JP2012075996A - Microwave device - Google Patents

Microwave device Download PDF

Info

Publication number
JP2012075996A
JP2012075996A JP2010221567A JP2010221567A JP2012075996A JP 2012075996 A JP2012075996 A JP 2012075996A JP 2010221567 A JP2010221567 A JP 2010221567A JP 2010221567 A JP2010221567 A JP 2010221567A JP 2012075996 A JP2012075996 A JP 2012075996A
Authority
JP
Japan
Prior art keywords
irradiation chamber
microwave
central axis
cavity resonator
processed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010221567A
Other languages
Japanese (ja)
Other versions
JP5681847B2 (en
Inventor
Hisato Saida
久人 斎田
Hiromichi Odajima
博道 小田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saida FDS Inc
Original Assignee
Saida FDS Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saida FDS Inc filed Critical Saida FDS Inc
Priority to JP2010221567A priority Critical patent/JP5681847B2/en
Priority to PCT/JP2011/072443 priority patent/WO2012043753A1/en
Priority to CN201110303418.6A priority patent/CN102573161B/en
Priority to US13/876,584 priority patent/US10091841B2/en
Publication of JP2012075996A publication Critical patent/JP2012075996A/en
Application granted granted Critical
Publication of JP5681847B2 publication Critical patent/JP5681847B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a microwave device, using a single mode cavity resonator, which can treat a material to be treated at a high flow rate uniformly and efficiently.SOLUTION: This microwave device includes a cavity resonator 10 comprising a regular tetragon columnar cavity irradiation chamber 12 with a square bottom surface and a rectangular lateral surface, an iris of rectangular aperture shape which is arranged on a lateral wall 15 forming the lateral side of the irradiation chamber 12 and whose major axis extends in parallel with a center axis C of the irradiation chamber 12. The cavity resonator 10 is of such a single mode type that a microwave is introduced into the irradiation chamber 12 from the iris. Inside the irradiation chamber 12, a flow path 60 for fluidizing the material to be treated is arranged helically coiling and extending around the center axis C. Further, one side of the square shape which forms the bottom surfaces (13 and 14) of the irradiation chamber 12 is designed so as to be not more than 75% of the wavelength of the microwave to be introduced into the irradiation chamber 12.

Description

マイクロ波を照射して加熱や化学反応促進などの処理を物質に施すための装置に関する技術が以下に開示される。   Techniques relating to an apparatus for performing treatment such as heating and chemical reaction promotion on a substance by irradiating microwaves are disclosed below.

近年、マイクロ波が物質の化学反応を促進することが見出され、バイオケミストリーなどの分野において、マイクロ波を利用した化学反応装置への関心が高まっている。このような化学反応促進や加熱のためのマイクロ波装置は、試験管やフラスコ等に被処理物を収容して処理する、いわゆる電子レンジタイプのバッチ式装置が現在主流である。しかし、バッチ式では処理能力に限界があるため、流通路を形成してこれに被処理物を流しながらマイクロ波を照射して処理するフロー式の装置が検討されている(特許文献1参照)。   In recent years, it has been found that microwaves promote chemical reactions of substances, and in fields such as biochemistry, interest in chemical reaction devices using microwaves is increasing. As such microwave devices for promoting chemical reaction and heating, a so-called microwave-type batch-type device in which an object to be processed is accommodated and processed in a test tube or a flask is currently mainstream. However, since the processing capability is limited in the batch type, a flow type apparatus that forms a flow path and irradiates a microwave while flowing an object to be processed in the flow path has been studied (see Patent Document 1). .

特許文献1のマイクロ波装置は、方形導波管内に流通路を配設したものであるが、空胴共振器を用いたほうがマイクロ波の吸収が高まり、結果として処理の効率は良い。特に、シングルモードの空胴共振器に流通路を形成した装置とすると、反応の再現性に優れ、また、共振時に空胴共振器内に発生する電磁界が強いので処理時間を短縮することができる。ただし、空胴共振器を用いたマイクロ波装置の場合、空胴共振器とマイクロ波の同調をとる仕組みが難しいとされている。   The microwave device disclosed in Patent Document 1 has a flow path disposed in a rectangular waveguide. However, the use of a cavity resonator increases the absorption of microwaves, resulting in better processing efficiency. In particular, a device having a flow path formed in a single-mode cavity resonator has excellent reaction reproducibility, and the electromagnetic field generated in the cavity resonator at the time of resonance can reduce the processing time. it can. However, in the case of a microwave device using a cavity resonator, it is considered difficult to tune the cavity resonator and the microwave.

特開2006−272055号公報JP 2006-272055 A

シングルモードの空胴共振器では、電磁界が強いことが逆に災いとなって、被処理物の吸収するマイクロ波が大きすぎることが、同調を難しくしている原因と言える。すなわち、空胴共振器に蓄えられるマイクロ波エネルギーに対し、被処理物に吸収される単位時間当りのエネルギーが大きすぎ、これら2つの量の比に角周波数を乗じた式で定義される共振の“Q”が低くなってしまう。Qが低くなると、共振器としての特長を失うばかりか、共振を維持するために必要な共振周波数に対して同調を取ること自体、難しくなる。   In a single-mode cavity resonator, the strong electromagnetic field is a disaster, and it can be said that the microwave absorbed by the object to be processed is too large, which makes the tuning difficult. That is, the energy per unit time absorbed by the workpiece is too large compared to the microwave energy stored in the cavity resonator, and the resonance frequency defined by the ratio of these two quantities multiplied by the angular frequency. “Q” becomes low. When Q is lowered, not only the characteristics as a resonator are lost, but also tuning itself with respect to the resonance frequency necessary for maintaining resonance becomes difficult.

現状では、流通路の断面積をできるだけ小さくし、空胴共振器内に存在する被処理物の容積が、空胴容積に比較して極力小さくなるようにして、被処理物に吸収される単位時間当りのエネルギーを減らす、といった対処で回避が図れている。すなわち、一般的に円筒管である流通路の径を極力小さくして、被処理物の流量を抑えるということである。この対処法でQを適切な値に留めるためには、現在一般的なマイクロ波の周波数2,450MHzで動作する空胴共振器の場合、流通路は、径が1.5mm以下の細いものにせざるを得ない。これでは、実用化に向けて十分な処理能力があるとは言い難い。   Currently, the cross-sectional area of the flow path is made as small as possible so that the volume of the object to be processed existing in the cavity resonator is as small as possible compared to the cavity volume, and the unit absorbed by the object to be processed Efforts can be made by reducing energy per hour. In other words, the diameter of the flow passage, which is generally a cylindrical tube, is made as small as possible to suppress the flow rate of the workpiece. In order to keep Q at an appropriate value by this countermeasure, in the case of a cavity resonator operating at a current microwave frequency of 2450 MHz, the flow path should be narrow with a diameter of 1.5 mm or less. I must. In this case, it is hard to say that there is sufficient processing capacity for practical use.

このような背景に鑑みて本発明は、シングルモードの空胴共振器を使用したマイクロ波装置に関し、被処理物の流量を多くして均一に効率良く処理可能にする手段を提案する。   In view of such a background, the present invention relates to a microwave device using a single-mode cavity resonator, and proposes a means for increasing the flow rate of an object to be processed and enabling uniform and efficient processing.

上記課題に対して提案するマイクロ波装置の一態様は、底面が正方形且つ側面が長方形の正四角柱状空胴の照射室と、前記照射室側面を形成する側面壁の1つに設けられ、前記照射室底面の中心どうしを結んだ中心軸と平行に長軸が伸延する矩形開口のアイリスと、を有する空胴共振器を含んで構成される。その空胴共振器は、前記アイリスから前記照射室内にマイクロ波が導入されるシングルモードの空胴共振器である。
本マイクロ波装置は、前記照射室内において、被処理物を流動させる流通路を、前記中心軸を取り巻いて伸延する螺旋状に設けてあり、そして、前記照射室底面のなす正方形の1辺が、当該照射室に導入するマイクロ波の波長の75%以下に設計される。
One aspect of the microwave device proposed for the above problem is provided in one of a radiation chamber of a square prismatic cavity having a square bottom surface and a rectangular side surface, and a side wall forming the radiation chamber side surface, It includes a cavity resonator having a rectangular aperture iris whose major axis extends parallel to the center axis connecting the centers of the bottom surfaces of the irradiation chambers. The cavity resonator is a single mode cavity resonator in which microwaves are introduced from the iris into the irradiation chamber.
In the microwave device, in the irradiation chamber, a flow path for flowing an object to be processed is provided in a spiral shape extending around the central axis, and one side of a square formed by the bottom surface of the irradiation chamber is It is designed to be 75% or less of the wavelength of the microwave introduced into the irradiation chamber.

上記課題に対して提案するマイクロ波装置の別の態様は、円柱状空胴の照射室と、該照射室の側面を形成する側面壁に1箇所設けられ、前記照射室の両底面の中心を互いに結んだ中心軸と平行に長軸が伸延する矩形開口のアイリスと、を有する空胴共振器を含んで構成される。その空胴共振器は、前記アイリスから前記照射室内にマイクロ波が導入されるシングルモードの空胴共振器である。
本マイクロ波装置は、前記照射室内において、被処理物を流動させる流通路を、前記中心軸を取り巻いて伸延する螺旋状に設けてあり、そして、前記照射室底面のなす円形の直径が、当該照射室に導入するマイクロ波の波長の80%以下に設計される。
Another aspect of the microwave device proposed for the above problem is provided in one place on the irradiation chamber of the cylindrical cavity and the side wall forming the side surface of the irradiation chamber, and the centers of both bottom surfaces of the irradiation chamber are centered. And a cavity resonator having a rectangular aperture iris whose major axis extends parallel to the central axes connected to each other. The cavity resonator is a single mode cavity resonator in which microwaves are introduced from the iris into the irradiation chamber.
In the microwave device, a flow path for flowing a workpiece in the irradiation chamber is provided in a spiral shape extending around the central axis, and the circular diameter formed by the bottom surface of the irradiation chamber is Designed to be 80% or less of the wavelength of the microwave introduced into the irradiation chamber.

上記提案に係るマイクロ波装置は、空胴共振器の照射室(共振空胴)において、中心軸に平行な電界が発生する。そして、この照射室内で流通路は、照射室の中心軸を取り巻く螺旋状に設けられているので、当該流通路を流れる被処理物は、電界を横切る方向に流動する。この構造により、被処理物、つまり誘電体の境界が電界を横切る方向となるので、単位時間当りに被処理物に吸収されるエネルギーが少なくなり、Qの低下が抑制される。したがって、従来よりも太い流通路を使用して被処理物の流量を多くしても、Qの低下は格段に緩やかとなって適切値に留めることができる。また、流通路を螺旋状としたことにより、直管式流通路の場合に比べて、照射室内での被処理物流動距離が長くなって、被処理物の受けるマイクロ波の強さを一定に保ちつつ照射室内滞留時間を稼ぐことができる。以上の結果、シングルモード空胴共振器による均一で効率の良い処理が可能となる。   In the microwave device according to the above proposal, an electric field parallel to the central axis is generated in the irradiation chamber (resonant cavity) of the cavity resonator. Since the flow passage is provided in a spiral shape surrounding the central axis of the irradiation chamber in the irradiation chamber, the object to be processed flowing through the flow passage flows in a direction crossing the electric field. With this structure, since the boundary of the object to be processed, that is, the boundary between the dielectrics crosses the electric field, the energy absorbed by the object to be processed per unit time is reduced, and the decrease in Q is suppressed. Therefore, even if the flow path thicker than before is used to increase the flow rate of the object to be processed, the decrease in Q becomes much slower and can be kept at an appropriate value. In addition, since the flow path is spiral, the flow distance of the object to be processed in the irradiation chamber is longer than in the case of a straight pipe flow path, and the strength of the microwave received by the object to be processed is made constant. It is possible to earn the residence time in the irradiation chamber while maintaining it. As a result, uniform and efficient processing by the single mode cavity resonator is possible.

マイクロ波装置の全体構成例を示すブロック図。The block diagram which shows the example of whole structure of a microwave apparatus. 空胴共振器の第1実施形態を示し、(A)は図1と同じ側面から見た正面図、(B)は左側面図、(C)は平面図。1 shows a first embodiment of a cavity resonator, (A) is a front view seen from the same side as FIG. 1, (B) is a left side view, and (C) is a plan view. 図2の空胴共振器における流通路配置状態を示し、(A)は側面壁を取り外して照射室内を見せた正面図、(B)は上側の底面壁を取り外して照射室内を見せた平面図、(C)は下側の底面壁を取り外して照射室内を見せた底面図。2 shows a flow path arrangement state in the cavity resonator of FIG. 2, (A) is a front view showing the irradiation chamber with the side wall removed, and (B) is a plan view showing the irradiation chamber with the upper bottom wall removed. (C) is the bottom view which removed the lower bottom wall and showed the irradiation room. 螺旋状の流通路及びこれを巻き付ける支持棒の第1例を示す図。The figure which shows the 1st example of a spiral flow path and the support rod which winds this. 螺旋状の流通路及びこれを巻き付ける支持棒の第2例を示す図。The figure which shows the 2nd example of the spiral flow path and the support rod which winds this. 流通路及び支持棒の治具を示し、(A)は正面図、(B)は左側面図、(C)は右側面図、(D)は平面図、(E)は底面図。The flow path and the support rod jig are shown, (A) is a front view, (B) is a left side view, (C) is a right side view, (D) is a plan view, and (E) is a bottom view. 空胴共振器の第2実施形態を示し、(A)は図1と同じ側面から見た正面図、(B)は左側面図、(C)は平面図。A 2nd embodiment of a cavity resonator is shown, (A) is a front view seen from the same side as Drawing 1, (B) is a left view, and (C) is a top view. 第1実施形態に係る空胴共振器内の電界に関して中心軸周りの円周方向電界変化シミュレーション結果を示す図。The figure which shows the circumferential direction electric field change simulation result around a central axis regarding the electric field in the cavity resonator which concerns on 1st Embodiment. 被処理物の流動方向と電界の関係を説明する図。The figure explaining the relationship between the flow direction of to-be-processed object, and an electric field. 第2実施形態(又は第1実施形態)に係る空胴共振器内の電界に関して中心軸方向のシミュレーション結果を示す図。The figure which shows the simulation result of a center axis direction regarding the electric field in the cavity resonator which concerns on 2nd Embodiment (or 1st Embodiment). 流通路に被処理物を流す流動機構の一例を示す図。The figure which shows an example of the flow mechanism which flows a to-be-processed object into a flow path.

まず、図1に、マイクロ波装置の全体構成に関して一例を示す。図示のマイクロ波装置は、空胴共振器10に導波管20及びマイクロ波発生器30を組み付け、パーソナルコンピュータ等による制御器40で制御するようにした構成である。   First, FIG. 1 shows an example of the overall configuration of the microwave device. The illustrated microwave device has a configuration in which a waveguide 20 and a microwave generator 30 are assembled to a cavity resonator 10 and controlled by a controller 40 such as a personal computer.

マイクロ波発生器30は、可変周波数発振器31及び可変増幅器32を含んでいる。可変周波数発振器31により周波数が可変(例えば2.4GHz〜2.5GHz)のマイクロ波が出力され、可変増幅器32により該マイクロ波のパワーが可変増幅される。可変周波数発振器31の周波数と可変増幅器32のパワーは、制御器40に従い制御される。マイクロ波発生器30から出力されたマイクロ波は、同軸ケーブルでつながったアイソレータ33、方向性結合器34などを介して同軸導波管変換器21に送られる。同軸導波管変換器21を経て導波管20により導波されるマイクロ波は、図2に示すアイリス11を通して、空胴共振器10内に形成された照射室12へ導入される。   The microwave generator 30 includes a variable frequency oscillator 31 and a variable amplifier 32. A variable frequency oscillator 31 outputs a microwave having a variable frequency (for example, 2.4 GHz to 2.5 GHz), and a variable amplifier 32 variably amplifies the power of the microwave. The frequency of the variable frequency oscillator 31 and the power of the variable amplifier 32 are controlled according to the controller 40. The microwave output from the microwave generator 30 is sent to the coaxial waveguide converter 21 via an isolator 33, a directional coupler 34, and the like connected by a coaxial cable. The microwave guided by the waveguide 20 through the coaxial waveguide converter 21 is introduced into the irradiation chamber 12 formed in the cavity resonator 10 through the iris 11 shown in FIG.

照射室12にマイクロ波が導入されると、中心軸方向へ離間設置した2本のアンテナ50(例えばループ形のアンテナ)により電界又は磁界の強度が検知され、該検知結果が制御器40へ入力される。また、後述の図11に示すように被処理物の温度を計測した結果も制御器40へ入力され得る。制御器40は、これら入力に従ってマイクロ波発生器30を制御する。   When microwaves are introduced into the irradiation chamber 12, the strength of the electric field or magnetic field is detected by two antennas 50 (for example, loop-shaped antennas) spaced apart in the central axis direction, and the detection results are input to the controller 40. Is done. Further, as shown in FIG. 11 described later, the result of measuring the temperature of the workpiece can also be input to the controller 40. The controller 40 controls the microwave generator 30 according to these inputs.

マイクロ波照射開始の操作が行われると、制御器40は、マイクロ波発生器30によりマイクロ波出力を開始し、周波数制御過程を実行する。周波数制御過程は、アンテナ50による検知結果に従って、マイクロ波発生器30から出力されるマイクロ波の周波数を、照射室12の共振周波数に同調させる制御である。周波数制御過程を実行する制御器40は、可変周波数発振器31の周波数を掃引しつつアンテナ50による検出結果から同調周波数を判断する。このとき、制御器40は、可変増幅器32によるパワーについて、アンテナ50による検出に支障ない範囲で最低限の微弱パワーにするとよい。照射室12へ導入するマイクロ波の出力パワーを弱くすることで、周波数制御過程の実行中に被処理物へ与え得る影響を抑制することができる。   When an operation for starting microwave irradiation is performed, the controller 40 starts microwave output by the microwave generator 30 and executes a frequency control process. The frequency control process is control for tuning the frequency of the microwave output from the microwave generator 30 to the resonance frequency of the irradiation chamber 12 according to the detection result by the antenna 50. The controller 40 that executes the frequency control process determines the tuning frequency from the detection result of the antenna 50 while sweeping the frequency of the variable frequency oscillator 31. At this time, the controller 40 may set the power from the variable amplifier 32 to a minimum weak power within a range that does not interfere with detection by the antenna 50. By weakening the output power of the microwave introduced into the irradiation chamber 12, it is possible to suppress the influence that can be given to the object to be processed during the execution of the frequency control process.

この場合の微弱パワーは、例えば次の値とする。可変増幅器32は、一般的に可変減衰部+増幅部の組み合わせで構成されるので、その可変減衰部の減衰率を最大値(99%等)としたときの可変増幅器32の出力パワーを、微弱パワーとすることができる。一例としては、微弱パワーは100mW以下とすることが可能である。   The weak power in this case is set to the following value, for example. Since the variable amplifier 32 is generally configured by a combination of a variable attenuation unit and an amplification unit, the output power of the variable amplifier 32 when the attenuation rate of the variable attenuation unit is set to the maximum value (99% or the like) is weak. It can be power. As an example, the weak power can be 100 mW or less.

制御器40は、周波数制御過程による同調に続いて、マイクロ波のパワーを制御するパワー制御過程を実行する。パワー制御過程は、マイクロ波照射開始前にオペレーターにより設定された条件に従ってマイクロ波発生器30の可変増幅器32を制御し、マイクロ波のパワーを制御する過程である。パワー制御過程において制御器40は、アンテナ50による検知結果(又は被処理物の温度計測結果)に従って、マイクロ波発生器30から出力されるマイクロ波のパワーを調整する。正確性を追求したければ、アンテナ50の検知結果及び温度計測結果の両方を使用するのがよい。   The controller 40 executes a power control process for controlling the power of the microwave following the tuning by the frequency control process. The power control process is a process of controlling the microwave power by controlling the variable amplifier 32 of the microwave generator 30 according to the conditions set by the operator before the start of microwave irradiation. In the power control process, the controller 40 adjusts the power of the microwave output from the microwave generator 30 according to the detection result by the antenna 50 (or the temperature measurement result of the object to be processed). If accuracy is desired, both the detection result of the antenna 50 and the temperature measurement result should be used.

制御器40は、一例として、マイクロ波の照射開始にあたって最初に周波数制御過程を実行した後、パワー制御過程を実行し、当該パワー制御過程実行中に一定の間隔で周波数制御過程を割り込ませ、実行する。そして、その周波数制御過程において制御器40は、可変増幅器3bを制御して上述の微弱パワーでマイクロ波を出力させつつ、可変周波数発振器31を制御して周波数の同調を図る。   For example, the controller 40 first executes the frequency control process at the start of microwave irradiation, then executes the power control process, interrupts the frequency control process at regular intervals during execution of the power control process, and executes it. To do. In the frequency control process, the controller 40 controls the variable amplifier 3b to output the microwave with the above-described weak power, and controls the variable frequency oscillator 31 to tune the frequency.

以上のようなマイクロ波装置における空胴共振器10の第1実施形態が図2に示されている。   A first embodiment of a cavity resonator 10 in the microwave device as described above is shown in FIG.

第1実施形態の空胴共振器10は、図中では上下に示す2枚の対向する底面壁13,14が正方形で、当該正方形の底面壁13,14の各辺に、長方形の側面壁15,16,17,18をボルト等で固定することにより、構成されている。第1実施形態の場合、4枚の側面壁15,16,17,18のうち、図2Bに示す1枚の側面壁15は、導波管20を接続するために、導波管20のフランジ22に対応させて面積が広げられており、その拡張部分が底面壁13,14の端からはみ出している。また、4枚の側面壁15,16,17,18のうち、図2Aに示す1枚の側面壁18は、底面壁13,14へ当接する端部に開けられた流通路挿通口18a,18bを有する。   In the cavity resonator 10 of the first embodiment, two opposing bottom walls 13 and 14 shown in the upper and lower sides are square in the drawing, and rectangular side walls 15 are provided on each side of the square bottom walls 13 and 14. , 16, 17 and 18 are fixed by bolts or the like. In the case of the first embodiment, of the four side walls 15, 16, 17, 18, one side wall 15 shown in FIG. 2B is a flange of the waveguide 20 to connect the waveguide 20. The area is expanded corresponding to 22, and the expanded portion protrudes from the ends of the bottom walls 13 and 14. Of the four side walls 15, 16, 17, 18, one side wall 18 shown in FIG. 2A has flow passage insertion holes 18 a, 18 b opened at the ends contacting the bottom walls 13, 14. Have

これら底面壁13,14及び側面壁15,16,17,18を組み立てて形成される直方体の空胴共振器10の中には、底面壁13,14による正方形の底面及び側面壁15,16,17,18による長方形の側面を有した正四角柱状空胴の照射室12が形成される。この照射室12にマイクロ波を導入するアイリス11は、照射室側面を形成する側面壁15の中央部位に、矩形開口として開けられる。第1実施形態のアイリス11は長方形で、その長軸が、照射室底面の中心どうし、すなわち第1実施形態では底面壁13,14の中心どうしを結んだ中心軸Cと平行に伸延する。   In the rectangular parallelepiped cavity resonator 10 formed by assembling the bottom walls 13, 14 and the side walls 15, 16, 17, 18, the square bottom and side walls 15, 16, The irradiation chamber 12 of a regular quadrangular columnar cavity having a rectangular side surface 17, 18 is formed. The iris 11 for introducing the microwave into the irradiation chamber 12 is opened as a rectangular opening at the central portion of the side wall 15 that forms the side surface of the irradiation chamber. The iris 11 of the first embodiment is rectangular, and its long axis extends parallel to the center axis C connecting the centers of the bottom surfaces of the irradiation chambers, that is, the centers of the bottom walls 13 and 14 in the first embodiment.

導波管20から結合スリットであるアイリス11を通して正四角柱状空胴の照射室12に導入されたマイクロ波は、共振時、中心軸Cの方向に沿ったシングルモードの電界を発生する。厳密に言えば、空胴共振器10内に何も入っていなければ、TM110モードの電磁界が励起される。したがって、おおよそTM110モードの電磁界分布に従った分布の電磁界が照射室12に発生することになる。   The microwave introduced from the waveguide 20 through the iris 11 serving as a coupling slit into the irradiation chamber 12 of the regular square columnar cavity generates a single mode electric field along the direction of the central axis C at the time of resonance. Strictly speaking, if nothing is contained in the cavity resonator 10, the electromagnetic field of the TM110 mode is excited. Therefore, an electromagnetic field having a distribution roughly following the electromagnetic field distribution of the TM110 mode is generated in the irradiation chamber 12.

照射室12に関し、その底面のなす正方形の1辺の長さをLとする。なお、Lについての±数%程度の寸法差は許容され得る。加熱等に一般的なマイクロ波の周波数2,450MHzの場合、照射室12内に何も無いときのLは86.5mmである。しかし実際には、照射室12には誘電体となる被処理物が存在するので、その影響を受けて照射室12の共振周波数は下がる。そこで、照射室12のLは、空のときの寸法より小さく設計し、照射室12内に被処理物が有って共振周波数が下がったときに共振できる値とするのがよい。また、Lを長めにとった場合、予定したシングルモードでの共振に加えて、その近傍の周波数において高次モードで共振する、モード競合のような不具合を生じ得る。これらの条件を勘案してシミュレーションなどの試行を重ねた結果、照射室12において底面のなす正方形の1辺の長さLは、照射室12に導入するマイクロ波の波長の75%以下に設計するのが適している。なお、照射室12において各側面のなす長方形の長辺の長さH(正四角柱の高さ)は、電界が中心軸Cの方向に生じることから、適宜、必要な長さを設計すればよい。   Regarding the irradiation chamber 12, let L be the length of one side of the square formed by its bottom surface. It should be noted that a dimensional difference of about ± several percent with respect to L can be allowed. In the case of a microwave frequency of 2450 MHz, which is general for heating and the like, L when there is nothing in the irradiation chamber 12 is 86.5 mm. However, in reality, there is an object to be processed which is a dielectric in the irradiation chamber 12, so that the resonance frequency of the irradiation chamber 12 is lowered under the influence. Therefore, L of the irradiation chamber 12 is designed to be smaller than the dimension when empty, and is set to a value that can resonate when there is an object to be processed in the irradiation chamber 12 and the resonance frequency is lowered. Further, when L is set longer, in addition to the planned resonance in the single mode, a problem such as mode competition that resonates in a higher-order mode at a nearby frequency may occur. As a result of repeated trials such as simulation in consideration of these conditions, the length L of one side of the square formed in the bottom surface of the irradiation chamber 12 is designed to be 75% or less of the wavelength of the microwave introduced into the irradiation chamber 12. Is suitable. In addition, since the electric field is generated in the direction of the central axis C, the length H of the long side of the rectangle formed by each side in the irradiation chamber 12 (height of the regular quadrangular prism) may be designed as appropriate. .

導波管20から空胴共振器10へマイクロ波を結合するアイリス11は、照射室12に励起される電磁界を、予定したシングルモード(TM110、あるいは後述のTM010)のみとすることに関与する。図2Bに示すアイリス11においては、その長辺(側縁)においてマイクロ波による電流が中心軸Cの方向に流れ、当該電流に起因して、中心軸Cを囲繞する磁界と中心軸Cに平行な電界が発生する。アイリス11の幅(中心軸Cと直交する方向)は、シミュレーション及び実験により最適値を求めることができる。空胴共振器10はTEモードを発生する可能性があるが、TEモードが発生すると想定外の現象が起き得るので、TEモードは極力抑制する必要がある。図2の導波管20及びアイリス11の関係においては、中心軸Cに関し構造的対称性が保たれる限り、図中の横方向の電界が存在しないので、TEモードを抑制することが可能である。   The iris 11 that couples the microwave from the waveguide 20 to the cavity resonator 10 is involved in setting the electromagnetic field excited in the irradiation chamber 12 only to the planned single mode (TM110 or TM010 described later). . In the iris 11 shown in FIG. 2B, a microwave current flows in the direction of the central axis C on the long side (side edge), and the magnetic field surrounding the central axis C is parallel to the central axis C due to the current. Electric field is generated. An optimum value of the width of the iris 11 (direction orthogonal to the central axis C) can be obtained by simulation and experiment. Although the cavity resonator 10 may generate the TE mode, an unexpected phenomenon may occur when the TE mode occurs, so the TE mode needs to be suppressed as much as possible. In the relationship between the waveguide 20 and the iris 11 in FIG. 2, as long as the structural symmetry with respect to the central axis C is maintained, there is no electric field in the horizontal direction in the figure, so that the TE mode can be suppressed. is there.

図3に、このような照射室12に設ける流通路60の実施形態を示す。
図3Aは、正面の側面壁18を取り外して照射室12の中を示した図、図3Bは、上側の底面壁13を取り外して照射室12の中を示した図、そして、図3Cは、下側の底面壁14を取り外して照射室12の中を示した図である。
FIG. 3 shows an embodiment of the flow passage 60 provided in such an irradiation chamber 12.
FIG. 3A is a view showing the inside of the irradiation chamber 12 with the front side wall 18 removed, FIG. 3B is a view showing the inside of the irradiation chamber 12 with the upper bottom wall 13 removed, and FIG. It is the figure which removed the lower side wall 14 and showed the inside of the irradiation chamber 12. FIG.

流通路60は、1本のフレキシブル管を螺旋状に巻いて形成され、その材料には、マイクロ波の吸収が少なく比誘電率(実数部)が小さいもの、例えばPTFEやPPが使用される。螺旋状に巻いた流通路60の巻き径の中心は、照射室12の中心軸Cにほぼ一致(見た目に一致している程度でよい)させてある。したがって、被処理物を流動させる流通路60は、中心軸Cを取り巻いて延伸する螺旋状に設けられている。螺旋状に巻いた流通路60は、図2に示す流通路挿通口18a,18bから両端が取り出され、被処理物の流動機構に接続される。この流通路60を螺旋状に設けるために使用する支持棒の第1例について、図4に示す。   The flow passage 60 is formed by spirally winding a single flexible tube, and a material that absorbs microwaves and has a small relative dielectric constant (real part), such as PTFE or PP, is used as the material. The center of the winding diameter of the spirally wound flow passage 60 is made to substantially coincide with the central axis C of the irradiation chamber 12 (the degree may coincide with the appearance). Therefore, the flow passage 60 for flowing the workpiece is provided in a spiral shape that extends around the central axis C. Both ends of the spirally wound flow passage 60 are taken out from the flow passage insertion ports 18a and 18b shown in FIG. 2 and connected to the flow mechanism of the workpiece. FIG. 4 shows a first example of a support rod used for providing the flow passage 60 in a spiral shape.

第1例に係る支持棒61は、流通路60と同じくPTFEやPPなどのマイクロ波吸収し難い素材からなる円柱で、その軸を中心軸Cに沿わせて照射室12内に配置される。図3の場合、支持棒61の中心軸が照射室12の中心軸Cにほぼ一致するようにして配置されている。この支持棒61の周面に螺旋溝61aが一筋、全長にわたり凹設されており、該螺旋溝61aをガイドにして、流通路60が支持棒61の周囲に巻き付けられる。螺旋溝61aの形成により、流通路60を一定のピッチpで巻き付けることができ且つ巻き付けた流通路60のずれが防止される。   The support rod 61 according to the first example is a cylinder made of a material that is difficult to absorb microwaves, such as PTFE and PP, like the flow passage 60, and is arranged in the irradiation chamber 12 with its axis along the central axis C. In the case of FIG. 3, the support rod 61 is arranged so that the central axis substantially coincides with the central axis C of the irradiation chamber 12. A spiral groove 61a is formed on the peripheral surface of the support rod 61 over a whole length, and the flow path 60 is wound around the support rod 61 using the spiral groove 61a as a guide. By forming the spiral groove 61a, the flow passage 60 can be wound at a constant pitch p, and displacement of the wound flow passage 60 is prevented.

図5に、第2例の支持棒61’を示す。第2例に係る支持棒61’も第1例と同じくPTFEやPPからなる円柱であり、第1例同様に照射室12内へ配置されるが、その周面に形成される螺旋溝61a’のピッチが第1例よりも大きく、流通路60のピッチpが第1例に比べて広くなる設計である。流通路60のピッチpが違えば、被処理物が照射室12内に留まる時間が変わり、したがってマイクロ波の照射時間が変わる。また、ピッチpの違いにより、図中右に示すように、流通路60の螺旋の傾きが変化し、照射室12内の軸方向の電界に対する被処理物流動方向の軸方向成分が増減する。すなわち、マイクロ波中の誘電体である被処理物の誘電体境界の向きが、電界の方向に対し、直交と平行の間で変化する。これにより、被処理物のマイクロ波エネルギー吸収を変化させることができる(後述)。   FIG. 5 shows a support rod 61 'of the second example. The support rod 61 ′ according to the second example is also a cylinder made of PTFE or PP as in the first example, and is arranged in the irradiation chamber 12 as in the first example, but the spiral groove 61a ′ formed on the peripheral surface thereof. Is larger than that of the first example, and the pitch p of the flow passage 60 is wider than that of the first example. If the pitch p of the flow path 60 is different, the time during which the workpiece remains in the irradiation chamber 12 changes, and therefore the microwave irradiation time changes. In addition, due to the difference in pitch p, as shown on the right in the figure, the inclination of the spiral of the flow path 60 changes, and the axial component in the flow direction of the workpiece with respect to the axial electric field in the irradiation chamber 12 increases or decreases. That is, the direction of the dielectric boundary of the workpiece, which is a dielectric in the microwave, changes between orthogonal and parallel to the direction of the electric field. Thereby, the microwave energy absorption of a to-be-processed object can be changed (after-mentioned).

支持棒61,61’は、マイクロ波損失が少なく且つ熱伝導特性に優れたアルミナ(酸化アルミニウム)で形成することもできる。アルミナ製の支持棒61,61’とした場合、その熱伝導の良さから、流通路60下流の被処理物の熱を上流の被処理物へ伝えることが可能で、流通路60を流れる被処理物の均温性を向上させることができる。マイクロ波照射に伴う加熱で、被処理物の温度は下流へ行くほどに高くなるが、その熱を支持棒61,61’を介して上流側へ伝導することにより、化学反応に要求される均温性を改善することができる。第2例の支持棒61’の場合、さらに、軸方向に貫通する流路61b’が形成され、ここに冷媒として気体や液体を流すことができるようにしてある。マイクロ波吸収の少ない冷媒として、例えばフロリナート(フッ素系不活性液体)があげられる。冷媒は、被処理物の流動方向とは逆向きに流し、例えば、図5中で下から上に被処理物が流れる場合は、冷媒を上から下へ(矢示)流す。これにより、均温性をより向上させられる。また、マイクロ波による熱反応処理では、強いマイクロ波を照射しながら、被処理物の温度は許容レベル内に抑えることを要求される場合がある。この場合、従来の装置では、被処理物の温度が上がるとマイクロ波出力を下げることにより対応していたが、支持棒61,61’の熱伝導や冷媒作用を利用すれば、マイクロ波出力を従来ほど下げずに済むこととなる。   The support rods 61 and 61 ′ can also be formed of alumina (aluminum oxide) that has low microwave loss and excellent thermal conductivity. When the support rods 61 and 61 ′ made of alumina are used, the heat of the object to be processed downstream of the flow path 60 can be transmitted to the object to be processed upstream because of the good heat conduction. The soaking property of the object can be improved. Although the temperature of the object to be processed becomes higher as it goes downstream due to the heating accompanying the microwave irradiation, by conducting the heat to the upstream side through the support rods 61 and 61 ′, the temperature required for the chemical reaction is increased. Can improve warmth. In the case of the support rod 61 ′ of the second example, a flow passage 61 b ′ penetrating in the axial direction is further formed so that a gas or a liquid can flow as a refrigerant. An example of a refrigerant that absorbs less microwaves is fluorinate (fluorinated inert liquid). The refrigerant flows in a direction opposite to the flow direction of the object to be processed. For example, when the object to be processed flows from bottom to top in FIG. 5, the refrigerant flows from top to bottom (indicated by arrows). Thereby, temperature uniformity can be improved more. Further, in the thermal reaction process using microwaves, it is sometimes required to keep the temperature of the object to be processed within an allowable level while irradiating strong microwaves. In this case, in the conventional apparatus, when the temperature of the workpiece increases, the microwave output is reduced. However, if the heat conduction or the refrigerant action of the support rods 61 and 61 ′ is used, the microwave output is reduced. It will not be lowered as much as in the past.

このような支持棒61,61’に巻回した螺旋状流通路60を、照射室12内の定位置へ配置するための治具62について、図6に示す。治具62は、やはりPTEFやPPにより形成され、照射室12の底面に相当する正方形(1辺がほぼL)で互いに同形状の2枚の底面板62aと、照射室12の側面の長辺に相当する長さ(ほぼH)の4本の支柱62bと、を含み、対向する底面板62aの四隅に支柱62bを固定して組み立てられている。支柱62bの固定は、例えばエンジニアリングプラスチック製のネジによるねじ止めで行える。底面板62aは板厚が5mm程度で、正方形の中心部位に、支持棒61,61’の端部61b,61c’を嵌め込むための嵌合孔62cが開けられている。ここに支持棒61,61’を嵌め込んで固定することで、治具62を照射室12に挿入すると、中心軸Cに沿って支持棒61,61’が配置され、且つ中心軸Cの周りに螺旋状流通路60が配置されることになる。   FIG. 6 shows a jig 62 for arranging the spiral flow passage 60 wound around the support rods 61 and 61 ′ at a fixed position in the irradiation chamber 12. The jig 62 is also formed of PTEF or PP, and is a square corresponding to the bottom surface of the irradiation chamber 12 (one side is substantially L) and has the same shape as each other, and the long side of the side surface of the irradiation chamber 12. And four struts 62b having a length (substantially H) corresponding to, and are assembled with the struts 62b fixed to the four corners of the opposed bottom plate 62a. The support 62b can be fixed by screwing with, for example, an engineering plastic screw. The bottom plate 62a has a thickness of about 5 mm, and a fitting hole 62c for fitting the end portions 61b and 61c 'of the support rods 61 and 61' is formed in a square central portion. When the jig 62 is inserted into the irradiation chamber 12 by fitting and fixing the support rods 61 and 61 ′ here, the support rods 61 and 61 ′ are arranged along the central axis C and around the central axis C. Thus, the spiral flow passage 60 is disposed.

底面板62aには、さらに、治具62を照射室12に対し出し入れするときに取っ手となる把持孔62dが2箇所に開けられている。また、底面板62aには、空胴共振器10の側面壁18に開けられた流通路挿通口18a,18bに対応する部位に、流通孔60を引き出すための切欠62eが形成される。このような治具62は、支持棒61(又は支持棒61’)の端部61bを嵌合孔62cに嵌め込んで固定し、当該支持棒61に流通路60を巻き付けてその端を切欠62eを介し引き出した状態にして、照射室12に挿入される。治具62を使用して流通路60を巻回した支持棒61を照射室12に挿入する方式とすることにより、照射室12内において流通路60を常に定位置に配置することが可能であり、処理の再現性に優れる。   The bottom plate 62a is further provided with two holding holes 62d serving as handles when the jig 62 is taken in and out of the irradiation chamber 12. Further, the bottom plate 62 a is formed with a notch 62 e for drawing out the flow hole 60 at a portion corresponding to the flow passage insertion holes 18 a and 18 b opened in the side wall 18 of the cavity resonator 10. In such a jig 62, the end 61b of the support bar 61 (or support bar 61 ′) is fitted and fixed in the fitting hole 62c, the flow passage 60 is wound around the support bar 61, and the end thereof is cut out 62e. In a state of being pulled out through the irradiation chamber 12, it is inserted into the irradiation chamber 12. By adopting a method in which the support rod 61 around which the flow passage 60 is wound using the jig 62 is inserted into the irradiation chamber 12, the flow passage 60 can always be arranged at a fixed position in the irradiation chamber 12. Excellent process reproducibility.

図7に、空胴共振器の第2実施形態を示す。
第2実施形態の空胴共振器10’は、円柱状空胴の照射室12’を有し、照射室12’の直径がLとされる。
FIG. 7 shows a second embodiment of the cavity resonator.
The cavity resonator 10 ′ of the second embodiment has a cylindrical cavity irradiation chamber 12 ′, and the irradiation chamber 12 ′ has a diameter L.

円柱状空胴の照射室12’は、正四角柱状の胴部材を円形にくりぬき(削り出し)、その両端に正方形の底面壁13’,14’をボルト止めすることで形成される。そして、照射室12’の側面(つまり胴部材内周面)を形成する側面壁の1箇所、第2実施形態の場合、胴部材の外側面15’,16’,17’,18’のうちの外側面15’に、第1実施形態同様のアイリス11’が開口する。すなわち、このアイリス11’も、照射室12’の両底面の中心を互いに結んだ中心軸C’と平行に長軸が伸延する矩形開口である。さらに、外側面15’,16’,17’,18’のうち、図7Aに示す1つの外側面18’は、底面壁13’,14’へ当接する端部に開けられた流通路挿通口18a’,18b’を有する。また、アイリス11’を介してマイクロ波を結合する導波管20のフランジ22を固定するために、外側面15’に対して鍔部15a’が拡張形成されている。   The irradiation chamber 12 ′ having a cylindrical cavity is formed by hollowing out (cutting out) a regular quadrangular prism-shaped body member and bolting square bottom walls 13 ′ and 14 ′ to both ends thereof. And one place of the side wall which forms the side surface (namely, inner peripheral surface of trunk | drum member) of irradiation chamber 12 ', and in the case of 2nd Embodiment, out of outer side surface 15', 16 ', 17', 18 'of trunk | drum member An iris 11 ′ similar to that of the first embodiment opens in the outer surface 15 ′ of the first embodiment. That is, the iris 11 'is also a rectangular opening whose major axis extends parallel to the central axis C' connecting the centers of both bottom surfaces of the irradiation chamber 12 '. Further, out of the outer surfaces 15 ′, 16 ′, 17 ′, and 18 ′, one outer surface 18 ′ shown in FIG. 7A is a flow passage insertion opening that is opened at an end that contacts the bottom walls 13 ′ and 14 ′. 18a ', 18b'. Further, in order to fix the flange 22 of the waveguide 20 that couples microwaves through the iris 11 ′, a flange portion 15 a ′ is extended from the outer surface 15 ′.

このような円柱状空胴の照射室12’の中に、上記同様の流通路60及び支持棒61(61’)が配置される。第1実施形態同様に、螺旋状に巻いた流通路60の巻き径の中心は、照射室12’の中心軸C’にほぼ一致させてあり、したがって流通路60は、中心軸C’を取り巻いて延伸する螺旋状に設けられる。また支持棒61も、その軸を中心軸Cに沿わせて照射室12’内に配置される。   The same flow path 60 and support rod 61 (61 ') as described above are disposed in the irradiation chamber 12' of such a cylindrical cavity. Similar to the first embodiment, the center of the winding diameter of the spirally wound flow passage 60 is substantially coincident with the central axis C ′ of the irradiation chamber 12 ′, and thus the flow passage 60 surrounds the central axis C ′. Provided in a spiral shape. The support rod 61 is also arranged in the irradiation chamber 12 ′ with its axis along the central axis C.

導波管20からアイリス11’を通して照射室12’に導入されたマイクロ波は、共振時、中心軸C’の方向に沿ったシングルモードの電界を発生する。照射室12’が円柱状空胴なので、第2実施形態の場合、空胴共振器10’内に何も入っていなければTM010モードの電磁界が励起される。共振するマイクロ波の周波数を2,450MHzとする場合、照射室12’内に何も無いときの直径Lは93.7mmである。なお、第1実施形態同様、Lについての±数%程度の寸法差は許容され得る。   The microwave introduced from the waveguide 20 into the irradiation chamber 12 ′ through the iris 11 ′ generates a single mode electric field along the direction of the central axis C ′ at the time of resonance. Since the irradiation chamber 12 'is a cylindrical cavity, in the case of the second embodiment, if nothing is contained in the cavity resonator 10', the electromagnetic field in the TM010 mode is excited. When the frequency of the resonating microwave is 2,450 MHz, the diameter L when there is nothing in the irradiation chamber 12 'is 93.7 mm. As in the first embodiment, a dimensional difference of about ± several percent for L can be allowed.

第1実施形態と同様に、照射室12’には誘電体となる被処理物が存在するので、その影響を受けて照射室12’の共振周波数は下がる。そこで、照射室12’のLも、空のときの寸法より小さく設計する。また、上述したように、Lを長めにとった場合は高次モードで共振するモード競合のような不具合を生じ得るので、これらの条件を勘案して、照射室12’において底面のなす円形の直径Lは、照射室12’に導入するマイクロ波の波長の80%以下に設計するのが適している。なお、照射室12’の側面の軸方向長さH(円柱の高さ)は、電界が中心軸C’の方向に生じることから、適宜、必要な長さを設計すればよい。   As in the first embodiment, the object to be processed which is a dielectric exists in the irradiation chamber 12 ′, so that the resonance frequency of the irradiation chamber 12 ′ is lowered under the influence. Therefore, L of the irradiation chamber 12 'is also designed to be smaller than the dimension when empty. In addition, as described above, when L is set to be long, problems such as mode competition that resonates in a higher-order mode may occur. Therefore, in consideration of these conditions, the circular shape formed by the bottom surface in the irradiation chamber 12 ′ is considered. The diameter L is suitably designed to be 80% or less of the wavelength of the microwave introduced into the irradiation chamber 12 ′. The axial length H (the height of the cylinder) of the side surface of the irradiation chamber 12 ′ may be appropriately designed because an electric field is generated in the direction of the central axis C ′.

第1実施形態の空胴共振器10と第2実施形態の空胴共振器10’とを比べると、第1実施形態の方が、6枚の板材を互いに組み付けるだけで制作でき、導波管20の取り付けもより容易なため、作りやすいという利点をもつ。   Comparing the cavity resonator 10 of the first embodiment and the cavity resonator 10 'of the second embodiment, the first embodiment can be produced by simply assembling six plate members together, and the waveguide Since the mounting of 20 is easier, it has the advantage of being easy to make.

いずれの実施形態においても、支持棒61(61’)の断面直径は、流通路60の螺旋巻き径d1を決める要素であるが、そのd1は、次のように設定する。
第1実施形態に係る空胴共振器10の場合、照射室12の横断面が正方形なので、電界は、中心軸Cを中心に回る円周方向において場所により変化する。つまり、流通路60の流れの方向に沿って電界は変化する。この様子をシミュレーションしたのが図8である。図8のグラフは、横軸に円周方向の角度をとって示した電界変化のグラフであり、同図を参照すると分かる通り、Lに対してd1が大きくなるほど、すなわち、中心軸Cから流通路60の中心(内径中心)までの距離(d1/2)が長くなるほど、流通路60に沿った電界の変化は大きくなる。したがって、処理の均一性を考えると、d1は、その変化の影響を受けない程度の大きさまでに抑えた方がよい。シミュレーション結果から考えると、d1/L≦0.5であれば電界はほぼ一定とみなすことができるので、d1は、照射室12の底面のなす正方形の1辺Lの50%以下に設定、すなわち、中心軸Cから流通路60の中心までの距離であるd1/2は、25%以下に設定するのが好ましい。
In any of the embodiments, the cross-sectional diameter of the support bar 61 (61 ′) is an element that determines the spiral winding diameter d1 of the flow passage 60. The d1 is set as follows.
In the case of the cavity resonator 10 according to the first embodiment, since the irradiation chamber 12 has a square cross section, the electric field changes depending on the location in the circumferential direction around the central axis C. That is, the electric field changes along the flow direction of the flow path 60. FIG. 8 shows a simulation of this situation. The graph of FIG. 8 is a graph of the electric field change shown with the angle in the circumferential direction on the horizontal axis. As can be seen from FIG. 8, the larger the d1 with respect to L, that is, the distribution from the central axis C. The longer the distance (d1 / 2) to the center (inner diameter center) of the path 60, the greater the change in the electric field along the flow path 60. Therefore, in consideration of the uniformity of processing, it is better to suppress d1 to a level that is not affected by the change. Considering from the simulation results, if d1 / L ≦ 0.5, the electric field can be regarded as almost constant, so d1 is set to 50% or less of one side L of the square formed by the bottom surface of the irradiation chamber 12, that is, D1 / 2, which is the distance from the central axis C to the center of the flow passage 60, is preferably set to 25% or less.

照射室12(12’)内を流れる被処理物に対する電界の方向に関し、図9及び図10を参照して説明する。図9Aは、流通路60の流動方向が照射室12の中心軸Cと平行な場合を示し、図9Bは、本実施形態のように、流通路60の流動方向が中心軸Cを横切る方向である場合を示す。電界の向きは、上述のように、照射室12において中心軸Cと平行である。流通路60を流れる被処理物は誘電体と見なせるので、図9Aの場合は誘電体境界が電界と平行であり、図9Bの場合は誘電体境界が電界を横切ることになる。電界と誘電体境界が平行な場合、誘電体の内外で電界の強さが同じになる。一方、電界を誘電体境界が横切る場合、電界の強さは、誘電体の中で比誘電率分の1(厳密には1/εr′)に弱まる。すなわち、被処理物の流動方向によって、被処理物内で電界が変化する。   The direction of the electric field applied to the object to be processed flowing in the irradiation chamber 12 (12 ') will be described with reference to FIGS. FIG. 9A shows a case where the flow direction of the flow passage 60 is parallel to the central axis C of the irradiation chamber 12, and FIG. 9B is a direction in which the flow direction of the flow passage 60 crosses the central axis C as in this embodiment. Indicates a case. The direction of the electric field is parallel to the central axis C in the irradiation chamber 12 as described above. Since the object to be processed flowing through the flow path 60 can be regarded as a dielectric, the dielectric boundary is parallel to the electric field in FIG. 9A, and the dielectric boundary crosses the electric field in FIG. 9B. When the electric field and the dielectric boundary are parallel, the electric field strength is the same inside and outside the dielectric. On the other hand, when the dielectric boundary crosses the electric field, the strength of the electric field is reduced to 1 / (specifically 1 / εr ′) of the dielectric constant in the dielectric. That is, the electric field changes in the object to be processed depending on the flow direction of the object to be processed.

誘電体が吸収するマイクロ波電力(単位時間当りのエネルギー)は次式で与えられる。
=(1/2)・∫ωεε″Edv
式中、ωは角周波数、εは真空の誘電率で8.854×10−12(Coulomb/m)である。比誘電率(複素数)εrは、εr=εr′−jεr″で定義される。
水を例にとると、水のεr′は80(常温)、εr″は10程度であるから、図9Bの場合は、図9Aの場合に比べて電界が1/80になる。
すなわち、流通路60に水を流したとすると、中心軸Cに沿って水が流れる図9Aの場合はマイクロ波の吸収が非常に多いが、中心軸Cを螺旋状に取り巻いて水が流れる図9Bの場合は、マイクロ波の吸収は大幅に減少する。
The microwave power (energy per unit time) absorbed by the dielectric is given by the following equation.
P L = (1/2) · V ∫ωε 0 ε r ″ E 2 dv
In the equation, ω is an angular frequency, and ε 0 is a vacuum dielectric constant of 8.854 × 10 −12 (Coulomb / m). The relative dielectric constant (complex number) εr is defined by εr = εr′−jεr ″.
Taking water as an example, the εr ′ of water is 80 (normal temperature) and εr ″ is about 10, so the electric field in FIG. 9B is 1/80 compared to the case of FIG. 9A.
That is, assuming that water flows through the flow path 60, the water flows along the central axis C. In the case of FIG. 9A, the microwave absorption is very large, but the water flows around the central axis C spirally. In the case of 9B, microwave absorption is greatly reduced.

水を流す「直管」の流通路60を中心軸Cに配設(管の軸=中心軸C)して第1実施形態の空胴共振器10により実験を行った結果、当該直管の内径を1.5mmと細くしても、Qが100程度に下がってしまうことが実測された。Qが小さいと、共振をとることが難しくなり、また、たとえ共振がとれたとしても、照射室12内に蓄えられるマイクロ波のエネルギーが少なくなって強い電界を発生できなくなり、共振器としての利点を失ってしまう。   As a result of conducting an experiment with the cavity resonator 10 of the first embodiment with the flow path 60 of the “straight pipe” for flowing water disposed on the central axis C (the axis of the pipe = the central axis C), It has been actually measured that even if the inner diameter is made as thin as 1.5 mm, Q is lowered to about 100. If Q is small, it is difficult to resonate, and even if resonance is obtained, the energy of the microwave stored in the irradiation chamber 12 is reduced and a strong electric field cannot be generated, which is an advantage as a resonator. Will be lost.

第2実施形態(又は第1実施形態)の空胴共振器10’の照射室12’における電界をシミュレーションした結果を図10に示す。照射室12’には、支持棒61に巻き付けた螺旋状の流通路60が配置されていると仮定している(図中の○)。ただし、計算の都合上、流通路60はそれぞれ直径d1の環状になっているものとした。また、被処理物として水を想定し、流通路60自体の誘電率は水の誘電率に比較して十分に小さいので省略した。図10の縦軸が中心軸C’の方向の距離、横軸が中心軸C’から半径方向(中心軸直交方向)への距離である。なお、図10に示す領域は、図3A中に示す1/4領域Wに相当する。   FIG. 10 shows the result of simulating the electric field in the irradiation chamber 12 ′ of the cavity resonator 10 ′ of the second embodiment (or the first embodiment). It is assumed that a spiral flow passage 60 wound around the support rod 61 is disposed in the irradiation chamber 12 ′ (◯ in the figure). However, for the sake of calculation, the flow passages 60 are assumed to be annular with a diameter d1. Further, water is assumed as an object to be treated, and the flow path 60 itself is omitted because it has a dielectric constant sufficiently smaller than that of water. The vertical axis in FIG. 10 is the distance in the direction of the central axis C ′, and the horizontal axis is the distance from the central axis C ′ in the radial direction (the direction perpendicular to the central axis). Note that the region shown in FIG. 10 corresponds to a quarter region W shown in FIG. 3A.

図10中に表された縦線が電気力線で、電界の包絡線であり、電界はこの線に沿っている。電気力線や電界は水(○で示す)の近傍で僅かながら乱れるが、ほぼ中心軸C’に平行な直線になる。すなわち、電界は、中心軸C’に平行であり、軸方向において変化しない。図中に示すように、L=93.7mmで計算しているので、空胴共振器10’は、照射室12’に何も入っていなければ2,450MHzで共振するが、螺旋状の水が入ると、共振周波数が36MHzだけ低下する。しかし、この低下程度は、中心軸C’上に直径1mmの水柱がある場合に比べても小さい。また、これと同じ内径の螺旋状流通路60を照射室12’に入れた場合、照射室12’内に滞留する水の量は40倍になる。   A vertical line shown in FIG. 10 is an electric field line, which is an electric field envelope, and the electric field is along this line. The lines of electric force and electric field are slightly disturbed in the vicinity of water (indicated by circles), but become straight lines substantially parallel to the central axis C ′. That is, the electric field is parallel to the central axis C ′ and does not change in the axial direction. As shown in the figure, since calculation is performed with L = 93.7 mm, the cavity resonator 10 ′ resonates at 2,450 MHz unless there is anything in the irradiation chamber 12 ′. When is entered, the resonance frequency is decreased by 36 MHz. However, the degree of this decrease is smaller than when there is a water column having a diameter of 1 mm on the central axis C ′. Further, when the spiral flow passage 60 having the same inner diameter is placed in the irradiation chamber 12 ′, the amount of water remaining in the irradiation chamber 12 ′ is 40 times.

上式から分かるように、螺旋状の流通路60を照射室12’に配置した場合、被処理物の単位体積当りのマイクロ波エネルギー吸収量が大幅に低下するので、総合的なマイクロ波エネルギーの吸収量は、中心軸C’に沿った「直管」の流通路60のときに比べて十分に少なく、したがって、高いQを得ることができる。   As can be seen from the above equation, when the spiral flow passage 60 is arranged in the irradiation chamber 12 ′, the amount of microwave energy absorbed per unit volume of the object to be processed is greatly reduced. The amount of absorption is sufficiently smaller than in the case of the “straight pipe” flow passage 60 along the central axis C ′, so that a high Q can be obtained.

以上のように、上記に示したマイクロ波装置は、空胴共振器の照射室において中心軸に平行な電界が発生し、そして、螺旋状の流通路を流れる被処理物は、電界を横切る方向に流動する。この構造により、被処理物、つまり誘電体の境界が電界を横切る方向となるので、単位時間当りに被処理物に吸収されるエネルギーが少なくなり、Qの低下が抑制される。したがって、従来よりも径d2の太い流通路(一例としてd2=3mm)を使用して被処理物の流量を多くしても、Qの低下は格段に緩やかとなって適切値に留めることができる。また、流通路を螺旋状としたことにより、直管式流通路の場合に比べて、照射室内での被処理物流動距離が長くなって、被処理物の受けるマイクロ波の強さを一定に保ちつつ照射室内滞留時間を稼ぐことができる。これらの結果、シングルモード空胴共振器による均一で効率の良い処理が可能となる。   As described above, in the microwave device described above, an electric field parallel to the central axis is generated in the irradiation chamber of the cavity resonator, and the object to be processed flowing through the spiral flow path crosses the electric field. To flow. With this structure, since the boundary of the object to be processed, that is, the boundary between the dielectrics crosses the electric field, the energy absorbed by the object to be processed per unit time is reduced, and the decrease in Q is suppressed. Therefore, even if the flow rate of the object to be processed is increased by using a flow passage having a diameter d2 that is larger than that of the conventional one (d2 = 3 mm as an example), the decrease in Q becomes much more moderate and can be kept at an appropriate value. . In addition, since the flow path is spiral, the flow distance of the object to be processed in the irradiation chamber is longer than in the case of a straight pipe flow path, and the strength of the microwave received by the object to be processed is made constant. It is possible to earn the residence time in the irradiation chamber while maintaining it. As a result, uniform and efficient processing by a single mode cavity resonator is possible.

流通路60に被処理物を流す流動機構の一例を図11に示している。
第1実施形態の空胴共振器10が設置されており、その照射室12中に螺旋状の流通路60が上記の通り収められている。流通路挿通口18a,18bから引き出された流通路60の両端は、下側から引き出された方が処理前の被処理物を貯留した容器70へ、上側から引き出された方が処理後の被処理物を貯留する容器80へ、それぞれ接続される。処理前の容器70は、注出口に流量制御コック71を備え、また、上下位置を調整可能になっている。処理後の容器80は、下端部位から被処理物が流入し、上端部位の注出口に達すると、ビーカー等へ処理後の被処理物が排出される。この流動機構は、照射室12内の流通路60において下から上へ被処理物を流す仕組みで、容器70の高さ及び流量制御コック71を調整することにより、被処理物の流れを制御する。処理前の容器70中の液面高さまで、処理後の被処理物を容器80内に溜めることができる。
FIG. 11 shows an example of a flow mechanism for flowing an object to be processed into the flow passage 60.
The cavity resonator 10 of the first embodiment is installed, and the spiral flow passage 60 is housed in the irradiation chamber 12 as described above. Both ends of the flow passage 60 drawn out from the flow passage insertion ports 18a and 18b are drawn from the lower side to the container 70 storing the object to be processed before being processed from the upper side. Each is connected to a container 80 for storing the processed material. The container 70 before processing is provided with a flow control cock 71 at the spout, and the vertical position can be adjusted. In the container 80 after processing, when the processing object flows from the lower end part and reaches the spout at the upper end part, the processed processing object is discharged to a beaker or the like. This flow mechanism is a mechanism for flowing an object to be processed from the bottom to the top in the flow passage 60 in the irradiation chamber 12, and controls the flow of the object to be processed by adjusting the height of the container 70 and the flow rate control cock 71. . The processed object after processing can be stored in the container 80 up to the liquid level in the container 70 before processing.

流通路挿通口18a,18bから引き出された流通路60内の被処理物温度を計測する非接触式温度計を設けて処理前と処理後の温度計測を行い、図1の制御器40へ提供することができる。   A non-contact type thermometer for measuring the temperature of the object to be processed in the flow passage 60 drawn out from the flow passage insertion ports 18a and 18b is provided to measure the temperature before and after the treatment, and provided to the controller 40 in FIG. can do.

10,10’ 空胴共振器
11,11’ アイリス
12,12’ 照射室
20 導波管
60 流通路
61,61’ 支持棒
C,C’ 中心軸
10, 10 'cavity resonator 11, 11' iris 12, 12 'irradiation chamber 20 waveguide 60 flow path 61, 61' support rod C, C 'central axis

Claims (5)

底面が正方形且つ側面が長方形の正四角柱状空胴の照射室と、
前記照射室側面を形成する側面壁の1つに設けられ、前記照射室底面の中心どうしを結んだ中心軸と平行に長軸が伸延する矩形開口のアイリスと、
を有し、前記アイリスから前記照射室内にマイクロ波が導入されるシングルモードの空胴共振器、
を含んで構成されるマイクロ波装置であって、
前記照射室内において、被処理物を流動させる流通路を、前記中心軸を取り巻いて伸延する螺旋状に設けてあり、
前記照射室底面のなす正方形の1辺が、当該照射室に導入するマイクロ波の波長の75%以下に設計される、マイクロ波装置。
An irradiation chamber of a regular square columnar cavity having a square bottom surface and a rectangular side surface;
An iris with a rectangular opening provided on one of the side walls forming the side surface of the irradiation chamber, the long axis extending parallel to the central axis connecting the centers of the bottom surfaces of the irradiation chamber;
A single-mode cavity resonator in which microwaves are introduced from the iris into the irradiation chamber,
A microwave device comprising:
In the irradiation chamber, a flow path for flowing the object to be processed is provided in a spiral shape extending around the central axis,
A microwave device in which one side of a square formed by the bottom surface of the irradiation chamber is designed to be 75% or less of the wavelength of the microwave introduced into the irradiation chamber.
前記中心軸から前記流通路の中心までの距離が、前記照射室底面のなす正方形の1辺の25%以下に設定される、請求項1記載のマイクロ波装置。   The microwave device according to claim 1, wherein a distance from the central axis to the center of the flow path is set to 25% or less of one side of a square formed by the bottom surface of the irradiation chamber. 円柱状空胴の照射室と、
該照射室の側面を形成する側面壁に1箇所設けられ、前記照射室の両底面の中心を互いに結んだ中心軸と平行に長軸が伸延する矩形開口のアイリスと、
を有し、前記アイリスから前記照射室内にマイクロ波が導入されるシングルモードの空胴共振器、
を含んで構成されるマイクロ波装置であって、
前記照射室内において、被処理物を流動させる流通路を、前記中心軸を取り巻いて伸延する螺旋状に設けてあり、
前記照射室底面のなす円形の直径が、当該照射室に導入するマイクロ波の波長の80%以下に設計される、マイクロ波装置。
A cylindrical cavity irradiation chamber;
An iris with a rectangular opening provided on one side wall forming the side surface of the irradiation chamber, the long axis extending parallel to the central axis connecting the centers of both bottom surfaces of the irradiation chamber;
A single-mode cavity resonator in which microwaves are introduced from the iris into the irradiation chamber,
A microwave device comprising:
In the irradiation chamber, a flow path for flowing the object to be processed is provided in a spiral shape extending around the central axis,
A microwave device, wherein a circular diameter formed by the bottom surface of the irradiation chamber is designed to be 80% or less of a wavelength of a microwave introduced into the irradiation chamber.
前記流通路が、前記中心軸に沿って配置した支持棒の周囲に巻き付けられている、請求項1〜3のいずれかに記載のマイクロ波装置。   The microwave device according to any one of claims 1 to 3, wherein the flow passage is wound around a support rod disposed along the central axis. 前記支持棒は、軸方向に貫通する流路を有する、請求項4記載のマイクロ波装置。   The microwave device according to claim 4, wherein the support bar has a flow path penetrating in an axial direction.
JP2010221567A 2010-09-30 2010-09-30 Microwave equipment Active JP5681847B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010221567A JP5681847B2 (en) 2010-09-30 2010-09-30 Microwave equipment
PCT/JP2011/072443 WO2012043753A1 (en) 2010-09-30 2011-09-29 Microwave device and flow tube thereof
CN201110303418.6A CN102573161B (en) 2010-09-30 2011-09-29 Microwave device and runner pipe thereof
US13/876,584 US10091841B2 (en) 2010-09-30 2011-09-29 Microwave device and flow tube used therein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010221567A JP5681847B2 (en) 2010-09-30 2010-09-30 Microwave equipment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014127465A Division JP5891481B2 (en) 2014-06-20 2014-06-20 Microwave equipment

Publications (2)

Publication Number Publication Date
JP2012075996A true JP2012075996A (en) 2012-04-19
JP5681847B2 JP5681847B2 (en) 2015-03-11

Family

ID=46236863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010221567A Active JP5681847B2 (en) 2010-09-30 2010-09-30 Microwave equipment

Country Status (1)

Country Link
JP (1) JP5681847B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016222746A (en) * 2015-05-26 2016-12-28 佐々木 洋 Biodiesel fuel extraction device and extraction method
JP2017094226A (en) * 2015-11-18 2017-06-01 斎 岩間 Water treatment equipment and water treatment method
WO2019107402A1 (en) * 2017-11-28 2019-06-06 国立研究開発法人産業技術総合研究所 Microwave treatment device, microwave treatment method, and chemical reaction method
WO2019156142A1 (en) * 2018-02-08 2019-08-15 国立研究開発法人産業技術総合研究所 Microwave heating method, microwave heating device, and chemical reaction method
JP2019140103A (en) * 2018-02-08 2019-08-22 国立研究開発法人産業技術総合研究所 Microwave-heating device, heating method and chemical reaction method
JP2019140213A (en) * 2018-02-08 2019-08-22 国立研究開発法人産業技術総合研究所 Thin film pattern-firing method and microwave-firing device
JP2020173958A (en) * 2019-04-10 2020-10-22 国立研究開発法人産業技術総合研究所 Microwave heating device and microwave heating method
CN112439375A (en) * 2020-11-06 2021-03-05 天津全和诚科技有限责任公司 Coil pipe type microwave reactor
US11883789B2 (en) 2018-02-08 2024-01-30 National Institute Of Advanced Industrial Science And Technology Microwave heating method, microwave heating apparatus, and chemical reaction method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06501335A (en) * 1990-03-20 1994-02-10 トランジティブ エッス.アー. Equipment for continuous drying, dehydration or microwave calcination of granular or powdered products
JP2000501880A (en) * 1996-08-17 2000-02-15 フォルシュングスツェントルム カールスルーエ ゲゼルシャフト ミット ベシュレンクテル ハフツング High mode microwave resonator for high temperature processing of materials
JP2004313104A (en) * 2003-04-18 2004-11-11 Aloka Co Ltd Reaction treatment apparatus
JP2005322582A (en) * 2004-05-11 2005-11-17 Idx Corp Microwave heating device
JP2007000774A (en) * 2005-06-23 2007-01-11 Toyota Central Res & Dev Lab Inc Catalytic reaction apparatus, catalyst heating method, and fuel reforming method
JP2007222696A (en) * 2005-12-23 2007-09-06 Tokyo Electric Power Co Inc:The Catalyst column for micro-wave reaction and decomposition treatment method using it
JP2008247667A (en) * 2007-03-30 2008-10-16 Toyota Central R&D Labs Inc Reformer
JP2009080997A (en) * 2007-09-25 2009-04-16 Idx Corp Microwave device
JP2010131590A (en) * 2008-10-30 2010-06-17 Shinshu Univ Chemical reaction apparatus and stirring mechanism
JP2010207735A (en) * 2009-03-10 2010-09-24 National Institute Of Advanced Industrial Science & Technology Microwave continuous irradiation method and apparatus to fluid

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06501335A (en) * 1990-03-20 1994-02-10 トランジティブ エッス.アー. Equipment for continuous drying, dehydration or microwave calcination of granular or powdered products
JP2000501880A (en) * 1996-08-17 2000-02-15 フォルシュングスツェントルム カールスルーエ ゲゼルシャフト ミット ベシュレンクテル ハフツング High mode microwave resonator for high temperature processing of materials
JP2004313104A (en) * 2003-04-18 2004-11-11 Aloka Co Ltd Reaction treatment apparatus
JP2005322582A (en) * 2004-05-11 2005-11-17 Idx Corp Microwave heating device
JP2007000774A (en) * 2005-06-23 2007-01-11 Toyota Central Res & Dev Lab Inc Catalytic reaction apparatus, catalyst heating method, and fuel reforming method
JP2007222696A (en) * 2005-12-23 2007-09-06 Tokyo Electric Power Co Inc:The Catalyst column for micro-wave reaction and decomposition treatment method using it
JP2008247667A (en) * 2007-03-30 2008-10-16 Toyota Central R&D Labs Inc Reformer
JP2009080997A (en) * 2007-09-25 2009-04-16 Idx Corp Microwave device
JP2010131590A (en) * 2008-10-30 2010-06-17 Shinshu Univ Chemical reaction apparatus and stirring mechanism
JP2010207735A (en) * 2009-03-10 2010-09-24 National Institute Of Advanced Industrial Science & Technology Microwave continuous irradiation method and apparatus to fluid

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016222746A (en) * 2015-05-26 2016-12-28 佐々木 洋 Biodiesel fuel extraction device and extraction method
JP2017094226A (en) * 2015-11-18 2017-06-01 斎 岩間 Water treatment equipment and water treatment method
WO2019107402A1 (en) * 2017-11-28 2019-06-06 国立研究開発法人産業技術総合研究所 Microwave treatment device, microwave treatment method, and chemical reaction method
JPWO2019107402A1 (en) * 2017-11-28 2020-11-19 国立研究開発法人産業技術総合研究所 Microwave processing equipment, microwave processing method and chemical reaction method
JP7236739B2 (en) 2017-11-28 2023-03-10 国立研究開発法人産業技術総合研究所 Microwave processing device, microwave processing method and chemical reaction method
WO2019156142A1 (en) * 2018-02-08 2019-08-15 国立研究開発法人産業技術総合研究所 Microwave heating method, microwave heating device, and chemical reaction method
JP2019140103A (en) * 2018-02-08 2019-08-22 国立研究開発法人産業技術総合研究所 Microwave-heating device, heating method and chemical reaction method
JP2019140213A (en) * 2018-02-08 2019-08-22 国立研究開発法人産業技術総合研究所 Thin film pattern-firing method and microwave-firing device
JP7389444B2 (en) 2018-02-08 2023-11-30 国立研究開発法人産業技術総合研究所 Microwave heating device, heating method and chemical reaction method
US11883789B2 (en) 2018-02-08 2024-01-30 National Institute Of Advanced Industrial Science And Technology Microwave heating method, microwave heating apparatus, and chemical reaction method
JP2020173958A (en) * 2019-04-10 2020-10-22 国立研究開発法人産業技術総合研究所 Microwave heating device and microwave heating method
CN112439375A (en) * 2020-11-06 2021-03-05 天津全和诚科技有限责任公司 Coil pipe type microwave reactor

Also Published As

Publication number Publication date
JP5681847B2 (en) 2015-03-11

Similar Documents

Publication Publication Date Title
JP5681847B2 (en) Microwave equipment
WO2012043753A1 (en) Microwave device and flow tube thereof
JP4759668B2 (en) Microwave heating device
JP6484645B2 (en) Plasma generator with improved power uniformity
JP6568050B2 (en) Microwave plasma spectrometer using a dielectric resonator.
JP6967776B2 (en) Microwave heating device and chemical reaction method
US9786464B2 (en) Superconducting multi-cell trapped mode deflecting cavity
Kobayashi et al. Linear theory of a plasma loaded, helix type, slow wave amplifier
JP6182767B2 (en) Microwave device with flow tube
JP4299862B2 (en) Microwave heating device
JP5914804B2 (en) Microwave device and its distribution pipe
JP5891481B2 (en) Microwave equipment
KR100311433B1 (en) Microwave plasma processing apparatus and process
US6828789B2 (en) Cavity resonator for electron paramagnetic resonance spectroscopy having axially uniform field
JPH1167492A (en) Plasma treatment equipment and plasma treatment method
JP2016100130A (en) Microwave device and circulation pipe thereof
JP2006181533A (en) Microwave chemical reaction apparatus
Ganguli et al. Theory of high-frequency guided waves in a plasma-loaded waveguide
US7760054B2 (en) Tubular RF cage field confinement cavity
JP2018055940A (en) Microwave device and heat treatment system including the same
JP4330994B2 (en) Microwave applicator system
Simakov et al. Optimizing the configuration of a superconducting photonic band gap accelerator cavity to increase the maximum achievable gradients
JP2016112508A (en) Transpiration device, and flow channel organizer applied for transpiration device
JP2006130385A (en) Microwave chemical reactor
JP7386581B1 (en) Plasma generator and plasma processing equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140620

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140708

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140806

R150 Certificate of patent or registration of utility model

Ref document number: 5681847

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150