JP2005310697A - Forming method for inorganic-organic composite electrolyte membrane, inorganic-organic composite electrolyte membrane, and fuel cell using the membrane - Google Patents

Forming method for inorganic-organic composite electrolyte membrane, inorganic-organic composite electrolyte membrane, and fuel cell using the membrane Download PDF

Info

Publication number
JP2005310697A
JP2005310697A JP2004129426A JP2004129426A JP2005310697A JP 2005310697 A JP2005310697 A JP 2005310697A JP 2004129426 A JP2004129426 A JP 2004129426A JP 2004129426 A JP2004129426 A JP 2004129426A JP 2005310697 A JP2005310697 A JP 2005310697A
Authority
JP
Japan
Prior art keywords
inorganic
electrolyte membrane
organic composite
composite electrolyte
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004129426A
Other languages
Japanese (ja)
Inventor
Shinichi Kurakata
慎一 藏方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2004129426A priority Critical patent/JP2005310697A/en
Publication of JP2005310697A publication Critical patent/JP2005310697A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Conductive Materials (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a direct methanol fuel cell capable of excellently forming respective interfaces of an electrode-electrolyte membrane connector for lowering resistance and giving a concentration distribution in the thickness direction in an electrode layer for promoting electrode reaction and mass transfer and generating a high output. <P>SOLUTION: In this inorganic-organic composite electrolyte membrane, an inorganic porous film is impregnated with a polymer electrolyte after the inorganic porous film is formed by spraying an organic porous body on a support. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、固体高分子電解質を含む膜の製造方法、及び該膜を有してなる燃料電池に関し、詳しくは、燃料にメタノール水溶液を、酸化剤ガスに空気を供給して発電する直接メタノール燃料電池に好適なものである。   The present invention relates to a method for producing a membrane containing a solid polymer electrolyte, and a fuel cell having the membrane, and more specifically, a direct methanol fuel that generates electricity by supplying a methanol aqueous solution as a fuel and air as an oxidant gas. It is suitable for a battery.

燃料電池にはいくつもの種類があるが、直接メタノール燃料電池は、燃料としてのメタノール水溶液を改質して水素ガスを取り出すこと無く、液体のまま直接供給することによって発電できるという特徴を持っているため、燃料をガス化又は改質して供給する従来からの固体高分子型燃料電池と比べて、発電システムとしての構造がシンプルで、小型化、軽量化が容易であり、分散型電源、ポータブル電源としての用途が注目されている。   There are many types of fuel cells, but direct methanol fuel cells have the feature that they can generate electricity by directly supplying them as liquid without taking out hydrogen gas by reforming methanol aqueous solution as fuel. Therefore, compared with conventional polymer electrolyte fuel cells that supply fuel by gasification or reforming, the structure as a power generation system is simple, and it is easy to reduce the size and weight. Its use as a power source has attracted attention.

この様な直接メタノール燃料電池は、電解質膜にプロトン導電性固体高分子膜を用い、この電解質膜を介して、拡散層となる多孔性カーボンペーパー上に触媒を塗布してなる、負極と正極を接合し、負極側には燃料としてのメタノール水溶液を供給するための流路溝を有する負極側セパレータが設けられ、正極側には酸化剤ガスとしての空気を供給するための流路溝を有する正極側セパレータが設けられた構造を取り、負極にメタノール水溶液を供給し、正極に空気を供給すると、負極ではメタノールと水との酸化反応によって炭酸ガスが生成すると共に水素イオンと電子が放出され(CH3OH+H2O→CO2+6H++6e-)、正極では電解質膜を通過してきた前記水素イオンと空気との還元反応によって水が生成して(6H++(3/2)O2+6e-→3H2O)、負極と正極を繋ぐ外部回路に電気エネルギーを得ることができる。従って、直接メタノール燃料電池の全反応は、メタノールと酸素から水と二酸化炭素が生成する反応である。 In such a direct methanol fuel cell, a proton conductive solid polymer membrane is used as an electrolyte membrane, and a catalyst is applied to porous carbon paper as a diffusion layer through the electrolyte membrane. The negative electrode side separator having a flow channel for supplying a methanol aqueous solution as a fuel is provided on the negative electrode side, and the positive electrode having a flow channel for supplying air as an oxidant gas on the positive electrode side When a structure in which a side separator is provided is taken, an aqueous methanol solution is supplied to the negative electrode and air is supplied to the positive electrode, carbon dioxide is generated in the negative electrode by the oxidation reaction of methanol and water, and hydrogen ions and electrons are released (CH 3 OH + H 2 O → CO 2 + 6H + + 6e -), the positive electrode water is produced by the reduction reaction between the hydrogen ions and the air having passed through the electrolyte membrane (6H + + ( / 2) O 2 + 6e - → 3H 2 O), it is possible to obtain electrical energy to an external circuit connecting the anode and the cathode. Therefore, the total reaction of the direct methanol fuel cell is a reaction in which water and carbon dioxide are generated from methanol and oxygen.

上記直接メタノール燃料電池は、電極−電解質膜接合体の構造によってその電池特性が支配される。即ち、負極における酸化反応と正極における還元反応は、負極及び正極に含まれる触媒と電解質膜との界面で進行するため、負極及び正極と電解質膜との界面の接合性並びに、電極−電解質膜接合体中へのメタノール及び酸素の拡散・供給と、生成する二酸化炭素及び水の電極−電解質膜接合体からの排出性は、反応効率と電力の出力の面で重要な因子となる。   The battery characteristics of the direct methanol fuel cell are governed by the structure of the electrode-electrolyte membrane assembly. That is, since the oxidation reaction at the negative electrode and the reduction reaction at the positive electrode proceed at the interface between the catalyst and the electrolyte membrane contained in the negative electrode and the positive electrode, the bondability at the interface between the negative electrode and the positive electrode and the electrolyte membrane, and the electrode-electrolyte membrane bonding The diffusion and supply of methanol and oxygen into the body, and the carbon dioxide and water produced from the electrode-electrolyte membrane assembly are important factors in terms of reaction efficiency and power output.

従来の燃料電池の電極−電解質膜接合体の作製方法としては、例えば、カーボンペーパーに塗設した負極及び正極触媒層と電解質膜とを、ホットプレスにより高温、高圧下で接合する方法が知られている(例えば、特許文献1)。   As a conventional method for producing an electrode-electrolyte membrane assembly of a fuel cell, for example, a method of joining a negative electrode and a positive electrode catalyst layer coated on carbon paper and an electrolyte membrane at high temperature and high pressure by hot pressing is known. (For example, Patent Document 1).

また電解質膜としてのイオン交換膜にシリカを複合することで、燃料電池の電解質内でのメタノールの移動によるクロスオーバーを防止し、且つ耐熱性を得る技術が知られている(例えば、非特許文献1)。
特開平9−219206号公報(第4−5頁) K.A.Mauritz,R.F.Storey and C.K.Jones,in Multiphase PolymerMaterials:Blends and Ionomers,L.A.Utracki and R.A.Weiss, Editors,ACS Symposium Series No.395,p.401,American Chemical Society,Washington,DC(1989)
Further, a technique is known in which silica is combined with an ion exchange membrane as an electrolyte membrane to prevent crossover due to methanol movement in the fuel cell electrolyte and to obtain heat resistance (for example, non-patent literature). 1).
JP-A-9-219206 (page 4-5) K. A. Mauritz, R.M. F. Story and C.I. K. Jones, in Multiphase Polymer Materials: Blends and Ionomers, L .; A. Utracki and R. A. Weiss, Editors, ACS Symposium Series No. 395, p. 401, American Chemical Society, Washington, DC (1989)

直接メタノール燃料電池の電極−電解質膜接合体には、1)正極、負極での物質移動、拡散性が高いこと、2)電極−電解質膜接合体の抵抗が小さいこと、3)前記1、2のような機能を有する構造を安価、簡便に製造できることが求められる。   The electrode-electrolyte membrane assembly of a direct methanol fuel cell has 1) high mass transfer and diffusibility at the positive and negative electrodes, 2) low resistance of the electrode-electrolyte membrane assembly, and 3) the above 1, 2 It is required that a structure having the functions as described above can be manufactured inexpensively and easily.

ところが上記特許文献1に記載の様な電極−電解質膜接合体は、圧力不足による接合不良、圧力過剰による触媒層及び電解質膜の破壊、高温処理による素材の劣化、そして適度な圧力であっても界面の接合性が不十分であるといった問題を有しており、結果、電極−電解質膜接合体の抵抗が大きくなり高出力が得られなかった。   However, the electrode-electrolyte membrane assembly as described in Patent Document 1 has a bonding failure due to insufficient pressure, destruction of the catalyst layer and electrolyte membrane due to excessive pressure, deterioration of the material due to high-temperature treatment, and an appropriate pressure. As a result, there is a problem that the bonding property at the interface is insufficient. As a result, the resistance of the electrode-electrolyte membrane assembly is increased, and a high output cannot be obtained.

また、接合体の厚さ方向に均一分布するようにカーボンペーパー上に塗設された触媒層では、反応・生成物質の移動・拡散効率が低く、高出力が得られなかった。   In addition, in the catalyst layer coated on the carbon paper so as to be uniformly distributed in the thickness direction of the joined body, the reaction / product transfer / diffusion efficiency was low, and a high output could not be obtained.

さらに、ホットプレス処理は生産性が低いという問題があった。   Furthermore, the hot press process has a problem of low productivity.

また非特許文献1に記載の技術でも、シリカ複合量を多くすると十分なプロトン伝導度を得られない、つまり高出力を得られない問題があった。又この様なシリカと高分子電解質の複合膜の作成法は、シリカゲル前駆体から作成し、乾燥焼成を経て、電解質を充填している。しかしながら、この方法では生産性及び、作製中の微細な亀裂や破損等によるシリカ層のダメージに起因する歩留まり率の低下が問題であった。   Further, even the technique described in Non-Patent Document 1 has a problem that sufficient proton conductivity cannot be obtained, that is, high output cannot be obtained if the amount of silica composite is increased. In addition, such a method for preparing a composite film of silica and polymer electrolyte is prepared from a silica gel precursor, dried and fired, and filled with an electrolyte. However, in this method, productivity and a decrease in the yield rate due to damage to the silica layer due to fine cracks or breakage during production have been problems.

本発明は上記の事情に鑑みてなされたものであり、電極−電解質膜接合体の各界面を良好に形成して抵抗を下げ、電極層に厚さ方向で濃度分布を持たせて電極反応及び物質移動を促進し、高出力が得られる直接メタノール燃料電池セルを提供することを目的とする。   The present invention has been made in view of the above circumstances, and by forming each interface of the electrode-electrolyte membrane assembly well to lower the resistance, the electrode layer has a concentration distribution in the thickness direction, and the electrode reaction and An object of the present invention is to provide a direct methanol fuel cell that promotes mass transfer and provides high output.

本発明の上記目的は、
1) 支持体上に無機多孔体を溶射することによって無機多孔質膜を作製した後、該無機多孔質膜に高分子電解質又は重合して高分子電解質となる材料を浸潤させる工程を経る無機有機複合電解質膜の製造方法、
2) 前記無機多孔体がシリカを含む1)の無機有機複合電解質膜の製造方法、
3) 前記支持体が4−フッ素化したスルホン化高分子及びベンゼン環を有するスルホン化高分子からなる群から選ばれた少なくとも一種のイオン伝導性高分子を含む1)又は2)の無機有機複合電解質膜の製造方法、
4) 高分子電解質が浸潤された無機多孔質膜を有し、該無機多孔質膜の厚さ方向に空隙率が変化する無機有機複合電解質膜、
5) 前記無機多孔質膜の一方の端面と他方の端面との空隙率の差が10%以上である4)の無機有機複合電解質膜、
6) 前記無機多孔質膜の表面粗さがRaで3〜200μmである4)又は5)の無機有機複合電解質膜、
7) 前記無機多孔質膜が溶射法によって形成される4)〜6)の何れかの無機有機複合電解質膜、
8) 4)〜7)のいずれかの無機有機複合電解質膜が、負極側から正極側の方向に空隙率が高くなるように組み込まれる燃料電池、
によって達成される。
The above object of the present invention is to
1) An inorganic organic membrane that undergoes a step of infiltrating a material that becomes a polymer electrolyte by polymerizing or polymerizing the inorganic porous membrane after the inorganic porous membrane is produced by spraying an inorganic porous material on a support. Production method of composite electrolyte membrane,
2) The method for producing an inorganic-organic composite electrolyte membrane according to 1), wherein the inorganic porous material contains silica,
3) The inorganic-organic composite according to 1) or 2), wherein the support comprises at least one ion-conductive polymer selected from the group consisting of 4-fluorinated sulfonated polymers and sulfonated polymers having a benzene ring. Manufacturing method of electrolyte membrane,
4) An inorganic-organic composite electrolyte membrane having an inorganic porous membrane infiltrated with a polymer electrolyte, the porosity changing in the thickness direction of the inorganic porous membrane,
5) The inorganic-organic composite electrolyte membrane according to 4), wherein the difference in porosity between one end face and the other end face of the inorganic porous membrane is 10% or more,
6) The inorganic organic composite electrolyte membrane according to 4) or 5), wherein the surface roughness of the inorganic porous membrane is 3 to 200 μm in Ra,
7) The inorganic-organic composite electrolyte membrane according to any one of 4) to 6), wherein the inorganic porous membrane is formed by a thermal spraying method,
8) A fuel cell in which the inorganic-organic composite electrolyte membrane of any one of 4) to 7) is incorporated so that the porosity increases from the negative electrode side to the positive electrode side,
Achieved by:

即ち本発明者は、空隙率の傾斜組成を形成することによってクロスオーバーを防止しようと考え、傾斜組成を比較的容易に形成することができ、空隙率の異なった多層構造を作成するよりも工程が少なくてすむ溶射法に着目して、シリカ等からなる無機多孔体を溶射で作製することによって目的に適う傾斜組成を得た。更に溶射法を用いることで、生産性の向上を図るとともに、基板に直接溶射することで歩留まり率の向上が得られ、且つ高分子電解質を含浸させてプロトン導電性の向上を図ろうと考え本発明に至った。   That is, the present inventor thinks that crossover is prevented by forming a gradient composition of porosity, and the gradient composition can be formed relatively easily, rather than creating a multilayer structure with different porosity. Focusing on the thermal spraying method which requires less, a gradient composition suitable for the purpose was obtained by producing an inorganic porous body made of silica or the like by thermal spraying. Further, by using the thermal spraying method, the productivity is improved, and the yield rate is improved by spraying directly on the substrate, and the proton conductivity is improved by impregnating the polymer electrolyte. It came to.

また、電極−電解質膜接合体の抵抗は電極層と高分子電解質を含有する膜層の界面の接合性に起因すると考え、表面をブラスト処理して、電極層−膜層間の接合性を向上させることで、抵抗が減少し燃料電池セルの出力が向上すると考え、(6)の発明に至った。   Also, the resistance of the electrode-electrolyte membrane assembly is considered to be due to the bondability at the interface between the electrode layer and the membrane layer containing the polymer electrolyte, and the surface is blasted to improve the bondability between the electrode layer and the membrane layer. Thus, the resistance is reduced and the output of the fuel cell is improved, and the invention (6) is reached.

本発明の無機有機複合電解質膜によれば、燃料電池に用いて高出力を得られ、かつ製造における生産性が向上する。   According to the inorganic-organic composite electrolyte membrane of the present invention, a high output can be obtained by using it in a fuel cell, and productivity in production is improved.

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の無機有機複合電解質膜は、高分子電解質が浸潤された無機多孔質膜を有し、該無機多孔質膜は支持体上に無機多孔体を溶射することによって作製され、且つ厚さ方向に空隙率が変化することを特徴とする。   The inorganic-organic composite electrolyte membrane of the present invention has an inorganic porous membrane infiltrated with a polymer electrolyte, and the inorganic porous membrane is produced by spraying an inorganic porous material on a support and has a thickness direction. It is characterized in that the porosity changes.

ここに無機多孔質膜の空隙率は、多孔質膜の単位面積S(cm2)当たりの重量W(g)、平均膜厚t(μm)及び無機多孔体の密度d(g/cm3)から
空隙率(%)=(1−(104・W/S・t・d))×100
で算出される。なお膜厚は1/10000シックネスゲージで測定したものである。
Here, the porosity of the inorganic porous film includes the weight W (g) per unit area S (cm 2 ) of the porous film, the average film thickness t (μm), and the density d (g / cm 3 ) of the inorganic porous material. To porosity (%) = (1− (104 · W / S · t · d)) × 100
Is calculated by The film thickness was measured with a 1/10000 thickness gauge.

本発明に係る無機多孔質膜の厚さは好ましくは50〜100μm、さらに好ましくは70〜100μmである。また本発明の無機有機複合電解質膜の厚さは好ましくは50〜100μm、さらに好ましくは70〜100μmである。   The thickness of the inorganic porous membrane according to the present invention is preferably 50 to 100 μm, more preferably 70 to 100 μm. The thickness of the inorganic / organic composite electrolyte membrane of the present invention is preferably 50 to 100 μm, more preferably 70 to 100 μm.

浸潤させる高分子電解質材料としては、スルホン化ポリイミド系高分子電解質、フッ素系高分子電解質、炭化水素系高分子電解質、複合材料等、プロトン導電性を有する公知のものを採用することができる。又モノマーとして含浸させた後重合させて高分子電解質としても良い。   As the polymer electrolyte material to be infiltrated, known materials having proton conductivity such as a sulfonated polyimide polymer electrolyte, a fluorine polymer electrolyte, a hydrocarbon polymer electrolyte, and a composite material can be used. Alternatively, it may be impregnated as a monomer and then polymerized to form a polymer electrolyte.

例えば炭化水素系高分子電解質材料としては、スルホン化ポリエーテルケトン、スルホン化ポリエーテルスルホン、スルホン化ポリエーテルエーテルスルホン、スルホン化ポリスルホン、スルホン化ポリスルフィド、スルホン化ポリフェニレン等のスルホン化エンジニアリングプラスチック系電解質、スルホアルキル化ポリエーテルエーテルケトン、スルホアルキル化ポリエーテルスルホン、スルホアルキル化ポリエーテルエーテルスルホン、スルホアルキル化ポリスルホン、スルホアルキル化ポリスルフィド、スルホアルキル化ポリフェニレン等のスルホアルキル化エンジニアリングプラスチック系電解質等が有る。なお、これらの電解質材料のスルホン酸当量としては0.5〜2.0ミリ当量/g乾燥樹脂程度、好ましくは0.7〜1.6ミリ当量/g乾燥樹脂である。スルホン酸当量が0.5ミリ当量/g乾燥樹脂より小さい場合はイオン伝導抵抗が大きくなり、2.0ミリ当量/g乾燥樹脂より大きい場合には水に溶解しやすくなる。   For example, as hydrocarbon-based polymer electrolyte materials, sulfonated engineering plastic electrolytes such as sulfonated polyether ketone, sulfonated polyethersulfone, sulfonated polyetherethersulfone, sulfonated polysulfone, sulfonated polysulfide, and sulfonated polyphenylene, Examples include sulfoalkylated engineering plastic electrolytes such as sulfoalkylated polyetheretherketone, sulfoalkylated polyethersulfone, sulfoalkylated polyetherethersulfone, sulfoalkylated polysulfone, sulfoalkylated polysulfide, and sulfoalkylated polyphenylene. The sulfonic acid equivalent of these electrolyte materials is about 0.5 to 2.0 meq / g dry resin, preferably 0.7 to 1.6 meq / g dry resin. When the sulfonic acid equivalent is less than 0.5 meq / g dry resin, the ionic conduction resistance increases, and when it is greater than 2.0 meq / g dry resin, it becomes easier to dissolve in water.

フッ素系電解質材料としては従来から公知の重合体が広く採用され、例えば
一般式 CF2=CF−(OCF2CFX)m−Oq−(CF2)n−A
(式中、m=0〜3、n=0〜12、q=0又は1、X=F又はCF3、A=スルホン酸型官能基)で表されるフロロビニル化合物とテトラフロロエチレン、ヘキサフロロプロピレン、クロロトリフロロエチレン又はパーフロロアルキルビニルエーテルの如きパーフロロオレフィンとの共重合体が挙げられる。フロロビニル化合物の好ましい例としては、例えば、CF2=CFO(CF2)aSO2F、CF2=CFOCF2CF(CF3)O(CF2)aSO2F、CF2=CF(CF2)bSO2F、CF2=CF(OCF2CF(CF3))cO(CF22SO2F(ここに、a=1〜8、b=0〜8、c=1〜5の整数)が挙げられる。
As the fluorine-based electrolyte material, conventionally known polymers are widely used. For example, the general formula CF 2 = CF- (OCF 2 CFX) m-Oq- (CF 2 ) n-A
(Wherein, m = 0 to 3, n = 0 to 12, q = 0 or 1, X = F or CF 3 , A = sulfonic acid type functional group), tetrafluoroethylene, hexafluoro And copolymers with perfluoroolefins such as propylene, chlorotrifluoroethylene or perfluoroalkyl vinyl ether. Preferred examples of Furorobiniru compounds, for example, CF 2 = CFO (CF 2 ) aSO 2 F, CF 2 = CFOCF 2 CF (CF 3) O (CF 2) aSO 2 F, CF 2 = CF (CF 2) bSO 2 F, CF 2 = CF ( OCF 2 CF (CF 3)) cO (CF 2) ( here, a = 1~8, b = 0~8 , c = 1~5 integer) 2 SO 2 F is Can be mentioned.

なお、一般に高分子電解質膜としては、例えば、上記の高分子電解質の溶解・分散物を製膜してなるもの、高分子電解質の溶解・分散物とフィラーの混合物を製膜してなるもの、高分子電解質を無機或いは有機多孔体に充填したもの等が挙げられる。   In general, as the polymer electrolyte membrane, for example, those formed by forming a solution / dispersion of the above-described polymer electrolyte, those formed by forming a mixture of a solution / dispersion of polymer electrolyte and a filler, Examples thereof include those in which a polymer electrolyte is filled in an inorganic or organic porous material.

本発明においては、正極触媒層又は負極触媒層、集電・拡散層、高分子電解質膜層を、電極基材或いは高分子電解質膜に溶射して生膜してもよいし、逆に触媒層に電極基材及び高分子電解質を溶射法により生膜してもよいが、一般的には触媒層は強度的に不十分なので、溶射をして無機有機複合電解質膜を作成するには適さない。   In the present invention, the positive electrode catalyst layer or the negative electrode catalyst layer, the current collecting / diffusion layer, and the polymer electrolyte membrane layer may be sprayed on the electrode substrate or the polymer electrolyte membrane to form a raw film, or conversely The electrode substrate and polymer electrolyte may be formed into a raw film by spraying, but generally the catalyst layer is insufficient in strength, so it is not suitable for spraying to form an inorganic-organic composite electrolyte membrane. .

本発明においては、4−フッ素化したスルホン化高分子及びベンゼン環を有するスルホン化高分子(好ましくはナフィオン膜)を溶射用支持体として使用するのが好ましい。ナフィオン膜に対して無機非導電性多孔質体を溶射し、該多孔質体が外表面になるように張り合わせた後、高分子電解質を含浸させる工程を経て、無機有機複合電解質膜を作成する。   In the present invention, a 4-fluorinated sulfonated polymer and a sulfonated polymer having a benzene ring (preferably a Nafion membrane) are preferably used as the thermal spray support. An inorganic non-conductive porous material is sprayed on the Nafion membrane and bonded so that the porous material becomes the outer surface, followed by a step of impregnating the polymer electrolyte to produce an inorganic-organic composite electrolyte membrane.

ここに、メタノール供給側の触媒層に接する多孔質体の外表面は緻密なものが、空気供給側は空隙が多く高分子電解質の割合が多いものが好ましい。そのため張り合わせる二枚の無機非導電性多孔質体は溶射法により異なる組成で作製するのが望ましく、溶射法は簡便で好適な方法である。また、溶射した多孔質体をそのまま張り合わせて作製するので、無機多孔質層の破損を防ぐことができる。   Here, it is preferable that the outer surface of the porous body in contact with the catalyst layer on the methanol supply side is dense, and the air supply side has many voids and a large proportion of the polymer electrolyte. Therefore, it is desirable that the two inorganic non-conductive porous bodies to be bonded are produced with different compositions by a thermal spraying method, and the thermal spraying method is a simple and preferable method. Moreover, since the thermally sprayed porous body is bonded together as it is, damage to the inorganic porous layer can be prevented.

なお本発明では高分子電解質以外の基材(たとえば転写基材)に成膜し、これを電極基材や高分子電解質膜に転写或いは挟持させても良い。この場合の転写基材としては、ポリテトラフルオロエチレン(PTFE)のシート、或いは表面をフッ素やシリコーン系の離型剤で処理したガラス板や金属板なども用いられる。   In the present invention, a film may be formed on a substrate other than the polymer electrolyte (for example, a transfer substrate), and this may be transferred or sandwiched between the electrode substrate and the polymer electrolyte membrane. As the transfer substrate in this case, a polytetrafluoroethylene (PTFE) sheet or a glass plate or a metal plate whose surface is treated with fluorine or a silicone release agent is also used.

また集電・拡散層とは、主成分は後述の導電性材料、撥水性材料からなり、電極触媒層への燃料及び酸素の供給、生成水及び二酸化炭素の排出、発生した電子の伝導の効率を上げる機能を持たせた層である。   The current collection / diffusion layer is mainly composed of conductive materials and water-repellent materials, which will be described later. Supplying fuel and oxygen to the electrode catalyst layer, discharging generated water and carbon dioxide, and efficiency of conducting generated electrons. It is a layer with the function of raising

本発明に用いる無機多孔体は、イオン交換膜が軟化した場合にもその存在によりイオン交換膜の厚みを保持し、電極の短絡を防止するため非導電性であり、好ましくは親水性であり、さらに好ましくは、パーフルオロスルホン酸のような強酸性のものの存在下でも耐食性を有し、溶射で形成きるものである。   The inorganic porous material used in the present invention retains the thickness of the ion exchange membrane due to its presence even when the ion exchange membrane is softened, and is non-conductive in order to prevent short-circuiting of the electrodes, preferably hydrophilic. More preferably, it has corrosion resistance even in the presence of a strongly acidic substance such as perfluorosulfonic acid and can be formed by thermal spraying.

溶射して無機多孔体とする無機材料としては、SiO2、TiO2、Al23等の酸化物、スピネル、ペロブスカイト等の複合酸化物、ケイ酸塩ガラス等のガラス、炭化ケイ素、炭化チタン等の炭化物、窒化ケイ素、窒化ホウ素等の窒化物Ti、Al、B及びZrの水酸化物、そしてそれらの任意組み合わせが挙げられ、とりわけSiO2が好ましい。 Examples of the inorganic material that is sprayed to form an inorganic porous material include oxides such as SiO 2 , TiO 2 , and Al 2 O 3 , composite oxides such as spinel and perovskite, glass such as silicate glass, silicon carbide, and titanium carbide. Carbides such as silicon nitride, nitrides such as silicon nitride and boron nitride, hydroxides of Ti, Al, B and Zr, and any combination thereof, and SiO 2 is particularly preferable.

SiO2としては非晶質シリカが好ましく、乾式法、湿式法、エアロゲル法のいずれの製法によるものでも良いが、取扱いのしやすさにより湿式法のコロイダルシリカが好ましく、特に分散粒径0.5μm程度の湿式シリカが好ましい。 As SiO 2 , amorphous silica is preferable, and any of dry method, wet method, and airgel method may be used, but wet type colloidal silica is preferable due to ease of handling, and the dispersed particle size is preferably 0.5 μm. A degree of wet silica is preferred.

溶射用分散物に用いる無機材料の平均粒子径は30nm以上2000nm未満が好ましく、より好ましくは40nm以上1000nm未満である。   The average particle diameter of the inorganic material used for the thermal spray dispersion is preferably 30 nm or more and less than 2000 nm, more preferably 40 nm or more and less than 1000 nm.

本発明の無機有機複合電解質膜は、上記無機粒子を5〜50体積%、特には10〜40体積%、含むのが好ましい。上記範囲より小さい場合には膜中における無機粒子の存在量が小さいために無機粒子の添加効果が低下して十分なクロスオーバー防止効果が得られず、一方、大きい場合には高分子電解質の含有比率が小さくなるために膜の機械的強度の低下や膜抵抗の増加が起こり好ましくない。また、傾斜組成の作成の場合、少なくとも空隙率が10%以上異なる層を持つことが好ましい。差の上限に特に制限はないが、50%以下が好ましい。この場合、負極側は空隙率30〜70%、正極側は空隙率40〜80%となる。この間に、異なる空隙率の層を導入することで隣接する層の空隙率の差が10%より小さくなっていたとしても、空隙率が10%以上異なる層を有すれば本発明の効果を得ることができる。具体的には、空隙率が0.1〜0.5%/ミクロン以上連続的に変化していることで、クロスオーバー防止効果が得られる。   The inorganic / organic composite electrolyte membrane of the present invention preferably contains 5 to 50% by volume, particularly 10 to 40% by volume, of the inorganic particles. If the amount is smaller than the above range, the amount of inorganic particles present in the film is small, so that the effect of adding inorganic particles is reduced and a sufficient crossover prevention effect cannot be obtained. Since the ratio is small, the mechanical strength of the film decreases and the film resistance increases, which is not preferable. Moreover, when creating a gradient composition, it is preferable to have layers having at least 10% or more different porosity. Although there is no restriction | limiting in particular in the upper limit of a difference, 50% or less is preferable. In this case, the porosity on the negative electrode side is 30 to 70%, and the porosity on the positive electrode side is 40 to 80%. In the meantime, even if the difference in porosity between adjacent layers is less than 10% by introducing layers with different porosity, the effect of the present invention can be obtained if there is a layer with a porosity different by 10% or more. be able to. Specifically, the effect of preventing crossover can be obtained when the porosity continuously changes by 0.1 to 0.5% / micron or more.

多孔質体の形状は高分子電解質材料が充填、複合化できる形状であれば、特に制限は無い。そのような形状としては、例えば、フィルム状,フィブリル状,織布状,不織布状,スポンジ状,粒状,ウイスカ状が挙げられる。   The shape of the porous body is not particularly limited as long as it can be filled and combined with the polymer electrolyte material. Examples of such a shape include a film shape, a fibril shape, a woven fabric shape, a non-woven fabric shape, a sponge shape, a granular shape, and a whisker shape.

高分子電解質材料を多孔質体に充填、複合化し複合膜を形成する方法としては、高分子電解質材料の溶液、又は分散液を多孔体に含浸させた後、乾燥、成膜を行うキャスティング法や、高分子電解質材料と多孔質体を熱溶融により成形する方法、具体的には平板プレス,真空プレス等のバッチ法や連続ロールプレス法等による連続法、陽イオン交換膜を構成する高分子電解質材料と多孔体を混合した後、押出し成膜する方法等が挙げられる。   As a method of forming a composite membrane by filling a polymer electrolyte material into a porous body and forming a composite membrane, a casting method in which a porous body is impregnated with a solution or dispersion of a polymer electrolyte material, followed by drying and film formation, , A method of forming a polymer electrolyte material and a porous body by heat melting, specifically, a continuous method such as a batch method such as flat plate press or vacuum press, a continuous roll press method, or the like, and a polymer electrolyte constituting a cation exchange membrane Examples of the method include a method of extruding a film after mixing the material and the porous body.

本発明に用いられる溶射法による成膜はいわゆるフレーム溶射、高速フレーム溶射、爆発溶射、アーク溶射、プラズマ溶射、RFプラズマ溶射、電磁加速プラズマ溶射、線爆溶射、電熱爆発粉体溶射、レーザー溶射、レーザープラズマ複合溶射及びコールドスプレーを挙げることができる。   Film formation by the thermal spraying method used in the present invention is so-called flame spraying, high-speed flame spraying, explosion spraying, arc spraying, plasma spraying, RF plasma spraying, electromagnetic acceleration plasma spraying, line explosion spraying, electrothermal explosive powder spraying, laser spraying, Mention may be made of laser plasma composite spraying and cold spraying.

図1に後述の実施例で用いるプラズマ溶射法をモデル的に示す。   FIG. 1 schematically shows a plasma spraying method used in an embodiment described later.

プラズマ溶射法は、電極の間に不活性ガスを流して放電すると,電離して高温・高速のプラズマが発生し、このプラズマを溶射の熱源として用いる方法である。一般には、アルゴンを作動ガスとして,水冷されたノズル状の銅製陽極とタングステン製陰極を用いる。電極間にアーク放電を発生させると作動ガスがプラズマ化され、ノズルから高温高速のプラズマジェットとなって噴出する。このプラズマジェットに溶射材料粉末を投入し加熱加速して基材に吹き付ける。   In the plasma spraying method, when an inert gas is allowed to flow between electrodes to discharge, ionization occurs to generate high-temperature and high-speed plasma, and this plasma is used as a heat source for spraying. In general, water-cooled nozzle-like copper anode and tungsten cathode are used with argon as working gas. When an arc discharge is generated between the electrodes, the working gas is turned into plasma and ejected from the nozzle as a high-temperature and high-speed plasma jet. Thermal spray material powder is charged into this plasma jet, heated and accelerated, and sprayed onto the substrate.

図1において、プラズマ媒体としての不活性ガスの存在下で、溶射ガン1から噴射されるフレーム3中に無機溶射材料供給ノズル4より供給される無機溶射材料2は、フレーム3上流部の高温ガス流により溶解し、溶射材料液適流7となって支持体9に達し、溶射皮膜8を形成する。また、同時に微小無機溶射材料5を比較的支持体に近い供給ノズル4‘より微小無機溶射材料噴霧6として供給することもできる。   In FIG. 1, the inorganic spray material 2 supplied from the inorganic spray material supply nozzle 4 into the frame 3 injected from the spray gun 1 in the presence of an inert gas as a plasma medium is a high-temperature gas in the upstream portion of the frame 3. It melt | dissolves by a flow, it becomes the spraying material liquid suitable flow 7, reaches the support body 9, and forms the sprayed coating 8. FIG. At the same time, the fine inorganic spray material 5 can be supplied as the fine inorganic spray material spray 6 from the supply nozzle 4 ′ which is relatively close to the support.

多孔質体によるクロスオーバー防止効果を得るためには負極触媒層側に空隙率が少なく緻密な構造であるほうが有利である。また反対に正極触媒層側では空隙率が高く高分子電解質を多く含浸させることによりプロトン導電性を維持するほうが望ましい。本発明では、無機多孔質体の作成に溶射法を用いているので、傾斜組成を簡便に作成することができる。すなわち、第1の微小な多孔質粒子を分散させた粉末材料と、第2の第1の粉末材料よりも大きな多孔質粒子を分散させた粉末材料の相互の供給比率を経時的に変えながら高温のプラズマ中にそれぞれ供給し、こうして溶融された材料を高流速で支持体上に吹き付けることにより(プラズマ溶射)、傾斜組成化させることができる。   In order to obtain a crossover prevention effect by the porous body, it is advantageous to have a dense structure with a small porosity on the negative electrode catalyst layer side. On the other hand, it is desirable to maintain proton conductivity by impregnating a large amount of polymer electrolyte on the positive electrode catalyst layer side with a high porosity. In this invention, since the thermal spraying method is used for preparation of an inorganic porous body, a gradient composition can be prepared easily. That is, while changing the supply ratio of the powder material in which the first fine porous particles are dispersed and the powder material in which the porous particles larger than the second first powder material are dispersed, the temperature is changed over time. Each of these materials is supplied into the plasma, and the material thus melted is sprayed onto the support at a high flow rate (plasma spraying), whereby a gradient composition can be obtained.

また、第2の本発明の多孔質体の作成方法として、前記方法と同様の少なくとも2種類以上の粉末材料の混合比率を徐々に変えて混合しながら支持体上に積層することにより、多孔質を傾斜組成化させることができる。   Further, as a method for producing the porous body of the second aspect of the present invention, the porous material is laminated on the support while being mixed while gradually changing the mixing ratio of at least two kinds of powder materials similar to the above-described method. Can be graded.

さらに、第3の本発明の多孔質体の作成方法として、同様の少なくとも2種類以上の粉末材料の混合比率を変えて混合し溶射後焼結して得られた組成比率の異なる複数枚の薄板を、順に積層し加圧・加熱して成形一体化することにより、作成することができる。   Furthermore, as a method for producing the porous body of the third aspect of the present invention, a plurality of thin plates having different composition ratios obtained by changing the mixing ratio of at least two kinds of similar powder materials, mixing and spraying after spraying Can be formed by sequentially stacking, pressing and heating, and molding and integration.

電極触媒層、集電・拡散層に用いる導電性炭素材料としては、活性炭、カーボンブラック、グラファイト、カーボンナノチューブ、カーボンファイバ及びそれらの混合物を好ましく採用することができる。   As the conductive carbon material used for the electrode catalyst layer and the current collecting / diffusion layer, activated carbon, carbon black, graphite, carbon nanotube, carbon fiber and a mixture thereof can be preferably used.

例えばカーボンブラックとしては、アセチレンブラック、ケッチェンブラック、ファーネスブラック、ランプブラック、サーマルブラック等が挙げられ、Denka BLACK(電気化学工業社製)、Valcan XC−72(キャボット社製)、Black Pearl 2000(同前)、Ketjen Black EC300J(ケェチェンブラック・インターナショナル社製)等市販のものを採用することができる。   Examples of carbon black include acetylene black, ketjen black, furnace black, lamp black, and thermal black. Denka BLACK (manufactured by Denki Kagaku Kogyo Co., Ltd.), Valcan XC-72 (manufactured by Cabot Corporation), Black Pearl 2000 ( The same as before), commercially available products such as Ketjen Black EC300J (manufactured by Ketjenblack International Co., Ltd.) can be used.

またカーボンナノチューブ、カーボンナノホーン、カーボンファイバ以外にも、フラーレン等も同様に用いることができる。カーボンファイバ及びカーボンナノチューブは、好ましくは繊維径が0.001〜0.1μm、より好ましくは0.003〜0.05μmであり、繊維長が1〜100μm、好ましくは1〜30μmが導電性の点から好ましい。また、導電剤として他の炭素系導電剤と混合して用いることもできる。他の炭素系導電剤としては、人造黒鉛、天然黒鉛、カーボンブラック、膨張黒鉛、カーボン短繊維等及を用いることができる
またカーボン粒子は、カルボキシル化合物やスルホン化物等で親水化処理したものでもよい。
In addition to carbon nanotubes, carbon nanohorns, and carbon fibers, fullerenes can be used in the same manner. The carbon fiber and the carbon nanotube preferably have a fiber diameter of 0.001 to 0.1 μm, more preferably 0.003 to 0.05 μm, and a fiber length of 1 to 100 μm, preferably 1 to 30 μm. To preferred. Moreover, it can also be used as a conductive agent by mixing with other carbon-based conductive agents. As the other carbon-based conductive agent, artificial graphite, natural graphite, carbon black, expanded graphite, carbon short fiber, etc. can be used. Carbon particles may be subjected to a hydrophilic treatment with a carboxyl compound or a sulfonated product. .

担持する金属触媒としては、白金、ルテニウム、ロジウム、パラジウム、イリジウム、金、銀、鉄、コバルト、ニッケル、クロム、タングステン、マガジン、バナジウム又はこれらの多元合金を用いることができ、白金及び白金合金から選ばれる少なくとも1つであることが好ましい。   As the supported metal catalyst, platinum, ruthenium, rhodium, palladium, iridium, gold, silver, iron, cobalt, nickel, chromium, tungsten, magazine, vanadium, or a multi-component alloy thereof can be used. It is preferable that at least one selected.

金属触媒をカーボン粒子に担持させるには、例えばカーボンブラック分散液に白金やルテニウム塩を加え、ヒドラジン等を用いて還元し、濾過、乾燥することで得られる。又、更に熱処理を行っても良い。市販のValcan XC−72に白金或いは白金−ルテニウム触媒を担持させたもの(田中貴金属(株)製)等を用いることもできる。   In order to carry the metal catalyst on the carbon particles, for example, platinum or ruthenium salt is added to the carbon black dispersion, reduced using hydrazine or the like, filtered, and dried. Further, heat treatment may be performed. Commercially available Valcan XC-72 on which platinum or a platinum-ruthenium catalyst is supported (manufactured by Tanaka Kikinzoku Co., Ltd.) can also be used.

分散液用の有機溶媒としては、メタノール、エタノール、1−プロパノール、2−プロパノール、エチレングリコール、ジエチレングリコール等のアルコール類、アセトン、メチルエチルケトン、ジメチルホルムアミド、ジメチルイミダゾリジノン、ジメチルスルホキシド、ジメチルアセトアミド、N−メチルピロリドン、プロピレンカーボネート、酢酸エチルや酢酸ブチル等のエステル類、芳香族系或いはハロゲン系の種々の溶媒が挙げられ、単独あるいは混合物として用いることができる。   Examples of the organic solvent for the dispersion include alcohols such as methanol, ethanol, 1-propanol, 2-propanol, ethylene glycol, diethylene glycol, acetone, methyl ethyl ketone, dimethylformamide, dimethylimidazolidinone, dimethyl sulfoxide, dimethylacetamide, N- Examples include methyl pyrrolidone, propylene carbonate, esters such as ethyl acetate and butyl acetate, and various aromatic or halogen solvents, which can be used alone or as a mixture.

撥水性付与剤又は集電・拡散層に用いる素材としては、テフロン(R)の様なポリテトラフロロエチレン(PTFE)、テトラフロロエチレン−パーフロロアルキルビニルエーテル共重合体、テトラフロロエチレン−ヘキサフロロプロピレン共重合体等の含フッ素樹脂が挙げられる。   As a material used for the water repellency imparting agent or the current collecting / diffusion layer, polytetrafluoroethylene (PTFE) such as Teflon (R), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, tetrafluoroethylene-hexafluoropropylene Examples thereof include fluorine-containing resins such as copolymers.

電極基材としては、電気抵抗が低く、集電を行えるものであれば、特に限定されることなく用いることが可能である。電極基材の構成材としては、例えば、導電性物質を主とするものが挙げられ、この導電性物質としては、ポリアクリロニトリルからの焼成体、ピッチからの焼成体、黒鉛及び膨張黒鉛等の炭素材、前述のナノカーボン材料、ステンレススチール、モリブデン、チタン等が挙げられる。   Any electrode base material can be used without particular limitation as long as it has a low electrical resistance and can collect current. Examples of the constituent material of the electrode base material include those mainly composed of a conductive substance. Examples of the conductive substance include a fired body from polyacrylonitrile, a fired body from pitch, and carbon such as graphite and expanded graphite. Examples include raw materials, the aforementioned nanocarbon materials, stainless steel, molybdenum, and titanium.

電極基材の導電性無機物質の形態は特に限定されず、例えば繊維状或いは粒子状で用いられるが、ガス透過性の点から繊維状導電性無機物質(無機導電性繊維)、特に炭素繊維が好ましい。無機導電性繊維を用いた電極基材としては、織布或いは不織布いずれの構造も使用可能である。例えば、東レ(株)製カーボンペーパーTGPシリーズ、SOシリーズ、E−TEK社製カーボンクロスなどが用いられる。織布としては、平織、斜文織、朱子織、紋織、綴織など、特に限定されること無く用いられる。また、不織布としては、抄紙法、ニードルパンチ法、スパンボンド法、ウォータージェットパンチ法、メルトブロー法によるもの等、特に限定されること無く用いられる。また編物であっても構わない。これらの布帛において、特に炭素繊維を用いた場合、耐炎化紡績糸を用いた平織物を炭化或いは黒鉛化した織布、耐炎化糸をニードルパンチ法やウォータージェットパンチ法等による不織布加工した後に炭化あるいは黒鉛化した不織布、耐炎化糸或いは炭化糸或いは黒鉛化糸を用いた抄紙法によるマット不織布等が好ましく用いられる。特に、薄く強度のある布帛が得られる点から不織布を用いるのが好ましい。またいわゆるカーボンナノファイバ等をもちいることも有効である(特開2003−109618参照)。   The form of the conductive inorganic substance of the electrode base material is not particularly limited, and for example, it is used in the form of fibers or particles. From the viewpoint of gas permeability, fibrous conductive inorganic substances (inorganic conductive fibers), particularly carbon fibers are used. preferable. As an electrode base material using inorganic conductive fibers, either a woven fabric or a non-woven fabric structure can be used. For example, carbon paper TGP series, SO series manufactured by Toray Industries, Inc., carbon cloth manufactured by E-TEK, etc. are used. As the woven fabric, a plain weave, a twill weave, a satin weave, a crest weave, a binding weave and the like are used without particular limitation. The nonwoven fabric is not particularly limited, and may be a papermaking method, a needle punch method, a spun bond method, a water jet punch method, a melt blow method, or the like. It may be a knitted fabric. In particular, when carbon fibers are used in these fabrics, carbonized plain fabric using flame-resistant spun yarn is carbonized or graphitized, and flame-resistant yarn is carbonized after being processed into a nonwoven fabric by the needle punch method or water jet punch method. Alternatively, a graphitized nonwoven fabric, a flame-resistant yarn, a carbonized yarn, or a mat nonwoven fabric by a paper making method using a graphitized yarn is preferably used. In particular, it is preferable to use a non-woven fabric because a thin and strong fabric can be obtained. It is also effective to use so-called carbon nanofibers (see Japanese Patent Application Laid-Open No. 2003-109618).

電極基材として炭素繊維からなる無機導電性繊維を用いた場合、炭素繊維としては、ポリアクリロニトリル(PAN)系炭素繊維、フェノール系炭素繊維、ピッチ系炭素繊維、レーヨン系炭素繊維等が挙げられる。なかでも、PAN系炭素繊維が好ましい。   When inorganic conductive fibers made of carbon fibers are used as the electrode substrate, examples of the carbon fibers include polyacrylonitrile (PAN) -based carbon fibers, phenol-based carbon fibers, pitch-based carbon fibers, and rayon-based carbon fibers. Of these, PAN-based carbon fibers are preferable.

導電性無機粒子としては、SiO2、ZrO2、B23、TiO2、Al23及び、場合によりTi、Al、B及びZrの水酸化物、そしてそれらの任意組み合わせが挙げられ、SiO2が好ましい。 Examples of the conductive inorganic particles include SiO 2 , ZrO 2 , B 2 O 3 , TiO 2 , Al 2 O 3, and optionally hydroxides of Ti, Al, B and Zr, and any combination thereof. SiO 2 is preferred.

正極又は負極触媒層、集電・拡散層、高分子電解質膜を塗布する方法としては、ロッドコーター、ブレードコーター、ナイフコーター、ダイコーター、カーテンコーター、スライドコーター、スプレーコーター、スピンコーター、ディップコーター、ロールコーター等のコーターを用いる方法や刷毛塗りなどが挙げられる。同時多層塗布を行う場合、ダイコーター、カーテンコーター、スライドコーターが好ましい。   As a method of applying the positive electrode or negative electrode catalyst layer, current collecting / diffusion layer, polymer electrolyte membrane, rod coater, blade coater, knife coater, die coater, curtain coater, slide coater, spray coater, spin coater, dip coater, Examples thereof include a method using a coater such as a roll coater and brush coating. When performing simultaneous multilayer coating, a die coater, a curtain coater, and a slide coater are preferable.

正極触媒層、負極触媒層の主成分は金属触媒或いは金属触媒担持カーボン粒子と高分子電解質であり、それらの比率は必要とされる電極特性に応じて適宜決められるべきもので、特に限定されるものではないが、触媒担持カーボン粒子/高分子電解質の質量比率で5/95〜95/5が好ましく、40/60〜85/15がさらに好ましいものである。   The main components of the positive electrode catalyst layer and the negative electrode catalyst layer are a metal catalyst or metal catalyst-supporting carbon particles and a polymer electrolyte, and the ratio thereof should be appropriately determined according to required electrode characteristics and is particularly limited. Although it is not a thing, 5 / 95-95 / 5 are preferable and 40 / 60-85 / 15 are more preferable by the mass ratio of a catalyst carrying | support carbon particle / polymer electrolyte.

また、正極触媒層、負極触媒層には、種々の添加物を加えることもできる。例えば、電子伝導性向上のための炭素などの導電剤や、結着性向上のための高分子バインダー、撥水性向上のための撥水剤等の添加物などがあるが、特に限定されることなく用いることができる。   Various additives may be added to the positive electrode catalyst layer and the negative electrode catalyst layer. For example, there are additives such as conductive agents such as carbon for improving electronic conductivity, polymer binders for improving binding properties, water repellents for improving water repellency, etc. Can be used.

以上の様にして作製した無機有機複合電解質膜の外側に、燃料流路と酸化剤流路を形成する溝が形成された燃料配流板(セパレータ)と、酸化剤配流板(セパレータ)とを配したものを単セルとし、この単セルを複数個、冷却板等を介して積層することにより、燃料電池が構成される。なおセパレータは集電機能を備えていても良い。   A fuel distribution plate (separator) in which grooves for forming a fuel channel and an oxidant channel are formed and an oxidant distribution plate (separator) are arranged outside the inorganic-organic composite electrolyte membrane produced as described above. A fuel cell is formed by stacking a plurality of the single cells via a cooling plate or the like. The separator may have a current collecting function.

本発明の燃料電池に採用できる燃料としては、水素ガス、メタノール、エタノール、1−プロパノール、ジメチルエーテル、アンモニア等が挙げられるが、メタノールが好ましい。   Examples of the fuel that can be used in the fuel cell of the present invention include hydrogen gas, methanol, ethanol, 1-propanol, dimethyl ether, ammonia, and the like, and methanol is preferable.

以下、実施例により本発明について更に詳しく説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these.

〔触媒担持カーボン粒子の作製〕
(正極用白金担持カーボン粒子)
アセチレンブラック8g、純水200gを混合する。次いで、白金として2gの塩化白金酸水溶液を添加して、60℃に昇温する。温度が一定になった後に、2M水酸化ナトリウム溶液でpH10に調整して、3質量%ヒドラジン溶液を滴下して塩化白金酸の還元を行う。還元終了後にガラスフィルターで濾過洗浄し、乾燥することで白金担持カーボン粒子を得た。白金担持量は20質量%であった。
[Production of catalyst-supported carbon particles]
(Platinum-supported carbon particles for positive electrode)
8 g of acetylene black and 200 g of pure water are mixed. Subsequently, 2 g of chloroplatinic acid aqueous solution is added as platinum, and it heats up to 60 degreeC. After the temperature becomes constant, the pH is adjusted to 10 with 2M sodium hydroxide solution, and 3% by mass hydrazine solution is added dropwise to reduce chloroplatinic acid. After completion of the reduction, platinum-supported carbon particles were obtained by filtering and washing with a glass filter and drying. The amount of platinum supported was 20% by mass.

(負極用白金ルテニウム担持カーボン粒子)
上記と同様にして、白金として2.6gの塩化白金酸及びルテニウムとして2.1gの塩化ルテニウムを用いて、白金ルテニウム担持カーボン粒子を得た。白金担持量は20質量%であった。
(Platinum ruthenium-supported carbon particles for negative electrode)
In the same manner as described above, platinum ruthenium-supporting carbon particles were obtained using 2.6 g of chloroplatinic acid as platinum and 2.1 g of ruthenium chloride as ruthenium. The amount of platinum supported was 20% by mass.

〔電極用ペーストの作製〕
(負極用ペーストの作製)
白金ルテニウム担持カーボン粒子、ナフィオン117溶液(和光純薬工業社製)、テフロン(R)分散液PTFE31−J(三井デュポンフロロケミカル社製)からなる、固形分質量比でそれぞれ40:55:5の混合物を作成し、これに蒸留水、2−プロパノールを加え、超音波で均一に分散し、負極用触媒ペーストを作成した。
[Preparation of electrode paste]
(Preparation of negative electrode paste)
Platinum ruthenium-supported carbon particles, Nafion 117 solution (manufactured by Wako Pure Chemical Industries, Ltd.), Teflon (R) dispersion PTFE31-J (manufactured by Mitsui DuPont Fluorochemical Co., Ltd.), each having a solid content mass ratio of 40: 55: 5 A mixture was prepared, distilled water and 2-propanol were added thereto, and the mixture was uniformly dispersed with ultrasonic waves to prepare a negative electrode catalyst paste.

(正極用ペーストの作製)
白金ルテニウム担持カーボン粒子に替えて白金担持カーボン粒子を用いた以外は、負極用ペーストの作製と同様にして正極用ペーストを作製した。
(Preparation of positive electrode paste)
A positive electrode paste was prepared in the same manner as the negative electrode paste except that platinum-supported carbon particles were used instead of platinum ruthenium-supported carbon particles.

(集電・拡散層用ペーストの作製)
ケッチェンブラックEC(ライオン社製)、テフロン(R)分散液(前出)、ナフィオン117溶液(前出)が固形分質量比でそれぞれ55:30:15の混合物を作成し、これに水、2−プロパノールを加え、超音波で均一に分散し、集電・拡散層用ペーストを作製した。
(Preparation of current collecting / diffusion layer paste)
Ketjen Black EC (manufactured by Lion), Teflon (R) dispersion (supra), and Nafion 117 solution (supra) were each made into a mixture of 55:30:15 in terms of solid content mass ratio. 2-Propanol was added and dispersed uniformly with ultrasonic waves to prepare a paste for a current collecting / diffusion layer.

(高分子電解質分散液の作製)
ナフィオン117溶液(前出)に、水、2−プロパノール及び予め破砕した固体状のナフィオン膜を加え、0.5mmのジルコニアビーズを用いて分散し、ナフィオン固形分50%の高分子電解質分散液を作製した。
(Preparation of polymer electrolyte dispersion)
To the Nafion 117 solution (supra), water, 2-propanol and a previously crushed solid Nafion membrane are added, dispersed using 0.5 mm zirconia beads, and a polymer electrolyte dispersion having a Nafion solid content of 50% is obtained. Produced.

(無機有機複合電解質膜1の作製)
アルゴンガスの存在下で、溶射法によりエポキシ支持体に、シリカ皮膜を形成する。このときのプラズマ温度及びガス流速を経時的に変化させて、外表面に向かって空隙率が密になるような傾斜組成になるようにし、外表面のシリカ被膜の空隙率が50%以下、無機多孔質体の膜厚が100μmになるように作製した。また、このときの表面粗さRaが15μmになるようにブラスト処理を行った。次に、焼成して無機多孔質体を得た。その後、上記高分子電解質分散液を無機多孔質体に含浸させた後、乾燥機中に100℃で3時間放置し、図2にその構造をモデル的に示す無機有機複合電解質膜1を作製した。
(Preparation of inorganic-organic composite electrolyte membrane 1)
A silica film is formed on the epoxy support by thermal spraying in the presence of argon gas. The plasma temperature and the gas flow rate at this time are changed with time so that the gradient composition is such that the porosity becomes dense toward the outer surface, and the porosity of the silica coating on the outer surface is 50% or less, inorganic The porous body was prepared so that the film thickness was 100 μm. In addition, blasting was performed so that the surface roughness Ra at this time was 15 μm. Next, firing was performed to obtain an inorganic porous body. Then, after impregnating the above-mentioned polymer electrolyte dispersion into the inorganic porous body, it was left in a dryer at 100 ° C. for 3 hours to produce an inorganic-organic composite electrolyte membrane 1 whose structure is modeled in FIG. .

(無機有機複合電解質膜2の作製)
アルゴンガスの存在下で、溶射法によりナフィオン支持体に、シリカ皮膜を形成する。このときのプラズマ温度及びガス流速を経時的に変化させて、傾斜組成になるようにし、外表面のシリカ被膜の空隙率が40%以下、最深部のシリカ被膜の空隙率が50%以上、無機多孔質体と支持体の膜厚が合わせて50μmになるように作製した。また、このときの表面粗さRaが15μmになるようにブラスト処理を行った。その後、上記高分子電解質分散液を無機多孔質体に含浸させた後、乾燥機中に100℃で3時間放置し、無機有機複合電解質膜2を作製した。
(Preparation of inorganic-organic composite electrolyte membrane 2)
In the presence of argon gas, a silica film is formed on the Nafion support by spraying. At this time, the plasma temperature and the gas flow rate are changed with time so as to have a gradient composition, the porosity of the silica coating on the outer surface is 40% or less, the porosity of the deepest silica coating is 50% or more, inorganic The porous body and the support were prepared so that the total film thickness was 50 μm. In addition, blasting was performed so that the surface roughness Ra at this time was 15 μm. Then, after impregnating the said polymer electrolyte dispersion liquid in an inorganic porous body, it was left to stand in a dryer at 100 degreeC for 3 hours, and the inorganic organic composite electrolyte membrane 2 was produced.

(無機有機複合電解質膜2’の作製)
アルゴンガスの存在下で、溶射法によりナフィオン支持体に、シリカ皮膜を形成する。このときのプラズマ温度及びガス流速を経時的に変化させて、傾斜組成になるようにし、このときのシリカ被膜の空隙率が60%以上、無機多孔質体と支持体の膜厚が合わせて50μmになるように作製した。また、このときの表面粗さRaが15μmになるようにブラスト処理を行った。その後、上記高分子電解質分散液を無機多孔質体に含浸させた後、乾燥機中に100℃で3時間放置し、無機有機複合電解質膜2’を作製した。
(Preparation of inorganic-organic composite electrolyte membrane 2 ')
In the presence of argon gas, a silica film is formed on the Nafion support by spraying. At this time, the plasma temperature and the gas flow rate are changed with time so that a gradient composition is obtained. At this time, the porosity of the silica coating is 60% or more, and the total thickness of the inorganic porous body and the support is 50 μm. It produced so that it might become. In addition, blasting was performed so that the surface roughness Ra at this time was 15 μm. Then, after impregnating the above-mentioned polymer electrolyte dispersion into the inorganic porous body, it was left in a dryer at 100 ° C. for 3 hours to produce an inorganic-organic composite electrolyte membrane 2 ′.

(無機有機複合電解質膜3の作製)
アルゴンガスの存在下で、溶射法によりナフィオン支持体に、シリカ皮膜を形成する。このときの比較的支持体に近い無機溶射材料供給ノズルより供給された微小シリカでも同時に皮膜し、2種類のシリカの混合比率を経時的に変化させることで、傾斜組成になるようにし、このときのシリカ被膜の最表面の空隙率が40%以下、最深部のシリカ被膜の空隙率が50%以上、無機多孔質体と支持体の膜厚が合わせて50μmになるように作製した。また、このときの表面粗さRaが15μmになるようにブラスト処理を行った。その後、上記高分子電解質分散液を無機多孔質体に含浸させた後、乾燥機中に100℃で3時間放置し、無機有機複合電解質膜3を作製した。
(Preparation of inorganic-organic composite electrolyte membrane 3)
In the presence of argon gas, a silica film is formed on the Nafion support by spraying. At this time, even the fine silica supplied from the inorganic spray material supply nozzle relatively close to the support is coated at the same time, and the mixing ratio of the two types of silica is changed over time so that the gradient composition is obtained. The porosity of the outermost surface of the silica coating was 40% or less, the porosity of the deepest silica coating was 50% or more, and the total thickness of the inorganic porous body and the support was 50 μm. In addition, blasting was performed so that the surface roughness Ra at this time was 15 μm. Then, after impregnating the above-mentioned polymer electrolyte dispersion into the inorganic porous material, the polymer electrolyte dispersion was left in a dryer at 100 ° C. for 3 hours to produce an inorganic / organic composite electrolyte membrane 3.

(無機有機複合電解質膜3’の作製)
アルゴンガスの下で、溶射法によりナフィオン支持体に、シリカ皮膜を形成する。このときの比較的支持体に近い無機溶射材料供給ノズルより供給された微小シリカでも同時に皮膜し、2種類のシリカの混合比率を経時的に変化させることで、傾斜組成になるようにし、このときのシリカ被膜の空隙率が60%以上になるように無機多孔質体と支持体の膜厚が合わせて50μmになるように作成した。また、このときの表面粗さRaが15μmになるようにブラスト処理を行った。その後、上記高分子電解質分散液を無機多孔質体に含浸させた後、乾燥機中に100℃で3時間放置し、無機有機複合電解質膜3’を作製した。
(Preparation of inorganic-organic composite electrolyte membrane 3 ')
A silica film is formed on the Nafion support by spraying under argon gas. At this time, even the fine silica supplied from the inorganic spray material supply nozzle relatively close to the support is coated at the same time, and the mixing ratio of the two types of silica is changed over time so that the gradient composition is obtained. The silica porous film was prepared so that the total thickness of the inorganic porous body and the support was 50 μm so that the porosity of the silica coating was 60% or more. In addition, blasting was performed so that the surface roughness Ra at this time was 15 μm. Then, after impregnating the above-mentioned polymer electrolyte dispersion into the inorganic porous body, it was left in a dryer at 100 ° C. for 3 hours to produce an inorganic / organic composite electrolyte membrane 3 ′.

(無機有機複合電解質膜4の作製)
約500nmの粒径を持つ超微小シリカを体積比で50:50の割合で水中に攪拌、分散させた。その後、減圧吸引濾過器を用いて孔径0.025μmのメンブレンフィルタで濾過を行った。濾紙を乾燥した後、500℃で焼成し、空隙率52%、厚さ100μmの無機多孔質体−M1を作成した。この無機多孔質体−M1をテフロン(R)シート上に置き、上記高分子電解質分散液を充填・乾燥して無機有機複合電解質膜4を作製した。このときの空隙率は70%で表面粗さRaが10μmであった。
(Preparation of inorganic-organic composite electrolyte membrane 4)
Ultrafine silica having a particle size of about 500 nm was stirred and dispersed in water at a volume ratio of 50:50. Then, it filtered with the membrane filter with the hole diameter of 0.025 micrometer using the vacuum suction filter. After drying the filter paper, it was fired at 500 ° C. to prepare an inorganic porous material-M1 having a porosity of 52% and a thickness of 100 μm. This inorganic porous material-M1 was placed on a Teflon (R) sheet, filled with the polymer electrolyte dispersion, and dried to prepare an inorganic-organic composite electrolyte membrane 4. At this time, the porosity was 70% and the surface roughness Ra was 10 μm.

(電解質膜5)
ナフィオン膜(デュポン社製、膜厚約50μm)を使用した。
(Electrolyte membrane 5)
A Nafion membrane (manufactured by DuPont, film thickness of about 50 μm) was used.

(無機有機複合電解質膜6の作製)
無機有機複合電解質膜1と同様にして作製したが、表面のブラスト処理は行わなかった。このときの表面粗さRaが5μmであった。
(Preparation of inorganic-organic composite electrolyte membrane 6)
Although it produced similarly to the inorganic organic composite electrolyte membrane 1, the surface blasting process was not performed. The surface roughness Ra at this time was 5 μm.

(無機有機複合電解質膜〜電極−電解質膜接合体Iの作製)
カーボンペーパー(東レ社製)を電極基体とし、1層ダイコーターを用いて、負極用ペーストを乾燥膜厚で20μmとなるように塗設し負極触媒層を作製した。同様にカーボンペーパー電極基体に1層ダイコーターを用いて正極用ペーストを乾燥膜厚で20μmとなるように塗設し、正極触媒層を作製した。次いで、これらの正極触媒層及び負極触媒層にナフィオン溶液を塗布したもので前記無機有機複合電解質膜1を空隙率が密な方が負極触媒層に接する様に挟み、ホットプレス(140℃、20kg/cm2)を用いて無機有機複合電解質膜Iを作製した。
(Preparation of inorganic-organic composite electrolyte membrane to electrode-electrolyte membrane assembly I)
Carbon paper (manufactured by Toray Industries, Inc.) was used as an electrode base, and a negative electrode paste was applied to a dry film thickness of 20 μm using a single-layer die coater to prepare a negative electrode catalyst layer. Similarly, a positive electrode paste was applied to a carbon paper electrode substrate using a single-layer die coater so as to have a dry film thickness of 20 μm to produce a positive electrode catalyst layer. Subsequently, a Nafion solution is applied to the positive electrode catalyst layer and the negative electrode catalyst layer, and the inorganic organic composite electrolyte membrane 1 is sandwiched so that the one having a higher porosity is in contact with the negative electrode catalyst layer, and hot pressing (140 ° C., 20 kg). / Cm 2 ) to produce an inorganic / organic composite electrolyte membrane I.

(無機有機複合電解質膜〜電極−電解質膜接合体IIの作製)
カーボンペーパー(東レ社製)を電極基体とし、1層ダイコーターを用いて、負極用ペーストを乾燥膜厚で20μmとなるように塗設し負極触媒層を作製した。同様にカーボンペーパー電極基体に1層ダイコーターを用いて正極用ペーストを乾燥膜厚で20μmとなるように塗設し、正極触媒層を作製した。次いで、これらの正極触媒層及び負極触媒層にナフィオン溶液を塗布したもので負極触媒層、無機有機複合電解質膜2(ナフィオン膜は内側)、無機有機複合電解質膜2’(ナフィオン膜は内側)、正極触媒層の順番となる様に前記電解質膜2及び2’を挟み、ホットプレス(140℃、20kg/cm2)を用いて無機有機複合電解質膜IIを作製した。図3に無機有機複合電解質膜2(ナフィオン膜は内側)、無機有機複合電解質膜2’(ナフィオン膜は内側)からなる無機有機複合電解質膜の構造をモデル的に示す。
(Preparation of inorganic-organic composite electrolyte membrane to electrode-electrolyte membrane assembly II)
Carbon paper (Toray Industries, Inc.) was used as an electrode substrate, and a negative electrode paste was applied to a dry film thickness of 20 μm using a single layer die coater to prepare a negative electrode catalyst layer. Similarly, a positive electrode paste was applied to a carbon paper electrode substrate so as to have a dry film thickness of 20 μm using a single-layer die coater to prepare a positive electrode catalyst layer. Next, a negative electrode catalyst layer, an inorganic organic composite electrolyte membrane 2 (the Nafion membrane is inside), an inorganic organic composite electrolyte membrane 2 ′ (the Nafion membrane is inside), in which a Nafion solution is applied to these positive electrode catalyst layer and negative electrode catalyst layer, The electrolyte membranes 2 and 2 ′ were sandwiched in the order of the positive electrode catalyst layer, and an inorganic / organic composite electrolyte membrane II was prepared using a hot press (140 ° C., 20 kg / cm 2 ). FIG. 3 schematically shows the structure of the inorganic / organic composite electrolyte membrane 2 composed of the inorganic / organic composite electrolyte membrane 2 (the Nafion membrane is inside) and the inorganic / organic composite electrolyte membrane 2 ′ (the Nafion membrane is inside).

(無機有機複合電解質膜〜電極−電解質膜接合体IIIの作製)
カーボンペーパー(東レ社製)を電極基体とし、1層ダイコーターを用いて、負極用ペーストを乾燥膜厚で20μmとなるように塗設し負極触媒層を作製した。同様にカーボンペーパー電極基体に1層ダイコーターを用いて正極用ペーストを乾燥膜厚で20μmとなるように塗設し、正極触媒層を作製した。次いで、これらの正極触媒層及び負極触媒層にナフィオン溶液を塗布したもので負極触媒層、無機有機複合電解質膜3(ナフィオン膜は内側)、無機有機複合電解質膜3‘(ナフィオン膜は内側)、正極触媒層の順番となる様に前記電解質膜3及び3’をで挟み、ホットプレス(140℃、20kg/cm2)を用いて無機有機複合電解質膜IIIを作製した。
(Preparation of inorganic-organic composite electrolyte membrane to electrode-electrolyte membrane assembly III)
Carbon paper (manufactured by Toray Industries, Inc.) was used as an electrode base, and a negative electrode paste was applied to a dry film thickness of 20 μm using a single-layer die coater to prepare a negative electrode catalyst layer. Similarly, a positive electrode paste was applied to a carbon paper electrode substrate so as to have a dry film thickness of 20 μm using a single-layer die coater to prepare a positive electrode catalyst layer. Next, a negative electrode catalyst layer, an inorganic organic composite electrolyte membrane 3 (the Nafion membrane is inside), an inorganic organic composite electrolyte membrane 3 ′ (the Nafion membrane is inside), in which a Nafion solution is applied to these positive electrode catalyst layer and negative electrode catalyst layer, The electrolyte membranes 3 and 3 ′ were sandwiched in order of the positive electrode catalyst layer, and an inorganic / organic composite electrolyte membrane III was prepared using a hot press (140 ° C., 20 kg / cm 2 ).

(無機有機複合電解質膜〜電極−電解質膜接合体IV〜VIの作製)
カーボンペーパー(東レ社製)を電極基体とし、1層ダイコーターを用いて、負極用ペーストを乾燥膜厚で20μmとなるように塗設し負極触媒層を作製した。同様にカーボンペーパー電極基体に1層ダイコーターを用いて正極用ペーストを乾燥膜厚で20μmとなるように塗設し、正極触媒層を作製した。次いで、これらの正極触媒層及び負極触媒層にナフィオン溶液を塗布したもので前記無機有機複合電解質膜4〜6をそれぞれ挟み、ホットプレス(140℃、20kg/cm2)を用いて無機有機複合電解質膜IV〜VIを作製した。
(Preparation of inorganic-organic composite electrolyte membrane to electrode-electrolyte membrane assembly IV to VI)
Carbon paper (manufactured by Toray Industries, Inc.) was used as an electrode base, and a negative electrode paste was applied to a dry film thickness of 20 μm using a single-layer die coater to prepare a negative electrode catalyst layer. Similarly, a positive electrode paste was applied to a carbon paper electrode substrate using a single-layer die coater so as to have a dry film thickness of 20 μm to produce a positive electrode catalyst layer. Subsequently, the inorganic organic composite electrolyte membranes 4 to 6 are respectively sandwiched by applying a Nafion solution to the positive electrode catalyst layer and the negative electrode catalyst layer, and using a hot press (140 ° C., 20 kg / cm 2 ), the inorganic organic composite electrolyte. Membranes IV-VI were prepared.

(燃料電池セルの作製)
上記で作成した実施例及び比較例の無機有機複合電解質膜I〜VIを、燃料流路及びガス流路が形成された導電性セパレーターでそれぞれ挟み、図4に代表して示すような構造の燃料電池単セルを作製した。無機有機複合電解質膜I〜III、VIを用いて作製した燃料電池セルを実施例1〜4、無機有機複合電解質膜IV、Vを用いて作製した燃料電池セルを比較例1、2として以下の評価を行った。
(Production of fuel cell)
A fuel having a structure as representatively shown in FIG. 4 is formed by sandwiching the inorganic-organic composite electrolyte membranes I to VI of Examples and Comparative Examples created above with conductive separators in which a fuel channel and a gas channel are formed. A battery single cell was produced. The fuel battery cells produced using the inorganic-organic composite electrolyte membranes I to III and VI are Examples 1 to 4 and the fuel battery cells produced using the inorganic-organic composite electrolyte membranes IV and V are referred to as Comparative Examples 1 and 2 below. Evaluation was performed.

(無機有機複合電解質膜の界面抵抗値及び歩留まり率の評価)
抵抗値の測定は、60℃において、上記のとおり作成した燃料電池セルの電極間に直流バイアスを印加しながらの交流インピーダンス法で行い、コール・コールプロットの実数インピーダンス切片から界面抵抗を算出した。
(Evaluation of interface resistance value and yield rate of inorganic / organic composite electrolyte membrane)
The resistance value was measured by the AC impedance method while applying a DC bias between the electrodes of the fuel cell prepared as described above at 60 ° C., and the interface resistance was calculated from the real impedance intercept of the Cole-Cole plot.

また、歩留まり率は、
○:作成時に破損、表面の微細な亀裂がほとんどみられない
△:破損、表面の微細な亀裂は見られないが、膜の接合性が悪い
×:破損、表面の微細な亀裂がよく見られる
という基準で評価した。
The yield rate is
○: No damage or fine cracks on the surface are observed at the time of preparation. Δ: No damage or fine cracks on the surface are observed, but the bonding property of the film is poor. ×: Damages and fine cracks on the surface are often seen. It was evaluated on the basis of.

結果を以下に示す。   The results are shown below.

燃料電池セル 界面抵抗率(Ω・cm2) 歩留まり率
実施例1 140 ○
実施例2 160 ○
実施例3 148 ○
実施例4 180 △
比較例1 250 ×
比較例2 280 ○
これから明らかなとおり、本発明によれば、膜接着性の向上による界面抵抗の減少、歩どまり率の向上を得ることができる。
Fuel cell interface resistance (Ω · cm 2 ) Yield rate Example 1 140 ○
Example 2 160 ○
Example 3 148 ○
Example 4 180
Comparative Example 1 250 ×
Comparative Example 2 280 ○
As is clear from this, according to the present invention, it is possible to obtain a reduction in interface resistance and an improvement in yield rate due to the improvement in film adhesion.

(電流―電圧特性の評価)
上記、実施例及び比較例に係る燃料電池単セルを用いて、温度25℃、大気圧下における燃料の流速を6ml/分、空気の流速を1000ml/分とした条件で、負極側に1モルのメタノール水溶液を、正極側に空気を供給し、電流―電圧特性を測定した。その結果を図5に電流―電圧曲線として示す。
(Evaluation of current-voltage characteristics)
Using the fuel cell single cell according to the example and the comparative example described above, the temperature of 25 ° C., the flow rate of fuel at atmospheric pressure was 6 ml / min, and the flow rate of air was 1000 ml / min. An aqueous methanol solution was supplied to the positive electrode side, and current-voltage characteristics were measured. The result is shown as a current-voltage curve in FIG.

図5から明らかなように、本発明の無機有機複合電解質膜は従来の電解質膜に比べて、電流―電圧特性が良好で、高出力であることがわかる。クロスオーバーがおこることが知られている比較例2に比べて高い出力が得られていることから、本発明の実施例1〜3は従来のものよりもクロスオーバーを防止することができ、高出力を得ることができると思われる。   As can be seen from FIG. 5, the inorganic / organic composite electrolyte membrane of the present invention has better current-voltage characteristics and higher output than the conventional electrolyte membrane. Since a high output is obtained as compared with Comparative Example 2 in which crossover is known to occur, Examples 1 to 3 of the present invention can prevent crossover more than the conventional one, and high It seems that you can get output.

実施例で用いるプラズマ溶射法をモデル的に示す図である。It is a figure which shows the plasma spraying method used in an Example modelly. 本発明に係る無機有機複合電解質膜の構造をモデル的に示す図である。It is a figure which shows the structure of the inorganic organic composite electrolyte membrane which concerns on this invention as a model. 本発明に係る無機有機複合電解質膜の他の構造をモデル的に示す図である。It is a figure which shows the other structure of the inorganic organic composite electrolyte membrane which concerns on this invention as a model. 実施例で作製した燃料電池単セルの構造の1例をモデル的に示す図である。It is a figure which shows one example of the structure of the fuel cell single cell produced in the Example. 実施例で評価した電流−電圧特性を示す図である。It is a figure which shows the current-voltage characteristic evaluated in the Example.

符号の説明Explanation of symbols

1 溶射ガン
2 無機溶射材料
3 フレーム
4 無機溶射材料供給ノズル
5 微小無機溶射材料
6 微小無機溶射材料噴霧
7 溶射材料液滴流
8 溶射皮膜
9 支持体
10 無機多孔質体外表面
11 無機多孔質体
12 高分子電解質
13 高分子電解質膜
14 負極触媒層
15 負極側燃料流路
16 負極集電体及び電極
17 正極触媒層
18 正極側空気流路
19 正極電極
DESCRIPTION OF SYMBOLS 1 Spraying gun 2 Inorganic spraying material 3 Frame 4 Inorganic spraying material supply nozzle 5 Micro inorganic spraying material 6 Micro inorganic spraying material spray 7 Spraying material droplet flow 8 Thermal spraying coating 9 Support body 10 Inorganic porous body outer surface 11 Inorganic porous body 12 Polymer electrolyte 13 Polymer electrolyte membrane 14 Negative electrode catalyst layer 15 Negative electrode side fuel flow path 16 Negative electrode current collector and electrode 17 Positive electrode catalyst layer 18 Positive electrode side air flow path 19 Positive electrode

Claims (8)

支持体上に無機多孔体を溶射することによって無機多孔質膜を作製した後、該無機多孔質膜に高分子電解質又は重合して高分子電解質となる材料を浸潤させる工程を経ることを特徴とする無機有機複合電解質膜の製造方法。 A process of preparing an inorganic porous film by spraying an inorganic porous body on a support, and then infiltrating the inorganic porous film with a polymer electrolyte or a material that becomes a polymer electrolyte by polymerization. A method for producing an inorganic-organic composite electrolyte membrane. 前記無機多孔体がシリカを含むことを特徴とする請求項1に記載の無機有機複合電解質膜の製造方法。 The method for producing an inorganic-organic composite electrolyte membrane according to claim 1, wherein the inorganic porous body contains silica. 前記支持体が4−フッ素化したスルホン化高分子及びベンゼン環を有するスルホン化高分子からなる群から選ばれた少なくとも一種のイオン伝導性高分子を含むことを特徴とする請求項1又は2に記載の無機有機複合電解質膜の製造方法。 The said support body contains the at least 1 sort (s) of ion-conductive polymer chosen from the group which consists of the sulfonated polymer which 4-fluorinated, and the sulfonated polymer which has a benzene ring. A method for producing the described inorganic-organic composite electrolyte membrane. 高分子電解質が浸潤された無機多孔質膜を有し、該無機多孔質膜の厚さ方向に空隙率が変化することを特徴とする無機有機複合電解質膜。 An inorganic-organic composite electrolyte membrane comprising an inorganic porous membrane infiltrated with a polymer electrolyte, wherein the porosity changes in the thickness direction of the inorganic porous membrane. 前記無機多孔質膜の一方の端面と他方の端面との空隙率の差が10%以上であることを特徴とする請求項4に記載の無機有機複合電解質膜。 The inorganic-organic composite electrolyte membrane according to claim 4, wherein a difference in porosity between one end surface and the other end surface of the inorganic porous membrane is 10% or more. 前記無機多孔質膜の表面粗さがRaで3〜200μmであることを特徴とする請求項4又は5に記載の無機有機複合電解質膜。 6. The inorganic / organic composite electrolyte membrane according to claim 4, wherein the inorganic porous membrane has a surface roughness Ra of 3 to 200 [mu] m. 前記無機多孔質膜が溶射法によって形成されることを特徴とする請求項4〜6の何れか1項に記載の無機有機複合電解質膜。 The inorganic-organic composite electrolyte membrane according to any one of claims 4 to 6, wherein the inorganic porous membrane is formed by a thermal spraying method. 請求項4〜7項のいずれかに記載の無機有機複合電解質膜が、負極側から正極側の方向に空隙率が高くなるように組み込まれることを特徴とする燃料電池。 A fuel cell, wherein the inorganic-organic composite electrolyte membrane according to any one of claims 4 to 7 is incorporated so that the porosity increases from the negative electrode side to the positive electrode side.
JP2004129426A 2004-04-26 2004-04-26 Forming method for inorganic-organic composite electrolyte membrane, inorganic-organic composite electrolyte membrane, and fuel cell using the membrane Pending JP2005310697A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004129426A JP2005310697A (en) 2004-04-26 2004-04-26 Forming method for inorganic-organic composite electrolyte membrane, inorganic-organic composite electrolyte membrane, and fuel cell using the membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004129426A JP2005310697A (en) 2004-04-26 2004-04-26 Forming method for inorganic-organic composite electrolyte membrane, inorganic-organic composite electrolyte membrane, and fuel cell using the membrane

Publications (1)

Publication Number Publication Date
JP2005310697A true JP2005310697A (en) 2005-11-04

Family

ID=35439201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004129426A Pending JP2005310697A (en) 2004-04-26 2004-04-26 Forming method for inorganic-organic composite electrolyte membrane, inorganic-organic composite electrolyte membrane, and fuel cell using the membrane

Country Status (1)

Country Link
JP (1) JP2005310697A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100775295B1 (en) 2006-02-16 2007-11-08 주식회사 엘지화학 Organic/inorganic composite electrolyte and electrochemical device prepared thereby
WO2009005156A1 (en) * 2007-07-02 2009-01-08 Toyota Jidosha Kabushiki Kaisha Electrolyte membrane and fuel cell employing it
US20090280262A1 (en) * 2008-05-08 2009-11-12 Chung Yuan Christian University Method for forming composite membrane with porous coating layer and apparatus thereof
JP2009289573A (en) * 2008-05-29 2009-12-10 Toyota Motor Corp Composite type electrolyte film, and fuel cell equipped with the same
JP2010170823A (en) * 2009-01-22 2010-08-05 Toyota Motor Corp Complex type electrolyte membrane for fuel cell
JP2010206895A (en) * 2009-03-02 2010-09-16 Honda Motor Co Ltd Motor
JP2012146674A (en) * 2012-03-16 2012-08-02 Toyota Motor Corp Electrolyte membrane, and fuel cell comprising the same
KR101499731B1 (en) * 2008-11-24 2015-03-09 광주과학기술원 Ploymer membrane, Method for manufacturing the membrane and Membrane electrode assembly including the membrane
KR20180024237A (en) * 2016-08-29 2018-03-08 영남대학교 산학협력단 Cylinderical Fuel Cell intermediate, Cylinderical Fuel Cell and Manufacturing Method Thereof
JP2020169270A (en) * 2019-04-03 2020-10-15 信越化学工業株式会社 Bio-electrode composition, bio-electrode, and method for manufacturing bio-electrode

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9070930B2 (en) 2006-02-16 2015-06-30 Lg Chem, Ltd. Organic/inorganic composite electrolyte and electrochemical device prepared thereby
KR100775295B1 (en) 2006-02-16 2007-11-08 주식회사 엘지화학 Organic/inorganic composite electrolyte and electrochemical device prepared thereby
US8835076B2 (en) 2007-07-02 2014-09-16 Toyota Jidosha Kabushiki Kaisha Electrolyte membrane and fuel cell using the same
WO2009005156A1 (en) * 2007-07-02 2009-01-08 Toyota Jidosha Kabushiki Kaisha Electrolyte membrane and fuel cell employing it
JP2009016074A (en) * 2007-07-02 2009-01-22 Toyota Motor Corp Electrolyte membrane, and fuel cell using the same
US20090280262A1 (en) * 2008-05-08 2009-11-12 Chung Yuan Christian University Method for forming composite membrane with porous coating layer and apparatus thereof
JP2009289573A (en) * 2008-05-29 2009-12-10 Toyota Motor Corp Composite type electrolyte film, and fuel cell equipped with the same
KR101499731B1 (en) * 2008-11-24 2015-03-09 광주과학기술원 Ploymer membrane, Method for manufacturing the membrane and Membrane electrode assembly including the membrane
JP2010170823A (en) * 2009-01-22 2010-08-05 Toyota Motor Corp Complex type electrolyte membrane for fuel cell
JP2010206895A (en) * 2009-03-02 2010-09-16 Honda Motor Co Ltd Motor
JP2012146674A (en) * 2012-03-16 2012-08-02 Toyota Motor Corp Electrolyte membrane, and fuel cell comprising the same
KR20180024237A (en) * 2016-08-29 2018-03-08 영남대학교 산학협력단 Cylinderical Fuel Cell intermediate, Cylinderical Fuel Cell and Manufacturing Method Thereof
KR101875684B1 (en) * 2016-08-29 2018-08-02 영남대학교 산학협력단 Cylinderical Fuel Cell and Manufacturing Method Thereof
JP2020169270A (en) * 2019-04-03 2020-10-15 信越化学工業株式会社 Bio-electrode composition, bio-electrode, and method for manufacturing bio-electrode
JP7082082B2 (en) 2019-04-03 2022-06-07 信越化学工業株式会社 Bioelectrode composition, bioelectrode, and method for manufacturing bioelectrode

Similar Documents

Publication Publication Date Title
JP5107050B2 (en) Manufacturing method of membrane electrode assembly for polymer electrolyte fuel cell
KR101995527B1 (en) Reinforced composite membrane for fuel cell and membrane-electrode assembly for fuel cell comprising the same
US20090142647A1 (en) Carbon fiber, porous support-carbon fiber composite and method for producing the same as well as catalyst structure, electrode for solid polymer fuel cell and solid polymer fuel cell
TWI358849B (en) Membrane electrode assembly and polymer electrolyt
KR20140000664A (en) Electrode for use in a fuel cell
JP2000299113A (en) Conductive sheet and electrode base material for fuel cell using it
JP2002093424A (en) Manufacturing method of membrane-electrode joined body
JP2006339018A (en) Gas diffusion layer for fuel cell and its manufacturing method
JP2000353528A (en) Electrode catalyst layer and manufacture thereof and fuel cell using electrode catalyst layer
JP2005310697A (en) Forming method for inorganic-organic composite electrolyte membrane, inorganic-organic composite electrolyte membrane, and fuel cell using the membrane
JP5410787B2 (en) Gas diffusion layer for polymer electrolyte fuel cells
JP2006128095A (en) Reinforced polyelectrolyte film
JP2009026698A (en) Catalyst layer member for solid polymer electrolyte fuel cell, membrane electrode assembly using the same, and manufacturing methods of them
JP2006147278A (en) Electrolyte membrane-electrode assembly for solid fuel cell, and its manufacturing method
KR20090027527A (en) Membrane-electrode assembly for fuel cell, method of producing same and fuel cell system comprising same
JP2009037933A (en) Gas diffusion electrode for solid polymer fuel cell, membrane-electrode assembly and manufacturing method for the solid polymer fuel cell, and the solid polymer fuel cell
KR100761523B1 (en) Carbon slurry composition for preparation of gas diffusion layer for fuel cell
JP4872202B2 (en) Fuel cell and fuel cell manufacturing method
JP4438408B2 (en) Fuel cell
JP2005085562A (en) Membrane-electrode assembly, its manufacturing method, and solid polymer fuel cell using it
JP4529345B2 (en) Method for producing polymer electrolyte fuel cell
JP2008258060A (en) Manufacturing method of membrane-electrode assembly
KR100761525B1 (en) Integrated type gas diffusion layer, electrode comprising the same, membrane electrode assembly comprising the same, and fuel cell comprising the same
JP2006294267A (en) Catalyst ink for fuel cell electrode formation
JP2006086070A (en) Fuel cell