JP4500961B2 - Thin film formation method - Google Patents

Thin film formation method Download PDF

Info

Publication number
JP4500961B2
JP4500961B2 JP2004167883A JP2004167883A JP4500961B2 JP 4500961 B2 JP4500961 B2 JP 4500961B2 JP 2004167883 A JP2004167883 A JP 2004167883A JP 2004167883 A JP2004167883 A JP 2004167883A JP 4500961 B2 JP4500961 B2 JP 4500961B2
Authority
JP
Japan
Prior art keywords
thin film
sic
substrate
materials
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004167883A
Other languages
Japanese (ja)
Other versions
JP2005347653A (en
Inventor
亮 和泉
晃士 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Institute of Technology NUC
Original Assignee
Kyushu Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Institute of Technology NUC filed Critical Kyushu Institute of Technology NUC
Priority to JP2004167883A priority Critical patent/JP4500961B2/en
Publication of JP2005347653A publication Critical patent/JP2005347653A/en
Application granted granted Critical
Publication of JP4500961B2 publication Critical patent/JP4500961B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は化学気相蒸着(CVD)法による薄膜形成方法に関する。 The present invention relates to a method for forming a thin film by chemical vapor deposition (CVD).

従来から、シリコンLSIへのSi化合物薄膜形成方法として、プラズマCVD法、熱CVD法、光CVD法等が良く知られている。例えば、原料にシラザンを用いる熱CVD法による窒化珪素(SiN)薄膜の形成、及び原料ガスにモノシラン(SiH4)及びアンモニア(NH3)を用いるプラズマCVD法による窒化珪素(SiN)や炭窒化珪素(SiCN)薄膜の形成は、シリコンのLSI用の誘電体薄膜として広く用いられてきた。
特開2000-212747号公報 特開2003-347241号公報 Wenjuan Cheng et al., MaterialsChemistry and Physics, 85(2004)370-376.
Conventionally, a plasma CVD method, a thermal CVD method, a photo CVD method and the like are well known as methods for forming a Si compound thin film on a silicon LSI. For example, silicon nitride by the thermal CVD method using silazane material (Si 3 N 4) formation of a thin film, and the raw material gas to monosilane (SiH 4) and ammonia (NH 3) silicon nitride by plasma CVD method using (Si 3 N 4 ) and formation of silicon carbonitride (SiC x N y ) thin films have been widely used as dielectric thin films for silicon LSIs.
JP 2000-212747 A Japanese Patent Laid-Open No. 2003-347241 Wenjuan Cheng et al., Materials Chemistry and Physics, 85 (2004) 370-376.

保護膜として一般的に使用されているSiN膜は、硬い為、強いストレスが生じやすく、割れ易いという欠点を有するが、これをSiCN組成とするとストレスを緩和できる効果がある。又、LSIのエッチストッパー膜として使用されるLow-k材料と組み合わせる保護膜としては、比誘電率が低いという観点からも、SiCN膜が好ましい。上記のモノシラン及びアンモニアを用いるプラズマCVD法ではモノシランに爆発性があり、その取り扱いには完備した安全対策が必要という問題があった。また、窒化珪素付近の組成の膜しか成長できず、組成の異なるSiCN膜を形成することは困難であった。さらに、CVD法では基板温度が高くなったり、高速の水素プラズマにより基板に損傷を与えるため、有機化合物等の低融点基板を用いることが出来ない問題があった。 Since the Si 3 N 4 film generally used as a protective film is hard, it has a drawback that strong stress is likely to occur and it is easy to break. However, if this is a SiC x N y composition, it has an effect of reducing stress. . Also, as a protective film combined with a low-k material used as an LSI etch stopper film, a SiC x N y film is preferable from the viewpoint of a low relative dielectric constant. The plasma CVD method using monosilane and ammonia described above has a problem that monosilane is explosive and that complete safety measures are required for its handling. Further, only a film having a composition in the vicinity of silicon nitride can be grown, and it was difficult to form a SiC x N y film having a different composition. Further, the CVD method has a problem that the substrate temperature becomes high or the substrate is damaged by high-speed hydrogen plasma, so that a low melting point substrate such as an organic compound cannot be used.

本発明は、上記の問題点や制約に鑑みなされたものであり、本発明が解決しようとする課題は、Si、C、Nの3元素組成物SiCNのx、yを制御して、高融点材料上のみでなく有機化合物上へ、爆発等の危険性を伴うことなく安全に、低温形成も可能にするSiCN薄膜の形成方法を提供することにある。 The present invention has been made in view of the above-mentioned problems and limitations, and the problem to be solved by the present invention is to control x and y of the three element composition SiC x N y of Si, C and N. Another object of the present invention is to provide a method of forming a SiC x Ny thin film that can be safely and low-temperature formed not only on a high melting point material but also on an organic compound without risk of explosion.

本発明は、上記目的を達成するために、請求項1に記載のように、気化したシラザン又は気化したシラザンと窒素を含有する化合物を含む混合気体を加熱された触媒体に接触させ、接触分解反応により生じた化学種を基板表面に触れさせ、該基板表面上にSiCN薄膜を形成することを特徴とする薄膜形成方法を構成する。但し、SiCxNyにおいて、x及びyは、夫々0<X<1、0<y<4/3の範囲で、4x+3y=4を満たす数値を表す。シラザンとしては、蒸着装置内で気化できるものであればよいが、組成調整の自由度が高いこと、汎用、低価格、蒸気圧が高いという理由で、ヘキサメチルジシラザンが好ましい。 In order to achieve the above object, according to the present invention, as described in claim 1, gasified silazane or a mixed gas containing a vaporized silazane and a compound containing nitrogen is brought into contact with a heated catalyst body to perform catalytic cracking. A thin film forming method is characterized in that a chemical species generated by the reaction is brought into contact with the substrate surface and an SiC x N y thin film is formed on the substrate surface. However, in SiCxNy, x and y represent numerical values satisfying 4x + 3y = 4 in the range of 0 <X <1, 0 <y <4/3, respectively. Any silazane may be used as long as it can be vaporized in the vapor deposition apparatus. However, hexamethyldisilazane is preferable because of its high degree of freedom in composition adjustment, general purpose, low cost, and high vapor pressure.

また、本発明は、請求項3に記載のように、請求項1記載の薄膜形成方法において前記窒素を含有する化合物がアンモニアであることを特徴とする薄膜形成方法を構成する。 According to a third aspect of the present invention, there is provided the thin film forming method according to the first aspect, wherein the nitrogen-containing compound is ammonia.

また、本発明は、請求項4に記載のように、請求項1〜3記載の薄膜形成方法において、前記基板の表面温度が150℃以下であることを特徴とする薄膜形成方法を構成する。 According to a fourth aspect of the present invention, there is provided the thin film forming method according to the first to third aspects, wherein the surface temperature of the substrate is 150 ° C. or lower.

また、本発明は、請求項5記載のように、請求項1又は2又は3又は4記載の薄膜形成方法において、前記触媒体がタングステン、タンタル、モリブデン、バナジウム、レニウム、白金、トリウム、ジルコニウム、イットリウム、ハフニウム、パラジウム、イリジウム、ルテニウム、鉄、ニッケル、クロム、アルミニウム、シリコン、炭素のいずれか1つの材料、これら材料の単体の酸化物、これら材料の単体の窒化物、これら材料(炭素を除く)の単体の炭化物、これらの材料から選択された2種類以上からなる混晶または化合物の酸化物、これらの材料から選択された2種類以上からなる混晶または化合物の窒化物、又は、これらの材料(炭素を除く)から選択された2種類以上からなる混晶または化合物の炭化物の何れか1つであることを特徴とする薄膜形成方法を構成する。 Further, according to the present invention, as described in claim 5, in the thin film forming method according to claim 1, 2 or 3 or 4, the catalyst body is tungsten, tantalum, molybdenum, vanadium, rhenium, platinum, thorium, zirconium, Yttrium, hafnium, palladium, iridium, ruthenium, iron, nickel, chromium, aluminum, silicon, carbon, single oxide of these materials, simple nitrides of these materials, these materials (excluding carbon) ) A single carbide, a mixed crystal or compound oxide consisting of two or more selected from these materials, a mixed crystal or compound nitride consisting of two or more selected from these materials, or these It is one of a mixed crystal consisting of two or more types selected from materials (excluding carbon) or a carbide of a compound. Thin film forming method which constitutes the.

本発明の実施により、Si、C、Nの3元素組成物SiCNのx、yを制御して、高融点材料上のみでなく有機化合物上へ、爆発等の危険性を伴うことなく安全に、低温形成も可能にするSiCN薄膜の形成方法を提供することが可能になる。 By practicing the present invention, the x and y of the three elemental composition SiC x N y of Si, C and N are controlled so that not only the high melting point material but also the organic compound is not accompanied by a risk of explosion or the like. It is possible to provide a method of forming a SiC x N y thin film that can be safely and low-temperature formed.

本発明の実施の態様について図を用いて説明する。本発明に係るSiCN薄膜を形成する反応装置としては、例えば、特許文献2記載の反応装置を用いることができる。図1は本発明に用いた薄膜形成装置の断面の概略図である。反応室1の下面のガス流入口2からシラザン、シラザンとアンモニアガスのような窒素を含有する化合物、又は必要に応じて水素ガスを加えた混合ガス3を反応室に送り込む。なお、ここでシラザンはその組成中にSiCN形成に必要なSi、C、Nを含んでおり、特にヘキサメチルジシラザン(HMDS)は、炭素源となるメチル基を多く含み、組成調整の自由度が高く、且つこの目的に適した適度の蒸気圧を有する、爆発性のない物質である。反応室1外の直上部にはヒータ4を設置し、ヒータ4直下の反応室1内に基板ホルダー5があり基板6を加熱する。基板6は基板ホルダー5に被着面を下に向けて設置する。基板6とガス流入口2の中間にタングステン線からなる触媒体7を設置し、触媒体7を高温に加熱して流入した混合ガス3を分解する。分解生成物には発生期の水素、窒素やシリコンのラジカルがあり、これらが基板表面上で安定なSiCNを形成するものと考えられる。シャッター8は、上記分解反応が安定化するまで、基板への被着を防止するためのものである。排気口9は、反応残余ガスを排出するためのものである。 Embodiment modes of the present invention will be described with reference to the drawings. As the reaction apparatus for forming the SiC x N y thin film according to the present invention, for example, the reaction apparatus described in Patent Document 2 can be used. FIG. 1 is a schematic view of a cross section of a thin film forming apparatus used in the present invention. From the gas inlet 2 on the lower surface of the reaction chamber 1, silazane, a compound containing nitrogen such as silazane and ammonia gas, or a mixed gas 3 to which hydrogen gas is added as required is sent into the reaction chamber. Note that silazane contains Si, C, and N necessary for the formation of SiC x N y in its composition. In particular, hexamethyldisilazane (HMDS) contains many methyl groups that serve as carbon sources, and its composition is adjusted. It is a non-explosive substance with a high degree of freedom and an appropriate vapor pressure suitable for this purpose. A heater 4 is installed immediately above the reaction chamber 1, and a substrate holder 5 is provided in the reaction chamber 1 immediately below the heater 4 to heat the substrate 6. The substrate 6 is placed on the substrate holder 5 with the adherend surface facing down. A catalyst body 7 made of a tungsten wire is installed between the substrate 6 and the gas inlet 2, and the mixed gas 3 is decomposed by heating the catalyst body 7 to a high temperature. The decomposition products include nascent hydrogen, nitrogen and silicon radicals, which are considered to form stable SiC x N y on the substrate surface. The shutter 8 is for preventing the deposition on the substrate until the decomposition reaction is stabilized. The exhaust port 9 is for exhausting reaction residual gas.

このような反応装置を用い、基板6として鏡面状のSiウエーハ、反応室1内の圧力を2.7×10−5Pa,タングステン触媒体7を1600℃、基板6の温度100℃で一定流量のHMDSに対し、水素ガスの流量とアンモニアガスの流量を変化させ、20分間薄膜の形成を行った。 Using such a reaction apparatus, the substrate 6 has a mirror-like Si wafer, the pressure in the reaction chamber 1 is 2.7 × 10 −5 Pa, the tungsten catalyst 7 is 1600 ° C., the temperature of the substrate 6 is 100 ° C., and a constant flow rate of HMDS. On the other hand, a thin film was formed for 20 minutes by changing the flow rate of hydrogen gas and the flow rate of ammonia gas.

図2と図6にその結果の1例を示す。図2の(a)は、HMDSに混合するガスが水素ガス50sccmのみでアンモニアを加えない場合の、薄膜のX線光電子分光法(XPS)で測定したスペクトルを示す。横軸は結合エネルギー、縦軸は光電子強度である。図2の(b)は、HMDSに混合するガスが水素ガス流量30sccm、アンモニアガス流量50sccmの場合の、薄膜のXPS測定結果である。図6は、図2の(a)及び
(b)のSi(2p)部分の横軸を拡大して、図(a)及び図(b)を重ねて描いたものである。なお、SiCNスペクトルのSi(2p)のピ−クは、図3に示すようにSiNのピークとSiCのピークに分解できる。SiNのピークの強度をISiN、SiCのピークの強度をISiCとする。
2 and 6 show an example of the result. (A) of FIG. 2 shows the spectrum measured by the X-ray photoelectron spectroscopy (XPS) of the thin film when the gas mixed with HMDS is only hydrogen gas 50 sccm and no ammonia is added. The horizontal axis is the binding energy, and the vertical axis is the photoelectron intensity. (B) of FIG. 2 shows the XPS measurement results of the thin film when the gas mixed in the HMDS is a hydrogen gas flow rate of 30 sccm and an ammonia gas flow rate of 50 sccm. FIG. 6 shows (a) and FIG.
The horizontal axis of the Si (2p) portion of (b) is enlarged and the drawings (a) and (b) are overlapped. Note that the Si (2p) peak in the SiC x N y spectrum can be decomposed into a SiN peak and a SiC peak as shown in FIG. The SiN peak intensity is I SiN , and the SiC peak intensity is I SiC .

図4に、基板温度が100℃の場合の、このISiNとISiCとの和に対するISiN、ISiCそれぞれの比とアンモニア流量との関係を示す。図から、アンモニアガス流量が少ない場合はSiCリッチの組成になっており、またアンモニアガス流量が多いところではSiNリッチの組成になっている。このことよりSiCNの組成を、アンモニア流量を変えることによって制御できることがわかる。また、基板温度250℃の場合の図5に示す。図4と同様の傾向の結果を示している。また、このように基板温度変化によっても、この薄膜の組成が変化することを示している。 FIG. 4 shows the relationship between the ratio of I SiN and I SiC to the sum of I SiN and I SiC and the ammonia flow rate when the substrate temperature is 100 ° C. From the figure, when the ammonia gas flow rate is small, the composition is SiC rich, and when the ammonia gas flow rate is large, the composition is SiN rich. This shows that the composition of SiC x N y can be controlled by changing the ammonia flow rate. FIG. 5 shows the case where the substrate temperature is 250 ° C. The result of the tendency similar to FIG. 4 is shown. In addition, it is shown that the composition of the thin film also changes with changes in the substrate temperature.

また、前記触媒体が請求項5記載のように、該触媒体がタングステン以外のタンタル、モリブデン、バナジウム、レニウム、白金、トリウム、ジルコニウム、イットリウム、ハフニウム、パラジウム、イリジウム、ルテニウム、鉄、ニッケル、クロム、アルミニウム、シリコン、炭素の何れか1つの材料、これらの材料の単体の酸化物、これらの材料の単体の窒化物、これら材料(炭素を除く)の単体の炭化物、これらの材料から選択された2種類以上からなる混晶または化合物の酸化物、これらの材料から選択された2種類以上からなる混晶または化合物の窒化物、又は、これらの材料(炭素を除く)から選択された2種類以上からなる混晶または化合物の炭化物、のいずれであっても同様の結果が得られた。 Further, the catalyst body according to claim 5, wherein the catalyst body is tantalum other than tungsten, molybdenum, vanadium, rhenium, platinum, thorium, zirconium, yttrium, hafnium, palladium, iridium, ruthenium, iron, nickel, chromium. , Aluminum, silicon, carbon, single oxide of these materials, single nitride of these materials, single carbide of these materials (except carbon), selected from these materials Two or more types of mixed crystals or compound oxides, two or more types of mixed crystals or compound nitrides selected from these materials, or two or more types selected from these materials (excluding carbon) Similar results were obtained with either the mixed crystal or the carbide of the compound.

図1に示した反応装置を用い、基板ホルダー5に有機材料であるポリエステル板を装着し、基板ホルダー温度を70℃に設定し、タングステン触媒体7の温度1600℃、一定流量のHMDSに対し水素ガスの流量30sccm、アンモニアガスの流量50sccmで20分間薄膜の形成を行った。その結果、SiCN薄膜がポリエステル板上に形成された。このSiCN薄膜はポリエステル板と熱膨張係数差が大きいにもかかわらず、剥離や変形などを示さず均質の被着膜となり、有機物への通気性のないSiCNのコーティングが可能であった。 Using the reactor shown in FIG. 1, a polyester plate, which is an organic material, is mounted on the substrate holder 5, the substrate holder temperature is set to 70 ° C., the temperature of the tungsten catalyst body 7 is 1600 ° C., and HMDS is at a constant flow rate. A thin film was formed at a gas flow rate of 30 sccm and an ammonia gas flow rate of 50 sccm for 20 minutes. As a result, a SiC x N y thin film was formed on the polyester plate. Although this SiC x N y thin film has a large difference in thermal expansion coefficient from that of the polyester plate, it can be coated with SiC x N y without air permeability to organic matter without showing peeling or deformation. Met.

このように、Siを含有しない基板上に、SiCN薄膜を形成することができることが本発明の大きな特徴であり、有機材料としてはアクリル、テフロン、ポリエステル等塊状、板状、膜状、線状の素材への被着が可能である。また、被着するSiCN組成は水素ガスとアンモニアガスの流量比、基板温度等によって変化させることができる。 Thus, it is a great feature of the present invention that a SiC x N y thin film can be formed on a substrate that does not contain Si, and organic materials such as acrylic, teflon, polyester, etc., plate, film, It can be applied to linear materials. Further, the composition of SiC x N y to be deposited can be changed depending on the flow rate ratio of hydrogen gas and ammonia gas, the substrate temperature, and the like.

また、前記触媒体が請求項5記載のように、該触媒体がタングステン以外のタンタル、モリブデン、バナジウム、レニウム、白金、トリウム、ジルコニウム、イットリウム、ハフニウム、パラジウム、イリジウム、ルテニウム、鉄、ニッケル、クロム、アルミニウム、シリコン、炭素の何れか1つの材料、これらの材料の単体の酸化物、これらの材料の単体の窒化物、これら材料(炭素を除く)の単体の炭化物、これらの材料から選択された2種類以上からなる混晶または化合物の酸化物、これらの材料から選択された2種類以上からなる混晶または化合物の窒化物、又は、これらの材料(炭素を除く)から選択された2種類以上からなる混晶または化合物の炭化物のいずれであっても同様の結果が得られた。 Further, the catalyst body according to claim 5, wherein the catalyst body is tantalum other than tungsten, molybdenum, vanadium, rhenium, platinum, thorium, zirconium, yttrium, hafnium, palladium, iridium, ruthenium, iron, nickel, chromium. , Aluminum, silicon, carbon, single oxide of these materials, single nitride of these materials, single carbide of these materials (except carbon), selected from these materials Two or more types of mixed crystals or compound oxides, two or more types of mixed crystals or compound nitrides selected from these materials, or two or more types selected from these materials (excluding carbon) Similar results were obtained with either the mixed crystal or the carbide of the compound.

本発明によれば、危険なガスを使用することなく、しかも比較的低温で、SiCN膜を半導体基板だけでなく有機物フイルム上にも形成することができる。従って、本発明は、半導体産業以外の化学、鉄鋼、食品など幅広い産業にも普及する可能性がある。 According to the present invention, a SiC x N y film can be formed not only on a semiconductor substrate but also on an organic film without using a dangerous gas and at a relatively low temperature. Therefore, the present invention may be spread to a wide range of industries such as chemistry, steel, and food other than the semiconductor industry.

本発明の方法を実施するための装置(一例)の断面の概略図である。It is the schematic of the cross section of the apparatus (an example) for enforcing the method of this invention. 本発明により形成されたSiCN薄膜のXPSスペクトルが、混合ガスの組成により変化することを示す図である。XPS spectra of SiC x N y thin film formed by the present invention is a diagram showing that varies with the composition of the mixed gas. 本発明により形成されたSiCN薄膜のXPSスペクトルのSi(2p)ピークを、Si-C結合のピークとSi-N結合のピークに分解して示したものである。The Si (2p) peak of the XPS spectrum of the SiC x N y thin film formed according to the present invention is shown by being decomposed into a Si—C bond peak and a Si—N bond peak. 本発明により形成されたSiCN薄膜組成を、混合ガス組成変化により制御できることを示す図である。The SiC x N y film compositions formed by the present invention, showing the ability to control the mixed gas composition changes. 本発明により形成されたSiCN薄膜組成を、混合ガス組成変化により制御できることを示す図である。The SiC x N y film compositions formed by the present invention, showing the ability to control the mixed gas composition changes. 本発明により形成されたSiCN薄膜のXPSスペクトルの、図2の(a)及び (b)のSi(2p)部分の横軸を拡大し、重ねて描いたものである。FIG. 3 is a drawing in which the horizontal axis of the Si (2p) portion in FIGS. 2A and 2B is enlarged and superimposed on the XPS spectrum of the SiC x N y thin film formed according to the present invention.

符号の説明Explanation of symbols

1 反応室
2 ガス流入口
3 混合ガス
4 ヒータ
5 基板ホルダー
6 基板
7 タングステン触媒体
8 シャッター
9 排気口
1 Reaction chamber 2 Gas inlet 3 Mixed gas 4 Heater 5 Substrate holder 6 Substrate 7 Tungsten catalyst 8 Shutter 9 Exhaust port

Claims (1)

気化したヘキサメチルジシラザンとアンモニアを含む混合気体を、加熱されたタングステン触媒体に接触させ接触分解反応により生じた化学種を、表面温度が250℃以下の基板表面に触れさせ、該基板表面上にSiCN薄膜を形成するに際し、X線光電子分光法で測定したSi(2p)におけるSiN結合のピーク強度とSiC結合のピーク強度の比率が0.65〜0.95:0.35〜0.05の範囲にある炭窒化珪素の薄膜を形成することを特徴とする薄膜形成方法。
上式SiCNにおいて、x及びyは、夫々0<x<1、0<y<4/3の範囲で、4x+3y=4を満たす数値を表す。]
The vaporized mixed gas containing hexamethyldisilazane and ammonia is brought into contact with the heated tungsten catalyst body, and the chemical species generated by the catalytic decomposition reaction is brought into contact with the substrate surface having a surface temperature of 250 ° C. or less, and the substrate surface When forming a SiC x N y thin film on the substrate, the ratio of the peak intensity of SiN bond to the peak intensity of SiC bond in Si (2p) measured by X-ray photoelectron spectroscopy is 0.65 to 0.95: 0.35. A thin film forming method comprising forming a silicon carbonitride thin film in a range of 0.05 .
[In the above formula SiC x N y , x and y represent numerical values satisfying 4x + 3y = 4 in the range of 0 <x <1, 0 <y <4/3, respectively. ]
JP2004167883A 2004-06-07 2004-06-07 Thin film formation method Active JP4500961B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004167883A JP4500961B2 (en) 2004-06-07 2004-06-07 Thin film formation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004167883A JP4500961B2 (en) 2004-06-07 2004-06-07 Thin film formation method

Publications (2)

Publication Number Publication Date
JP2005347653A JP2005347653A (en) 2005-12-15
JP4500961B2 true JP4500961B2 (en) 2010-07-14

Family

ID=35499710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004167883A Active JP4500961B2 (en) 2004-06-07 2004-06-07 Thin film formation method

Country Status (1)

Country Link
JP (1) JP4500961B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004059942B4 (en) * 2004-12-13 2006-10-26 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Continuous process for silazane cleavage, in particular for the preparation of molecular one-component precursors for non-oxide ceramics
JP5419167B2 (en) * 2010-08-10 2014-02-19 国立大学法人東北大学 Semiconductor device manufacturing method and semiconductor device
JP6777614B2 (en) * 2017-09-26 2020-10-28 株式会社Kokusai Electric Semiconductor device manufacturing methods, substrate processing devices, and programs

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63178532A (en) * 1987-01-02 1988-07-22 ダウ コーニング コーポレーション Method of forming multilayer ceramic film from silicate ester and metal oxide
JP2003179054A (en) * 2001-08-30 2003-06-27 Tokyo Electron Ltd Method of forming insulation film and apparatus of forming the insulation film
JP2003347241A (en) * 2002-05-31 2003-12-05 Japan Science & Technology Corp Carbon thin film removing method, surface modifying method, and treatment device therefor
JP2005310861A (en) * 2004-04-19 2005-11-04 Mitsui Chemicals Inc Sintered silicon nitride film forming method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63178532A (en) * 1987-01-02 1988-07-22 ダウ コーニング コーポレーション Method of forming multilayer ceramic film from silicate ester and metal oxide
JP2003179054A (en) * 2001-08-30 2003-06-27 Tokyo Electron Ltd Method of forming insulation film and apparatus of forming the insulation film
JP2003347241A (en) * 2002-05-31 2003-12-05 Japan Science & Technology Corp Carbon thin film removing method, surface modifying method, and treatment device therefor
JP2005310861A (en) * 2004-04-19 2005-11-04 Mitsui Chemicals Inc Sintered silicon nitride film forming method

Also Published As

Publication number Publication date
JP2005347653A (en) 2005-12-15

Similar Documents

Publication Publication Date Title
KR101042133B1 (en) Methods for producing silicon nitride films and silicon oxynitride films by thermal chemical vapor deposition
TW507017B (en) Silicon nitride from bis(tertiarybutylamino)silane
US8946092B2 (en) Method of manufacturing semiconductor device, method of processing substrate and substrate processing apparatus
WO2014027472A1 (en) Method for manufacturing heat resistant composite material and manufacturing device
Chubarov et al. Epitaxial CVD growth of sp2‐hybridized boron nitride using aluminum nitride as buffer layer
JP2005534181A (en) Method for forming ultra-high quality silicon-containing compound layer
US7727597B2 (en) Method and apparatus for preparing thin film
EP3257974A1 (en) Epitaxial growth method for silicon carbide
JP4500961B2 (en) Thin film formation method
US5532193A (en) Method for forming insulating film
US20050255245A1 (en) Method and apparatus for the chemical vapor deposition of materials
KR101922469B1 (en) Chemical vapor deposition low resistance silicon carbide bulk manufacturign apparatus
JP2005310861A (en) Sintered silicon nitride film forming method
JP2005026244A (en) Method of forming film, film, and element
Peev et al. Kinetics of polysilicon film growth by thermal decomposition of silane
Scordo et al. On the nature of microwave deposited hard silicon-carbon films
Morosanu et al. Mechanism of the chemical vapour deposition of Si3N4 films from SiH2Cl2 and NH3 under diffusion-controlled conditions
JP2008231473A (en) Film forming method and film forming material
JP2585029B2 (en) Method of forming silicon oxynitride film
Kaneko et al. Thin film growth of silicon cardide from methyl-trichloro-silane by RF plasma-enhanced CVD
Levy et al. Plasma enhanced chemical vapor deposition of Si-NCH films from environmentally benign organosilanes
JP5493140B2 (en) Nitriding method of substrate surface by hot wire method
Fontaine et al. Annealing of diamond above 800 C: need for and results of Si3N4 encapsulation
Shah Low pressure chemical vapor deposition of silicon carbonitride films from tri (dimethylamino) silane
Grow Growth Kinetics and Properties of Silicon Carbide Films Synthesized by Low Pressure Chemical Vapor Deposition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090423

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090728

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100323

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150