JP2008279415A - Microwave heating unit - Google Patents

Microwave heating unit Download PDF

Info

Publication number
JP2008279415A
JP2008279415A JP2007128345A JP2007128345A JP2008279415A JP 2008279415 A JP2008279415 A JP 2008279415A JP 2007128345 A JP2007128345 A JP 2007128345A JP 2007128345 A JP2007128345 A JP 2007128345A JP 2008279415 A JP2008279415 A JP 2008279415A
Authority
JP
Japan
Prior art keywords
microwave
microwaves
heating unit
adsorbent
microwave heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007128345A
Other languages
Japanese (ja)
Inventor
Yoshinobu Nagano
義信 長野
Satoru Kobayashi
悟 小林
Yukihiro Utaka
幸弘 烏鷹
Kiminari Yamashita
公成 山下
Aiko Saito
亜衣子 齊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ENVIRONMENT TECHNOLOGY VENTURE
ENVIRONMENT TECHNOLOGY VENTURES KK
Original Assignee
ENVIRONMENT TECHNOLOGY VENTURE
ENVIRONMENT TECHNOLOGY VENTURES KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ENVIRONMENT TECHNOLOGY VENTURE, ENVIRONMENT TECHNOLOGY VENTURES KK filed Critical ENVIRONMENT TECHNOLOGY VENTURE
Priority to JP2007128345A priority Critical patent/JP2008279415A/en
Publication of JP2008279415A publication Critical patent/JP2008279415A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Abstract

<P>PROBLEM TO BE SOLVED: To provide a microwave heating unit allowing an adsorbent to sufficiently absorb microwaves into the inside of the adsorbent for heating, preventing microwaves from leaking and efficiently introducing microwaves into a heating portion with a simple mechanism to heat the adsorbent by microwaves, in a microwave heating type VOC adsorption and recovery apparatus employing the method of heating a moving adsorbent with microwaves. <P>SOLUTION: In a microwave heating type VOC adsorption and recovery apparatus, the microwave heating unit comprises a microwave chamber 2, a metallic box type container, a rectangular waveguide 3 for introducing microwaves 7 connected to one wall face of the microwave chamber 2, two aperture parts 2a existing in the microwave chamber 2 in the connection direction of the waveguide 3 and in the rectangular direction, and a dielectric tube 4 which transmits the microwaves 7 and in which a granular adsorbent 8 is moved at an adjusted speed. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、粒状吸着材をマイクロ波によって加熱して、粒状吸着材に吸着されたガスを脱離するマイクロ波加熱式VOC吸着回収装置おいて、マイクロ波照射によって吸着物質を脱離させるマイクロ波加熱ユニットに関する。   The present invention relates to a microwave heating VOC adsorption / recovery device that desorbs gas adsorbed on a granular adsorbent by heating the granular adsorbent with microwaves, and removes the adsorbed material by microwave irradiation. It relates to a heating unit.

従来から有機溶剤などを吸着させて回収する溶剤回収装置が開発され、その吸着材として活性炭などが用いられてきた。一般に吸着材はスチームを用いて加熱され、吸着されたガスを脱離していた。   Conventionally, a solvent recovery device that adsorbs and recovers an organic solvent or the like has been developed, and activated carbon or the like has been used as the adsorbent. In general, the adsorbent was heated using steam to desorb the adsorbed gas.

一般的な吸着回収装置はスチームを発生させるボイラーや水蒸気が液化したあとの水から溶剤を回収するために水処理設備等が必要で付帯装置が必要であり、大型になりやすく小型で簡便な装置が望まれていた。   General adsorption recovery equipment requires a boiler that generates steam and water treatment equipment to recover the solvent from the water after the water vapor has been liquefied. Was desired.

そこで、スチームを用いずマイクロ波によって吸着材を直接加熱することによって吸着された溶剤を脱離し回収する方法が開発されている。特許文献1の粉末状物質を熱処理処理するための方法及び装置は、粉末状物質を熱処理する方法において、粉末状物質を、キャリヤーガス中に分散させ、かつ加熱された反応器に連続的方法で導通し、前記反応器中で前記物質を熱処理し、かつついで冷却媒体により急冷し、かつ気−固分離装置中に捕集することを特徴とする。エネルギーを、化学的燃焼によるか、マイクロ波放射によるか、誘導によるか又は発熱反応により供給する。
特表2005−534635号公報
Therefore, a method has been developed for desorbing and recovering the adsorbed solvent by directly heating the adsorbent with microwaves without using steam. The method and apparatus for heat-treating a powdery substance of Patent Document 1 is a method for heat-treating a powdery substance, wherein the powdery substance is dispersed in a carrier gas and is continuously applied to a heated reactor. Conducting, heat treating the material in the reactor and then quenching with a cooling medium and collecting in a gas-solid separation device. Energy is supplied by chemical combustion, by microwave radiation, by induction or by an exothermic reaction.
JP 2005-534635 A

ここで、マイクロ波は被加熱対象物に吸収されて、そのとき電磁波のエネルギーは熱に変わり結果的に被加熱対象物を加熱する直接的な加熱法であるが、そのマイクロ波は加熱されやすい素材の場合、その対象物が大きいと対象物内部の深部にまでマイクロ波が届かないなどの問題がある。   Here, the microwave is absorbed by the object to be heated, and at that time, the energy of the electromagnetic wave is changed to heat, and as a result, it is a direct heating method for heating the object to be heated, but the microwave is easily heated. In the case of a material, if the object is large, there is a problem that microwaves do not reach deep inside the object.

このようなマイクロ波の特徴からすると、速やかに加熱すべき固体の吸着材では大きな容積を一度に加熱することが困難である。そのため本発明では、粒状の被覆活性炭を少量ずつ移動させながら加熱させることに着目した。   Considering such characteristics of the microwave, it is difficult to heat a large volume at a time with a solid adsorbent to be heated quickly. Therefore, in the present invention, attention was paid to heating the granular coated activated carbon while moving it little by little.

ただし、マイクロ波の粒状吸着材に対する吸収の深さを考慮した構造が必要であり、また移動しながら通過する粒状活性炭の出入り口でのマイクロ波の漏洩の防止や、簡便な機構で効率よく円滑にマイクロ波を加熱部位まで導入する工夫や、移動する吸着材を均一に加熱する工夫などが必要であった。   However, it is necessary to have a structure that takes into account the depth of absorption of the microwave particulate adsorbent, and prevents microwave leakage at the entrance and exit of the granular activated carbon that passes while moving, and it is efficient and smooth with a simple mechanism. A device for introducing a microwave to a heating site and a device for heating a moving adsorbent uniformly were necessary.

そこで本発明では、移動する吸着材をマイクロ波で加熱する方式のマイクロ波加熱式VOC吸着回収装置置において、吸着材の内部にマイクロ波が十分吸収され、加熱でき、かつマイクロ波の漏洩を防止し、簡便な機構で効率よくマイクロ波を加熱部位に導入し、吸着材をマイクロ波によって加熱し、吸着材に吸着されたガスを脱離させるマイクロ波加熱ユニットを提供することを目的とする。   Therefore, in the present invention, in the microwave heating type VOC adsorption / recovery device where the moving adsorbent is heated with microwaves, the microwave is sufficiently absorbed inside the adsorbent and can be heated, and microwave leakage is prevented. An object of the present invention is to provide a microwave heating unit that efficiently introduces microwaves into a heating site with a simple mechanism, heats the adsorbent with microwaves, and desorbs the gas adsorbed on the adsorbent.

本発明は、上記の課題を解決するために、粒状吸着材8をマイクロ波7によって加熱して、粒状吸着材8に吸着されたガスを脱離するマイクロ波加熱式VOC吸着回収装置おいて、金属性の箱型容器であるマイクロ波チャンバー2と、前記マイクロ波チャンバー2のひとつの壁面に接続したマイクロ波7を導入するための矩形の導波管3と、前記導波管3の接続方向と直角方向の前記マイクロ波チャンバー2に2箇所ある開口部2a、2aに挿通し、内部に粒状吸着材8が速度調節されて移動するマイクロ波7を透過する誘電体管4とからなることを特徴とするマイクロ波加熱ユニットの構成、
前記粒状吸着材8が、絶縁体で被覆された粒状活性炭であることを特徴とする前記マイクロ波加熱ユニットの構成、
前記誘電体管4を覆うような金属性の管である減衰筒5が、前記マイクロチャンバー2から外に併設され、前記減衰筒5が前記マイクロ波チャンバー2に電気的に導通するように全円周で接触していることを特徴とする前記マイクロ波加熱ユニットの構成、
前記誘電体管4の直径が、前記粒状吸着材8におけるマイクロ波7の電力半減深度の2倍以下であることを特徴とする前記何れかに記載のマイクロ波加熱ユニットの構成、
前記導波管3の一方の長辺が、マイクロ波チャンバー2の内部に伸びた整合反射板6を備えることを特徴とする前記何れかに記載のマイクロ波加熱ユニットの構成とした。
In order to solve the above problems, the present invention is a microwave heating type VOC adsorption / recovery device in which the granular adsorbent 8 is heated by the microwave 7 and the gas adsorbed on the granular adsorbent 8 is desorbed. A microwave chamber 2 which is a metallic box-shaped container, a rectangular waveguide 3 for introducing a microwave 7 connected to one wall surface of the microwave chamber 2, and a connection direction of the waveguide 3 A dielectric tube 4 that is inserted through two openings 2a and 2a in the microwave chamber 2 in a direction perpendicular to the microwave chamber 2 and transmits the microwave 7 in which the granular adsorbent 8 moves at a controlled speed. The structure of the microwave heating unit
The structure of the microwave heating unit, wherein the granular adsorbent 8 is granular activated carbon coated with an insulator,
An attenuation cylinder 5, which is a metallic tube covering the dielectric tube 4, is provided outside the microwave chamber 2 so that the attenuation cylinder 5 is electrically connected to the microwave chamber 2. A configuration of the microwave heating unit, which is in contact with the circumference;
The configuration of the microwave heating unit according to any one of the above, wherein the diameter of the dielectric tube 4 is not more than twice the half-power depth of the microwave 7 in the granular adsorbent 8;
One of the long sides of the waveguide 3 includes a matching reflector 6 that extends into the microwave chamber 2. The microwave heating unit according to any one of the above is configured.

本発明は、以上の構成であるから以下の効果が得られる。マイクロ波の特性上、金属で囲まれた閉空間に誘電損失を持つ物体が存在しているときには、金属壁面で乱反射しながら、最終的にすべて対象物体に吸収されマイクロ波のエネルギーはすべて熱に変換される。従って、基本的に誘電損失を持つ物体である吸着材にほとんどのエネルギーは吸収され、物体が加熱される。   Since this invention is the above structure, the following effects are acquired. Due to the characteristics of microwaves, when there is an object with dielectric loss in a closed space surrounded by metal, it is diffused by the metal wall and finally absorbed by the target object, and all microwave energy is converted to heat. Converted. Accordingly, most of the energy is absorbed by the adsorbent, which is basically an object having dielectric loss, and the object is heated.

このことから、被覆活性炭が通過する直径がマイクロ波の電力半減深度の二倍程度の誘導体管は、マイクロ波を十分良く透過するテフロン(登録商標)やホウ珪酸ガラスでできていて、それを取り囲むようにマイクロ波が十分乱反射できるだけの空間を有した金属製のマイクロ波チャンバーを配置する基本構造において、乱反射しながら移動する活性炭の内部にマイクロ波は十分に吸収され均一な加熱ができる。   From this, the derivative tube whose diameter through which the coated activated carbon passes is about twice the half-power depth of the microwave is made of Teflon (registered trademark) or borosilicate glass that sufficiently transmits the microwave, and surrounds it. As described above, in the basic structure in which the metal microwave chamber having a space that can sufficiently reflect the microwaves is arranged, the microwaves are sufficiently absorbed in the activated carbon moving while being irregularly reflected, and uniform heating can be performed.

また、誘導体管を覆うような減衰筒を、マイクロ波チャンバーの外部に設けたことにより、マイクロ波が減衰して外部に漏洩しないようにしたことから、特別な装置や複雑な機構を設けることなく、マイクロ波をマイクロ波の加熱部位を内包する金属製のマイクロ波チャンバー内に導入できる。   In addition, since the attenuation cylinder that covers the dielectric tube is provided outside the microwave chamber, the microwave is attenuated so that it does not leak to the outside, so that no special device or complicated mechanism is provided. The microwave can be introduced into a metal microwave chamber containing a microwave heating portion.

さらに、整合反射板を設けたことにより、導波管の上下に電圧を生じながら進行してきたマイクロ波は、なだらかなインピーダンス変化を作りだしてマイクロ波を反射させることなく効率的に伝送できる。またこの整合反射板はマイクロ波をマイクロ波チャンバー内で散乱させることにも寄与する。   Furthermore, by providing the matching reflector, the microwave that has traveled while generating a voltage above and below the waveguide can be efficiently transmitted without creating a gentle impedance change and reflecting the microwave. This matching reflector also contributes to scattering the microwave in the microwave chamber.

絶縁体で被覆された粒状活性炭である粒状吸着材8をマイクロ波7によって加熱して、粒状吸着材8に吸着されたガスを脱離するマイクロ波加熱式VOC吸着回収装置おいて、
金属性の箱型容器であるマイクロ波チャンバー2と、前記マイクロ波チャンバー2のひとつの壁面に接続したマイクロ波7を導入するための矩形の導波管3と、
前記導波管3の接続方向と直角方向の前記マイクロ波チャンバー2に2箇所ある開口部2a、2aに挿通し、内部に粒状吸着材8が速度調節されて移動するマイクロ波7を透過する
前記粒状吸着材8におけるマイクロ波7の電力半減深度の2倍以下である直径の誘電体管4と、
前記マイクロチャンバー2から外に併設され、前記減衰筒5が前記マイクロ波チャンバー2に電気的に導通するように全円周で接触している前記誘電体管4を覆うような金属性の管である減衰筒5と、
前記導波管3の一方の長辺が、マイクロ波チャンバー2の内部に伸びた整合反射板6と
からなることを特徴とするマイクロ波加熱ユニット1の構成とすることで実現した。
In a microwave heating type VOC adsorption / recovery device that heats the granular adsorbent 8 which is granular activated carbon coated with an insulator by the microwave 7 and desorbs the gas adsorbed on the granular adsorbent 8,
A microwave chamber 2 which is a metallic box-shaped container, and a rectangular waveguide 3 for introducing a microwave 7 connected to one wall surface of the microwave chamber 2;
The microwave adsorbent 8 is inserted through two openings 2a and 2a in the microwave chamber 2 perpendicular to the connection direction of the waveguide 3 and the microwave adsorbing material 8 is transmitted through the microwave 7 moving at a controlled speed. A dielectric tube 4 having a diameter that is not more than twice the half-power depth of the microwave 7 in the granular adsorbent 8;
A metallic tube provided outside the micro chamber 2 and covering the dielectric tube 4 that is in contact with the entire circumference of the attenuation cylinder 5 so as to be electrically connected to the microwave chamber 2. A certain damping cylinder 5,
This is realized by adopting a configuration of the microwave heating unit 1 in which one long side of the waveguide 3 is composed of a matching reflection plate 6 extending inside the microwave chamber 2.

以下、本発明である別の実施例について説明する。図1は、本発明であるマイクロ波加熱ユニットの透視斜視図である。   Hereinafter, another embodiment of the present invention will be described. FIG. 1 is a perspective view of a microwave heating unit according to the present invention.

図1に示すように、本発明であるマイクロ波加熱ユニット1は、矩形の直方体の金属性のマイクロ波チャンバー2に、二つの開口部2a、2aがあり、その開口部2a、2aに円筒の誘電体管4、例えばガラス製チューブが挿入されていて、その直方体のマイクロ波チャンバー2の壁面にマイクロ波をチャンバー内に導入する導波管3が接続されている。   As shown in FIG. 1, a microwave heating unit 1 according to the present invention has a rectangular parallelepiped metallic microwave chamber 2 having two openings 2a and 2a, and the openings 2a and 2a are cylindrical. A dielectric tube 4, for example, a glass tube is inserted, and a waveguide 3 for introducing microwaves into the chamber is connected to the wall surface of the microwave chamber 2 that is a rectangular parallelepiped.

導波管3の中をマイクロ波は進行するがこのとき矩形の導波管3の二つの長辺の間に電圧が掛かりながらマイクロ波は進行する。この電圧の掛かる方向とガラス製チューブの挿入方向を一致させる。ガラス製チューブ中を、粒状吸着材8、例えば、絶縁体で被覆された粒状の活性炭(以下、被覆活性炭という。)が移動し、マイクロ波照射によって被覆活性炭は加熱される。この被覆活性炭にはVOCなどのガスが吸着しており、マイクロ波で加熱されることで、吸着ガスは脱離しガラス製チューブに流されるキャリアガスによって系外に排出され、そこで冷却されて、凝集し溶剤が回収される。   Although the microwave travels in the waveguide 3, the microwave travels while a voltage is applied between the two long sides of the rectangular waveguide 3. The direction in which this voltage is applied coincides with the insertion direction of the glass tube. A granular adsorbent 8, for example, granular activated carbon coated with an insulator (hereinafter referred to as coated activated carbon) moves in the glass tube, and the coated activated carbon is heated by microwave irradiation. Gas such as VOC is adsorbed on this coated activated carbon, and when heated by microwaves, the adsorbed gas is desorbed and discharged out of the system by the carrier gas flowing in the glass tube, where it is cooled and agglomerated. The solvent is recovered.

マイクロ波チャンバー2に接続される導波管3の一方の長辺がマイクロ波チャンバー2の内部に伸びて整合反射板6を形成している。マイクロ波は矩形の導波管3からチャンバーへ進行するとき大きくインピーダンスが変化し、通常大きくインピーダンスが変化する場所でマイクロ波7は反射しそれより先に進むマイクロ波7がうまく伝送できない(図2(B))。   One long side of the waveguide 3 connected to the microwave chamber 2 extends into the microwave chamber 2 to form a matching reflector 6. When the microwave travels from the rectangular waveguide 3 to the chamber, the impedance changes greatly. Usually, the microwave 7 is reflected at a place where the impedance is greatly changed, and the microwave 7 traveling further forward cannot be transmitted well (FIG. 2). (B)).

しかし、今回の発明を構成する整合反射板6は図2(A)に示されたように、上下に電圧を生じながら進行してきたマイクロ波7は、マイクロ波チャンバー2の内部に入った箇所で、一方の導波管3がまだ連続しているような作用を及ぼし、なだらかなインピーダンス変化を作りだしてマイクロ波7を反射させることなく効率的に伝送できる。   However, as shown in FIG. 2A, the matching reflector 6 constituting the present invention has a microwave 7 that has traveled while generating a voltage up and down at a place inside the microwave chamber 2. The one waveguide 3 acts as if it is still continuous, creates a gentle impedance change, and can efficiently transmit the microwave 7 without reflecting it.

またこの整合反射板6はマイクロ波7をマイクロ波チャンバー2内で散乱させることにも寄与し、ガラス製チューブのなかを流れる被覆活性炭を均一に加熱させることができる。   The matching reflector 6 also contributes to scattering the microwave 7 in the microwave chamber 2 and can uniformly heat the coated activated carbon flowing through the glass tube.

ここでマイクロ波チャンバー2は200mm×200mm×300mmであり、チューブの外径は被覆活性炭の2.45GHzでのマイクロ波における電力半減深度から求めφ60mmとした。この被覆活性炭の内部にマイクロ波に影響されない光ファイバー温度計を挿入し加熱温度を測定した結果が図4である。   Here, the microwave chamber 2 has a size of 200 mm × 200 mm × 300 mm, and the outer diameter of the tube was obtained from the half-power depth of microwaves at 2.45 GHz of the coated activated carbon, and was set to φ60 mm. FIG. 4 shows the result of measuring the heating temperature by inserting an optical fiber thermometer that is not affected by microwaves into the coated activated carbon.

この図4のグラフから、移動しながら加熱される被覆活性炭が、特に大きな加熱ムラを生じることなくなだらかな分布で加熱できていることが分かる。   From the graph of FIG. 4, it can be seen that the coated activated carbon heated while moving can be heated with a gentle distribution without causing particularly large heating unevenness.

また、図3にあるように、マイクロ波チャンバー2を貫通する誘導体管4であるガラス製チューブには金属製の減衰管5がチャンバーと円周の全周にわたって電気的に接続されているように配置されている。この減衰管5の中を通過して外部に出ようとするマイクロ波7は、ガラス製チューブ内のマイクロ波吸収率の高い被覆活性炭を通過することによって十分に減衰し、外部にマイクロ波が漏洩することは無い。   Further, as shown in FIG. 3, a metal attenuation tube 5 is electrically connected to the chamber over the entire circumference of the glass tube, which is a derivative tube 4 penetrating the microwave chamber 2. Has been placed. The microwave 7 passing through the attenuation tube 5 and going outside is sufficiently attenuated by passing through the coated activated carbon having a high microwave absorption rate in the glass tube, and the microwave leaks to the outside. There is nothing to do.

本発明であるマイクロ波加熱ユニットの透視斜視図である。It is a see-through | perspective perspective view of the microwave heating unit which is this invention. 整合反射板の効果を示す模式図である。It is a schematic diagram which shows the effect of a matching reflector. マイクロ波加熱油ユニットを用いた照射試験の様子を示す図である。It is a figure which shows the mode of the irradiation test using a microwave heating oil unit. 本発明であるマイクロ波加熱ユニットによる加熱試験結果である。It is a heating test result by the microwave heating unit which is this invention.

符号の説明Explanation of symbols

1 マイクロ波加熱ユニット
2 マイクロ波チャンバー
2a 開口部
3 導波管
4 誘電体管
5 減衰筒
6 整合反射板
7 マイクロ波
8 粒状吸着材
1 Microwave Heating Unit 2 Microwave Chamber 2a Opening 3 Waveguide 4 Dielectric Tube 5 Attenuation Tube 6 Matching Reflector 7 Microwave 8 Granular Adsorbent

Claims (5)

粒状吸着材をマイクロ波によって加熱して、粒状吸着材に吸着されたガスを脱離するマイクロ波加熱式VOC吸着回収装置おいて、
金属性の箱型容器であるマイクロ波チャンバーと、前記マイクロ波チャンバーのひとつの壁面に接続したマイクロ波を導入するための矩形の導波管と、前記導波管の接続方向と直角方向の前記マイクロ波チャンバーに2箇所ある開口部に挿通し、内部に粒状吸着材が速度調節されて移動するマイクロ波を透過する誘電体管とからなることを特徴とするマイクロ波加熱ユニット。
In the microwave heating type VOC adsorption and recovery device for heating the granular adsorbent by microwaves and desorbing the gas adsorbed on the granular adsorbent,
A microwave chamber which is a metallic box-shaped container, a rectangular waveguide for introducing a microwave connected to one wall surface of the microwave chamber, and the direction perpendicular to the connection direction of the waveguide A microwave heating unit comprising: a dielectric tube that is inserted through two openings in a microwave chamber and transmits microwaves in which a granular adsorbent moves at a controlled speed.
前記粒状吸着材が、絶縁体で被覆された粒状活性炭であることを特徴とする請求項1に記載のマイクロ波加熱ユニット。   The microwave heating unit according to claim 1, wherein the granular adsorbent is granular activated carbon coated with an insulator. 前記誘電体管を覆うような金属性の管である減衰筒が、前記マイクロチャンバーから外に併設され、前記減衰筒が前記マイクロ波チャンバーに電気的に導通するように全円周で接触していることを特徴とする請求項1又は請求項2に記載のマイクロ波加熱ユニット。   An attenuation cylinder, which is a metallic tube covering the dielectric tube, is provided outside the microchamber, and the attenuation cylinder is in contact with the entire circumference so as to be electrically connected to the microwave chamber. The microwave heating unit according to claim 1 or 2, wherein the microwave heating unit is provided. 前記誘電体管の直径が、前記粒状吸着材におけるマイクロ波の電力半減深度の2倍以下であることを特徴とする
請求項1〜請求項3の何れかに記載のマイクロ波加熱ユニット。
The microwave heating unit according to any one of claims 1 to 3, wherein a diameter of the dielectric tube is not more than twice a half-power depth of microwaves in the granular adsorbent.
前記導波管の一方の長辺が、マイクロ波チャンバーの内部に伸びた整合反射板を備えることを特徴とする請求項1〜4の何れかに記載のマイクロ波加熱ユニット。   The microwave heating unit according to any one of claims 1 to 4, wherein one long side of the waveguide includes a matching reflector extending inside the microwave chamber.
JP2007128345A 2007-05-14 2007-05-14 Microwave heating unit Pending JP2008279415A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007128345A JP2008279415A (en) 2007-05-14 2007-05-14 Microwave heating unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007128345A JP2008279415A (en) 2007-05-14 2007-05-14 Microwave heating unit

Publications (1)

Publication Number Publication Date
JP2008279415A true JP2008279415A (en) 2008-11-20

Family

ID=40140693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007128345A Pending JP2008279415A (en) 2007-05-14 2007-05-14 Microwave heating unit

Country Status (1)

Country Link
JP (1) JP2008279415A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011045303A (en) * 2009-08-27 2011-03-10 Hitachi Kyowa Engineering Co Ltd Insecticidal-ovicidal apparatus for grains
JP2014012241A (en) * 2012-07-03 2014-01-23 Daifuku Co Ltd Apparatus for treatment of concentration object constituent in gas to be treated, and method for treatment of concentration object constituent in the gas to be treated using the treatment apparatus
CN112316665A (en) * 2020-09-15 2021-02-05 广东紫方环保技术有限公司 Waste gas treatment system with pretreatment, zeolite rotation and RCO and waste gas treatment method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49126936U (en) * 1973-02-28 1974-10-30
JPS5260289A (en) * 1975-11-13 1977-05-18 Daiichi Tanso Kougiyou Kk Apparatus for regenerating deteriorated active carbon
JPH01120249A (en) * 1987-11-05 1989-05-12 Mitsubishi Electric Corp Heating apparatus for fluid
JP2005194132A (en) * 2004-01-07 2005-07-21 National Institute Of Advanced Industrial & Technology Method for heating activated carbon
JP2005322582A (en) * 2004-05-11 2005-11-17 Idx Corp Microwave heating device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49126936U (en) * 1973-02-28 1974-10-30
JPS5260289A (en) * 1975-11-13 1977-05-18 Daiichi Tanso Kougiyou Kk Apparatus for regenerating deteriorated active carbon
JPH01120249A (en) * 1987-11-05 1989-05-12 Mitsubishi Electric Corp Heating apparatus for fluid
JP2005194132A (en) * 2004-01-07 2005-07-21 National Institute Of Advanced Industrial & Technology Method for heating activated carbon
JP2005322582A (en) * 2004-05-11 2005-11-17 Idx Corp Microwave heating device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011045303A (en) * 2009-08-27 2011-03-10 Hitachi Kyowa Engineering Co Ltd Insecticidal-ovicidal apparatus for grains
JP2014012241A (en) * 2012-07-03 2014-01-23 Daifuku Co Ltd Apparatus for treatment of concentration object constituent in gas to be treated, and method for treatment of concentration object constituent in the gas to be treated using the treatment apparatus
CN112316665A (en) * 2020-09-15 2021-02-05 广东紫方环保技术有限公司 Waste gas treatment system with pretreatment, zeolite rotation and RCO and waste gas treatment method thereof

Similar Documents

Publication Publication Date Title
JP2008279415A (en) Microwave heating unit
KR100579760B1 (en) An adsorptim-detachment device using microwave
CN105939942B (en) Thermal decomposition system and method for generating carbon dioxide
EP1365021A4 (en) Method of transferring selected molecules
KR20200046291A (en) Reactor for purifying the atmosphere using the electron beam and apparatus for purifying the atmosphere including the same
JP4399582B2 (en) Gas heating device
KR100715240B1 (en) VOC absorbing and recovering apparatus using microwave and method at the same of
JP2011253653A (en) Microwave heating device, microwave heating device using multiple wave guides and adsorption regeneration device
US7498548B2 (en) Microwave heating system and method for removing volatiles from adsorbent materials
CN203417578U (en) Microwave desorption adsorption device
Sun et al. Microwave-induced degradation as a novel treatment for destruction of decabromodiphenyl ether sorbed on porous minerals
KR101646067B1 (en) Apparatus for treating toxic gas including a tar
Chang et al. Treatment of heavy oil contaminated sand by microwave energy
WO2007104823A1 (en) Device for extraction of organic chemical compounds with toxic properties that are present in atmospheric samples, using focused-microwave-heated solvents in open (non-pressurized) systems
CN115654521A (en) Microwave thermal desorption organic pollutant effect research evaluation device
JPH0599538A (en) Adsorption type heat exchanger
Ye et al. Influence of reactant atmospheres and temperature on mechanism of gasification of coal char derived from lignite
Zhou et al. Thermal effects of microwaves in contaminated soil remediation
WO2014207700A3 (en) Illuminating microwave heater, with energy recovery
KR101600522B1 (en) Apparatus for treating toxic gas
JP2005127718A (en) Device and method for decontaminating tritium
JPH10206293A (en) Exhalation-component collection tube and its heating device
CN117309549A (en) Device for researching influence of microwave non-thermal effect on persulfate activation
KR102184047B1 (en) Hydroxy Radical Generator
Wheeler et al. Development and Testing of a Microwave Powered Regenerable Air Purification Technology Demonstrator

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100510

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100510

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111003