JP2005310861A - Sintered silicon nitride film forming method - Google Patents

Sintered silicon nitride film forming method Download PDF

Info

Publication number
JP2005310861A
JP2005310861A JP2004122536A JP2004122536A JP2005310861A JP 2005310861 A JP2005310861 A JP 2005310861A JP 2004122536 A JP2004122536 A JP 2004122536A JP 2004122536 A JP2004122536 A JP 2004122536A JP 2005310861 A JP2005310861 A JP 2005310861A
Authority
JP
Japan
Prior art keywords
film
silicon
gas
silicon carbonitride
silicon nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004122536A
Other languages
Japanese (ja)
Inventor
Tatsuhiro Kurasawa
辰博 倉沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2004122536A priority Critical patent/JP2005310861A/en
Publication of JP2005310861A publication Critical patent/JP2005310861A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sintered silicon nitride film forming method that enables deposition of a carbonized silicon nitride film on a large base or a of inferior heat resistant base, without the base or film receiving plasma damages. <P>SOLUTION: In the sintered silicon nitride film forming method, a gas containing at least silicon, carbon, and nitrogen atoms is contacted to a heating body having a temperature exceeding 400°C, to react or dissolve at least part of the gas and to deposit a film, on a base held at a lower temperature than the heating body, and the gas containing at least silicon, carbon, and nitrogen atoms preferably contains hydrogen atoms, and the sintered silicon nitride film contains hydrogen. The carbonized silicon nitride film formed by the method is also presented. Furthermore, a copper wiring structure is provided, in which the sintered silicon nitride film is used for a copper diffusion barrier film. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、触媒CVDにより基材上に炭化窒化珪素膜を形成する方法、およびその方法により得られた炭化窒化珪素膜に関する。   The present invention relates to a method for forming a silicon carbonitride film on a substrate by catalytic CVD, and a silicon carbonitride film obtained by the method.

半導体装置の多層配線等の配線構造では、近年配線間距離や配線幅が1μm以下の配線構造が必要とされており、寄生容量の増加と配線抵抗の増大による配線遅延の増加が問題になっている。配線遅延の低減のために、従来使用されていたアルミニウム配線に代えてアルミニウムより低抵抗の銅配線の採用が進んでいる。しかしながら、従来電気絶縁膜に広く使用されてきた酸化珪素には銅拡散バリア性がないため、銅配線を採用する場合、銅配線に接する膜に銅拡散バリア性が必要となっている。窒化珪素膜は銅拡散バリア性を有するため、銅拡散バリア性と絶縁性を必要とされる部分で用いられてきたが、比誘電率が高いため、銅配線採用により配線抵抗を下げても配線の寄生容量が大きくなってしまい、結果として配線遅延をあまり低減できないという問題があった。そこで炭化窒化珪素膜の銅拡散バリア膜への使用が検討され、炭化窒化珪素膜が窒化珪素膜と同等の銅拡散バリア性を有しながら、窒化珪素膜よりも低誘電率であり、そのうえ、酸化珪素膜よりもリーク電流の小さな膜であることがわかり、半導体装置の多層配線等の配線遅延を低減させることが必要な銅配線構造の銅拡散バリア膜として注目されている。   2. Description of the Related Art In recent years, a wiring structure such as a multilayer wiring of a semiconductor device has required a wiring structure having an inter-wiring distance and a wiring width of 1 μm or less, and an increase in wiring capacitance due to an increase in parasitic capacitance and wiring resistance has become a problem. Yes. In order to reduce the wiring delay, a copper wiring having a resistance lower than that of aluminum has been adopted instead of the conventionally used aluminum wiring. However, since silicon oxide, which has been widely used for electrical insulating films in the past, does not have a copper diffusion barrier property, when a copper wiring is employed, a copper diffusion barrier property is required for a film in contact with the copper wiring. Silicon nitride films have copper diffusion barrier properties, so they have been used in parts that require copper diffusion barrier properties and insulation properties. As a result, there is a problem that the wiring delay cannot be reduced so much. Therefore, the use of a silicon carbonitride film as a copper diffusion barrier film has been studied, and while the silicon carbonitride film has a copper diffusion barrier property equivalent to that of a silicon nitride film, it has a lower dielectric constant than the silicon nitride film, It can be seen that the film has a smaller leakage current than that of the silicon oxide film, and is attracting attention as a copper diffusion barrier film having a copper wiring structure that needs to reduce wiring delay of a multilayer wiring or the like of a semiconductor device.

そのほかにも、従来から炭化窒化珪素膜は、パッシベーション膜、エッチストップ膜、表面保護膜、ガスバリア膜など様々な分野に有用であることが知られており、シリコンウエハやその加工体等の基材上に、炭化窒化珪素膜を形成させ用いられている。   In addition, silicon carbonitride films are conventionally known to be useful in various fields such as passivation films, etch stop films, surface protective films, gas barrier films, and substrates such as silicon wafers and processed products thereof. On top, a silicon carbonitride film is formed and used.

この炭化窒化珪素膜の成膜方法としては、例えば、熱CVD法(特許文献1)やプラズマCVD法(特許文献2)等が知られている。   As a method for forming this silicon carbonitride film, for example, a thermal CVD method (Patent Document 1), a plasma CVD method (Patent Document 2), and the like are known.

従来の熱CVD法(ここでいう熱CVD法とは、基材自体を加熱し、基材表面上で気相原料を分解、反応して膜を堆積させる成膜法をいう)で炭化窒化珪素膜を基材上に成膜する場合、原料ガスが高温でなければ分解しないため、基材自体の温度を400℃より高温に上げる必要があったが、樹脂等の基材は400℃の耐熱性を持たないため、熱CVD法で樹脂フィルム上に炭化窒化珪素膜を形成することはできなかった。また、金属配線を含むシリコン基板からなる半導体装置を基材として熱CVDで炭化窒化珪素を成膜する場合、配線金属が高温により拡散してトランジスタの機能を阻害するなどの問題があった。   Silicon carbonitride by the conventional thermal CVD method (the thermal CVD method here refers to a film forming method in which the base material itself is heated and the vapor phase raw material is decomposed and reacted on the surface of the base material to deposit a film). When a film is formed on a base material, it does not decompose unless the source gas is at a high temperature, so the temperature of the base material itself has to be raised to a temperature higher than 400 ° C. Therefore, a silicon carbonitride film could not be formed on the resin film by the thermal CVD method. Further, when a silicon carbon nitride film is formed by thermal CVD using a semiconductor device made of a silicon substrate including a metal wiring as a base material, there is a problem that the wiring metal diffuses at a high temperature and inhibits the function of the transistor.

一方、プラズマCVD法は、高周波電源等を用いてガスをプラズマ状態として原料分解物を基材上に成膜するため、基材の温度が400℃以下でも、炭化窒化珪素膜を成膜することができるという利点がある。しかしながら、プラズマCVDで成膜した場合、膜や基材がプラズマによりダメージを受けるという問題があった。また、大面積の基材に成膜する場合、プラズマを均一に形成することが難しいため、膜厚や膜質を均一にすることが難しいという問題があった。   On the other hand, in the plasma CVD method, since a raw material decomposition product is formed on a base material with a gas in a plasma state using a high-frequency power source or the like, a silicon carbonitride film is formed even when the temperature of the base material is 400 ° C. or lower. There is an advantage that can be. However, when the film is formed by plasma CVD, there is a problem that the film and the substrate are damaged by the plasma. Further, when a film is formed on a large-area substrate, it is difficult to form plasma uniformly, and thus there is a problem that it is difficult to make the film thickness and film quality uniform.

これらの問題を解決する方法として触媒CVD法が開発されている。触媒CVD法は、ガスの少なくとも一部を基材以外の加熱体により反応または分解し、加熱体よりも低温の基材上に膜を形成させる方法である(特許文献3、4)。原料ガスの分解・反応工程と成膜工程が分離されており、成膜工程の基材温度を分解・反応工程の温度よりも低くすることができるため、熱CVDほど基材の温度を上げなくても成膜が可能である。また、プラズマCVDのようなプラズマダメージがなく、しかも、加熱体の数や分布を調整することで大型の基材にも均質に成膜できるという利点がある。この触媒CVDで成膜した膜組成としては、例えば、珪素膜、フッ素含有珪素膜、炭化珪素膜、フッ素含有炭化珪素膜、酸化珪素膜、窒化珪素膜、酸化窒化珪素膜(特許文献3、4)などが知られているが、炭化窒化珪素膜を形成させる方法は知られていない。
EP0540084A号公報 特開平9−186153号公報 特開昭63−40314号公報 特開昭61−276976号公報
Catalytic CVD has been developed as a method for solving these problems. The catalytic CVD method is a method in which at least a part of a gas is reacted or decomposed by a heating body other than the base material to form a film on the base material having a temperature lower than that of the heating body (Patent Documents 3 and 4). Since the source gas decomposition / reaction process and the film formation process are separated, the substrate temperature in the film formation process can be made lower than the temperature in the decomposition / reaction process, so the temperature of the substrate does not increase as much as thermal CVD. Even film formation is possible. Further, there is an advantage that there is no plasma damage like plasma CVD, and that a film can be uniformly formed on a large substrate by adjusting the number and distribution of heating elements. Examples of film compositions formed by this catalytic CVD include silicon films, fluorine-containing silicon films, silicon carbide films, fluorine-containing silicon carbide films, silicon oxide films, silicon nitride films, and silicon oxynitride films (Patent Documents 3 and 4). However, a method for forming a silicon carbonitride film is not known.
EP0540084A publication Japanese Patent Laid-Open No. 9-186153 JP 63-40314 A JP-A 61-276976

本発明の目的は、炭化窒化珪素膜の新規な形成方法を提供することである。   An object of the present invention is to provide a novel method for forming a silicon carbonitride film.

本発明者は、前記の課題を解決するため検討した結果、触媒CVD法により炭化窒化珪素膜を成膜できることを見出し、本発明を完成した。   As a result of investigations to solve the above problems, the present inventor has found that a silicon carbonitride film can be formed by catalytic CVD, and has completed the present invention.

すなわち、本発明は、
(1)少なくとも珪素、炭素、窒素原子を含むガスを温度が400℃を超える加熱体に接触させて該ガスの少なくとも一部を反応または分解し、該加熱体よりも低温に保持された基材上に膜を形成することを特徴とする炭化窒化珪素膜の形成方法、好ましくは
(2)少なくとも珪素、炭素、窒素原子を含むガスが水素原子を含み、該炭化窒化珪素膜が水素を含むものである(1)記載の炭化窒化珪素膜の形成方法、より好ましくは、
(3)該ガスが、有機珪素化合物とアミン化合物を含むものである(1)または(2)記載の炭化窒化珪素膜の形成方法、より更に好ましくは
(4)該アミン化合物が、アンモニアまたは(CHNH3−y(式中、yは、1≦y≦3を満たす整数である)で表されるメチルアミン類である(3)記載の炭化窒化珪素膜の形成方法、より更に好ましくは
(5)該有機珪素化合物が、R4−xSiH(式中、xは、0≦x≦3を満たす整数であり、Rは炭化水素基である)で表される有機シラン類である(3)記載の炭化窒化珪素膜の形成方法、また、好ましくは、
(6)該ガスが、窒素含有有機珪素化合物を含む(1)または(2)記載の炭化窒化珪素膜の形成方法、加えて
(7)(1)〜(6)記載の方法により形成された炭化窒化珪素膜、更に、
(8)(7)記載の炭化窒化珪素膜を銅拡散バリア膜に用いた銅配線構造に関するものである。
That is, the present invention
(1) A base material in which a gas containing at least silicon, carbon, and nitrogen atoms is brought into contact with a heating body having a temperature exceeding 400 ° C. to react or decompose at least a part of the gas and is held at a lower temperature than the heating body. A method of forming a silicon carbonitride film characterized by forming a film thereon, preferably (2) a gas containing at least silicon, carbon, and nitrogen atoms contains hydrogen atoms, and the silicon carbonitride film contains hydrogen (1) The method for forming a silicon carbonitride film according to (1), more preferably,
(3) The method of forming a silicon carbonitride film according to (1) or (2), wherein the gas contains an organosilicon compound and an amine compound, more preferably (4) the amine compound is ammonia or (CH 3 ) Y NH 3-y (wherein y is an integer satisfying 1 ≦ y ≦ 3), and the method of forming a silicon carbonitride film according to (3), more preferably methylamines (5) The organosilicon compound is an organic silane represented by R 4-x SiH x (wherein x is an integer satisfying 0 ≦ x ≦ 3 and R is a hydrocarbon group). (3) The method for forming a silicon carbonitride film according to (3), preferably,
(6) The gas is formed by the method of forming a silicon carbonitride film described in (1) or (2) containing a nitrogen-containing organosilicon compound, and in addition, the method described in (7) (1) to (6) A silicon carbonitride film, and
(8) The present invention relates to a copper wiring structure using the silicon carbonitride film described in (7) as a copper diffusion barrier film.

本発明の膜形成方法を用いることによって、基材や膜がプラズマダメージを受けることなく、大型の基材や耐熱性の劣る基材に炭化窒化珪素膜を成膜することができる。また、本発明で得られる炭化窒化珪素膜は、低誘電率、高絶縁性と銅拡散バリア性を有するため、前記特徴を生かしたまま、銅配線の拡散バリア膜として使用することができる。   By using the film forming method of the present invention, a silicon carbonitride film can be formed on a large base material or a base material having poor heat resistance without being damaged by plasma. Moreover, since the silicon carbonitride film obtained by the present invention has a low dielectric constant, a high insulating property, and a copper diffusion barrier property, it can be used as a diffusion barrier film for copper wiring while taking advantage of the above characteristics.

以下に本発明について詳細に説明する。
本発明に用いる膜の形成方法は、触媒CVDと呼ばれる方法であり、ガスの少なくとも一部を基材以外の加熱体により反応または分解し、加熱体よりも低温の基材上に膜を形成させる方法である。
The present invention is described in detail below.
The film forming method used in the present invention is a method called catalytic CVD, in which at least a part of the gas is reacted or decomposed by a heating body other than the base material to form a film on the base material at a temperature lower than that of the heating body. Is the method.

本発明の炭化窒化珪素膜とは、炭素、窒素、珪素を主成分とする膜であれば特に限定されるものでなく、より更に好ましくは水素を含有するものである。膜に水素を含有する方が、低密度化が可能であり、また、膜の比誘電率を低下できるため、好ましい。それ以外に微量の前記以外の元素を含有する膜も含んでいても問題なく、本発明に包含されるものとする。好ましくは、膜中の全原子に占める炭素、窒素、珪素の合計の割合が50%以上100%以下であり、膜中の全原子に占める炭素、窒素、珪素、水素の合計の割合が、90%以上100%以下であることが好ましい。また、銅拡散バリア膜として用いる場合は、そのバリア性を向上させるために、酸素を含まないことが好ましく、珪素、炭素、窒素、水素のみからなる膜であることがより好ましい。   The silicon carbonitride film of the present invention is not particularly limited as long as it is a film mainly composed of carbon, nitrogen, and silicon, and more preferably contains hydrogen. It is preferable to contain hydrogen in the film because the density can be reduced and the relative dielectric constant of the film can be reduced. In addition, a film containing a trace amount of an element other than the above is also included in the present invention without any problem. Preferably, the total ratio of carbon, nitrogen, and silicon in all atoms in the film is 50% to 100%, and the total ratio of carbon, nitrogen, silicon, and hydrogen in all atoms in the film is 90%. % Or more and 100% or less is preferable. Further, when used as a copper diffusion barrier film, it is preferable not to contain oxygen in order to improve the barrier property, and it is more preferable to use a film made only of silicon, carbon, nitrogen, and hydrogen.

本発明の具体的態様を示すと、用いる原料ガスの少なくとも一部を、温度が400℃を超える加熱体、より好ましくは1200〜2000℃の加熱体により反応または分解した後、該加熱体よりも低温に保持された、より好ましくは−40〜150℃に保持された基材上に導入し、該基材上に膜を形成する方法が挙げられる。   In a specific embodiment of the present invention, at least a part of the raw material gas used is reacted or decomposed by a heating body having a temperature exceeding 400 ° C., more preferably a heating body having a temperature of 1200 to 2000 ° C. A method of introducing a film on a base material held at a low temperature, more preferably on a base material maintained at −40 to 150 ° C., is mentioned.

加熱体としては、少なくとも400℃以上の耐熱を有する部材を用いることが好ましく、特に限定されないが、好ましくは融点が1000℃以上の物質であり、例えば、タングステン、モリブデン、白金、パラジウム、タンタル、チタン、ニッケル、コバルト、鉄、マンガン、ケイ素などの金属やその合金、シリカ、窒化ケイ素、炭化ケイ素、窒化アルミ、窒化ホウ素、アルミナ等のセラミック材が挙げられる。タングステン、白金、モリブデンを用いることが特に好ましい。   As the heating body, it is preferable to use a member having a heat resistance of at least 400 ° C., and is not particularly limited, but is preferably a substance having a melting point of 1000 ° C. or more, for example, tungsten, molybdenum, platinum, palladium, tantalum, titanium Examples thereof include metals such as nickel, cobalt, iron, manganese and silicon and alloys thereof, and ceramic materials such as silica, silicon nitride, silicon carbide, aluminum nitride, boron nitride and alumina. It is particularly preferable to use tungsten, platinum, or molybdenum.

加熱体の形態は特に限定されず、ワイアー状、コイル状、メッシュ状、多孔質板状、ブラシ状などを用いることができる。また、加熱体は複数材料の複合体であってもよい。   The form of the heating body is not particularly limited, and a wire shape, a coil shape, a mesh shape, a porous plate shape, a brush shape, or the like can be used. The heating body may be a composite of a plurality of materials.

本発明の加熱体の温度は、少なくとも400℃以上が必要である。ガスを効率よく分解するためには、加熱体の蒸気圧が高くならない範囲でできるだけ高温にすることが好ましい。例えば、タングステンを加熱体に用いる場合は、1200〜2000℃で使用することが好ましい。   The temperature of the heating body of the present invention needs to be at least 400 ° C. or higher. In order to decompose the gas efficiently, it is preferable to make the temperature as high as possible within a range where the vapor pressure of the heating element does not increase. For example, when tungsten is used for the heating body, it is preferably used at 1200 to 2000 ° C.

本発明に用いられるガスは、構成化合物中に少なくとも珪素、炭素、窒素を含むガスであれば、化合物の構成は限定されないが、膜の密度を低下させ、膜の比誘電率を低下させるためには、好ましくは更に水素原子を含むものである。炭化窒化珪素膜の銅拡散バリア性を向上させるために、より好ましくは酸素原子を含まないガスを用いて、酸素を含まない炭化窒化珪素膜を得ることが特に好ましい。   As long as the gas used in the present invention is a gas containing at least silicon, carbon, and nitrogen in the constituent compound, the constitution of the compound is not limited, but in order to reduce the film density and the relative dielectric constant of the film Preferably further contains a hydrogen atom. In order to improve the copper diffusion barrier property of the silicon carbonitride film, it is particularly preferable to obtain a silicon carbonitride film that does not contain oxygen, more preferably using a gas that does not contain oxygen atoms.

ガス中の珪素原子に対する炭素原子の原子比は、10以下を満たすものであることが好ましい。より好ましくは4以下、更により好ましくは3以下である。また、シラン、ハロゲン化シラン等の無機シランは、空気と容易に反応するなど安全上取り扱いが難しいため、具体的には有機珪素化合物とアミン化合物を含むガスであるか、あるいは窒素含有有機珪素化合物を含むガスであることが好ましい。より好ましくは、有機珪素化合物とアミン化合物を含むガスである。   The atomic ratio of carbon atoms to silicon atoms in the gas preferably satisfies 10 or less. More preferably, it is 4 or less, and still more preferably 3 or less. In addition, inorganic silanes such as silanes and halogenated silanes are difficult to handle for safety because they react easily with air. Specifically, they are gases containing organosilicon compounds and amine compounds, or nitrogen-containing organosilicon compounds. It is preferable that the gas contains. More preferably, the gas contains an organosilicon compound and an amine compound.

アミン化合物としては、好ましくはアンモニアまたは(CHNH3−y(式中、yは、1≦y≦3を満たす整数である)で表されるメチルアミン類等であり、具体例として、アンモニア、モノメチルアミン、ジメチルアミン、トリメチルアミン等が挙げられる。好ましくは炭素を含有しないアンモニアである。これらを用いると加熱体の炭化による劣化や変質を抑制できるため、本発明の好ましい態様である。 The amine compound is preferably methylamines represented by ammonia or (CH 3 ) y NH 3-y (wherein y is an integer satisfying 1 ≦ y ≦ 3). Ammonia, monomethylamine, dimethylamine, trimethylamine and the like. Preferred is ammonia that does not contain carbon. When these are used, deterioration and alteration due to carbonization of the heating body can be suppressed, and therefore, this is a preferred embodiment of the present invention.

有機珪素化合物としては、好ましくはR4−xSiH(式中、xは、0≦x≦3を満たす整数であり、Rは炭化水素基である)で表される有機シラン類等であり、例えば、メチルシラン、ジメチルシラン、トリメチルシラン、テトラメチルシラン、エチルシラン、ジエチルシラン、トリエチルシラン、テトラエチルシラン、エチルトリメチルシラン、ジエチルジメチルシラン、トリエチルメチルシラン、ビニルシラン、ジビニルシラン、トリビニルシラン、テトラビニルシラン、メチルビニルシラン、ジメチルビニルシラン、トリメチルビニルシラン、フェニルシラン、フェニルメチルシラン、フェニルジメチルシラン、フェニルトリメチルシラン、メチルフェニルビニルシラン、ジメチルフェニルビニルシラン等が挙げられる。好ましくはメチルシラン、ジメチルシラン、トリメチルシランである。これらを用いると、加熱体の炭化を抑制できるため、好ましい。 The organosilicon compound is preferably an organic silane represented by R 4-x SiH x (wherein x is an integer satisfying 0 ≦ x ≦ 3 and R is a hydrocarbon group). For example, methylsilane, dimethylsilane, trimethylsilane, tetramethylsilane, ethylsilane, diethylsilane, triethylsilane, tetraethylsilane, ethyltrimethylsilane, diethyldimethylsilane, triethylmethylsilane, vinylsilane, divinylsilane, trivinylsilane, tetravinylsilane, methyl Examples include vinyl silane, dimethyl vinyl silane, trimethyl vinyl silane, phenyl silane, phenyl methyl silane, phenyl dimethyl silane, phenyl trimethyl silane, methyl phenyl vinyl silane, and dimethyl phenyl vinyl silane. Preferred are methylsilane, dimethylsilane, and trimethylsilane. Use of these is preferable because carbonization of the heating body can be suppressed.

また、ガス中の珪素、炭素、窒素源として有機珪素化合物とアミン化合物のみを使用することがとくに好ましい。有機珪素化合物とアミン化合物の使用割合は、ガス中の珪素原子に対する窒素原子の原子比が0.2以上、より好ましくは2〜30にすることが好ましい。   Further, it is particularly preferable to use only an organosilicon compound and an amine compound as a source of silicon, carbon and nitrogen in the gas. The use ratio of the organosilicon compound and the amine compound is such that the atomic ratio of nitrogen atoms to silicon atoms in the gas is 0.2 or more, more preferably 2 to 30.

また原料ガスとして、窒素含有有機珪素化合物を含むガスも使用することが可能である。その場合の窒素含有有機珪素化合物としては、例えば、ヘキサメチルジシラザン、テトラメチルジシラザン、ヘプタメチルトリシラザン、(ジエチルアミノ)トリメチルシラン、(ジメチルアミノ)トリメチルシラン、(ジメチルアミノ)ジメチルフェニルシラン、(ジメチルアミノ)ジメチルビニルシラン、(ジメチルアミノ)トリエチルシラン、(イソプロピルアミノ)トリメチルシラン、ビス(イソプロピルアミノ)ジメチルシラン、テトラキス(ジメチルアミノ)シラン、トリス(ジメチルアミノ)シラン、ビス(ジメチルアミノ)メチルシラン、ビス(ジエチルアミノ)メチルシラン、ビス(ジメチルアミノ)フェニルシラン、ビス(ターシャリーブチルアミノ)シラン、ビス(イソプロピルアミノ)シラン、ビス(ジメチルアミノ)エチルシラン、ビス(ジエチルアミノ)エチルシラン、ヘキサメチルシクロトリシラザン、オクタメチルシクロテトラシラザン、デカメチルシクロペンタシラザン、アミノトリメチルシラン、アミノトリエチルシラン、ジターシャリーブチルジアミノシラン、ターシャリーブチルフェニルジアミノシラン、(メチルアミノ)トリメチルシラン、(エチルアミノ)トリメチルシラン、(エチルアミノ)トリエチルシラン、(フェニルアミノ)トリメチルシラン、ビス(トリメチルシリル)メチルアミン、ヘキサエチルジシラザン、ヘキサエチルシクロトリシラザン、オクタエチルシクロテトラシラザン、トリメチルシリルシアナニド等がある。ヘキサメチルジシラザン、オクタメチルトリシラザン等のメチル基含有シラザン、ビス(ターシャリーブチルアミノ)シラン等のモノアルキルアミノ基含有シラン、トリス(ジメチルアミノ)シラン等のジアルキルアミノ基含有シランは、加熱体の炭化による劣化や変質を抑制できるため、本発明の好ましい態様である。   A gas containing a nitrogen-containing organosilicon compound can also be used as the source gas. Examples of nitrogen-containing organosilicon compounds in this case include hexamethyldisilazane, tetramethyldisilazane, heptamethyltrisilazane, (diethylamino) trimethylsilane, (dimethylamino) trimethylsilane, (dimethylamino) dimethylphenylsilane, ( Dimethylamino) dimethylvinylsilane, (dimethylamino) triethylsilane, (isopropylamino) trimethylsilane, bis (isopropylamino) dimethylsilane, tetrakis (dimethylamino) silane, tris (dimethylamino) silane, bis (dimethylamino) methylsilane, bis (Diethylamino) methylsilane, bis (dimethylamino) phenylsilane, bis (tertiarybutylamino) silane, bis (isopropylamino) silane, bis (dimethylamino) ) Ethylsilane, Bis (diethylamino) ethylsilane, Hexamethylcyclotrisilazane, Octamethylcyclotetrasilazane, Decamethylcyclopentasilazane, Aminotrimethylsilane, Aminotriethylsilane, Ditertiarybutyldiaminosilane, Tertiarybutylphenyldiaminosilane, (Methyl Amino) trimethylsilane, (ethylamino) trimethylsilane, (ethylamino) triethylsilane, (phenylamino) trimethylsilane, bis (trimethylsilyl) methylamine, hexaethyldisilazane, hexaethylcyclotrisilazane, octaethylcyclotetrasilazane, And trimethylsilyl cyananide. Hexamethyldisilazane, octamethyltrisilazane and other methyl group-containing silazanes, bis (tertiarybutylamino) silane and other monoalkylamino group-containing silanes, tris (dimethylamino) silane and other dialkylamino group-containing silanes are heated This is a preferred embodiment of the present invention because deterioration and alteration due to carbonization can be suppressed.

本発明において、ガスは前記化合物以外に、窒素等の不活性ガス、ヘリウム、アルゴン等の希ガス、水素等の還元性ガスを含んでも良い。これらのガスのガス中に占める比率はとくに限定されないが、90vol%以下であることが好ましい。   In the present invention, the gas may contain an inert gas such as nitrogen, a rare gas such as helium and argon, and a reducing gas such as hydrogen in addition to the compound. The ratio of these gases in the gas is not particularly limited, but is preferably 90 vol% or less.

本発明に用いられる原料化合物が常温で液体または固体の場合は、必要に応じて、予め原料化合物を気化または昇華して用いる。気化または昇華の方法としては、例えば、高温物に接触させる方法、原料に対して不活性のキャリアガスでバブリングする方法、あるいは、反応系ごと減圧にする方法などを適宜選択でき、特に限定されない。   When the raw material compound used in the present invention is liquid or solid at room temperature, the raw material compound is vaporized or sublimated in advance as necessary. As a method of vaporization or sublimation, for example, a method of contacting with a high temperature material, a method of bubbling with a carrier gas inert to the raw material, or a method of reducing the pressure of the whole reaction system can be appropriately selected and is not particularly limited.

本発明の基材としては特に限定されず、好ましくは樹脂を用いることができる。例としては、低密度ポリエチレン(LDPE)、直鎖状低密度ポリエチレン(LLDPE)、高密度ポリエチレン(HDPE)、超高分子量ポリエチレン(HMWPE)、ポリエチレンホモポリマー、ポリエチレンコポリマー、ポリプロピレン−ポリエチレンブロックコポリマー、ポリプロピレンホモポリマー、ポリプロピレンコポリマー、ポリメチルペンテン、環状オレフィンコポリマー等のポリオレフィン樹脂類、ポリエチレンテレフタレート(PET)、ポリトリメチレンテレフタレート(PTT)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)等のポリエステル樹脂類、ポリ塩化ビニル(PVC)、ポリ塩化ビニリデン(PVCD)、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニル樹脂(PFA)等のビニル樹脂類、ポリ塩化ポリカーボネート(PC)、ポリメチルメタクリレート(PMMA)、ポリスチレン(PS)等の透明樹脂類、ポリアセタール(POM)、ポリアミド(PA)、ポリアラミド、ポリアリレート(PAR)、変性ポリフェニレンエーテル(変性PPE)、ポリフェニレンサルファイド(PPS)、液晶ポリマー(LCP)、ポリサルフォン(PSF)、ポリエーテルサルフォン(PES)、ポリエーテルイミド(PEI)、ポリエーテルニトリル(PEN)、ポリエーテルエーテルケトン(PEEK)、ポリイミド(PI)等のエンジニアリングプラスチックス樹脂類、微生物由来ポリエステル、微生物由来多糖類、微生物由来セルロース、ポリ乳酸(PLA)、ポリカプロラクトン(PCL)、脂肪族ポリエステル、キチン質キトサン質由来多糖類、N−アセチルグルコサミンポリマー、ポリビニルアルコール(PVA)、ポリヒドロキシブチレート、変性PVA、さらには、有機天然高分子素材(たとえば、でん粉、木粉、大豆またはトウモロコシなどに由来するもの)等の生分解樹脂類などの樹脂が挙げられる。これらの樹脂は、1種単独で用いることができるし、また、2種以上組み合わせて樹脂混合あるいは樹脂アロイ化した高分子材料として用いることもできる。また、樹脂と無機物の混合物や積層物も使用できる。 It does not specifically limit as a base material of this invention, Preferably resin can be used. Examples include low density polyethylene (LDPE), linear low density polyethylene (LLDPE), high density polyethylene (HDPE), ultra high molecular weight polyethylene (HMWPE), polyethylene homopolymer, polyethylene copolymer, polypropylene-polyethylene block copolymer, polypropylene. Polyolefin resins such as homopolymer, polypropylene copolymer, polymethylpentene, and cyclic olefin copolymer, and polyester resins such as polyethylene terephthalate (PET), polytrimethylene terephthalate (PTT), polybutylene terephthalate (PBT), and polyethylene naphthalate (PEN) , Polyvinyl chloride (PVC), polyvinylidene chloride (PVCD), polytetrafluoroethylene (PTFE), polyvinyl fluoride Vinyl resins such as fat (PFA), transparent resins such as polychlorinated polycarbonate (PC), polymethyl methacrylate (PMMA), polystyrene (PS), polyacetal (POM), polyamide (PA), polyaramid, polyarylate (PAR) ), Modified polyphenylene ether (modified PPE), polyphenylene sulfide (PPS), liquid crystal polymer (LCP), polysulfone (PSF), polyethersulfone (PES), polyetherimide (PEI), polyether nitrile (PEN), poly Engineering plastics resins such as ether ether ketone (PEEK), polyimide (PI), microorganism-derived polyester, microorganism-derived polysaccharide, microorganism-derived cellulose, polylactic acid (PLA), polycaprolactone (PCL), Aliphatic polyester, chitinous chitosan-derived polysaccharide, N-acetylglucosamine polymer, polyvinyl alcohol (PVA), polyhydroxybutyrate, modified PVA, and organic natural polymer materials (for example, starch, wood flour, soybean or Resins such as biodegradable resins such as those derived from corn and the like. These resins can be used singly or in combination of two or more types as a polymer material obtained by resin mixing or resin alloying. Moreover, a mixture and laminate of a resin and an inorganic substance can be used.

本発明の基材としては、上記樹脂の他に、シリコンウエハ、SOI(Silicon On Insulator)ウエーハ、SiCウエーハ、化合物半導体ウエーハ、石英ガラス、ステンレス、SUS、ガラス、アルミナ、シリカ等を用いることも可能である。また、表面上に銅配線が形成された配線板のように、表面または内部に素子、配線、絶縁膜等があらかじめ形成された基材を用いることもできる。   As the base material of the present invention, in addition to the above resin, silicon wafer, SOI (Silicon On Insulator) wafer, SiC wafer, compound semiconductor wafer, quartz glass, stainless steel, SUS, glass, alumina, silica, etc. can be used. It is. Further, a substrate on which elements, wirings, insulating films and the like are formed in advance on the surface or inside thereof can be used like a wiring board in which copper wiring is formed on the surface.

本発明の基材の温度は、加熱体の温度より低いことが必要であり、好ましくは400℃以下、より好ましくは−40℃以上150℃以下である。   The temperature of the base material of the present invention needs to be lower than the temperature of the heating body, and is preferably 400 ° C. or lower, more preferably −40 ° C. or higher and 150 ° C. or lower.

本発明の加熱体と基材は同一チャンバーにあることが好ましい。加熱体と基材の位置は特に限定されない。チャンバー内の圧力は、ガス組成等に応じて適宜選択されるが、均質な膜を得るために大気圧より低圧であることが好ましく、0.1〜1000Paであることがより好ましい。成膜時間は、ガス組成、圧力、所望の膜厚等に応じて適宜選択されるが、10秒〜20分であることが好ましい。   The heating body and the substrate of the present invention are preferably in the same chamber. The position of a heating body and a base material is not specifically limited. The pressure in the chamber is appropriately selected according to the gas composition and the like, but is preferably lower than atmospheric pressure and more preferably 0.1 to 1000 Pa in order to obtain a homogeneous film. The film formation time is appropriately selected according to the gas composition, pressure, desired film thickness and the like, but is preferably 10 seconds to 20 minutes.

とくに、本発明方法において基材として、前記基材の表面上に銅などの金属配線が形成されたものを用いて炭化窒化珪素膜を形成した場合、炭化窒化珪素膜は銅拡散バリア性の絶縁膜として機能することができる。   In particular, when a silicon carbonitride film is formed using a metal wiring such as copper formed on the surface of the base material as the base material in the method of the present invention, the silicon carbonitride film is insulated with a copper diffusion barrier property. Can function as a membrane.

本発明の絶縁膜の膜厚は、製膜時間だけでなく、ガス組成、製膜温度、製膜圧力等の製膜条件に依存するため、使用される用途により適宜選択される。条件の制御により、0.01〜100μmの膜厚を成膜できる。   The thickness of the insulating film of the present invention depends not only on the film forming time but also on the film forming conditions such as the gas composition, the film forming temperature, the film forming pressure, and so on, so that it is appropriately selected depending on the intended use. A film thickness of 0.01 to 100 μm can be formed by controlling the conditions.

本発明の炭化窒化珪素膜は、銅拡散バリア性の試験方法の1つであるTDDB法により銅の拡散リークの寿命が既存の銅拡散バリア膜である窒化珪素膜と遜色のない寿命を有し、かつ、1MV/cmの電界条件下のリーク電流が10−6〜10−10A/cmであり電気絶縁性を併せ持つため、銅配線の拡散バリア膜に使用できる。また、本発明の炭化窒化珪素膜は水分の透湿性に優れており、ガス拡散バリア膜にも使用可能である。 The silicon carbonitride film of the present invention has a life equal to that of a silicon nitride film, which is a copper diffusion barrier film, by the TDDB method, which is one of the copper diffusion barrier property test methods. In addition, since the leakage current under an electric field condition of 1 MV / cm is 10 −6 to 10 −10 A / cm 2 and has electrical insulation, it can be used as a diffusion barrier film for copper wiring. The silicon carbonitride film of the present invention is excellent in moisture permeability and can be used as a gas diffusion barrier film.

以下、本発明を実施例により具体的に説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

真空ポンプ、圧力制御バルブ、ガス導入口、ヒーターを備えたチャンバー内のヒーター上に、ヒーター保護用のアルミナ板を載せ、その上に基材として2インチのp型シリコンウエハを設置した。また、基材上部8cm上にコイル状のタングステンワイアを設置した。チャンバーを真空ポンプで10−3Pa以下に排気した後、基板温度を150℃、タングステンワイアの温度を1700℃に制御した。次に、ガス導入口より原料ガスとして、トリメチルシラン5sccm、アンモニア5sccmを導入し、圧力制御バルブを制御してチャンバー圧力を5Paに制御して、10分間成膜を行った後、基材を大気に触れさせずに取り出した。基材上に形成した膜の組成をXPSにより調べた結果、少なくとも炭素、珪素、窒素を含むことが確認できた。また、昇温脱ガス分析装置(TDS)により膜を10℃/minで昇温して脱ガスの質量分析(MS)を行い、400℃付近で水素やメタンの発生があること、すなわち、膜中に水素が存在することを確認した。 An alumina plate for protecting the heater was placed on a heater in a chamber equipped with a vacuum pump, a pressure control valve, a gas inlet, and a heater, and a 2-inch p-type silicon wafer was placed thereon as a substrate. A coiled tungsten wire was placed on the upper 8 cm of the base material. After evacuating the chamber to 10 −3 Pa or less with a vacuum pump, the substrate temperature was controlled to 150 ° C. and the temperature of the tungsten wire was controlled to 1700 ° C. Next, 5 sccm of trimethylsilane and 5 sccm of ammonia are introduced as source gases from the gas inlet, the pressure control valve is controlled to control the chamber pressure to 5 Pa, and the film is formed for 10 minutes. Removed without touching. As a result of examining the composition of the film formed on the substrate by XPS, it was confirmed that the film contained at least carbon, silicon, and nitrogen. Further, the temperature of the membrane is raised at 10 ° C./min by a temperature rising degassing analyzer (TDS) to perform degassing mass spectrometry (MS), and hydrogen and methane are generated near 400 ° C., that is, the membrane It was confirmed that hydrogen was present therein.

次に、膜の電気絶縁性の測定について説明する。基材成膜面の反対側の全面にアルミニウムを、表面にステンレス製マスクを使用して1mmφの銅電極数点をスパッタし、それぞれ、下部電極、上部電極とした。炭化窒化珪素膜の絶縁性を調べるため、上下電極間の数箇所に、それぞれ、約1MV/cmの電界をかけてリーク電流を調べたところ、10−6〜10−8A/cmであった。 Next, measurement of the electrical insulation of the film will be described. A number of 1 mmφ copper electrodes were sputtered using aluminum on the entire surface opposite to the substrate film-forming surface and a stainless steel mask on the surface to form a lower electrode and an upper electrode, respectively. In order to investigate the insulating properties of the silicon carbonitride film, leakage current was examined by applying an electric field of about 1 MV / cm to several locations between the upper and lower electrodes, respectively, and it was 10 −6 to 10 −8 A / cm 2. It was.

次に、膜の銅拡散バリア性の測定について説明する。上記基材を窒素雰囲気下で250℃に昇温した後、上下電極間の1箇所に1.5MV/cmの電界をかけ、リーク電流の経時変化を調べ、絶縁破壊(リーク電流が10−3A/cm以上とした)までの時間を測定(TDDB法;Time Dipendent Dielectric Breakdown)した。TDDBの寿命は20時間を超え、銅のバリア性を確認できた。 Next, the measurement of the copper diffusion barrier property of the film will be described. After raising the temperature of the substrate to 250 ° C. in a nitrogen atmosphere, an electric field of 1.5 MV / cm was applied to one place between the upper and lower electrodes, the change in leakage current with time was examined, and dielectric breakdown (leakage current was 10 −3). Time until A / cm 2 or more) was measured (TDDB method; Time Dependent Dielectric Breakdown). The lifetime of TDDB exceeded 20 hours, and the barrier property of copper could be confirmed.

次に、膜の比誘電率の測定について説明する。上記銅拡散バリア性試験と同様の方法で上下電極をスパッタ成膜した後、1MHzの周波数で−40V〜40Vまで電圧を走査させ、飽和のキャパシタンス値を測定し、上部電極の面積値と膜の膜厚値を用いて膜の比誘電率を算出した。比誘電率は4.9であり、窒化珪素膜(比誘電率約7)より低誘電率であることを確認した。   Next, measurement of the relative dielectric constant of the film will be described. After the upper and lower electrodes are formed by sputtering in the same manner as in the copper diffusion barrier property test, the voltage is scanned from −40 V to 40 V at a frequency of 1 MHz, the saturation capacitance value is measured, the area value of the upper electrode and the film The relative dielectric constant of the film was calculated using the film thickness value. The relative dielectric constant was 4.9, which was confirmed to be lower than that of the silicon nitride film (relative dielectric constant of about 7).

原料ガスをトリメチルシランとアンモニアの混合ガスから、トリス(ジメチルアミノ)シランとアルゴンの混合ガスに変更した。また、トリス(ジメチルアミノ)シランは常温で液体であるため、原料容器内が大気圧になるよう圧力制御バルブを設け、原料を容器に充填し、アルゴン20sccmでバブリングを行い、オーバーフローさせて原料ガスをチャンバーに導入した。なお、原料の減少から換算して、トリス(ジメチルアミノ)シランのフィード速度は0.005g/minであった。   The source gas was changed from a mixed gas of trimethylsilane and ammonia to a mixed gas of tris (dimethylamino) silane and argon. Since tris (dimethylamino) silane is a liquid at room temperature, a pressure control valve is provided so that the inside of the raw material container becomes atmospheric pressure, the raw material is filled in the container, bubbled with 20 sccm of argon, overflowed, and the raw material gas Was introduced into the chamber. In addition, the feed rate of tris (dimethylamino) silane was 0.005 g / min in terms of the decrease in raw materials.

基材上に形成した膜の組成をXPSにより調べた結果、少なくとも炭素、珪素、窒素を含むことが確認できた。また、実施例1と同様の方法で膜のTDS分析を行い、水素やメタンの発生から膜中の水素の存在を確認した。   As a result of examining the composition of the film formed on the substrate by XPS, it was confirmed that the film contained at least carbon, silicon, and nitrogen. Further, TDS analysis of the film was performed in the same manner as in Example 1, and the presence of hydrogen in the film was confirmed from the generation of hydrogen and methane.

また、実施例1と同様の方法で膜の電気絶縁性、銅拡散バリア性、比誘電率の測定を行い、それぞれ、電気絶縁性が10−5〜10−7A/cm、TDDB寿命が18時間、比誘電率が4.6であった。 Moreover, the electrical insulation property, copper diffusion barrier property, and relative dielectric constant of the film were measured in the same manner as in Example 1. The electrical insulation property was 10 −5 to 10 −7 A / cm 2 , and the TDDB life was The relative dielectric constant was 4.6 for 18 hours.

本発明の炭化窒化珪素膜の形成方法を用いることにより、プラズマのダメージを受けることなく、大面積の基材基材上に低温で炭化窒化珪素膜を成膜できるため、樹脂などの耐熱性の低い基材上への炭化珪素膜の形成に使用できる。また、本発明の炭化窒化珪素膜は、半導体装置等の銅配線の銅拡散バリア膜として有用である。   By using the method for forming a silicon carbonitride film of the present invention, a silicon carbonitride film can be formed at a low temperature on a base material having a large area without being damaged by plasma. It can be used to form a silicon carbide film on a low substrate. The silicon carbonitride film of the present invention is useful as a copper diffusion barrier film for copper wiring of semiconductor devices and the like.

Claims (8)

少なくとも珪素、炭素、窒素原子を含むガスを温度が400℃を超える加熱体に接触させて該ガスの少なくとも一部を反応または分解し、該加熱体よりも低温に保持された基材上に膜を形成することを特徴とする炭化窒化珪素膜の形成方法。 A gas containing at least silicon, carbon, and nitrogen atoms is brought into contact with a heating body having a temperature exceeding 400 ° C. to react or decompose at least a part of the gas, and a film is formed on a substrate held at a lower temperature than the heating body. And forming a silicon carbonitride film. 少なくとも珪素、炭素、窒素原子を含むガスが水素原子を含み、該炭化窒化珪素膜が水素を含むものである請求項1記載の炭化窒化珪素膜の形成方法。 2. The method for forming a silicon carbonitride film according to claim 1, wherein the gas containing at least silicon, carbon, and nitrogen atoms contains hydrogen atoms, and the silicon carbonitride film contains hydrogen. 該ガスが、有機珪素化合物とアミン化合物を含むものである請求項1または2記載の炭化窒化珪素膜の形成方法。 3. The method for forming a silicon carbonitride film according to claim 1, wherein the gas contains an organic silicon compound and an amine compound. 該アミン化合物が、アンモニアまたは(CHNH3−y(式中、yは、1≦y≦3を満たす整数である)で表されるメチルアミン類である請求項3記載の炭化窒化珪素膜の形成方法。 4. The carbonitriding according to claim 3, wherein the amine compound is ammonia or a methylamine represented by (CH 3 ) y NH 3-y (wherein y is an integer satisfying 1 ≦ y ≦ 3). A method for forming a silicon film. 該有機珪素化合物が、R4−xSiH(式中、xは、0≦x≦3を満たす整数であり、Rは炭化水素基である)で表される有機シラン類である請求項3記載の炭化窒化珪素膜の形成方法。 4. The organosilane compound represented by R 4−x SiH x (wherein x is an integer satisfying 0 ≦ x ≦ 3 and R is a hydrocarbon group). A method for forming a silicon carbonitride film as described. 該ガスが、窒素含有有機珪素化合物を含むものである請求項1または2記載の炭化窒化珪素膜の形成方法。 The method for forming a silicon carbonitride film according to claim 1, wherein the gas contains a nitrogen-containing organosilicon compound. 請求項1〜6記載の方法により形成された炭化窒化珪素膜。 A silicon carbonitride film formed by the method according to claim 1. 請求項7記載の炭化窒化珪素膜を銅拡散バリア膜に用いた銅配線構造。 A copper wiring structure using the silicon carbonitride film according to claim 7 as a copper diffusion barrier film.
JP2004122536A 2004-04-19 2004-04-19 Sintered silicon nitride film forming method Pending JP2005310861A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004122536A JP2005310861A (en) 2004-04-19 2004-04-19 Sintered silicon nitride film forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004122536A JP2005310861A (en) 2004-04-19 2004-04-19 Sintered silicon nitride film forming method

Publications (1)

Publication Number Publication Date
JP2005310861A true JP2005310861A (en) 2005-11-04

Family

ID=35439306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004122536A Pending JP2005310861A (en) 2004-04-19 2004-04-19 Sintered silicon nitride film forming method

Country Status (1)

Country Link
JP (1) JP2005310861A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005347653A (en) * 2004-06-07 2005-12-15 Kyushu Institute Of Technology Thin film forming method
JP2007152772A (en) * 2005-12-06 2007-06-21 Dainippon Printing Co Ltd Gas barrier film and its manufacturing method
JP2007311383A (en) * 2006-05-16 2007-11-29 Nec Corp Formiing method of copper damascine multilayer wiring
JP2010118664A (en) * 2008-11-12 2010-05-27 Air Products & Chemicals Inc AMINO VINYLSILANE PRECURSOR FOR STRESSED SiN FILM
JP2010267971A (en) * 2009-05-13 2010-11-25 Air Products & Chemicals Inc Dielectric barrier deposition using nitrogen containing precursor
JP2011089186A (en) * 2009-10-26 2011-05-06 Tosoh Corp Silicon carbonitride-containing film, method for producing the same, and usage of the same
EP2604427A1 (en) * 2010-08-13 2013-06-19 Asahi Glass Company, Limited Laminate, and laminate production method
KR101493389B1 (en) 2011-12-09 2015-02-16 가부시키가이샤 히다치 고쿠사이 덴키 Method of manufacturing semiconductor device, method of processing substrate, substrate processing apparatus and recording medium
US9090969B2 (en) 2011-06-22 2015-07-28 Hitachi Kokusai Electric Inc. Semiconductor device manufacturing and processing methods and apparatuses for forming a film

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6340314A (en) * 1986-08-05 1988-02-20 Hiroshima Univ Manufacture of thin film by catalytic cvd method and device therefor
JPH06132284A (en) * 1992-10-22 1994-05-13 Kawasaki Steel Corp Method for forming protective film of semiconductor device
JP2000294550A (en) * 1999-04-05 2000-10-20 Tokyo Electron Ltd Manufacture of semiconductor and manufacturing apparatus of semiconductor
JP2002083870A (en) * 2000-09-11 2002-03-22 Tokyo Electron Ltd Semiconductor device and production method therefor
JP2003309119A (en) * 2002-04-15 2003-10-31 Mitsubishi Electric Corp Film formation method of silicon nitride film, film formation device, and manufacturing method of semiconductor device
JP2004079761A (en) * 2002-08-19 2004-03-11 Nec Electronics Corp Semiconductor device and its manufacturing method
JP2005026244A (en) * 2003-06-30 2005-01-27 Hiroshi Nakayama Method of forming film, film, and element
JP2005251877A (en) * 2004-03-02 2005-09-15 Semiconductor Leading Edge Technologies Inc Method for forming silicon nitride film

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6340314A (en) * 1986-08-05 1988-02-20 Hiroshima Univ Manufacture of thin film by catalytic cvd method and device therefor
JPH06132284A (en) * 1992-10-22 1994-05-13 Kawasaki Steel Corp Method for forming protective film of semiconductor device
JP2000294550A (en) * 1999-04-05 2000-10-20 Tokyo Electron Ltd Manufacture of semiconductor and manufacturing apparatus of semiconductor
JP2002083870A (en) * 2000-09-11 2002-03-22 Tokyo Electron Ltd Semiconductor device and production method therefor
JP2003309119A (en) * 2002-04-15 2003-10-31 Mitsubishi Electric Corp Film formation method of silicon nitride film, film formation device, and manufacturing method of semiconductor device
JP2004079761A (en) * 2002-08-19 2004-03-11 Nec Electronics Corp Semiconductor device and its manufacturing method
JP2005026244A (en) * 2003-06-30 2005-01-27 Hiroshi Nakayama Method of forming film, film, and element
JP2005251877A (en) * 2004-03-02 2005-09-15 Semiconductor Leading Edge Technologies Inc Method for forming silicon nitride film

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4500961B2 (en) * 2004-06-07 2010-07-14 国立大学法人九州工業大学 Thin film formation method
JP2005347653A (en) * 2004-06-07 2005-12-15 Kyushu Institute Of Technology Thin film forming method
JP2007152772A (en) * 2005-12-06 2007-06-21 Dainippon Printing Co Ltd Gas barrier film and its manufacturing method
JP2007311383A (en) * 2006-05-16 2007-11-29 Nec Corp Formiing method of copper damascine multilayer wiring
US8580993B2 (en) 2008-11-12 2013-11-12 Air Products And Chemicals, Inc. Amino vinylsilane precursors for stressed SiN films
JP2013016859A (en) * 2008-11-12 2013-01-24 Air Products & Chemicals Inc AMINO VINYLSILANE PRECURSORS FOR STRESSED SiN FILMS
JP2010118664A (en) * 2008-11-12 2010-05-27 Air Products & Chemicals Inc AMINO VINYLSILANE PRECURSOR FOR STRESSED SiN FILM
JP2010267971A (en) * 2009-05-13 2010-11-25 Air Products & Chemicals Inc Dielectric barrier deposition using nitrogen containing precursor
US8889235B2 (en) 2009-05-13 2014-11-18 Air Products And Chemicals, Inc. Dielectric barrier deposition using nitrogen containing precursor
JP2011089186A (en) * 2009-10-26 2011-05-06 Tosoh Corp Silicon carbonitride-containing film, method for producing the same, and usage of the same
EP2604427A1 (en) * 2010-08-13 2013-06-19 Asahi Glass Company, Limited Laminate, and laminate production method
EP2604427A4 (en) * 2010-08-13 2014-12-24 Asahi Glass Co Ltd Laminate, and laminate production method
US9090969B2 (en) 2011-06-22 2015-07-28 Hitachi Kokusai Electric Inc. Semiconductor device manufacturing and processing methods and apparatuses for forming a film
US9184046B2 (en) 2011-06-22 2015-11-10 Hitachi Kokusai Electric Inc. Semiconductor device manufacturing and processing methods and apparatuses for forming a film
KR101493389B1 (en) 2011-12-09 2015-02-16 가부시키가이샤 히다치 고쿠사이 덴키 Method of manufacturing semiconductor device, method of processing substrate, substrate processing apparatus and recording medium

Similar Documents

Publication Publication Date Title
US11732350B2 (en) Films of desired composition and film properties
KR101921192B1 (en) Method and precursors for manufacturing 3d devices
US6383955B1 (en) Silicone polymer insulation film on semiconductor substrate and method for forming the film
KR101640153B1 (en) Non-oxygen containing silicon-based films and methods of forming the same
KR101996942B1 (en) Methods for making silicon containing films on thin film transistor devices
JP5013353B2 (en) Film forming method and film forming apparatus
US4923716A (en) Chemical vapor desposition of silicon carbide
KR101157683B1 (en) Method for Producing Silicon Oxide Film
US6610362B1 (en) Method of forming a carbon doped oxide layer on a substrate
US20060228903A1 (en) Precursors for the deposition of carbon-doped silicon nitride or silicon oxynitride films
TW200908151A (en) Boron nitride and boron nitride-derived materials deposition method
CN101316945A (en) A method to improve the ashing/wet etch damage resistance and integration stability of low dielectric constant films
JP2005310861A (en) Sintered silicon nitride film forming method
KR102128589B1 (en) Silicon nitride film, production method therefor, and production device therefor
KR102246244B1 (en) Enhancing electrical property and uv compatibility of barrier film
JP5731841B2 (en) Method for forming silicon nitride film
JP2005045058A (en) Copper diffused barrier insulating film and method for forming the same
KR101548129B1 (en) Protection of conductors from oxidation in deposition chambers
KR100593574B1 (en) Film forming material, film forming method and device
JP4500961B2 (en) Thin film formation method
KR100730535B1 (en) Film forming material, film forming method and device
KR20220160071A (en) Novel Precursors for Depositing Films with High Young&#39;s Modulus
KR101128303B1 (en) Film forming material, film forming method and device
JP2004342688A (en) Insulating film, and method of forming the same having copper diffusion barrier property
WO2022245742A1 (en) New precursors for depositing films with high elastic modulus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080603