JP2005321004A - Gear shaft support structure - Google Patents

Gear shaft support structure Download PDF

Info

Publication number
JP2005321004A
JP2005321004A JP2004138165A JP2004138165A JP2005321004A JP 2005321004 A JP2005321004 A JP 2005321004A JP 2004138165 A JP2004138165 A JP 2004138165A JP 2004138165 A JP2004138165 A JP 2004138165A JP 2005321004 A JP2005321004 A JP 2005321004A
Authority
JP
Japan
Prior art keywords
gear
gear shaft
cam
support structure
shaft support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2004138165A
Other languages
Japanese (ja)
Inventor
Takao Koyama
隆夫 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004138165A priority Critical patent/JP2005321004A/en
Publication of JP2005321004A publication Critical patent/JP2005321004A/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C25/00Bearings for exclusively rotary movement adjustable for wear or play
    • F16C25/06Ball or roller bearings
    • F16C25/08Ball or roller bearings self-adjusting

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Support Of The Bearing (AREA)
  • General Details Of Gearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gear shaft support structure, providing the optimum bearing rigidity according to the transmission torque. <P>SOLUTION: In this gear shaft support structure, a gear shaft 11 having reduction gears 8, 9 is supported by a pair of opposite tapered roller bearings 12, 14. One end shaft part 11A of the gear shaft 11 is supported on an inner race of one tapered roller bearing 14 to relatively rotate and relatively move in the axial direction. Thrust cam mechanisms 15 to 18 including a cam plate 15 and a cam roller 18 for generating the axial force for separating the gear shaft 11 from the inner race of one tapered roller bearing 14 are disposed corresponding to a rotary phase shift of both in the periphery of the shaft part 11A of the gear 11 between the gear shaft 11 and one tapered roller bearing 14. Pre-load is applied to a pair of tapered roller shafts 12, 14 including the thrust force cam mechanisms 15 to 18. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、変速機出力部よりの駆動力を減速して差動装置等の車軸装置に伝達する減速歯車装置の歯車軸を、プリロードを付与したテーパローラ軸受で支持する歯車軸支持構造に関するものである。   The present invention relates to a gear shaft support structure for supporting a gear shaft of a reduction gear device that decelerates a driving force from a transmission output unit and transmits the reduced force to an axle device such as a differential gear with a tapered roller bearing provided with a preload. is there.

従来から変速機出力部よりの駆動力を減速歯車装置により減速して差動装置等の車軸装置に伝達する減速歯車装置の歯車軸を軸方向から規定したプリロードを加えた一対のテーパローラ軸受により支持させ、減速歯車同士の噛合いにより発生する半径方向のラジアル荷重および軸方向のスラスト荷重に対して良好な噛合い状態を維持させ、ギヤノイズ等の発生を抑制し、減速歯車の耐久性を向上させるものが知られている(特許文献1参照)。
特開平8−312741号公報
Conventionally, a gear shaft of a reduction gear device that decelerates a driving force from a transmission output unit by a reduction gear device and transmits it to an axle device such as a differential gear is supported by a pair of tapered roller bearings to which a preload defined in the axial direction is added. Maintain a good meshing state against radial radial loads and axial thrust loads generated by meshing of the reduction gears, suppress the generation of gear noise, etc., and improve the durability of the reduction gears The thing is known (refer patent document 1).
JP-A-8-312741

ところで、このような歯車軸を支持するテーパローラ軸受にプリロードを加える場合に、発進から高速走行までの運転領域全域に亘る伝達トルク範囲をカバーするよう軸受剛性を高めて、噛合い部分のガタ発生を抑制してギヤノイズ抑制や耐久性を向上させるためには、ある程度高いプリロードを設定する必要がある。   By the way, when preloading is applied to such a tapered roller bearing that supports the gear shaft, the bearing rigidity is increased so as to cover the entire transmission torque range from the start to the high-speed running, and rattling of the meshing portion is generated. In order to suppress and improve gear noise suppression and durability, it is necessary to set a high preload to some extent.

しかしながら、このように運転領域全域に対応するようにある程度高いプリロードを設定する場合には、テーパローラ軸受の転動面の面圧が高まり、回転に対するフリクショントルクが大きくなり、動力伝達効率が低下して、車両の燃料消費が増加する不具合を生ずる。特に、伝達トルクが小さい中高速走行時に必要以上にフリクションロスを発生させる不具合があった。   However, when setting a somewhat high preload so as to cover the entire operation region in this way, the surface pressure of the rolling surface of the tapered roller bearing increases, the friction torque against rotation increases, and the power transmission efficiency decreases. This causes a problem that the fuel consumption of the vehicle increases. In particular, there is a problem that friction loss is generated more than necessary during medium and high speed traveling with a small transmission torque.

そこで本発明は、上記問題点に鑑みてなされたもので、伝達トルクに応じた最適な軸受剛性を付与可能な歯車軸支持構造を提供することを目的とする。   Therefore, the present invention has been made in view of the above problems, and an object of the present invention is to provide a gear shaft support structure capable of imparting optimum bearing rigidity in accordance with transmission torque.

本発明は、減速歯車を備える歯車軸を対向する一対のテーパローラ軸受により支持する歯車軸支持構造において、歯車軸の一端の軸部を一方のテーパローラ軸受のインナレースに対して相対回転および軸方向に相対移動可能に支持させ、歯車軸と一方のテーパローラ軸受との間の歯車軸の軸部の周囲に、両者の回転位相のずれに対応して歯車軸と一方のテーパローラ軸受のインナレースとを互いに離反させる軸方向力を発生するカムプレートおよびカムローラからなる推力カム機構を配置し、推力カム機構を含めて一対のテーパローラ軸受同士にプリロードを付与するようにした。   The present invention provides a gear shaft support structure in which a gear shaft including a reduction gear is supported by a pair of taper roller bearings facing each other, and a shaft portion at one end of the gear shaft is rotated relative to an inner race of one taper roller bearing in an axial direction. The gear shaft and the inner race of one taper roller bearing are mutually supported around the shaft portion of the gear shaft between the gear shaft and one taper roller bearing so as to correspond to the rotational phase shift between them. A thrust cam mechanism including a cam plate and a cam roller that generate an axial force to be separated is disposed, and a preload is applied between a pair of tapered roller bearings including the thrust cam mechanism.

したがって、本発明では、歯車軸と一方のテーパローラ軸受との間の歯車軸の軸部の周囲に、両者の回転位相のずれに対応して歯車軸と一方のテーパローラ軸受のインナレースとを互いに離反させる軸方向力を発生するカムプレートおよびカムローラからなる推力カム機構を備えるため、プリロードを伝達トルクに応じて増減でき、走行時の運転領域に応じた最適な軸受剛性を得ることができる。即ち、発進走行や低速走行時における比較的高い伝達トルクに対しては高い軸受剛性により減速歯車の噛合いアライメントを良好に維持してギヤノイズの発生を抑制し、ギヤの耐久性を向上させることができる。また、中高速走行時における比較的低い伝達トルクに対しては低い軸受剛性によりテーパローラ軸受の転動面の面圧を下げ、回転に対するフリクショントルクを低下させて動力伝達効率を向上させ、車両の燃料消費を低減させることができる。   Therefore, in the present invention, the gear shaft and the inner race of the one taper roller bearing are separated from each other around the shaft portion of the gear shaft between the gear shaft and the one taper roller bearing in accordance with the rotational phase shift between the two. Since the thrust cam mechanism including the cam plate and the cam roller that generates the axial force to be generated is provided, the preload can be increased or decreased according to the transmission torque, and the optimum bearing rigidity can be obtained according to the operating region during traveling. That is, for relatively high transmission torque during start-up and low-speed running, high bearing rigidity maintains good meshing alignment of the reduction gears to suppress gear noise and improve gear durability. it can. Also, for relatively low transmission torque during medium and high speed driving, the bearing pressure on the rolling surface of the tapered roller bearing is lowered due to low bearing rigidity, and the friction torque against rotation is reduced to improve power transmission efficiency, thereby Consumption can be reduced.

以下、本発明の歯車軸支持構造を一実施形態に基づいて説明する。   Hereinafter, a gear shaft support structure of the present invention will be described based on an embodiment.

図1〜図4は、本発明を適用した歯車軸支持構造の第1実施形態を示し、図1は歯車軸支持構造の概略構成図、図2はカム機構を構成するコロおよび保持器の正面図、図3はカム機構の側面図、図4は歯車軸支持構造の別の実施例の概略構成図、図5は歯車軸支持構造の適用例のギヤトレーンを示すスケルトン図である。   1 to 4 show a first embodiment of a gear shaft support structure to which the present invention is applied, FIG. 1 is a schematic configuration diagram of the gear shaft support structure, and FIG. 2 is a front view of a roller and a cage constituting a cam mechanism. FIG. 3 is a side view of the cam mechanism, FIG. 4 is a schematic configuration diagram of another embodiment of the gear shaft support structure, and FIG. 5 is a skeleton diagram showing a gear train of an application example of the gear shaft support structure.

本実施形態における歯車軸支持構造は、例えば、図5に示す車両用駆動装置に適用できる。即ち、図5に示す車両用駆動装置は、エンジンEからの動力を導入するトルクコンバータTC等の発進要素1と、遊星歯車組Pと前進クラッチFCおよび後進ブレーキRBからなる前後進切換機構2と、前後進切換機構2からの出力を変速、例えば、無段変速して出力する無段変速機CVTからなる変速装置3と、最終減速装置FDを含んで前記変速装置3の出力を減速して出力する減速歯車組4と、減速歯車組4の出力により左右駆動車輪5のドライブシャフト6に差動的に駆動する差動機構DGとを備えて構成している。   The gear shaft support structure in the present embodiment can be applied to, for example, the vehicle drive device shown in FIG. 5 includes a starting element 1 such as a torque converter TC for introducing power from the engine E, a forward / reverse switching mechanism 2 including a planetary gear set P, a forward clutch FC, and a reverse brake RB. The output from the forward / reverse switching mechanism 2 is decelerated, for example, including a transmission 3 comprising a continuously variable transmission CVT that outputs continuously by shifting continuously, and a final reduction gear FD. A reduction gear set 4 for output and a differential mechanism DG for differentially driving the drive shaft 6 of the left and right drive wheels 5 by the output of the reduction gear set 4 are provided.

本実施形態の歯車軸支持構造は、変速装置3の出力を減速して、左右駆動輪5に連なるドライブシャフト6を差動的に駆動する差動装置DGに伝達するよう、変速装置3の出力歯車7と噛合うアイドラギヤ8と、差動装置DGに連結されたファイナルギヤ10と噛合うリダクションギヤ9と、を一体に備える歯車軸の支持構造に適用した図1〜図4に基づいて説明する。   The gear shaft support structure of the present embodiment decelerates the output of the transmission 3 and transmits the output of the transmission 3 to the differential device DG that differentially drives the drive shaft 6 connected to the left and right drive wheels 5. Description will be made based on FIGS. 1 to 4 applied to a support structure of a gear shaft integrally including an idler gear 8 meshing with the gear 7 and a reduction gear 9 meshing with the final gear 10 connected to the differential device DG. .

図1に示す歯車軸支持構造は、上述したように、変速装置3の出力歯車7と噛合うアイドラギヤ8と、差動装置DGに連結されたファイナルギヤ10と噛合うリダクションギヤ9と、を一体とした歯車軸11を備える。歯車軸11の一端は一方のテーパローラ軸受12により変速機ケース3Aに支持され、歯車軸11の他端の軸部11Aは、ニードル軸受13を介して他方のテーパローラ軸受14により変速機ケース3Aに支持されている。そして、前記一方のテーパローラ軸受12側に隣接させてリダクションギヤ9およびアイドラギヤ8をこの順に配置している。   As described above, the gear shaft support structure shown in FIG. 1 integrally includes the idler gear 8 that meshes with the output gear 7 of the transmission 3 and the reduction gear 9 that meshes with the final gear 10 connected to the differential device DG. The gear shaft 11 is provided. One end of the gear shaft 11 is supported on the transmission case 3A by one tapered roller bearing 12, and the shaft portion 11A on the other end of the gear shaft 11 is supported on the transmission case 3A by the other tapered roller bearing 14 via the needle bearing 13. Has been. A reduction gear 9 and an idler gear 8 are arranged in this order adjacent to the one tapered roller bearing 12 side.

前記リダクションギヤ9とファイナルギヤ10との噛合いにより発生する軸方向およびラジアル方向の噛合い反力は、アイドラギヤ8とアウトプットギヤ7との噛合いにより発生する反力より大きいことから、上記配置関係とすることにより、一方のテーパローラ軸受12の荷重受け方向(ガタ詰め方向)に効果的に受持たせることができる。また、リダクションギヤ9とファイナルギヤ10との噛合いにより発生する軸方向反力とアイドラギヤ8とアウトプットギヤ7との噛合いにより発生する軸方向反力とは、互いに相殺する方向に、リダクションギヤ9とアイドラギヤ8とのはす歯のねじれ方向が設定されており、また、リダクションギヤ9の軸方向反力がアイドラギヤ8の軸方向反力より大きいことから、相殺し切れない軸方向反力は、車両前進走行時に一方のテーパローラ軸受12の荷重受け方向で受持たせるよう前記はす歯のねじれ方向を設定している。   Since the axial and radial meshing reaction forces generated by the engagement between the reduction gear 9 and the final gear 10 are larger than the reaction forces generated by the meshing between the idler gear 8 and the output gear 7, By setting it as a relationship, it can be made to receive effectively in the load receiving direction (backlash filling direction) of one taper roller bearing 12. Further, the axial reaction force generated by the engagement of the reduction gear 9 and the final gear 10 and the axial reaction force generated by the engagement of the idler gear 8 and the output gear 7 are reduced in a direction that cancels each other. 9 and the idler gear 8 are set in a twisting direction of the helical teeth, and the axial reaction force of the reduction gear 9 is larger than the axial reaction force of the idler gear 8, so that the axial reaction force that cannot be canceled out is Further, the helical direction of the helical teeth is set so that the taper roller bearing 12 receives the load in the forward traveling direction of the vehicle.

前記歯車軸11には、他方のテーパローラ軸受14に対面する環状の端面に、カム溝15Aを等角度間隔に配置したカムプレート15を一体に備える。前記各カム溝15Aは、中央位置で端面を軸方向に大きく窪ませており、中央位置から周方向に移るにつれて窪みの深さが浅くなる傾斜面による広角度のV溝に形成されている。   The gear shaft 11 is integrally provided with a cam plate 15 having cam grooves 15 </ b> A arranged at equal angular intervals on an annular end surface facing the other tapered roller bearing 14. Each of the cam grooves 15A is formed into a wide-angle V-groove with an inclined surface whose end surface is greatly recessed in the axial direction at the central position and whose depth becomes shallower as it moves from the central position in the circumferential direction.

前記カムプレート15のカム溝15Aに対面する他方のテーパローラ軸受14には、リング状の円板16が歯車軸11の軸部11Aに緩く嵌合させて配置され、カムプレート15のカム溝15Aと円板16の端面との間には、保持器17で互いの角度位置が変化しないように保持されたカムローラ18が挿入されている。前記保持器17は、図2に示すように、リング状の円板で形成され、カムローラ18を保持する保持穴17Aを等角度間隔に備え、保持穴17Aにカムローラ18を回転および軸方向移動可能に保持した状態で、内周穴17Bをカムプレート15と円板16との間の歯車軸11の軸部11A外周に嵌合させて位置決めしている。   The other tapered roller bearing 14 facing the cam groove 15A of the cam plate 15 is arranged with a ring-shaped disk 16 loosely fitted to the shaft portion 11A of the gear shaft 11, and the cam groove 15A of the cam plate 15 is connected to the cam groove 15A. A cam roller 18 is inserted between the end face of the disk 16 so that the angular position of the retainer 17 is not changed. As shown in FIG. 2, the retainer 17 is formed of a ring-shaped disk, and is provided with holding holes 17A for holding the cam rollers 18 at equiangular intervals, and the cam rollers 18 can be rotated and moved in the axial direction in the holding holes 17A. In this state, the inner peripheral hole 17B is fitted and positioned on the outer periphery of the shaft portion 11A of the gear shaft 11 between the cam plate 15 and the disc 16.

前記カムプレート15とカムローラ18および円板16とは常時接触し且つ所定の接触圧に保持されてそれ以下の接触圧に低下しないよう、左右のテーパローラ軸受12、14同士の間隔およびプリロードを設定している。付与するプリロードは、変速機3のケース3Aの温度が定常運転温度まで上昇された暖機状態で、車速が比較的高い中高速走行中における比較的低い駆動トルクを伝達している場合において、歯車軸11に発生しているラジアル荷重およびスラスト荷重を支持可能な軸受剛性を備えるように設定している。   The interval between the left and right tapered roller bearings 12 and 14 and the preload are set so that the cam plate 15 is always in contact with the cam roller 18 and the disc 16 and is kept at a predetermined contact pressure and does not decrease to a lower contact pressure. ing. The preload to be applied is a gear when the temperature of the case 3A of the transmission 3 is warmed up to a steady operating temperature and a relatively low driving torque is transmitted during a medium to high speed traveling at a relatively high vehicle speed. The bearing 11 is set to have a bearing rigidity capable of supporting a radial load and a thrust load generated on the shaft 11.

以上の構成になる歯車軸支持構造における車両走行中においては、変速機3のアウトプットギヤ7によりアイドラギヤ8が回転駆動されて歯車軸11はアウトプットギヤ7の回転に対してギヤ比に対応した減速された回転数で回転し、一体となっているリダクションギヤ9はファイナルギヤ10をギヤ比に対応した減速比で減速回転させる。歯車軸11は一対のテーパローラ軸受12、14に回転支持されており、一体となっているカムプレート15も同一回転数で回転する。   While the vehicle is running on the gear shaft support structure having the above configuration, the idler gear 8 is driven to rotate by the output gear 7 of the transmission 3, and the gear shaft 11 corresponds to the gear ratio with respect to the rotation of the output gear 7. The reduction gear 9 that is rotated at a reduced speed and integrated with the reduction gear 9 rotates the final gear 10 at a reduced speed corresponding to the gear ratio. The gear shaft 11 is rotatably supported by a pair of taper roller bearings 12 and 14, and an integrated cam plate 15 also rotates at the same rotational speed.

前記円板16を通してプリロードによりカムプレート15のカム溝15Aに押付けられているカムローラ18は、前記アイドラギヤ8およびリダクションギヤ9に発生する軸方向反力およびラジアル方向反力が一対のテーパローラ軸受12、14に付与している前記プリロードを超えない範囲においては、カム溝15Aの中央位置から転動移動しない。この状態においては、カムローラ18(保持器17付き)、円板16、ニードル軸受13も共にカムプレート15および歯車軸11と共に一体となって回転する。   The cam roller 18 pressed against the cam groove 15A of the cam plate 15 by the preload through the disk 16 has a pair of tapered roller bearings 12 and 14 in which an axial reaction force and a radial reaction force generated in the idler gear 8 and the reduction gear 9 are generated. In a range that does not exceed the preload applied to the cam groove 15A, it does not roll from the center position of the cam groove 15A. In this state, the cam roller 18 (with the retainer 17), the disk 16 and the needle bearing 13 rotate together with the cam plate 15 and the gear shaft 11.

このように歯車軸11とカムローラ18(保持器17付き)、円板16、ニードル軸受13とが一体回転する状態は、伝達する駆動トルクが比較的低い中高速走行時に実現される。この状態においては、一対のテーパローラ軸受12、14に付与しているプリロードが比較的低いため、一対のテーパローラ軸受12、14に発生するフリクショントルクが低く抑制されており、伝達トルクの消費も小さく抑えられ、動力伝達効率を高く保持して、車両の燃料消費を低減させることができる。   Thus, the state in which the gear shaft 11 and the cam roller 18 (with the cage 17), the disc 16, and the needle bearing 13 rotate together is realized during medium and high speed traveling with a relatively low driving torque to be transmitted. In this state, since the preload applied to the pair of taper roller bearings 12 and 14 is relatively low, the friction torque generated in the pair of taper roller bearings 12 and 14 is suppressed to a low level, and the consumption of transmission torque is also suppressed to a low level. Therefore, the power transmission efficiency can be kept high, and the fuel consumption of the vehicle can be reduced.

車速が比較的低い低車速走行時および車両発進時等においては、円板16を通してプリロードによりカムプレート15のカム溝15Aに押付けられているカムローラ18は、前記アイドラギヤ8およびリダクションギヤ9に発生する軸方向反力およびラジアル方向反力が一対のテーパローラ軸受12、14に付与している前記プリロードを超える範囲となり、円板16および他方のテーパローラ軸受14のインナレースはニードル軸受13を介して相対的に回転移動を許容されているため、これらを相対回転移動させてカムローラ18がカム溝15Aの中央位置から伝達トルクに応じて転動移動する。   The cam roller 18 pressed against the cam groove 15A of the cam plate 15 by the preload through the disc 16 is a shaft generated in the idler gear 8 and the reduction gear 9 when the vehicle speed is relatively low and the vehicle starts. The direction reaction force and the radial direction reaction force exceed the preload applied to the pair of taper roller bearings 12 and 14, and the inner race of the disk 16 and the other taper roller bearing 14 is relatively moved via the needle bearing 13. Since the rotational movement is permitted, the cam roller 18 rolls in accordance with the transmission torque from the central position of the cam groove 15A by relatively rotating these.

前記カムローラ18のカム溝15Aの傾斜面上の転動移動は、カムプレート15と円板16との間隔を増加させ、一対のテーパローラ軸受12、14のインナレース同士の間隔を増加させ、設定プリロードに加えて伝達トルクの上昇に応じたロードが付加されて、一対のテーパローラ軸受12、14の軸受剛性を増加させる。この状態においては、軸受剛性が、設定プリロードに加えて伝達トルクの上昇に応じたロードが付加されて増加するため、一対のテーパローラ軸受12、14に発生するフリクショントルクが大きくなり、伝達トルクの消費も大きく、動力伝達効率が若干低下して、車両の燃料消費も増加する。しかしながら、上記軸受剛性の増加は、アイドラギヤ8およびリダクションギヤ9とアウトプットギヤ7およびファイナルギヤ10との噛合いアライメントを良好に維持してギヤノイズの発生を抑制し、ギヤの耐久性を向上させるよう作用させることができる。   The rolling movement of the cam roller 18 on the inclined surface of the cam groove 15A increases the distance between the cam plate 15 and the disk 16 and increases the distance between the inner races of the pair of taper roller bearings 12 and 14, thereby setting preload. In addition to this, a load corresponding to an increase in the transmission torque is added to increase the bearing rigidity of the pair of tapered roller bearings 12 and 14. In this state, the bearing rigidity is increased by adding a load corresponding to the increase in the transmission torque in addition to the set preload, so that the friction torque generated in the pair of taper roller bearings 12 and 14 is increased and the transmission torque is consumed. The power transmission efficiency is slightly reduced and the fuel consumption of the vehicle is also increased. However, the increase in the bearing rigidity described above maintains good mesh alignment between the idler gear 8 and the reduction gear 9 and the output gear 7 and the final gear 10 to suppress the generation of gear noise and improve the durability of the gear. Can act.

この場合の軸受剛性の増加は、アイドラギヤ8およびリダクションギヤ9で伝達する伝達トルクに応じて増加されるものであるため、フリクショントルクが無駄に増加する訳ではなく、トルク伝達上必要とする量だけ増加されて、アイドラギヤ8およびリダクションギヤ9とアウトプットギヤ7およびファイナルギヤ10との噛合いアライメントを良好に維持してギヤノイズの発生を抑制し、ギヤの耐久性を向上させるものである。もちろん、車両速度が上昇して伝達トルクが低下された場合には、円板16およびニードル軸受13により回転許容された円板16を相対回転させて、プリロードによりカムローラ18が中央位置に転動復帰して、軸受剛性をプリロードに応じた分まで低下させ、再び、低フリクショントルクに復帰される。   The increase in bearing rigidity in this case is increased in accordance with the transmission torque transmitted by the idler gear 8 and the reduction gear 9, so that the friction torque does not increase unnecessarily, but only by the amount required for torque transmission. As a result, the meshing alignment of the idler gear 8 and the reduction gear 9 with the output gear 7 and the final gear 10 is maintained well, the occurrence of gear noise is suppressed, and the durability of the gear is improved. Of course, when the vehicle speed increases and the transmission torque decreases, the disc 16 and the disc 16 allowed to rotate by the needle bearing 13 are rotated relative to each other, and the cam roller 18 rolls back to the center position by preloading. Then, the bearing rigidity is reduced to an amount corresponding to the preload, and the low friction torque is restored again.

図3は、前進走行時における軸受剛性の増加特性と後進走行時の軸受剛性の増加特性を異ならせるよう、カム溝15Aの前進走行時に利用される傾斜面15A1の傾斜角と後進走行時に利用される傾斜面15A2の傾斜角とを相違させたものである。図示状態のカム溝15Aにおいては、矢印は回転方向を示し、前進時における転動傾斜角θ1は後進時での転動傾斜角θ2よりも小さく形成して、車両前進時の軸受剛性の増大特性を大きくして、振動および騒音に対する抑制要求が高い前進時の騒音・振動の低減性能を向上させるようにしている。   FIG. 3 is used for the reverse travel and the inclination angle of the inclined surface 15A1 used for the forward travel of the cam groove 15A so as to make the increase characteristic of the bearing rigidity during the forward travel different from the increase characteristic of the bearing rigidity during the reverse travel. The inclination angle of the inclined surface 15A2 is different. In the cam groove 15A in the illustrated state, the arrow indicates the rotation direction, and the rolling inclination angle θ1 at the time of forward movement is formed to be smaller than the rolling inclination angle θ2 at the time of backward movement, thereby increasing the bearing rigidity when the vehicle moves forward. The noise / vibration reduction performance at the time of forward movement, which is highly demanded to suppress vibration and noise, is improved.

図4は、歯車軸支持構造の別の実施例であり、一対のテーパローラ軸受12、14の外側に歯車軸11を延長し、延長部分にアイドラギヤ8とリダクションギヤ9とを配置するようにしたものである。この場合においては、歯車軸11と一体となったカムプレート15、保持器17で保持されたカムローラ18、円板16およびニードル軸受13は一対のテーパローラ軸受12、14で挟まれる部位に配置される。なお、歯車軸11を図示したアイドラギヤ8およびリダクションギヤ9の外側まで延長して、変速機ケース3Aに支持させた図示しないニードル軸受でラジアル方向に軸受支持すると、更に歯車軸11の支持剛性は向上させることができる。この実施例においても、前記した図1〜図4に示す実施例と同様に作用させて同様の効果を発揮させることができる。   FIG. 4 shows another embodiment of the gear shaft support structure in which the gear shaft 11 is extended outside the pair of taper roller bearings 12 and 14, and the idler gear 8 and the reduction gear 9 are arranged in the extended portions. It is. In this case, the cam plate 15 integrated with the gear shaft 11, the cam roller 18 held by the cage 17, the disk 16 and the needle bearing 13 are arranged at a portion sandwiched between the pair of tapered roller bearings 12 and 14. . If the gear shaft 11 is extended to the outside of the illustrated idler gear 8 and the reduction gear 9 and supported in the radial direction by a needle bearing (not shown) supported by the transmission case 3A, the support rigidity of the gear shaft 11 is further improved. Can be made. Also in this embodiment, the same effects can be exhibited by acting in the same manner as the embodiment shown in FIGS.

本実施形態においては、以下に記載する効果を奏することができる。   In the present embodiment, the following effects can be achieved.

(ア)減速歯車8、9を備える歯車軸11を対向する一対のテーパローラ軸受12、14により支持する歯車軸支持構造において、歯車軸11の一端の軸部11Aを一方のテーパローラ軸受14のインナレースに対して相対回転および軸方向に相対移動可能に支持させ、歯車軸11と一方のテーパローラ軸受14との間の歯車軸11の軸部11Aの周囲に、両者の回転位相のずれに対応して歯車軸11と一方のテーパローラ軸受14のインナレースとを互いに離反させる軸方向力を発生するカムプレート15およびカムローラ18からなる推力カム機構15〜18を配置し、推力カム機構15〜18を含めて一対のテーパローラ軸受12、14同士にプリロードを付与するようにした。   (A) In a gear shaft support structure in which a gear shaft 11 including speed reduction gears 8 and 9 is supported by a pair of tapered roller bearings 12 and 14 facing each other, an inner race of one taper roller bearing 14 is connected to a shaft portion 11A at one end of the gear shaft 11. The shaft 11A of the gear shaft 11 between the gear shaft 11 and one of the tapered roller bearings 14 is supported in correspondence to the rotational phase shift between them. Thrust cam mechanisms 15 to 18 including a cam plate 15 and a cam roller 18 that generate an axial force for separating the gear shaft 11 and the inner race of one of the tapered roller bearings 14 from each other are arranged, including the thrust cam mechanisms 15 to 18. A preload is applied to the pair of tapered roller bearings 12 and 14.

このため、プリロードを伝達トルクに応じて増減でき、走行時の運転領域に応じた最適な軸受剛性を得ることができる。即ち、発進走行や低速走行時における比較的高い伝達トルクに対しては高い軸受剛性により減速歯車の噛合いアライメントを良好に維持してギヤノイズの発生を抑制し、ギヤの耐久性を向上させることができる。また、中高速走行時における比較的低い伝達トルクに対しては低い軸受剛性によりテーパローラ軸受の転動面の面圧を下げ、回転に対するフリクショントルクを低下させて動力伝達効率を向上させ、車両の燃料消費を低減させることができる。   For this reason, the preload can be increased / decreased according to the transmission torque, and the optimum bearing rigidity can be obtained according to the operating region during traveling. That is, for relatively high transmission torque during start-up and low-speed running, high bearing rigidity maintains good meshing alignment of the reduction gears to suppress gear noise and improve gear durability. it can. Also, for relatively low transmission torque during medium and high speed driving, the bearing pressure on the rolling surface of the tapered roller bearing is lowered due to low bearing rigidity, and the friction torque against rotation is reduced to improve power transmission efficiency, thereby Consumption can be reduced.

前記推力カム機構15〜18は、端面に傾斜面で形成したカム溝15Aを円周方向に等間隔に備える歯車軸11と一体のカムプレート15と、カム溝15Aの傾斜面上を円周方向に転動可能なカムローラ18と、一方のテーパローラ軸受14のインナレースに背面が当接し、カムローラ18に転動可能に背面から接触する円板16と、から構成することができる。   The thrust cam mechanisms 15 to 18 include cam plates 15 integrated with a gear shaft 11 having cam grooves 15A formed with inclined surfaces on the end surfaces at equal intervals in the circumferential direction, and circumferential directions on the inclined surfaces of the cam grooves 15A. And a disc 16 which comes into contact with the inner race of one of the tapered roller bearings 14 and comes into contact with the cam roller 18 from the back side.

(イ)減速歯車8、9は、推力カム機構15〜18が配置された側とは反対側の他方のテーパローラ軸受12の荷重受け方向に、前進走行時のハスバ歯車による噛合い反力としての軸方向スラスト力を発生するよう構成しているため、推力カム機構15〜18と軸方向スラスト力とが合成されて、前進走行時のガタ詰め推力を効果的に増大でき、騒音・振動抑制の要求が高い前進走行時の騒音・振動が低減できる。   (A) The reduction gears 8 and 9 are used as a meshing reaction force by the helical gear during forward travel in the load receiving direction of the other tapered roller bearing 12 on the side opposite to the side where the thrust cam mechanisms 15 to 18 are disposed. Since the axial thrust force is generated, the thrust cam mechanisms 15 to 18 and the axial thrust force are combined to effectively increase the backlash thrust during forward traveling, thereby suppressing noise and vibration. Noise and vibration during forward traveling with high demands can be reduced.

(ウ)減速歯車8、9は、外部歯車7から駆動回転されるアイドラギヤ8と別の外部歯車10を駆動回転するリダクションギヤ9とからなり、他方のテーパローラ軸受12にアイドラギヤ8より隣接させてリダクションギヤ9を配置して備えるため、噛合い反力の大きい歯車であるリダクションギヤ9の支持剛性を高くでき、騒音・振動の低減に対して有利となる。   (C) The reduction gears 8 and 9 comprise an idler gear 8 driven and rotated from the external gear 7 and a reduction gear 9 driven and rotated by another external gear 10, and the reduction gears 8 and 9 are disposed adjacent to the other tapered roller bearing 12 from the idler gear 8. Since the gear 9 is disposed and provided, the support rigidity of the reduction gear 9 which is a gear having a large meshing reaction force can be increased, which is advantageous for reducing noise and vibration.

(エ)推力カム機構15〜18のカムローラ18は、カムプレート15と円板16との間に位置する歯車軸11の軸部11A外周に遊嵌する保持器17に円周方向等間隔に保持されているため、保持器17の支持を廉価にできる。   (D) The cam rollers 18 of the thrust cam mechanisms 15 to 18 are held at equal intervals in the circumferential direction by a cage 17 loosely fitted on the outer periphery of the shaft portion 11A of the gear shaft 11 located between the cam plate 15 and the disc 16. Thus, the support of the cage 17 can be made inexpensive.

(オ)推力カム機構15〜18の円板16は、カムローラ18に背面から平坦な面により転動可能に接触するため、カム溝15Aがカムプレート15の一方のみでよく、廉価に構成できる。   (E) Since the disc 16 of the thrust cam mechanisms 15 to 18 comes into contact with the cam roller 18 so as to be able to roll from the back surface by a flat surface, the cam groove 15A is only required to be one of the cam plates 15 and can be constructed at low cost.

(カ)推力カム機構15〜18のカム溝15Aは、前進走行時にカムローラ18と接触する斜面15A1の傾斜角を後進走行時にカムローラ18と接触する斜面15A2の傾斜角に対して小さい傾斜角とすることで、前進走行時のガタ詰め推力を増大でき、騒音・振動の要求が高い前進走行時の騒音・振動を低減できる。   (F) The cam grooves 15A of the thrust cam mechanisms 15 to 18 have an inclination angle of the inclined surface 15A1 that contacts the cam roller 18 during forward traveling smaller than the inclination angle of the inclined surface 15A2 that contacts the cam roller 18 during backward traveling. As a result, the backlash thrust during forward traveling can be increased, and the noise / vibration during forward traveling can be reduced with high demands for noise and vibration.

なお、上記実施形態において、カム機構15〜18として、カム溝15Aを備えたカムプレート15と平板状の円板16とでカムローラ18を挟むものについて説明したが、図示はしないが、円板のカムローラと接する端面にもカムプレートと同様にカム面を設けるものであってもよい。   In the above-described embodiment, the cam mechanisms 15 to 18 have been described in which the cam roller 18 is sandwiched between the cam plate 15 provided with the cam groove 15A and the flat disk 16. A cam surface may be provided on the end surface in contact with the cam roller in the same manner as the cam plate.

本発明の一実施形態を示す歯車軸支持構造の概略構成図。The schematic block diagram of the gear shaft support structure which shows one Embodiment of this invention. 同じくカム機構を構成するコロおよび保持器の正面図。The front view of the roller which comprises a cam mechanism, and a holder | retainer similarly. カム機構の側面図。The side view of a cam mechanism. 歯車軸支持構造の別の実施例の概略構成図。The schematic block diagram of another Example of a gear shaft support structure. 歯車軸支持構造の適用例のギヤトレーンを示すスケルトン図。The skeleton figure which shows the gear train of the application example of a gear shaft support structure.

符号の説明Explanation of symbols

1 発進要素
2 前後進切換機構
3 変速機
4 減速歯車組
5 駆動車輪
6 ドライブシャフト
7 アウトプットギヤ
8 アイドラギヤ
9 リダクションギヤ
10 ファイナルギヤ
11 歯車軸
12、14 テーパローラ軸受
13 ニードル軸受
15 カムプレート
15A カム溝
16 円板
17 保持器
18 カムローラ
DESCRIPTION OF SYMBOLS 1 Starting element 2 Forward / reverse switching mechanism 3 Transmission 4 Reduction gear set 5 Drive wheel 6 Drive shaft 7 Output gear 8 Idler gear 9 Reduction gear 10 Final gear 11 Gear shaft 12, 14 Taper roller bearing 13 Needle bearing 15 Cam plate 15A Cam groove 16 disc 17 cage 18 cam roller

Claims (7)

減速歯車を備える歯車軸を対向する一対のテーパローラ軸受により支持する歯車軸支持構造において、
前記歯車軸の一端の軸部を一方のテーパローラ軸受のインナレースに対して相対回転および軸方向に相対移動可能に支持させ、
前記歯車軸と一方のテーパローラ軸受との間の歯車軸の軸部の周囲に、両者の回転位相のずれに対応して歯車軸と一方のテーパローラ軸受のインナレースとを互いに離反させる軸方向力を発生するカムプレートおよびカムローラからなる推力カム機構を配置し、
前記推力カム機構を含めて一対のテーパローラ軸受同士にプリロードを付与するようにしたことを特徴とする歯車軸支持構造。
In a gear shaft support structure in which a gear shaft including a reduction gear is supported by a pair of tapered roller bearings facing each other,
The shaft portion at one end of the gear shaft is supported so as to be relatively rotatable and relatively movable in the axial direction with respect to the inner race of one taper roller bearing,
Around the shaft portion of the gear shaft between the gear shaft and the one taper roller bearing, an axial force that separates the gear shaft and the inner race of the one taper roller bearing from each other in response to a shift in the rotational phase of the two. Place the thrust cam mechanism consisting of the cam plate and cam roller to generate,
A gear shaft support structure characterized by preloading a pair of tapered roller bearings including the thrust cam mechanism.
前記推力カム機構は、端面に傾斜面で形成したカム溝を円周方向に等間隔に備える歯車軸と一体のカムプレートと、カム溝の傾斜面上を円周方向に転動可能なカムローラと、一方のテーパローラ軸受のインナレースに背面が当接し、カムローラに転動可能に背面から接触する円板と、から構成したことを特徴とする請求項1に記載の歯車軸支持構造。   The thrust cam mechanism includes a cam plate integrally formed with a gear shaft having cam grooves formed with inclined surfaces on the end surface at equal intervals in the circumferential direction, a cam roller capable of rolling on the inclined surfaces of the cam grooves in the circumferential direction, and 2. The gear shaft support structure according to claim 1, further comprising: a disk whose back surface is in contact with an inner race of one of the taper roller bearings and in contact with the cam roller from the back surface so as to be able to roll. 前記減速歯車は、推力カム機構が配置された側とは反対側の他方のテーパローラ軸受の荷重受け方向に、前進走行時のハスバ歯車による噛合い反力としての軸方向スラスト力を発生するよう構成していることを特徴とする請求項1または請求項2に記載の歯車軸支持構造。   The reduction gear is configured to generate an axial thrust force as a meshing reaction force by the helical gear during forward traveling in the load receiving direction of the other tapered roller bearing on the side opposite to the side where the thrust cam mechanism is disposed. The gear shaft support structure according to claim 1 or 2, wherein the gear shaft support structure is provided. 前記減速歯車は、外部歯車から駆動回転されるアイドラギヤと別の外部歯車を駆動回転するリダクションギヤとからなり、他方のテーパローラ軸受にアイドラギヤより隣接させてリダクションギヤを配置して備えることを特徴とする請求項1から請求項3のいずれか一つに記載の歯車軸支持構造。   The reduction gear includes an idler gear that is driven and rotated by an external gear, and a reduction gear that is driven and rotated by another external gear, and the reduction gear is disposed adjacent to the other tapered roller bearing from the idler gear. The gear shaft support structure according to any one of claims 1 to 3. 前記推力カム機構のカムローラは、カムプレートと円板との間に位置する歯車軸の軸部外周に遊嵌する保持器に円周方向等間隔に保持されていることを特徴とする請求項2から請求項4のいずれか一つに記載の歯車軸支持構造。   The cam roller of the thrust cam mechanism is held at equal intervals in the circumferential direction by a cage that is loosely fitted on the outer periphery of the shaft portion of the gear shaft located between the cam plate and the disc. The gear shaft support structure according to claim 1. 前記推力カム機構の円板は、カムローラに背面から平坦な面により転動可能に接触することを特徴とする請求項2から請求項5のいずれか一つに記載の歯車軸支持構造。   The gear shaft support structure according to any one of claims 2 to 5, wherein the disc of the thrust cam mechanism is in contact with the cam roller so as to be able to roll on a flat surface from the back surface. 前記推力カム機構のカム溝は、前進走行時にカムローラと接触する斜面の傾斜角を後進走行時にカムローラと接触する斜面の傾斜角に対して小さい傾斜角とすることを特徴とする請求項2から請求項6のいずれか一つに記載の歯車軸支持構造。   The cam groove of the thrust cam mechanism has an inclination angle smaller than an inclination angle of a slope contacting with the cam roller during backward running with respect to an inclination angle of the slope contacting with the cam roller during backward running. 7. The gear shaft support structure according to any one of items 6.
JP2004138165A 2004-05-07 2004-05-07 Gear shaft support structure Abandoned JP2005321004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004138165A JP2005321004A (en) 2004-05-07 2004-05-07 Gear shaft support structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004138165A JP2005321004A (en) 2004-05-07 2004-05-07 Gear shaft support structure

Publications (1)

Publication Number Publication Date
JP2005321004A true JP2005321004A (en) 2005-11-17

Family

ID=35468430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004138165A Abandoned JP2005321004A (en) 2004-05-07 2004-05-07 Gear shaft support structure

Country Status (1)

Country Link
JP (1) JP2005321004A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013514501A (en) * 2009-12-17 2013-04-25 ダイムラー・アクチェンゲゼルシャフト Mounting device for driving system of automobile
JP2014040888A (en) * 2012-08-23 2014-03-06 Nsk Ltd Rolling bearing device
CN110296141A (en) * 2019-06-28 2019-10-01 广西玉柴机器股份有限公司 A kind of gear shaft of lightweight structure

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013514501A (en) * 2009-12-17 2013-04-25 ダイムラー・アクチェンゲゼルシャフト Mounting device for driving system of automobile
US8888377B2 (en) 2009-12-17 2014-11-18 Daimler Ag Bearing mounting arrangement for a drive train of a motor vehicle
JP2014040888A (en) * 2012-08-23 2014-03-06 Nsk Ltd Rolling bearing device
CN110296141A (en) * 2019-06-28 2019-10-01 广西玉柴机器股份有限公司 A kind of gear shaft of lightweight structure
CN110296141B (en) * 2019-06-28 2024-04-05 广西玉柴机器股份有限公司 Gear shaft with light weight structure

Similar Documents

Publication Publication Date Title
JP2010106957A (en) Belt-type continuously variable transmission
JP2013044406A (en) Electric transmission and drive device for electric vehicle
JP2010127382A (en) Belt type continuously variable transmission
JP2003314645A (en) Toroidal type continuously variable transmission and continuously variable transmission device
JP5023030B2 (en) Friction clutch fastening mechanism and differential device including the mechanism
JP4338796B2 (en) Friction clutch fastening mechanism and differential device including the mechanism
JP2005321004A (en) Gear shaft support structure
JP2014040885A (en) Friction roller-type change gear
JP2009144891A (en) Final reduction gear
JP2006312973A (en) Loading cam apparatus, toroidal-type continuously variable transmission and friction transmission
JP2004257533A (en) Toroidal continuously variable transmission and its device
JP2008196570A (en) Rolling bearing device
JP2004324844A (en) Needle bearing and its retainer
JP2004125120A (en) Toroidal type continuously-variable transmission and continuously-variable speed change device
JP4632234B2 (en) Output shaft support structure of transmission
JP4968082B2 (en) Toroidal continuously variable transmission
JP5867132B2 (en) Friction roller reducer
JP2014040892A (en) Frictional roller type transmission
JP2008082360A (en) Toroidal type continuously variable transmission
JP4797860B2 (en) Continuously variable transmission
JP4978557B2 (en) Friction wheel type continuously variable transmission
JP2013072473A (en) Differential device
JP3161260B2 (en) Gear transmission
JP2011112089A (en) Toroidal continuously variable transmission
JP2008215478A (en) Friction type transmission

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070402

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20081211