fluids are merged, and the chemical reaction of the two fluids can be promoted by the action of the catalyst carried by the circular pipe.

請求項12に記載された発明においては、異なる2流体を合流させ、円管が担持する触媒と昇温質による触媒作用と加熱作用で2流体の化学反応をより確実に促進することができる。   In the invention described in claim 12, two different fluids can be merged, and the chemical reaction of the two fluids can be more reliably promoted by the catalytic action and heating action by the catalyst supported by the circular tube and the temperature raising quality.

請求項13に記載された発明においては、空胴共振器内において、誘電体の円管内に収容される流体に対し、円管の円周に沿って一定で、軸方向に向かう電界を発生させ、均一で効率的な加熱を可能とした。   In a thirteenth aspect of the invention, in the cavity resonator, an electric field directed in the axial direction is generated along the circumference of the circular tube for the fluid contained in the dielectric circular tube. , Enabling uniform and efficient heating.

図面を参照してこの発明の一実施形態を説明する。図1はこの発明の基本構造を示す説明図、図2は誘電体円管の内表面におけるマイクロ波電界を示す説明図、図3は誘電体内外における電界の連続性を示す説明図、図4は空胴共振器の軸方向端部に設けた開口の詳細を示す断面図、図5は空胴共振器の周波数調整機構を示す説明図、図6は空胴共振器と導波管の結合方法の一実施例を示す斜視図、図7は空胴共振器と導波管の結合スロットを示す正面図、図8は空胴共振器と導波管の他の結合方法の一実施例を示す説明図、図9、図10はそれぞれ加熱装置の他の実施形態を示す説明図である。   An embodiment of the present invention will be described with reference to the drawings. 1 is an explanatory view showing the basic structure of the present invention, FIG. 2 is an explanatory view showing a microwave electric field on the inner surface of the dielectric tube, FIG. 3 is an explanatory view showing the continuity of the electric field inside and outside the dielectric, and FIG. Is a cross-sectional view showing details of an opening provided at the end of the cavity resonator in the axial direction, FIG. 5 is an explanatory diagram showing a frequency adjusting mechanism of the cavity resonator, and FIG. 6 is a coupling of the cavity resonator and the waveguide. FIG. 7 is a front view showing a coupling slot between a cavity resonator and a waveguide, and FIG. 8 is an embodiment of another coupling method of the cavity resonator and the waveguide. FIG. 9 and FIG. 10 are explanatory views showing other embodiments of the heating device, respectively.

図1において、マイクロ波の空胴共振器1は、金属製の円筒状側壁2と、その軸線方向両端を電磁波的に密閉する端部側壁3で構成される。液体、気体のような流体Aを収容する誘電体の円管4は、空胴共振器1内に同軸的に配置される。空胴共振器1内には、導波管5からマイクロ波が導入され、内部にTE010モードかTM010モード、もっと一般的には、TE0ns、TM0nsモードが励起される。これにより、誘電体円管4と共に、内部の流体Aがマイクロ波によって間接的または直接的に加熱される。ここにn、sは整数である。TE010モードを励起した場合、電界は円周に沿うかあるいはこの円周と同軸的に分布しており、円周に沿って、また軸方向に対して大きさが変化せず、TM010モードの場合、電界は軸方向に向かい、円周に沿って、また軸方向に対し大きさが変化しない。TE010とTM010では、後者の方が空胴の大きさをより大きくできる利点をもっている。nは半径方向、sは中心軸方向に対し、変化する次数を示す。誘電体円管2の半径方向の一部、例えば内面を選択的に加熱するような用途や、誘電体円管2内を通る被加熱流体が層流でない場合にnは1である必要はないが、一般的にはn=1であることが望ましい。流体の場合、加熱されながら円管4内を軸方向に流れるので、周期的な加熱が行われることになる。したがって、この場合、sは0である必要はない。しかしながら、例えば円管の内面に触媒を塗工するような用途では、s=0であることが要求される。   In FIG. 1, a microwave cavity resonator 1 is composed of a metal cylindrical side wall 2 and end side walls 3 hermetically sealing both axial ends thereof. A dielectric circular tube 4 containing a fluid A such as liquid or gas is coaxially disposed in the cavity resonator 1. Microwave is introduced from the waveguide 5 into the cavity resonator 1, and the TE010 mode or the TM010 mode, more generally, the TE0ns and TM0ns modes are excited therein. Thereby, the fluid A inside with the dielectric tube 4 is heated indirectly or directly by the microwave. Here, n and s are integers. When the TE010 mode is excited, the electric field is distributed along the circumference or coaxially with this circumference, and the magnitude does not change along the circumference and in the axial direction. The electric field is directed in the axial direction, does not change in magnitude along the circumference and with respect to the axial direction. In TE010 and TM010, the latter has the advantage that the size of the cavity can be increased. n is a radial direction, and s is a changing order with respect to the central axis direction. N does not need to be 1 for applications in which a part of the radial tube 2 in the radial direction, for example, the inner surface is selectively heated, or when the fluid to be heated passing through the dielectric tube 2 is not laminar. However, it is generally desirable that n = 1. In the case of a fluid, since it flows in the axial direction in the circular tube 4 while being heated, periodic heating is performed. Therefore, in this case, s need not be 0. However, for example, in applications where a catalyst is applied to the inner surface of a circular pipe, s = 0 is required.

図2において、矢印6は、空胴共振器1内にTM010モードを励起したときに発生する軸方向電界の向きを示している。図は軸方向に向かう電気力線を一つ選んで代表的に表示したものであるが、このモードの電気力線の大きさは円周に沿っても軸方向に対しても変化せず一定である。また矢印7は、TE010モードを励起した際に発生する円周に沿う電界を示しており、同様に電気力線の大きさは円周に沿っても軸方向に対しても変化せず一定である。rが図示の値と異なる部分の電気力線は7と同軸的になっている。   In FIG. 2, an arrow 6 indicates the direction of the axial electric field generated when the TM010 mode is excited in the cavity resonator 1. The figure shows a representative representation of the electric field lines going in the axial direction, but the size of the electric field lines in this mode is constant along the circumference and in the axial direction. It is. The arrow 7 shows the electric field along the circumference that is generated when the TE010 mode is excited. Similarly, the magnitude of the electric lines of force does not change along the circumference or in the axial direction, and is constant. is there. The electric lines of force where r is different from the value shown are coaxial with 7.

図3において、8は誘電体、矢印9は電界を示している。電磁波の境界条件から、誘電体8の内外のマイクロ波は、誘電体表面に対する平行成分が連続で、垂直成分に関しては、誘電体外の誘電率と電界の積と誘電体内の誘電率と電界の積が連続である。したがって、被加熱物の誘電率が外部の誘電率に比較して大きい場合、両者の比に応じて誘電体8内の電荷が弱くなる。すなわち、図3(a)のように誘電体表面に平行な電界は誘電体8の内外で大きさが等しいが、図3(b)のように、誘電体表面に垂直となる電界は、誘電体外の物質の比誘電率が1、誘電体自身の比誘電率をεとすると、誘電体外の電界の大きさの1/εに弱まる。図3(c)のように、誘電体表面に対し斜めに入射する電界は、平行成分が連続で、垂直成分が1/εとなるので向きが変化する。マイクロ波による加熱は電界の2乗に比例するから、これを考慮すると、境界の電界の向きは境界面に平行でなければならない。この要件を満たすために、被加熱物が円筒面を持つ場合、電界を軸方向に向けるか円周に沿うようにする必要がある。上記TE010、TM010モードの電界はこの条件を満足している。   In FIG. 3, 8 indicates a dielectric, and an arrow 9 indicates an electric field. Due to the boundary condition of the electromagnetic wave, the microwave inside and outside the dielectric 8 has a continuous parallel component to the dielectric surface, and the vertical component is the product of the dielectric constant and electric field outside the dielectric, and the product of the dielectric constant and electric field inside the dielectric. Is continuous. Therefore, when the dielectric constant of the object to be heated is larger than the external dielectric constant, the electric charge in the dielectric 8 becomes weak according to the ratio between the two. That is, the electric field parallel to the dielectric surface as shown in FIG. 3A has the same magnitude inside and outside the dielectric 8, but the electric field perpendicular to the dielectric surface as shown in FIG. If the relative permittivity of the substance outside the body is 1 and the relative permittivity of the dielectric itself is ε, it becomes 1 / ε of the magnitude of the electric field outside the dielectric. As shown in FIG. 3C, the direction of the electric field obliquely incident on the dielectric surface changes because the parallel component is continuous and the vertical component is 1 / ε. Since microwave heating is proportional to the square of the electric field, considering this, the direction of the electric field at the boundary must be parallel to the boundary surface. In order to satisfy this requirement, when the object to be heated has a cylindrical surface, it is necessary to direct the electric field in the axial direction or along the circumference. The TE010 and TM010 mode electric fields satisfy this condition.

図4に示す実施形態において、1は円筒状空胴共振器で、円筒状側壁2と端部側壁3からなる。4は誘電体円管で、空胴共振器1内に同軸的に配設される。端部側壁3の中心には、電磁波が十分遮断状態となる径を持つ円形の小さい開口3aがある。なお、誘電体円管4の外径は端部側壁3の開口3aの内径と一致させる必要はないが、図では説明の便宜上、等しく描いてある。また、一般には円管4が開口3aを貫通する必要はないが、この実施形態では被加熱物流体Aを流通させる用途を想定しているので貫通するようになっている。   In the embodiment shown in FIG. 4, reference numeral 1 denotes a cylindrical cavity resonator comprising a cylindrical side wall 2 and an end side wall 3. Reference numeral 4 denotes a dielectric tube, which is coaxially disposed in the cavity resonator 1. In the center of the end side wall 3, there is a small circular opening 3a having a diameter that sufficiently blocks electromagnetic waves. Note that the outer diameter of the dielectric tube 4 does not need to coincide with the inner diameter of the opening 3a of the end side wall 3, but is drawn equally in the figure for convenience of explanation. In general, it is not necessary for the circular tube 4 to pass through the opening 3a. However, in this embodiment, it is assumed that the heated fluid A is circulated, so that the circular tube 4 passes therethrough.

開口3aは、電磁波が遮断状態となるのに十分な程に小さく設定される。開口3aを包囲する鍔状の金具10を端部側壁3の外側に付設して実効的に端部側壁3の厚さを増すことにより、確実に電波漏れを抑制する効果を増すことができる。誘電体円管4内には図の上下方向に流体が流れるようになっている。
円管4をマイクロ波電力の無損失な部材で構成すれば、円管4内の流体Aを直接加熱することができる。流体Aの誘電率が大きいと、実効的に寸法を大きくした効果が出るので、その分、円管4や空胴共振器1の径方向の寸法を小さくしなければならない。流体A内の電界は半径方向で変化するが、TE010 やTM010の場合、その変化は比較的小さく、したがって径方向に対してもほぼ均一な加熱ができる。なお、電界の径方向の分布状態は、流体の誘電率や誘電損によっても相応の影響を受ける。
The opening 3a is set to be small enough for the electromagnetic wave to be blocked. By attaching the bowl-shaped metal fitting 10 surrounding the opening 3a to the outside of the end side wall 3 and effectively increasing the thickness of the end side wall 3, it is possible to increase the effect of reliably suppressing radio wave leakage. A fluid flows in the dielectric tube 4 in the vertical direction in the figure.
If the circular tube 4 is composed of a lossless member of microwave power, the fluid A in the circular tube 4 can be directly heated. When the dielectric constant of the fluid A is large, an effect of effectively increasing the size is obtained, and accordingly, the size in the radial direction of the circular tube 4 and the cavity resonator 1 must be reduced accordingly. The electric field in the fluid A changes in the radial direction, but in the case of TE010 and TM010, the change is relatively small, and therefore, almost uniform heating can be performed in the radial direction. The distribution state of the electric field in the radial direction is also affected by the dielectric constant and dielectric loss of the fluid.

円管4がマイクロ波を吸収して昇温する材質である場合は、内部に流れる流体Aを間接加熱することができる。熱は順調に流体Aに伝達される。円管4自身が円周方向にも軸方向にもほぼ均等に加熱されるので、流体Aが層流で流体自身の熱伝導が悪くない限りほぼ均一に間接加熱される。   When the circular tube 4 is made of a material that absorbs microwaves and raises the temperature, the fluid A flowing inside can be indirectly heated. Heat is smoothly transferred to fluid A. Since the circular tube 4 itself is heated substantially uniformly both in the circumferential direction and in the axial direction, the fluid A is indirectly heated substantially uniformly as long as the fluid A is laminar and the heat conduction of the fluid itself is not bad.

図5は共振周波数を調整する手段を示している。金属または誘電体製の周波数調整片11を円筒状側壁のスロット2aから空胴共振器1内に矢印の方向に沿って挿入することによって共振周波数を調整する。空胴共振器1の円筒状側壁2に流れる電流は軸方向であるから、側壁2が所定の厚みを有していれば、側壁にスロット状の開口2aを設けても電磁波の漏れは十分小さい。周波数調整片11を挿入するときは、これが一種のアンテナになって電波漏洩策が必要となる場合がある。その場合、例えば図4のフランジ金具7を開口2aに沿って展開した形状の漏洩防止金具を付設するような対策が有効である。   FIG. 5 shows a means for adjusting the resonance frequency. The resonance frequency is adjusted by inserting a frequency adjusting piece 11 made of metal or dielectric into the cavity resonator 1 from the slot 2a of the cylindrical side wall along the direction of the arrow. Since the current flowing through the cylindrical side wall 2 of the cavity resonator 1 is in the axial direction, if the side wall 2 has a predetermined thickness, leakage of electromagnetic waves is sufficiently small even if the slot-like opening 2a is provided on the side wall. . When the frequency adjusting piece 11 is inserted, it may become a kind of antenna and a radio wave leakage measure may be required. In such a case, for example, a countermeasure is effective in which a leakage prevention fitting having a shape in which the flange fitting 7 of FIG. 4 is developed along the opening 2a is attached.

調整片11、平板状でも棒状でもよい。調整片11が比較的小径の棒状である場合には、空胴共振器1の円筒状側壁2だけでなく、端部側壁3から挿入してもよい。   The adjustment piece 11 may be flat or rod-shaped. When the adjustment piece 11 is a rod having a relatively small diameter, the adjustment piece 11 may be inserted not only from the cylindrical side wall 2 of the cavity resonator 1 but also from the end side wall 3.

空胴共振器1に小さい穴を開けても、あるいは、特にTM010共振空胴の場合は軸方向にスロットを切ってもよいので、このような開口からループを挿入して空胴内の電磁界の大きさを検出することができる。この信号が最大となるように周波数調整片11の位置を調整して同調をとることが可能である。このようにして、常に同調を確保できる。電気的なフィードバック系を使用すれば、自動調整が可能である。 A small hole may be made in the cavity resonator 1 or, in particular, in the case of the TM010 resonance cavity, the slot may be cut in the axial direction. Can be detected. It is possible to tune by adjusting the position of the frequency adjusting piece 11 so that this signal becomes maximum. In this way, synchronization can always be ensured. Automatic adjustment is possible using an electrical feedback system.

図6の実施形態において、導波管5は、空胴共振器1の軸方向の中心部に結合している。このように軸方向に対称的に結合させることにより、TM010モードの近接モードであるTM011モードの発生を阻止でき、その分モード分離がよくなるという利点が生まれる。   In the embodiment of FIG. 6, the waveguide 5 is coupled to the axial center of the cavity resonator 1. By coupling symmetrically in the axial direction in this way, the generation of the TM011 mode, which is a close mode of the TM010 mode, can be prevented, and the advantage that the mode separation is improved accordingly.

図7は導波管5の正面から空胴共振器1を見た図である。導波管5は、終端が導波管の管軸方向に対し直角な短絡板12で短絡されている。この短絡板12は空胴共振器1の円筒状側壁2と一体化されており、中央に空胴共振器1の管軸方向に伸びる結合スロット13が設けられている。このスロット13により空胴共振器1内にTM010モードを発生する。   FIG. 7 is a view of the cavity resonator 1 as viewed from the front of the waveguide 5. The end of the waveguide 5 is short-circuited by a short-circuit plate 12 whose end is perpendicular to the tube axis direction of the waveguide. The short-circuit plate 12 is integrated with the cylindrical side wall 2 of the cavity resonator 1, and a coupling slot 13 extending in the tube axis direction of the cavity resonator 1 is provided at the center. This slot 13 generates a TM010 mode in the cavity resonator 1.

図8の実施形態においては、空胴共振器1に対し導波管14が結合されている。この導波管14は、通常、標準導波管より高さが低い扁平導波管で、図に示すように、空胴共振器1の軸方向の中間部に結合されている。電界は図の水平方向に向かっている。導波管14の終端部には、結合のための開口15設けられ、この開口15を介して共振器1内にTE010モードが励起される。結合の位置を軸方向中間部としたのは隣接モードであるTE011が励起されないようにするためであり、これによってモード分離が改善される。開口15の幅Wと高さHは目的のTE010モード分布が得られるように適切に定められる。   In the embodiment of FIG. 8, a waveguide 14 is coupled to the cavity resonator 1. The waveguide 14 is usually a flat waveguide having a height lower than that of the standard waveguide, and is coupled to an intermediate portion in the axial direction of the cavity resonator 1 as shown in the figure. The electric field is directed in the horizontal direction in the figure. An opening 15 for coupling is provided at the end of the waveguide 14, and the TE010 mode is excited in the resonator 1 through the opening 15. The reason why the coupling position is set to the middle part in the axial direction is to prevent the TE011 that is the adjacent mode from being excited, thereby improving the mode separation. The width W and height H of the opening 15 are appropriately determined so as to obtain the target TE010 mode distribution.

空胴共振器1にTE010モードを励起する方法としては、モード変換器を用いる方法がある。この場合は、空胴共振器1の軸方向端部側壁3にモード変換器を取り付け、この方向から空胴に電磁波を励起することになる。また、空胴共振器1の直径は、内部の誘電体の効果によって比較的小さくなるので、径を合わせるためテーパ、ステップ導波管、結合共振器等の直径を変換するデバイスが必要である。   As a method for exciting the TE010 mode in the cavity resonator 1, there is a method using a mode converter. In this case, a mode converter is attached to the side wall 3 in the axial direction of the cavity resonator 1, and electromagnetic waves are excited in the cavity from this direction. Further, since the diameter of the cavity resonator 1 becomes relatively small due to the effect of the internal dielectric, a device for converting the diameter, such as a taper, a step waveguide, and a coupled resonator, is necessary to adjust the diameter.

図9は単一の流体Aを誘電体円管4内に流通させる形態を示している。誘電体円管4の内面に、電磁波を吸収して昇温する触媒16が塗工あるいは成膜され、又は含浸されている。空胴共振器1内に例えばTM010モードの電磁界を励起すると、触媒16が流体Aと共に均一に加熱される。適切に加熱された触媒16は流体Aに接してその化学反応を促進する。   FIG. 9 shows a form in which a single fluid A is circulated in the dielectric tube 4. The inner surface of the dielectric tube 4 is coated, formed, or impregnated with a catalyst 16 that absorbs electromagnetic waves and raises its temperature. When, for example, a TM010 mode electromagnetic field is excited in the cavity resonator 1, the catalyst 16 is uniformly heated together with the fluid A. Properly heated catalyst 16 contacts fluid A and promotes its chemical reaction.

図10に示すように、円管4をポーラスな部材とし、その外側に第2の誘電体円管である外側円管17を設け、その両端を閉塞する。外側円管17は流体Bの入口17a、出口17bを有する。両円管4,17間に流体の収容空間18が形成される。第1の流体が円管4を通って図の上下方向に流れ、流体収容空間18を流れる第2の流体Bが、ポーラスな円管4の側壁を透過して第1の流体Aと合流する。流体収容空間18内の第2の流体を適切に加圧すれば、第2の流体Bは円管2をスムーズに透過する。円管4に担持された触媒16は、第1、第2の流体A,B間の化学反応を促進する働きを担っている。触媒16がマイクロ波を吸収しにくい物質である場合には、これに加えて、マイクロ波を吸収して昇温しやすい昇温物質を円管4に担持させることができる。触媒16を担持させるのは、円管4の外表面だけでなく、内表面、またその組織内、内外両面であってもよい。   As shown in FIG. 10, the circular tube 4 is a porous member, and an outer circular tube 17 that is a second dielectric circular tube is provided on the outer side thereof, and both ends thereof are closed. The outer circular tube 17 has an inlet 17a and an outlet 17b for the fluid B. A fluid containing space 18 is formed between the circular tubes 4 and 17. The first fluid flows through the circular pipe 4 in the vertical direction in the figure, and the second fluid B flowing through the fluid accommodating space 18 passes through the side wall of the porous circular pipe 4 and merges with the first fluid A. . If the second fluid in the fluid storage space 18 is appropriately pressurized, the second fluid B smoothly passes through the circular tube 2. The catalyst 16 supported on the circular tube 4 has a function of promoting a chemical reaction between the first and second fluids A and B. When the catalyst 16 is a substance that hardly absorbs microwaves, in addition to this, a temperature rising substance that absorbs microwaves and easily raises temperature can be supported on the circular tube 4. The catalyst 16 may be supported not only on the outer surface of the circular tube 4 but also on the inner surface, and on both the inner and outer surfaces of the tissue.

また、特に円管4の誘電体損失を低くし、代わりに円管4の内部に流れる流体のマイクロ波損失を高くした場合でも境界条件によって、流体自身が円周に沿って、あるいは軸方向に関し均一に加熱される。TE010モードの場合は、中心軸上で電界がゼロになるので、半径方向の加熱が不均一になるが、TM010モードの場合は、中心に近づくにつれ電界が強くなる傾向を持っていて、全体として、円柱状の流体をほぼ均一加熱できることになる。この場合でも、円管4は流体の発熱によって、熱伝導で加熱されるので、内面に触媒を担持させておくと触媒の温度が上がり、流体の化学反応を促進させることができる。流体に化学反応させるべき物質を溶融もしくは混入し、または、必要に応じて触媒を溶融もしくは混入しておくと、マイクロ波の作用で化学反応が効率よくほぼ均一に進行する。この場合、誘電体としては、例えば、石英、テフロン(登録商標)などの熱伝導が悪く、マイクロ波損失の少ないを材料を選択できる。なお、このようなマイクロ波の吸収が少ない材料でも、わずかながら、マイクロ波を吸収して自ら昇温する。流体中の化学反応をおこさせる物質自身がマイクロ波を吸収して昇温しない場合は、エチレングリコール、水、アルコールのようなマイクロ波をよく吸収する溶媒を使ってもよい。このような構成によって、回転対称的に、また、軸方向、半径方向に対してもほぼ均一に流体を加熱でき、マイクロ波効果を与えて化学反応を促進できる。   In particular, even when the dielectric loss of the circular tube 4 is lowered and instead the microwave loss of the fluid flowing inside the circular tube 4 is increased, the fluid itself is along the circumference or in the axial direction depending on boundary conditions. Heated uniformly. In the case of TE010 mode, the electric field is zero on the central axis, so the radial heating is non-uniform, but in the case of TM010 mode, the electric field tends to become stronger as it approaches the center. The cylindrical fluid can be heated almost uniformly. Even in this case, the circular tube 4 is heated by heat conduction due to heat generation of the fluid. Therefore, if the catalyst is supported on the inner surface, the temperature of the catalyst rises and the chemical reaction of the fluid can be promoted. When a substance to be chemically reacted with the fluid is melted or mixed, or if necessary, a catalyst is melted or mixed, the chemical reaction proceeds efficiently and uniformly by the action of microwaves. In this case, as the dielectric, for example, a material such as quartz or Teflon (registered trademark) having poor heat conduction and low microwave loss can be selected. Note that even a material that absorbs little microwaves absorbs microwaves and raises the temperature by itself. If the substance that causes a chemical reaction in the fluid itself absorbs microwaves and does not increase in temperature, a solvent that absorbs microwaves well, such as ethylene glycol, water, and alcohol, may be used. With such a configuration, the fluid can be heated in a rotationally symmetric manner and substantially uniformly in the axial direction and the radial direction, and a chemical reaction can be promoted by applying a microwave effect.

この発明は、マイクロ波を用い、被加熱物を収容する誘電体円管の円周に沿って一定で管軸方向にもほぼ均一な電界を生じさせるので、誘電体円管を均一に加熱できるほか、それによって、誘電体円管の表面近傍を流れる流体を間接加熱し、あるいは収容する流体それ自体をも均一に加熱して流体の化学反応を均一に促進できる。化学反応装置の他、産業上広い応用展開が可能である。   This invention uses microwaves to generate a uniform electric field in the tube axis direction that is constant along the circumference of the dielectric tube that accommodates the object to be heated, so that the dielectric tube can be heated uniformly. In addition, the fluid flowing in the vicinity of the surface of the dielectric tube can be indirectly heated, or the contained fluid itself can be uniformly heated to uniformly promote the chemical reaction of the fluid. In addition to chemical reactors, a wide range of industrial applications are possible.

この発明の実施形態に係るマイクロ波加熱装置の断面図である。It is sectional drawing of the microwave heating apparatus which concerns on embodiment of this invention. この発明の実施形態に係るマイクロ波加熱装置の説明図である。It is explanatory drawing of the microwave heating apparatus which concerns on embodiment of this invention. この発明の実施形態に係るマイクロ波加熱装置の説明図である。It is explanatory drawing of the microwave heating apparatus which concerns on embodiment of this invention. この発明の実施形態に係るマイクロ波加熱装置の一部の断面図である。1 is a partial cross-sectional view of a microwave heating apparatus according to an embodiment of the present invention. この発明の実施形態に係るマイクロ波加熱装置の断面図である。It is sectional drawing of the microwave heating apparatus which concerns on embodiment of this invention. この発明の実施形態に係るマイクロ波加熱装置の斜視図である。1 is a perspective view of a microwave heating apparatus according to an embodiment of the present invention. この発明の実施形態に係るマイクロ波加熱装置の正面図である。It is a front view of the microwave heating device concerning the embodiment of this invention. この発明の他の実施形態に係るマイクロ波加熱装置の正面図である。It is a front view of the microwave heating device concerning other embodiments of this invention. この発明の他の実施形態に係るマイクロ波加熱装置の説明図である。It is explanatory drawing of the microwave heating apparatus which concerns on other embodiment of this invention. この発明のさらに他の実施形態に係るマイクロ波加熱装置の説明図である。It is explanatory drawing of the microwave heating apparatus which concerns on further another embodiment of this invention.

符号の説明Explanation of symbols

1 空胴共振器
2 円筒側壁
2a スロット
3 端部側壁
3a 開口
4 誘電体円管
5 導波管
6 矢印(軸方向マイクロ波電界)
7 矢印(円周方向マイクロ波電界)
8 誘電体
9 矢印
10 鍔状金具
11 周波数調整片
12 短絡板
13 スロット
14 導波管
15 結合スロット
16 触媒
17 外側誘電体円管
17a 流体入口
17b 流体出口
18 流体収容空間
DESCRIPTION OF SYMBOLS 1 Cavity resonator 2 Cylindrical side wall 2a Slot 3 End side wall 3a Opening 4 Dielectric circular tube 5 Waveguide 6 Arrow (Axial direction microwave electric field)
7 Arrow (circumferential microwave electric field)
8 Dielectric 9 Arrow 10 Bracket 11 Frequency adjusting piece 12 Short plate 13 Slot 14 Waveguide 15 Coupling slot 16 Catalyst 17 Outer dielectric circular tube 17a Fluid inlet 17b Fluid outlet 18 Fluid accommodation space

Claims (13)

金属製の円筒状側壁と、この円筒状側壁の軸方向両端を電磁波的に閉じる金属製の端部側壁とで構成される空胴共振器と、
この空胴共振器内に同軸的に配設され、流体に接する誘電体からなる円管とを具備し、
前記空胴共振器の円筒状側壁における軸方向の中間位置に設けられた結合スロットにマイクロ波導波管が結合され、
前記空胴共振器内に、大きさが円周に沿って一定で軸方向に対しても変化せず、向きが中心軸に平行な軸対称マイクロ波電界を発生させて、前記円管を加熱することにより前記流体の化学反応を進行させることを特徴とするマイクロ波加熱装置。
A cavity resonator composed of a metal cylindrical side wall and a metal end side wall that electromagnetically closes both axial ends of the cylindrical side wall;
It is coaxially arranged in the cavity resonator, and comprises a circular tube made of a dielectric material in contact with the fluid,
A microwave waveguide is coupled to a coupling slot provided at an axial intermediate position in the cylindrical side wall of the cavity resonator,
In the cavity resonator, the size is constant along the circumference and does not change with respect to the axial direction, and an axisymmetric microwave electric field whose direction is parallel to the central axis is generated to heat the circular tube. A microwave heating apparatus characterized in that the chemical reaction of the fluid proceeds.
金属製の円筒状側壁と、この円筒状側壁の軸方向両端を電磁波的に閉じる金属製の端部側壁とで構成される空胴共振器と、
この空胴共振器内に同軸的に配設され、流体に接する誘電体からなる円管とを具備し、
前記空胴共振器の円筒状側壁における軸方向の中間位置に設けられた結合スロットにマイクロ波導波管が結合され、
前記空胴共振器内に、大きさが円周に沿って一定で軸方向に対しても変化せず、電気力線が円周に沿いあるいはこの円周と同軸状となる軸対称マイクロ波電界を発生させて、前記円管を加熱することにより前記流体の化学反応を進行させることを特徴とするマイクロ波加熱装置。
A cavity resonator composed of a metal cylindrical side wall and a metal end side wall that electromagnetically closes both axial ends of the cylindrical side wall;
It is coaxially arranged in the cavity resonator, and comprises a circular tube made of a dielectric material in contact with the fluid,
A microwave waveguide is coupled to a coupling slot provided at an axial intermediate position in the cylindrical side wall of the cavity resonator,
An axially symmetric microwave electric field in which the size is constant along the circumference and does not change in the axial direction in the cavity resonator, and the electric field lines are along the circumference or coaxial with the circumference. And a chemical reaction of the fluid is caused to proceed by heating the circular tube.
前記空胴共振器の端部側壁に開口が設けられ、前記円管が前記端部側壁の開口を電磁波遮断状態で貫通して空胴共振器の外部へ伸び、この円管内に前記流体が流通し、前記円管自身がマイクロ波を吸収して昇温し、この流体を間接的に加熱することにより流体の化学反応を進行させることを特徴とする請求項1または2に記載のマイクロ波加熱装置。   An opening is provided in an end side wall of the cavity resonator, and the circular tube extends through the opening of the end side wall in an electromagnetic wave shielding state to the outside of the cavity resonator, and the fluid flows in the circular tube. 3. The microwave heating according to claim 1, wherein the circular tube itself absorbs microwaves to increase the temperature, and indirectly heats the fluid to advance a chemical reaction of the fluid. 4. apparatus. 前記空胴共振器に対し、金属または誘電体からなる共振周波数調整部材が、空胴共振器内への突出量を調整可能に挿入され、空胴共振器の共振周波数が調整可能であることを特徴とする請求項1ないし3の何れかに記載のマイクロ波加熱装置。   A resonance frequency adjusting member made of a metal or a dielectric is inserted into the cavity resonator so that the amount of protrusion into the cavity resonator can be adjusted, and the resonance frequency of the cavity resonator can be adjusted. The microwave heating device according to any one of claims 1 to 3, wherein 前記空胴共振器内に、電磁界を検出する検出素子が挿入され、その検出した電磁界強度値に基づいて共振周波数を手動又は自動調整することを特徴とする請求項1ないし4の何れかに記載のマイクロ波加熱装置。   5. A detection element for detecting an electromagnetic field is inserted into the cavity resonator, and the resonance frequency is manually or automatically adjusted based on the detected electromagnetic field intensity value. A microwave heating apparatus according to 1. 前記流体に接する円管の少なくとも一部が、マイクロ波を吸収して昇温する昇温物質を担持し、前記空胴共振器内に発生するマイクロ波電界によって、この昇温物質が選択的に加熱されることを特徴とする請求項1ないし3の何れかに記載のマイクロ波加熱装置。   At least a part of the circular tube in contact with the fluid carries a temperature rising material that absorbs microwaves and raises the temperature, and this temperature rising material is selectively selected by a microwave electric field generated in the cavity resonator. The microwave heating apparatus according to any one of claims 1 to 3, wherein the microwave heating apparatus is heated. 前記流体に接する円管の少なくとも一部が、前記流体の化学反応を促進するための触媒を担持することを特徴とする請求項1ないし3の何れかに記載のマイクロ波加熱装置。   The microwave heating apparatus according to any one of claims 1 to 3, wherein at least a part of the circular tube in contact with the fluid carries a catalyst for promoting a chemical reaction of the fluid. 前記流体に接する円管の少なくとも一部が、マイクロ波を吸収して昇温する昇温物質と前記流体の化学反応を促進するための触媒とを担持することを特徴とする請求項1ないし3の何れかに記載のマイクロ波加熱装置。   4. At least a part of a circular tube in contact with the fluid carries a temperature raising material that absorbs microwaves and raises the temperature, and a catalyst for promoting a chemical reaction of the fluid. The microwave heating device according to any one of the above. 前記流体に接する円管の少なくとも一部が、誘電体からなる外側円管によって同軸的に包囲され、この両円管が前記空胴端部側壁と気密となるように構成されることによって、外側円管と円管との間に他の流体を収容する流体収容空間が形成され、かつ円管は少なくとも一部がポーラスであり、円管内に収容された前記流体と流体収容空間内に収容された他の流体とが、円管のポーラスな部位を介して合流可能に構成されることを特徴とする請求項1ないし5の何れかに記載のマイクロ波加熱装置。   At least a part of a circular tube in contact with the fluid is coaxially surrounded by an outer circular tube made of a dielectric material, and both the circular tubes are configured to be airtight with the cavity end side wall, thereby forming an outer side. A fluid storage space for storing another fluid is formed between the circular tubes and the circular tube is at least partially porous, and is stored in the fluid storage space with the fluid stored in the circular tube. The microwave heating device according to any one of claims 1 to 5, wherein the microwave heating device is configured to be able to merge with another fluid through a porous portion of a circular tube. 前記円管の前記流体収容空間内における少なくとも一部が、マイクロ波を吸収して昇温する昇温物質を担持し、前記空胴共振器内に発生するマイクロ波電界によって、この昇温物質が選択的に加熱されることを特徴とする請求項9に記載のマイクロ波加熱装置。   At least a part of the circular tube in the fluid containing space carries a temperature rising material that absorbs microwaves and raises the temperature, and the temperature rising material is generated by a microwave electric field generated in the cavity resonator. The microwave heating apparatus according to claim 9, wherein the microwave heating apparatus is selectively heated. 前記円管の前記流体収容空間内における少なくとも一部が、前記流体の化学反応を促進するための触媒を担持することを特徴とする請求項9に記載のマイクロ波加熱装置。   The microwave heating device according to claim 9, wherein at least a part of the circular tube in the fluid accommodating space carries a catalyst for promoting a chemical reaction of the fluid. 前記円管の前記流体収容空間内における少なくとも一部が、マイクロ波を吸収して昇温する昇温物質と前記流体の化学反応を促進するための触媒とを担持することを特徴とする請求項9に記載のマイクロ波加熱装置。   The at least part of the circular pipe in the fluid containing space carries a temperature rising material that absorbs microwaves and raises temperature and a catalyst for promoting a chemical reaction of the fluid. 9. The microwave heating apparatus according to 9. 金属製の円筒状側壁と、この円筒状側壁の軸方向両端を電磁波的に閉じる金属製の端部側壁とで構成される空胴共振器と、
この空胴共振器内に同軸的に配設され、内部に被加熱流体を収容する誘電体からなる円管とを具備し、
前記空胴共振器の円筒状側壁における軸方向の中間位置に設けられた結合スロットにマイクロ波導波管が結合され、
前記空胴共振器内に、大きさが円周に沿って一定で軸方向に対しても変化せず、向きが中心軸に平行な軸対象マイクロ波電界を発生させて、前記円管内の被加熱流体を直接又は間接に加熱し、被加流体の化学反応を進行させることを特徴とするマイクロ波加熱装置。
A cavity resonator composed of a metal cylindrical side wall and a metal end side wall that electromagnetically closes both axial ends of the cylindrical side wall;
It is coaxially arranged in the cavity resonator, and comprises a circular tube made of a dielectric material that contains a fluid to be heated inside,
A microwave waveguide is coupled to a coupling slot provided at an axial intermediate position in the cylindrical side wall of the cavity resonator,
An axial target microwave electric field is generated in the cavity so that the size is constant along the circumference and does not change with respect to the axial direction, and the direction is parallel to the central axis. A microwave heating apparatus, wherein a heating fluid is directly or indirectly heated to advance a chemical reaction of a fluid to be added.
JP2004141079A 2004-05-11 2004-05-11 Microwave heating device Active JP4759668B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004141079A JP4759668B2 (en) 2004-05-11 2004-05-11 Microwave heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004141079A JP4759668B2 (en) 2004-05-11 2004-05-11 Microwave heating device

Publications (2)

Publication Number Publication Date
JP2005322582A true JP2005322582A (en) 2005-11-17
JP4759668B2 JP4759668B2 (en) 2011-08-31

Family

ID=35469679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004141079A Active JP4759668B2 (en) 2004-05-11 2004-05-11 Microwave heating device

Country Status (1)

Country Link
JP (1) JP4759668B2 (en)

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007149404A (en) * 2005-11-25 2007-06-14 Shimada Phys & Chem Ind Co Ltd Microwave heating device
JP2007261960A (en) * 2006-03-01 2007-10-11 Tokyo Electric Power Co Inc:The Method for continuously producing higher fatty acid methyl ester from co2
JP2008173521A (en) * 2006-08-09 2008-07-31 Honda Electronic Co Ltd Submerged plasma treatment apparatus and submerged plasma treatment method
JP2008279415A (en) * 2007-05-14 2008-11-20 Environment Technology Ventures Kk Microwave heating unit
JP2008302281A (en) * 2007-06-06 2008-12-18 Shikoku Instrumentation Co Ltd Microwave chemical reactor and method
WO2009041431A2 (en) * 2007-09-25 2009-04-02 Kabushiki Kaisha Idx Microwave device
JP2009097359A (en) * 2007-10-15 2009-05-07 Takumi:Kk Microwave heating device for exhaust gas
WO2009110245A1 (en) * 2008-03-05 2009-09-11 マイクロ波環境化学株式会社 Microwave chemical reaction device and reaction method using said device
CN101568206A (en) * 2009-01-21 2009-10-28 徐艳姬 Energy-saving easily-changeable high-temperature microwave heating chamber and manufacturing method thereof
CN101568209A (en) * 2009-01-21 2009-10-28 徐艳姬 Microwave heater for heating liquid and/or gases
JP2010095422A (en) * 2008-10-19 2010-04-30 National Institute Of Advanced Industrial Science & Technology Apparatus for producing hydrogen
JP2010097884A (en) * 2008-10-18 2010-04-30 National Institute Of Advanced Industrial Science & Technology Microwave heating of conductive thin film
JP2010207735A (en) * 2009-03-10 2010-09-24 National Institute Of Advanced Industrial Science & Technology Microwave continuous irradiation method and apparatus to fluid
JP2011137226A (en) * 2009-12-05 2011-07-14 National Institute Of Advanced Industrial Science & Technology Method for producing metal particulate
JP2012052895A (en) * 2010-08-31 2012-03-15 National Institute Of Advanced Industrial & Technology Flow injection analysis device and flow injection analysis method
WO2012043753A1 (en) * 2010-09-30 2012-04-05 株式会社サイダ・Fds Microwave device and flow tube thereof
JP2012075996A (en) * 2010-09-30 2012-04-19 Saida Fds Inc Microwave device
JP2012531450A (en) * 2009-06-30 2012-12-10 クラリアント・ファイナンス・(ビーブイアイ)・リミテッド Continuous process for acylation of organic acids with amino groups
JP2012531451A (en) * 2009-06-30 2012-12-10 クラリアント・ファイナンス・(ビーブイアイ)・リミテッド Continuous process for the preparation of aliphatic carboxylic acid amides.
JP2012531304A (en) * 2009-06-30 2012-12-10 クラリアント・ファイナンス・(ビーブイアイ)・リミテッド Equipment for continuous chemical reactions at high temperatures
JP2012531452A (en) * 2009-06-30 2012-12-10 クラリアント・ファイナンス・(ビーブイアイ)・リミテッド Process for the continuous production of esters of aliphatic carboxylic acids
JP2012531384A (en) * 2009-06-30 2012-12-10 クラリアント・ファイナンス・(ビーブイアイ)・リミテッド Continuous process for the production of esters of aromatic carboxylic acids
JP2013019025A (en) * 2011-07-11 2013-01-31 National Institute Of Advanced Industrial Science & Technology Method for manufacturing metal microparticle
JP2013505125A (en) * 2009-09-22 2013-02-14 クラリアント・ファイナンス・(ビーブイアイ)・リミテッド Equipment for continuous heterogeneous catalytic chemical reactions at high temperatures
JP2013505275A (en) * 2009-09-22 2013-02-14 クラリアント・ファイナンス・(ビーブイアイ)・リミテッド Continuous transesterification process
JP2013037882A (en) * 2011-08-08 2013-02-21 Saida Fds Inc Microwave device and circulation pipe thereof
JP2013531862A (en) * 2010-05-03 2013-08-08 ゴジ リミテッド Modal analysis
JP2013236984A (en) * 2012-05-11 2013-11-28 National Institute Of Advanced Industrial Science & Technology Device and method for vaporizing liquid
KR101353872B1 (en) * 2012-06-04 2014-01-21 주식회사 포스코 Apparatus for heating fluid with microwave
JP2014194955A (en) * 2014-06-20 2014-10-09 Saida Fds Inc Microwave device
US8884040B2 (en) 2008-04-04 2014-11-11 Clariant Finance (Bvi) Limited Continuous method for producing fatty acid amides
US8946605B2 (en) 2008-12-02 2015-02-03 Zhejiang Twrd New Material Co., Ltd. Microwave heating device and its application in chemical reactions
US9039870B2 (en) 2006-10-09 2015-05-26 Clariant Finance (Bvi) Limited Method for producing alkaline (meth)acrylamides
WO2015080812A1 (en) * 2013-11-26 2015-06-04 Industrial Microwave Systems, L.L.C. Tubular waveguide applicator
US9221938B2 (en) 2010-12-30 2015-12-29 Clariant Finance (Bvi) Limited Polymers carrying hydroxyl groups and ester groups and method for the production thereof
US9243116B2 (en) 2010-12-30 2016-01-26 Clariant International Ltd. Method for modifying polymers comprising hydroxyl groups
JP2016130369A (en) * 2016-02-10 2016-07-21 国立研究開発法人産業技術総合研究所 Metal fine particle manufacturing method and metal fine particle-containing solvent
JP2018024555A (en) * 2016-08-10 2018-02-15 矢崎総業株式会社 Hydrogen production device
JP2018173404A (en) * 2017-03-30 2018-11-08 キヤノンメディカルシステムズ株式会社 Sample inspection device
JP2019085301A (en) * 2017-11-07 2019-06-06 国立研究開発法人産業技術総合研究所 Hydrogen production apparatus
WO2019107402A1 (en) 2017-11-28 2019-06-06 国立研究開発法人産業技術総合研究所 Microwave treatment device, microwave treatment method, and chemical reaction method
JP2019087410A (en) * 2017-11-07 2019-06-06 国立研究開発法人産業技術総合研究所 Microwave heating device and chemical reaction method
WO2019156142A1 (en) * 2018-02-08 2019-08-15 国立研究開発法人産業技術総合研究所 Microwave heating method, microwave heating device, and chemical reaction method
JP2019140103A (en) * 2018-02-08 2019-08-22 国立研究開発法人産業技術総合研究所 Microwave-heating device, heating method and chemical reaction method
JP2019140213A (en) * 2018-02-08 2019-08-22 国立研究開発法人産業技術総合研究所 Thin film pattern-firing method and microwave-firing device
JP2020043051A (en) * 2018-09-06 2020-03-19 国立研究開発法人産業技術総合研究所 Microwave processing apparatus, microwave processing method, and chemical reaction method
CN111602465A (en) * 2018-02-08 2020-08-28 国立研究开发法人产业技术综合研究所 Microwave heating method, microwave heating apparatus, and chemical reaction method
JP2020173958A (en) * 2019-04-10 2020-10-22 国立研究開発法人産業技術総合研究所 Microwave heating device and microwave heating method
CN115278971A (en) * 2022-09-07 2022-11-01 四川大学 Microwave heating assembly and microwave heating device
WO2024029388A1 (en) * 2022-08-03 2024-02-08 東京エレクトロン株式会社 Substrate treatment device, fluid activation device, substrate treatment method, and fluid activation method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6119098A (en) * 1984-07-05 1986-01-27 日本化学機械製造株式会社 Continuous heater with microwave
JPS6389427A (en) * 1986-09-26 1988-04-20 エヌ・ベー・フィリップス・フルーイランペンファブリケン Method of coating inside of tube and equipment therefor
JPS63213346A (en) * 1987-03-02 1988-09-06 Matsushita Electric Ind Co Ltd Plasma device
JPS63250088A (en) * 1987-04-06 1988-10-17 大阪瓦斯株式会社 Microwave heater for liquid
JPH0289251U (en) * 1988-12-27 1990-07-16
JPH03294779A (en) * 1990-04-11 1991-12-25 Toshiba Corp Hot blast generating device
JPH08330065A (en) * 1995-05-30 1996-12-13 New Japan Radio Co Ltd Microwave thawing/heating device
JPH11111446A (en) * 1997-10-07 1999-04-23 Shibaura Mechatronics Corp Microwave heating device
JP2002538476A (en) * 1999-03-04 2002-11-12 エムティー・システムズ・エルエルシー Microwave heating device for gas chromatography column

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6119098A (en) * 1984-07-05 1986-01-27 日本化学機械製造株式会社 Continuous heater with microwave
JPS6389427A (en) * 1986-09-26 1988-04-20 エヌ・ベー・フィリップス・フルーイランペンファブリケン Method of coating inside of tube and equipment therefor
JPS63213346A (en) * 1987-03-02 1988-09-06 Matsushita Electric Ind Co Ltd Plasma device
JPS63250088A (en) * 1987-04-06 1988-10-17 大阪瓦斯株式会社 Microwave heater for liquid
JPH0289251U (en) * 1988-12-27 1990-07-16
JPH03294779A (en) * 1990-04-11 1991-12-25 Toshiba Corp Hot blast generating device
JPH08330065A (en) * 1995-05-30 1996-12-13 New Japan Radio Co Ltd Microwave thawing/heating device
JPH11111446A (en) * 1997-10-07 1999-04-23 Shibaura Mechatronics Corp Microwave heating device
JP2002538476A (en) * 1999-03-04 2002-11-12 エムティー・システムズ・エルエルシー Microwave heating device for gas chromatography column

Cited By (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007149404A (en) * 2005-11-25 2007-06-14 Shimada Phys & Chem Ind Co Ltd Microwave heating device
JP2007261960A (en) * 2006-03-01 2007-10-11 Tokyo Electric Power Co Inc:The Method for continuously producing higher fatty acid methyl ester from co2
JP2008173521A (en) * 2006-08-09 2008-07-31 Honda Electronic Co Ltd Submerged plasma treatment apparatus and submerged plasma treatment method
US9039870B2 (en) 2006-10-09 2015-05-26 Clariant Finance (Bvi) Limited Method for producing alkaline (meth)acrylamides
JP2008279415A (en) * 2007-05-14 2008-11-20 Environment Technology Ventures Kk Microwave heating unit
JP2008302281A (en) * 2007-06-06 2008-12-18 Shikoku Instrumentation Co Ltd Microwave chemical reactor and method
WO2009041431A3 (en) * 2007-09-25 2009-06-18 Idx Kk Microwave device
JP2009080997A (en) * 2007-09-25 2009-04-16 Idx Corp Microwave device
WO2009041431A2 (en) * 2007-09-25 2009-04-02 Kabushiki Kaisha Idx Microwave device
JP2009097359A (en) * 2007-10-15 2009-05-07 Takumi:Kk Microwave heating device for exhaust gas
WO2009110245A1 (en) * 2008-03-05 2009-09-11 マイクロ波環境化学株式会社 Microwave chemical reaction device and reaction method using said device
US8884040B2 (en) 2008-04-04 2014-11-11 Clariant Finance (Bvi) Limited Continuous method for producing fatty acid amides
JP2010097884A (en) * 2008-10-18 2010-04-30 National Institute Of Advanced Industrial Science & Technology Microwave heating of conductive thin film
JP2010095422A (en) * 2008-10-19 2010-04-30 National Institute Of Advanced Industrial Science & Technology Apparatus for producing hydrogen
US8946605B2 (en) 2008-12-02 2015-02-03 Zhejiang Twrd New Material Co., Ltd. Microwave heating device and its application in chemical reactions
CN101568206A (en) * 2009-01-21 2009-10-28 徐艳姬 Energy-saving easily-changeable high-temperature microwave heating chamber and manufacturing method thereof
CN101568209A (en) * 2009-01-21 2009-10-28 徐艳姬 Microwave heater for heating liquid and/or gases
JP2010207735A (en) * 2009-03-10 2010-09-24 National Institute Of Advanced Industrial Science & Technology Microwave continuous irradiation method and apparatus to fluid
JP2012531450A (en) * 2009-06-30 2012-12-10 クラリアント・ファイナンス・(ビーブイアイ)・リミテッド Continuous process for acylation of organic acids with amino groups
JP2016021399A (en) * 2009-06-30 2016-02-04 クラリアント・ファイナンス・(ビーブイアイ)・リミテッド Apparatus for continuously performing chemical reaction at high temperature
JP2012531451A (en) * 2009-06-30 2012-12-10 クラリアント・ファイナンス・(ビーブイアイ)・リミテッド Continuous process for the preparation of aliphatic carboxylic acid amides.
JP2012531304A (en) * 2009-06-30 2012-12-10 クラリアント・ファイナンス・(ビーブイアイ)・リミテッド Equipment for continuous chemical reactions at high temperatures
JP2012531452A (en) * 2009-06-30 2012-12-10 クラリアント・ファイナンス・(ビーブイアイ)・リミテッド Process for the continuous production of esters of aliphatic carboxylic acids
JP2012531384A (en) * 2009-06-30 2012-12-10 クラリアント・ファイナンス・(ビーブイアイ)・リミテッド Continuous process for the production of esters of aromatic carboxylic acids
US8974743B2 (en) 2009-06-30 2015-03-10 Clariant Finance (Bvi) Limited Device for continuously carrying out chemical reactions at high temperatures
JP2013505125A (en) * 2009-09-22 2013-02-14 クラリアント・ファイナンス・(ビーブイアイ)・リミテッド Equipment for continuous heterogeneous catalytic chemical reactions at high temperatures
JP2013505275A (en) * 2009-09-22 2013-02-14 クラリアント・ファイナンス・(ビーブイアイ)・リミテッド Continuous transesterification process
US9302245B2 (en) 2009-09-22 2016-04-05 Clariant International Ltd. Apparatus for continuously carrying out heterogeneously catalyzed chemical reactions at elevated temperatures
US9000197B2 (en) 2009-09-22 2015-04-07 Clariant Finance (Bvi) Limited Continuous transesterification method
JP2015180776A (en) * 2009-12-05 2015-10-15 国立研究開発法人産業技術総合研究所 Method of producing metal fine particle
JP2011137226A (en) * 2009-12-05 2011-07-14 National Institute Of Advanced Industrial Science & Technology Method for producing metal particulate
JP2013531862A (en) * 2010-05-03 2013-08-08 ゴジ リミテッド Modal analysis
JP2012052895A (en) * 2010-08-31 2012-03-15 National Institute Of Advanced Industrial & Technology Flow injection analysis device and flow injection analysis method
WO2012043753A1 (en) * 2010-09-30 2012-04-05 株式会社サイダ・Fds Microwave device and flow tube thereof
US10091841B2 (en) 2010-09-30 2018-10-02 Pacific Microwave Technology Corp. Microwave device and flow tube used therein
JP2012075996A (en) * 2010-09-30 2012-04-19 Saida Fds Inc Microwave device
US9221938B2 (en) 2010-12-30 2015-12-29 Clariant Finance (Bvi) Limited Polymers carrying hydroxyl groups and ester groups and method for the production thereof
US9243116B2 (en) 2010-12-30 2016-01-26 Clariant International Ltd. Method for modifying polymers comprising hydroxyl groups
JP2013019025A (en) * 2011-07-11 2013-01-31 National Institute Of Advanced Industrial Science & Technology Method for manufacturing metal microparticle
JP2013037882A (en) * 2011-08-08 2013-02-21 Saida Fds Inc Microwave device and circulation pipe thereof
JP2013236984A (en) * 2012-05-11 2013-11-28 National Institute Of Advanced Industrial Science & Technology Device and method for vaporizing liquid
KR101353872B1 (en) * 2012-06-04 2014-01-21 주식회사 포스코 Apparatus for heating fluid with microwave
WO2015080812A1 (en) * 2013-11-26 2015-06-04 Industrial Microwave Systems, L.L.C. Tubular waveguide applicator
US9603203B2 (en) 2013-11-26 2017-03-21 Industrial Microwave Systems, L.L.C. Tubular waveguide applicator
JP2014194955A (en) * 2014-06-20 2014-10-09 Saida Fds Inc Microwave device
JP2016130369A (en) * 2016-02-10 2016-07-21 国立研究開発法人産業技術総合研究所 Metal fine particle manufacturing method and metal fine particle-containing solvent
JP2018024555A (en) * 2016-08-10 2018-02-15 矢崎総業株式会社 Hydrogen production device
JP7109945B2 (en) 2017-03-30 2022-08-01 キヤノンメディカルシステムズ株式会社 Laboratory test device
JP2018173404A (en) * 2017-03-30 2018-11-08 キヤノンメディカルシステムズ株式会社 Sample inspection device
JP2019085301A (en) * 2017-11-07 2019-06-06 国立研究開発法人産業技術総合研究所 Hydrogen production apparatus
JP2019087410A (en) * 2017-11-07 2019-06-06 国立研究開発法人産業技術総合研究所 Microwave heating device and chemical reaction method
WO2019107402A1 (en) 2017-11-28 2019-06-06 国立研究開発法人産業技術総合研究所 Microwave treatment device, microwave treatment method, and chemical reaction method
JPWO2019107402A1 (en) * 2017-11-28 2020-11-19 国立研究開発法人産業技術総合研究所 Microwave processing equipment, microwave processing method and chemical reaction method
JP7236739B2 (en) 2017-11-28 2023-03-10 国立研究開発法人産業技術総合研究所 Microwave processing device, microwave processing method and chemical reaction method
EP3751963A4 (en) * 2018-02-08 2021-11-24 National Institute Of Advanced Industrial Science And Technology Microwave heating method, microwave heating device, and chemical reaction method
CN111602465A (en) * 2018-02-08 2020-08-28 国立研究开发法人产业技术综合研究所 Microwave heating method, microwave heating apparatus, and chemical reaction method
JP2019140103A (en) * 2018-02-08 2019-08-22 国立研究開発法人産業技術総合研究所 Microwave-heating device, heating method and chemical reaction method
WO2019156142A1 (en) * 2018-02-08 2019-08-15 国立研究開発法人産業技術総合研究所 Microwave heating method, microwave heating device, and chemical reaction method
CN111602465B (en) * 2018-02-08 2022-11-29 国立研究开发法人产业技术综合研究所 Microwave heating method, microwave heating apparatus, and chemical reaction method
JP2019140213A (en) * 2018-02-08 2019-08-22 国立研究開発法人産業技術総合研究所 Thin film pattern-firing method and microwave-firing device
JP7389444B2 (en) 2018-02-08 2023-11-30 国立研究開発法人産業技術総合研究所 Microwave heating device, heating method and chemical reaction method
US11883789B2 (en) 2018-02-08 2024-01-30 National Institute Of Advanced Industrial Science And Technology Microwave heating method, microwave heating apparatus, and chemical reaction method
JP2020043051A (en) * 2018-09-06 2020-03-19 国立研究開発法人産業技術総合研究所 Microwave processing apparatus, microwave processing method, and chemical reaction method
JP2020173958A (en) * 2019-04-10 2020-10-22 国立研究開発法人産業技術総合研究所 Microwave heating device and microwave heating method
WO2024029388A1 (en) * 2022-08-03 2024-02-08 東京エレクトロン株式会社 Substrate treatment device, fluid activation device, substrate treatment method, and fluid activation method
CN115278971A (en) * 2022-09-07 2022-11-01 四川大学 Microwave heating assembly and microwave heating device

Also Published As

Publication number Publication date
JP4759668B2 (en) 2011-08-31

Similar Documents

Publication Publication Date Title
JP4759668B2 (en) Microwave heating device
JP4362676B2 (en) Plasma discharge device
KR100363820B1 (en) Plasma processor
US10091841B2 (en) Microwave device and flow tube used therein
JP5681847B2 (en) Microwave equipment
JP6967776B2 (en) Microwave heating device and chemical reaction method
JP4107736B2 (en) Plasma processing apparatus and plasma processing method
JP5408566B2 (en) Microwave heating of conductive thin films
US20210392723A1 (en) Microwave processing apparatus, microwave processing method, and chemical reaction method
JP4299862B2 (en) Microwave heating device
JP2006181533A (en) Microwave chemical reaction apparatus
JP6182767B2 (en) Microwave device with flow tube
JPH1167492A (en) Plasma treatment equipment and plasma treatment method
JP2020080298A (en) Microwave processing apparatus, microwave processing method, and chemical reaction method
JP2020043051A (en) Microwave processing apparatus, microwave processing method, and chemical reaction method
JP2006130385A (en) Microwave chemical reactor
JP7417225B2 (en) Microwave processing device and microwave processing method
JP7368846B2 (en) Microwave processing device and microwave processing method
JP6971812B2 (en) Microwave processing equipment, microwave processing method, heat treatment method and chemical reaction method
JP2006181534A (en) Microwave chemical reaction apparatus
JPH1012594A (en) Plasma treatment device with slot antenna
JP4446966B2 (en) Microwave plasma processing equipment
JP2006302721A (en) High pressure heating device with microwave
KR200398765Y1 (en) Multipurpose microwave source apparatus
CN112087834A (en) Microwave device and method for suppressing the escape of microwaves outside the microwave cavity of a microwave device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060517

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060517

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110217

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4759668

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250