JP2005294722A - 半導体装置および半導体装置の製造方法 - Google Patents

半導体装置および半導体装置の製造方法 Download PDF

Info

Publication number
JP2005294722A
JP2005294722A JP2004110864A JP2004110864A JP2005294722A JP 2005294722 A JP2005294722 A JP 2005294722A JP 2004110864 A JP2004110864 A JP 2004110864A JP 2004110864 A JP2004110864 A JP 2004110864A JP 2005294722 A JP2005294722 A JP 2005294722A
Authority
JP
Japan
Prior art keywords
insulating film
film
edge
wiring
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004110864A
Other languages
English (en)
Inventor
Shunichi Shibuki
俊一 澁木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2004110864A priority Critical patent/JP2005294722A/ja
Publication of JP2005294722A publication Critical patent/JP2005294722A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

【課題】多層配線構造に用いる絶縁膜間の密着性を高めることで、絶縁膜間の膜剥がれを防止し、歩留りの向上、信頼性の向上を可能とする。
【解決手段】基板11上にビアを形成するビア層絶縁膜21と、ビア層絶縁膜21上に配線層を形成する配線層絶縁膜22とを備えた半導体装置1であって、配線層絶縁膜22は第1絶縁膜23と第2絶縁膜24との積層膜からなり、第1絶縁膜23のエッジは第2絶縁膜24のエッジより内側になるように形成されていて、配線層絶縁膜22のエッジとビア層絶縁膜21のエッジとが一致した位置に形成されているものである。
【選択図】図1

Description

本発明は、配線材料の銅を配線溝やビアホール内に埋め込むように形成する化学的機械研磨(以下、CMPという)時に絶縁膜の剥がれを発生しないようにした半導体装置の製造方法およびその製造方法により製造された半導体装置に関するものである。
多層配線構造の半導体装置の製造方法では、配線間を電気的に絶縁する絶縁膜を2種類以上の絶縁膜を積層した構造に形成している。特に、絶縁膜の誘電率(k)の値を小さくするために、従来から使用されていた酸化シリコン膜や窒化シリコン膜に比べ、密着性の弱い種々の絶縁膜が使われている。
上記多層配線構造を製造する技術としては、絶縁層に形成した溝および穴に導電材料となる銅を埋め込んで形成する、いわゆるデュアル(二重)ダマシン方法について開示されている(例えば、特許文献1参照。)。この特許文献に開示されている絶縁層は、配線が形成される配線絶縁層とビアが形成されるビア絶縁層とが別層ではなく単層の絶縁層で形成されている。
また、別の公知文献には、配線(ライン)層の絶縁膜とビア層の絶縁膜との積層構造を有し、ビア層の絶縁膜がTEOS酸化膜/有機ポリマー系スピンオン材料膜の積層膜であり、配線層の絶縁膜がTEOS酸化膜/有機ポリマー系スピンオン材料膜の積層膜である半導体装置が開示されている(例えば、非特許文献1参照。)。
また、配線(ライン)層の絶縁膜とビア層の絶縁膜との積層構造を有し、さらに配線層の絶縁膜が第1の絶縁膜上に第2の絶縁膜を形成した積層構造である半導体装置が開示されている(例えば、特許文献2参照。)。具体的には、ビア層の絶縁膜として、パッシベーション膜111を窒化シリコン膜で形成し、その上に第1の層間絶縁膜112を酸化シリコン膜で形成すること、および配線層の絶縁膜として、第2の層間絶縁膜114を有機ポリマーで形成することおよびマスク層115を酸化シリコン膜で形成することが開示されている。
しかしながら、上記絶縁膜に溝配線構造を形成する工程において、配線溝、ビアホール等に埋め込んだ銅の絶縁膜上に形成された余剰部分をCMPによって除去する際に、絶縁膜のエッジ部分で膜剥がれが発生していた。この膜剥がれについては対策がなされていなかった。
また、「ウエハ上に、第1の低誘電率膜を、そのエッジが、ウエハ円周に沿った第1エッジ位置に一致するように形成するステップと、前記第1の低誘電率膜よりもガス透過率の低い第1保護膜を、そのエッジが、前記第1エッジ位置より外側の第2エッジ位置を一致するように、前記第1の低誘電率膜およびウエハ上に形成するステップと、前記第1保護膜上に、第2の低誘電率膜を、そのエッジが前記第1エッジ位置にほぼ一致するように形成するステップとを含む」半導体装置の製造方法が開示されている(例えば、特許文献3参照。)。この特許文献3によって開示された技術は、チップの有効面積を最大に維持したままLow−k膜の側壁が露出しないようにすることが目的であり、CMP等の外圧が絶縁膜にかかった際に生じる膜剥がれについては、全く記載されておらず、考慮すらも全くなされていない。
上記特許文献3に開示された技術において、第1の低誘電率膜が例えばビア層の絶縁膜に相当するとし、第2の低誘電率膜が例えば配線層の絶縁膜に相当するとした場合、第1、第2の低誘電率膜の各エッジ位置がほぼ等しく形成される。このため、CMP時にかかる圧力は、配線層または第1保護膜のエッジ部に集中するため、膜剥がれ発生の要因となる。
特許第3057054号公報 特開2001−44189号公報 特開2003−78005号公報 西岡康隆著 「CD制御に基づいた有機Low−k/Cuインテグレーション技術」、グローバルネット株式会社主催"k<2.5に向けたLow−k膜ダマシンプロセスの基礎理論と配線応用技術"p.4-1-1〜4-1-8、2002年2月20日
解決しようとする問題点は、CMP工程で絶縁膜が剥がれる点である。特に、CMP時に圧力が集中するウエハのエッジ近傍または絶縁膜のエッジ近傍での絶縁膜の剥がれを防止することが難しい点である。
本発明の半導体装置は、基板上にビアを形成するビア層絶縁膜と、前記ビア層絶縁膜上に配線層を形成する配線層絶縁膜とを備えた半導体装置であって、前記配線層絶縁膜は第1絶縁膜と第2絶縁膜との積層膜からなり、前記第1絶縁膜のエッジは前記第2絶縁膜のエッジより内側になるように形成されていて、前記配線層絶縁膜のエッジと前記ビア層絶縁膜のエッジとが一致した位置に形成されていることを最も主要な特徴とする。
本発明に半導体装置の製造方法は、基板上にビアを形成するビア層絶縁膜を形成する工程と、前記ビア層絶縁膜上に配線層を形成する配線層絶縁膜を形成する工程と、前記配線層絶縁膜に凹部を形成して、該凹部に埋め込むように配線材料膜を形成した後、前記配線層絶縁膜上の余剰な配線材料膜を化学的機械研磨によって除去することで、前記凹部のみに前記配線材料膜を残して配線を形成する工程とを備えた半導体装置の製造方法であって、前記配線層絶縁膜を第1絶縁膜と第2絶縁膜との積層膜で形成し、その際、前記第1絶縁膜のエッジが前記第2絶縁膜のエッジより内側になるように形成し、前記配線層絶縁膜のエッジと前記ビア層絶縁膜のエッジとを一致した位置に形成することを最も主要な特徴とする。
本発明の半導体装置は、配線層絶縁膜は第1絶縁膜と第2絶縁膜との積層膜からなり、第1絶縁膜のエッジは第2絶縁膜のエッジより内側になるように形成されているため、外圧、例えばCMPの加工圧が絶縁膜にかかった時、その絶縁膜のエッジにかかる圧力を第1絶縁膜のエッジと第2絶縁膜のエッジとに分散させることができるので、密着性の弱い絶縁膜のエッジ部分での膜剥がれを抑制することができるという利点がある。また、第1絶縁膜とビア層絶縁膜の密着性が弱い場合であっても、第2絶縁膜がビア層絶縁膜との密着性を有する膜であれば、第1絶縁膜のエッジは第2絶縁膜のエッジより内側になるように形成されていることから第2絶縁膜とビア層絶縁膜との接触面積を大きくとれるため、第2絶縁膜とビア層絶縁膜との密着性を向上させることができる。この点からも、絶縁膜のエッジ部分での膜剥がれを抑制することができる。
本発明の半導体装置の製造方法は、配線層絶縁膜を第1絶縁膜と第2絶縁膜との積層膜で形成し、その際、第1絶縁膜のエッジが第2絶縁膜のエッジより内側になるように形成し、配線層絶縁膜のエッジとビア層絶縁膜のエッジとを一致した位置に形成するため、外圧、例えばCMPの加工圧が絶縁膜にかかった時、その絶縁膜のエッジにかかる圧力を第1絶縁膜のエッジと第2絶縁膜のエッジとに分散させることができるので、密着性の弱い絶縁膜のエッジ部分での膜剥がれを抑制することができるという利点がある。また、第1絶縁膜とビア層絶縁膜の密着性が弱い場合であっても、第2絶縁膜がビア層絶縁膜との密着性を有する膜であれば、第1絶縁膜のエッジは第2絶縁膜のエッジより内側になるように形成されていることから第2絶縁膜とビア層絶縁膜との接触面積を大きくとれるため、第2絶縁膜とビア層絶縁膜との密着性を向上させることができる。この点からも、絶縁膜のエッジ部分での膜剥がれを抑制することができる。
CMP時に圧力が集中するウエハのエッジ近傍または絶縁膜のエッジ近傍での絶縁膜の剥がれを防止するという目的を、絶縁膜のエッジ位置を特定することで、絶縁膜の密着性を改善して、CMP工程での膜はがれの防止を実現した。
本発明の半導体装置に係る第1実施例を、図1の概略構成断面図によって説明する。
図1に示すように、図示はしない例えばトランジスタ、配線等が形成された基板(ウエハ)11上に絶縁膜12が形成されている。上記基板11には、例えばシリコン基板が用いられる。また上記絶縁膜12は、酸化シリコン膜からなり、例えば500nmの厚さに形成されている。上記絶縁膜12上にはビアが形成されるビア層絶縁膜21が形成されている。ここではビア層絶縁膜21は例えばSiOC系の膜で形成する。例えば、SiOC膜、SiOC膜中に窒素もしくは水素が含まれた膜である。上記ビア層絶縁膜21は、例えばプラズマCVD法により200nmの厚さに成膜されているものである。上記絶縁膜12およびビア層絶縁膜21の成膜の具体例としては、平行平板型プラズマCVD装置を用い、その際使用する原料ガスのうちシリコン源としてメチルシランを用いた。また成膜条件としては基板温度を300℃〜400℃に設定し、プラズマパワーを150〜350W、成膜雰囲気の圧力を100Pa〜1000Pa程度に設定する。
さらに、ビア層絶縁膜21上には配線層絶縁膜22が形成されている。この配線層絶縁膜22は、第1絶縁膜23と第2絶縁膜24との積層構造をなしている。上記第1絶縁膜23には例えば有機膜が用いられ、例えば100nmの厚さに形成されている。この有機膜としては、ポリアリールエーテル膜があり、例えば、ダウケミカル社製のSiLK−J、アライドシグナル社製のFLARE等が知られている。また、上記第2絶縁膜24は、例えば酸化シリコン(SiO2)膜が用いられ、その膜厚は例えば200nmとした。
上記第2絶縁膜24のエッジ位置に対して上記第1絶縁膜23のエッジ位置は内側に形成されている。また、上記第2絶縁膜24のエッジ位置に対して上記第1絶縁膜23のエッジ位置は、例えば0.5mm以上5mm以下の範囲(図面w3で示す)で内側に形成されている。好ましくは、1.5mm以上5mm以下の範囲で内側に形成され、より好ましくは、1.5mm以上2mm以下の範囲で内側に形成される。また、上記ビア層絶縁膜21のエッジ位置に対して上記配線層絶縁膜22の第2絶縁膜24のエッジ位置は、同位置に形成されている。
上記半導体装置1は、基板11上にビアを形成するビア層絶縁膜21が形成され、ビア層絶縁膜21上に第1絶縁膜23と第2絶縁膜24との積層構造からなるもので配線層を形成する配線層絶縁膜22が形成されており、第1絶縁膜23のエッジは第2絶縁膜24のエッジより内側に形成されているため、外圧、例えばCMPの加工圧が絶縁膜にかかった時、その絶縁膜のエッジにかかる圧力を第2絶縁膜24のエッジと第1絶縁膜23のエッジとに分散させることができるので、密着性の弱い絶縁膜のエッジ部分での膜剥がれを抑制できるという利点がある。また、第1絶縁膜23とビア層絶縁膜21の密着性が弱い場合であっても、第2絶縁膜24がビア層絶縁膜21との密着性を有する膜であれば、第1絶縁膜23のエッジは第2絶縁膜24のエッジより内側に形成されていることから第2絶縁膜24とビア層絶縁膜21との接触面積を大きくとれるため、第2絶縁膜24とビア層絶縁膜21との密着性を向上させることができる。この点からも、絶縁膜のエッジ部分での膜剥がれを抑制することができる。さらに、第2絶縁膜24のエッジはビア層絶縁膜21のエッジと同一位置に形成されていることから、第1絶縁膜23のエッジ部分に対して力がかかりにくくなるので、たとえビア層絶縁膜21に対して第1絶縁膜23の密着性の弱くとも、第1絶縁膜23のエッジ部分での膜剥がれが抑制される。このように、特に膜剥がれが発生しやすい膜周辺部の膜剥がれ耐性が高められるので、膜剥がれの防止には効果的である。したがって、歩留りの向上が図れるとともに、絶縁膜の信頼性の向上が図れる。
次に、本発明の半導体装置に係る第2実施例を、図2の概略構成断面図によって説明する。
図2に示すように、前記図1によって説明した構成の半導体装置1において、第1絶縁膜23および第2絶縁膜24を積層してなる配線層絶縁膜22に配線溝(図示せず)を形成するとともに、ビア層絶縁膜21にビアホール(図示せず)を形成した後、配線溝およびビアホールを埋め込むように上記配線層絶縁膜22を覆う配線材料層25を形成する。上記配線材料層25には、通常、銅(Cu)を用いる。なお、図示はしないが、配線材料膜25を形成する前に、配線溝およびビアホールの内面には銅の拡散を防止するバリア膜が形成され、またバリア膜と絶縁膜との間には必要に応じて密着性を高める密着膜が形成される。上記バリア膜には、例えば、タンタル、窒化タンタル等の膜が用いられる。例えば、バリア膜としてタンタル膜が15nmの厚さに形成されている。また、配線材料膜25として、50nmの厚さの銅シード膜を含めて1050nmの厚さに銅膜が形成されている。
上記第2絶縁膜24のエッジ位置は上記配線材料膜25のエッジ位置より内側になるように形成されることがより好ましいが、上記第2絶縁膜24のエッジ位置より上記配線材料膜25のエッジ位置が内側であってもよい。ウエハ中心からウエハ外周方向に向かって正とし、第2絶縁膜24のエッジ位置を規準にすると、第2絶縁膜24のエッジ位置と配線材料膜25のエッジ位置との距離w4は、−1.5mm以上2.5mm以下であればよく、より好ましくは0mm以上2.5mm以下であればよい。このw4の正方向の値はウエハ(基板1)外形によって決定される。またw4の負方向の値が大きくなりすぎると、配線材料膜が埋め込まれない配線溝やビアホールが発生することになるので好ましくはない。そこで、上記値とした。
次に、本発明の半導体装置の製造方法に係る第1実施例を、図3〜図5の概略構成斜視図および概略構成断面図によって説明する。各図3〜図5では、(1)に概略構成斜視図を示し、(2)に基板直径方向の概略構成断面図を示した。なお、概略構成断面図は分かり易くするため、厚さ方向に拡大されている。また、図中の基板上に描かれている矢印は基板の回転方向の一例を示すもので、この回転方向は逆方向であってもよい。
図3に示すように、基板11上に絶縁膜12を形成する。上記基板11には、例えばシリコン基板が用いられ、図示しない半導体素子、配線等が形成されていてもよい。また上記絶縁膜12は、酸化シリコン膜からなり、例えば500nmの厚さに形成されている。その成膜方法は、例えばプラズマCVD法による。次に、上記絶縁膜12上にビア層絶縁膜21を形成する。ここではビア層絶縁膜21はSiOC系の膜で形成する。例えば、SiOC膜、SiOC膜中に窒素もしくは水素が含まれた膜等である。上記ビア層絶縁膜21は、例えば200nmの厚さに成膜する。この成膜方法は、一例として、平行平板型プラズマCVD装置を用い、原料ガスのシリコン源としてメチルシランを用いた。また成膜条件としては基板温度を300℃〜400℃に設定し、プラズマパワーを150W〜350W、成膜雰囲気の圧力を100Pa〜1000Pa程度に設定する。以下、各種絶縁膜形成した基板11をウエハという。
次に上記ビア層絶縁膜21上に第1絶縁膜23を成膜する。この第1絶縁膜23には、有機膜を用いた。例えば有機膜として、ポリアリールエーテル膜を、例えば100nmの厚さに形成した。上記ポリアリールエーテル膜は、例えばSiLK(例えばSiLK−J)(ダウケミカル社)があり、その他には、例えばアライドシグナル社製のFLARE、シューマッカー社製のVEROX等が知られている。例えば、上記ポリアリールエーテル膜をSiLKで形成する場合には、前駆体をスピンコート法により堆積した後、400℃〜450℃のキュア処理を行って形成することができる。
次に、上記第1絶縁膜23のエッジ部分を除去する。このエッジ部分の除去方法は、基板11を図面矢印ア方向に回転させながら、ノズル41より第1絶縁膜23の溶剤31を第1絶縁膜23の除去領域(斜視図の斜線領域が除去領域となる。)上に供給するとともに、上記ノズル41をエッジカット範囲(例えば図面矢印イ方向)内でスキャニングンすることによる。この時、図示しない純水を基板11中心部上方より第1絶縁膜23上に供給することにより、第1絶縁膜23の周辺部以外の第1絶縁膜23表面に薬液31がかからないように保護する。上記第1絶縁膜23がポリアリールエーテル膜である場合には、上記溶剤にはシクロヘキサノンを使用することができる。上記第1絶縁膜23の周辺部の除去幅w1は、ノズル41のスキャニング幅を変更することにより容易に変更できる。今回、第1絶縁膜23のエッジ除去幅w1は、例えば5mmに設定した。
次に、図4に示すように、上記ビア層絶縁膜21上および上記第1絶縁膜23上に第2絶縁膜24を成膜する。上記第1絶縁膜23およびこの第2絶縁膜24で配線層絶縁膜22が構成される。上記第2絶縁膜24には、酸化シリコン(SiO2)膜を用いた。この酸化シリコン膜は、例えばプラズマCVD法によって成膜することができ、例えば200nmの厚さに成膜した。
次に、塗布法によって、上記配線層絶縁膜22(第2絶縁膜24)上にフォトレジスト膜51を形成する。そして、フォトレジスト膜51のエッジ部分を除去する。フォトレジスト膜51のエッジ部分の除去方法は、上記フォトレジスト51にポジ型レジストを用いた場合には、基板11を図面矢印ウ方向に回転させながら除去したいエッジ部分のみ光Lを照射してフォトレジスト膜51を感光させる(斜視図の斜線領域が感光領域となる。)。その後現像処理、リンス処理、ベーキング工程を経て、図示はしないが、エッジ部分を除去したフォトレジスト膜51が得られる。上記フォトレジスト膜51をネガレジストで形成した場合には、除去しない領域のみ感光処理を行い、その後、現像、リンス処理、ベーキング工程を経れば、エッジ部分が除去されたフォトレジスト膜51が得られる。上記エッジ除去幅w2は、例えば4mmに設定した。
次に、図5に示すように、上記第2絶縁膜24、ビア層絶縁膜21の順でエッチングを行い、第2絶縁膜24およびビア層絶縁膜21のエッジ部分を除去した。その後、上記フォトレジスト膜51〔前記図4参照〕をアッシング処理もしくは剥離処理等により除去した。図面では、フォトレジスト膜51を除去した後の状態を示した。この結果、基板11のエッジより内側にw2だけ入った位置に上記配線層絶縁膜22の第2絶縁膜24およびビア層絶縁膜21の各エッジが形成される。上記エッジ除去幅w2は、w1−w2=w3が、例えば0.5mm以上5mm以下となるように設定される。好ましくは、w3が1.5mm以上5mm以下の範囲となるように設定され、より好ましくは、1.5mm以上2mm以下の範囲となるように設定される。例えば、w3が0.3mmよりも小さい場合には、第2絶縁膜24とビア層絶縁膜21との密着性が十分に得られなくなり、w3が5mmを超えるとチップの理収が悪化する。このため、w3は上記範囲に設定される。
上記ビア層絶縁膜21および配線層絶縁膜22に溝配線およびビアを形成する場合には、上記ビア層絶縁膜21および配線層絶縁膜22のエッジ部分の除去を行ういずれかもしくは両方の露光工程を行った後でその露光工程に対する現像工程を行う前に、例えば配線溝、ビアホール等のパターニングを行えばよい。この場合、前記図5によって説明した第2絶縁膜24のエッチング時には第1絶縁膜23も同時にエッチングされる。また、溝配線とビアとを同時形成する、いわゆるデュアルダマシン構造の絶縁膜についても、本発明の構成を用いることができる。例えば、ビア層絶縁膜21に配線間の接続を行う接続部(ビア)を形成し、配線層絶縁膜22に溝配線を形成する。溝配線とビアとを同時形成する技術については、多くの公知例があり、例えば特開2001−44189号公報などに詳細な記述がある。これらの公知技術の絶縁膜についても、本発明の如く、ビアが形成されるビア層絶縁膜21および配線層絶縁膜22を構成する第1絶縁膜23、第2絶縁膜24の各エッジ位置を規定する構成を採用することができる。
次に、本発明の効果を確認した。確認方法は、前記図5に示したように、基板11上に上記ビア層絶縁膜21および第1絶縁膜23と第2絶縁膜24からなる配線層絶縁膜22を形成したサンプルを用意し、サンプルの配線層絶縁膜22に対してCMPを行った。上記第1の絶縁膜23としては、SiLK、FLARE、porous−SiLKの3種のポリアリールエーテル膜を用い、上記第2の絶縁膜としては、SiO2(酸化シリコン)膜、およびBD(AMAT社製のBD(ブラックダイヤモンド)でCVD法により形成した誘電率k=3.0程度のSiOC膜)、BD2(AMAT社製のBD(ブラックダイヤモンド)でCVD法により形成した誘電率k=2.5程度のSiOC膜)の2種のSiOC膜を用い、上記ビア層絶縁膜21としては、SiO2(酸化シリコン)膜、およびBD、Coral(Novellus社製のSiOC膜でCVD法により形成したk=3.0程度のSiOC膜)、BD2の4種のSiOC膜を用い、それらのすべての組み合わせについて調査した。
また、上記各サンプルは、第2絶縁膜24およびビア層絶縁膜21のエッジ除去幅w2は4mmとし、第1絶縁膜21のエッジカット幅w1は4mm以上6mm以下の範囲で0.1mm刻みに作製した。したがって、上記サンプルは、配線層絶縁膜22(第2絶縁膜24)のエッジ位置とビア層絶縁膜21のエッジ位置とが同一位置に作製されたことになり、また、第1絶縁膜23のエッジ位置と第2絶縁膜24のエッジ位置のとの差w3=w1−w2の値が0mm以上2mm以下の範囲で0.1mm刻みで作製されたことになる。
次に、上記各サンプルのそれぞれの配線層絶縁膜22をCMPした。このCMPでは、研磨パッドに、例えば上層が発泡ポリウレタン製で下層がPET(ポリエチレンテレフタレート)製のものを用いた。このような研磨パッドとしては、一例として、上層がロデール社製の厚さ1.2mmのIC1000で下層が同社製の厚さ1.2mmのSUBA400よりなる積層された研磨パッドがある。研磨液(研磨スラリー)には、アルカリ溶媒に分散したコロイダルシリカに酸化剤として過酸化水素水(H22)を添加したものを用いる。例えばJSR社製のCMS8301がある。上記研磨液の供給流量は例えば150ml/minとして、研磨パッドの回転数は例えば100rpm、ウエハ(基板)回転数は例えば:110rpm、研磨圧力は例えば300g/cm2,研磨時間は例えば60secとした。これにより、配線層絶縁膜22のSiO2膜の表層およそ70nmの厚さが除去された。
膜剥がれの検査は顕微鏡による目視検査により実施した。検査の結果を表1〜表4に示す。
Figure 2005294722
Figure 2005294722
Figure 2005294722
Figure 2005294722
表1〜表4中、◎印は剥がれ無し、○印は2%以下の領域で剥がれあり、△印は2%を超え20%以下の領域で剥がれあり、×印は20%を超える領域で剥がれがあることを示している。上記評価において、20%を境界にした理由は、経験的に20%を超える領域での剥がれは、剥がれの再現性が良く、本質的なものであると考えられるためである。実際に剥がれ状態を観察すると、「剥がれ無し」、「ほぼ剥がれないが、1%程度の領域で剥がれる」、「5%〜10%程度の領域で剥がれる」、「ほぼ全ての領域で剥がれる」の4段階にはっきりと分かれて観察され、◎,○,△,×の差は、はっきりした違いとして認められた。
また、第2絶縁膜24のエッジ位置および第1絶縁膜23のエッジ位置は、ウエハの中心ずれ等により1枚のウエハでも設定より0.5mm程度ずれることがある。そこで、剥がれ位置における第1絶縁膜23と第2絶縁膜24のエッジ位置を実測することにより、第1絶縁膜23のエッジ位置と第2絶縁膜24のエッジ位置のとの差w3の値を求めた。
上記表1〜表4に示すように、いずれのサンプルでもw3が0mm以上0.3mm未満では、剥がれの確率が20%以上であることがわかった。また、いずれのサンプルでもw3が0.3mm以上0.5mm未満では、剥がれの確率が2%を超え20%以下であることがわかった。そして、いずれのサンプルでもw3が0.5mm以上では、膜剥がれが2%以下であり、w3が1.5mm以上では、膜剥がれが起こらないことがわかった。
本発明の半導体装置の製造方法は、配線層絶縁膜22を第1絶縁膜23と第2絶縁膜24との積層膜で形成し、その際、第1絶縁膜23のエッジが第2絶縁膜24のエッジより内側になるように形成し、第2絶縁膜24のエッジとビア層絶縁膜21のエッジとを一致した位置に形成するため、外圧、例えばCMPの加工圧が絶縁膜にかかった時、その絶縁膜のエッジにかかる圧力を第1絶縁膜23のエッジ部分に集中させることなく、第1絶縁膜23のエッジと第2絶縁膜24のエッジとに分散させることができるので、密着性の弱い絶縁膜のエッジ部分での膜剥がれを抑制することができるという利点がある。特に、第1の絶縁膜23のエッジが第2の絶縁膜24のエッジより0.5mm以上内側になるように形成し、第2の絶縁膜のエッジがビア層のエッジと同じになるように形成すると、剥がれが効果的に抑制することができる。なお、ウエハ上におけるチップの理収を考慮すると、w3を5mm以下とすることが好ましい。また、第1絶縁膜23とビア層絶縁膜21の密着性が弱い場合であっても、第2絶縁膜24がビア層絶縁膜21との密着性を有する膜、例えば同種の膜であれば、第1絶縁膜23のエッジは第2絶縁膜24のエッジより内側になるように形成されていることから第2絶縁膜24とビア層絶縁膜21との接触面積を大きくとれるため、第2絶縁膜24とビア層絶縁膜21との密着性を向上させることができる。この点からも、絶縁膜のエッジ部分での膜剥がれを抑制することができる。
次に、本発明の半導体装置の製造方法に係る第2実施例を、図6の概略構成斜視図および概略構成断面図によって説明する。図6では、(1)に概略構成斜視図を示し、(2)に基板直径方向の概略構成断面図を示した。なお、概略構成断面図は分かり易くするため、厚さ方向に拡大されている。また、図中の基板上に描かれている矢印は基板の回転方向の一例を示すもので、この回転方向は逆方向であってもよい。
上記第3実施例で説明したようにして、基板11上に絶縁膜12、ビア層絶縁膜21、第1絶縁膜23および第2絶縁膜24からなる配線層絶縁膜22を形成する。
次に、図示はしないが、上記配線層絶縁膜22に溝配線を形成するとともに上記ビア層絶縁膜21にビアホールを形成する。この配線溝およびビアホールの加工は、上記第2絶縁膜24のエッジ部分の除去を行う露光工程を行った後で現像工程前に、例えばビアホールのパターニングを行い、そのレジストマスクを用いてエッチングを行って、第2絶縁膜24とビア層絶縁膜21のエッジ部分の除去とビアホールの形成を行う。その後、再度、リソグラフィー技術とエッチング技術によって、配線層絶縁膜22に配線溝を加工する。
その後、図6に示すように、上記配線溝(図示せず)およびビアホール(図示せず)内にバリア膜(図示せず)を形成し、さらに配線材料膜25を形成する。この配線材料膜25は、例えば銅膜で形成される。
次いで、基板11を例えば矢印エ方向に回転させるとともにノズル43より配線材料膜25の溶剤33を配線材料膜25の除去領域(概略構成斜視図における斜線で示す領域)上に供給するとともに、上記ノズル43をエッジ除去範囲内で例えば矢印オ方向にスキャニングンすることによる。上記溶剤33としては、硫酸と過酸化水素水との混合液を使用することができる。この時、図示しない純水を基板11中心部上方より第2絶縁膜24上に供給することにより、配線材料膜25の周辺部以外の配線材料膜25表面に溶剤33がかからないように保護する。上記配線材料膜25の周辺部の除去幅w5は、ノズル43のスキャニング幅を変更することにより容易に変更できる。その後、図示はしないが、CMPによって、余剰な配線材料膜25、バリアメタル層を除去して、溝配線とビアとを形成する。
その後、通常の研磨(CMP)技術により、第2絶縁膜24上の配線材料膜、バリア膜等の余剰部分を除去して、配線層絶縁膜22に配線層(図示せず)を形成するとともにビア層絶縁膜21にビア(図示せず)を形成する。
前記実施例1で説明したように、第1絶縁膜23のエッジ位置が第2絶縁膜24のエッジ位置より0.5mm以上〜1.5mm未満の範囲で内側になる場合、剥がれの確率は2%以下ではあるが、剥がれの発生が認められた。第1絶縁膜23のエッジが第2絶縁膜24のエッジより1.5mm以上内側になるようにすれば剥がれは発生しなかった。しかしながら、チップの理収の観点からエッジ除去はできるだけウエハの外側に設定したいことを考慮すると、エッジ領域はでき得る限り有効に利用したい。そこで、最適な配線材料膜25のエッジ除去位置について調べた。
上記実施例2で説明したように、配線材料膜25を銅膜で形成する。その際、バリア膜にはスパッタリングにより成膜した厚さが15nmのタンタル膜を用い、配線材料膜25には、シード膜の厚さが50nmの銅膜を含めて厚さが1050nmの銅膜を用いた。なお、第1絶縁膜23としてSiLK、第2絶縁膜24として酸化シリコン(SiO2)、ビア層絶縁膜21として酸化シリコン(SiO2)、BD(SiOC)、BD2(SiOC)を用いた。
その後、配線材料膜25のエッジ部分を除去した。今回、配線材料膜25のエッジ除去幅は2mm以上5mm以下で、0.5mmきざみに設定した。また、第2絶縁膜24およびビア層絶縁膜21のエッジ除去幅w2は4mmに設定し、第1絶縁膜23のエッジ除去幅w1を5mmに設定した。この設定により、誤差を含めても、第1絶縁膜23のエッジ除去は、第2絶縁膜24およびビア層絶縁膜21のエッジ除去よりも0.5mm以上内側に設定された。
次に、上記サンプルのそれぞれの配線材料膜25をCMPした。このCMPでは、研磨パッドに、例えば上層が発泡ポリウレタン製で下層がPET(ポリエチレンテレフタレート)製のものを用いた。このような研磨パッドとしては、一例として、上層がロデール社製の厚さ1.2mmのIC1000で下層が同社製の厚さ1.2mmのSUBA400よりなる積層された研磨パッドがある。研磨液には、アルカリ溶媒に分散したコロイダルシリカに酸化剤として過酸化水素水(H22)を添加したものを用いる。例えばJSR社製のCMS7301がある。上記研磨液の供給流量は例えば200ml/minとして、研磨パッドの回転数は例えば100rpm、ウエハ(基板)回転数は例えば:110rpm、研磨圧力は例えば300g/cm2,研磨時間は例えば120secとした。これにより、第2絶縁膜24上の配線材料膜を完全に除去した。
さらに、第2絶縁膜24上の余剰なバリア膜をCMPした。このCMPでは、研磨パッドに、例えば上層が発泡ポリウレタン製で下層がPET(ポリエチレンテレフタレート)製のものを用いた。このような研磨パッドとしては、一例として、上層がロデール社製の厚さ1.2mmのIC1000で下層が同社製の厚さ1.2mmのSUBA400よりなる積層された研磨パッドがある。研磨液には、アルカリ溶媒に分散したコロイダルシリカに酸化剤として過酸化水素水(H22)を添加したものを用いる。例えばJSR社製のCMS8301がある。上記研磨液の供給流量は例えば150ml/minとして、研磨パッドの回転数は例えば100rpm、ウエハ(基板)回転数は例えば:110rpm、研磨圧力は例えば300g/cm2,研磨時間は例えば60secとした。これにより、第2絶縁膜24上のバリア膜を完全に除去され、酸化シリコンからなる第2絶縁膜24の表層およそ50nmの厚さ分だけ除去された。
膜剥がれの検査は顕微鏡による目視検査により実施した。検査の結果を表5に示す。
Figure 2005294722
表5中、剥がれの評価判定規準は前記実施例1と同様であり、◎印は剥がれ無し、○印は2%以下の領域で剥がれがあることを示している。また、第2絶縁膜24のエッジ位置および配線材料膜25のエッジ位置w4は、ウエハの中心ずれ等により1枚のウエハでも設定より0.5mm程度ずれることがある。そこで、剥がれ位置における第2絶縁膜24と配線材料膜25のエッジ位置を実測することにより、第2絶縁膜24のエッジ位置と配線材料膜25のエッジ位置のとの差w4の値を求めた。
上記表5に示すように、いずれのサンプルでもw4が−1.5mm以上0mm未満では、剥がれが発生し、その確率が2%以下であることがわかった。また、いずれのサンプルでもw4が0mm以上2.5mm以下では、剥がれが起こらないことがわかった。
上記結果から、実施例1で説明したように、第1絶縁膜23のエッジが第2絶縁膜24のエッジより0.5mm以上内側になるように形成し、第2絶縁膜24のエッジがビア層絶縁膜21のエッジと同じになるように形成し、上記実施例2で示したように、配線材料膜25のエッジより第2絶縁膜24のエッジが内側になるように形成すると、剥がれが効果的に抑制されることがわかった。これは、配線材料膜25を除去した後に、第1絶縁膜23の外側、第2絶縁膜24の外側のそれぞれの段差部に配線材料膜25の銅が残り、バリア膜のタンタル膜および第2絶縁膜24の酸化シリコン膜表層のCMP時に圧力が分散し、第1絶縁膜23のエッジに圧力が集中しないためと考えられる。よって、第1絶縁膜23のエッジが第2絶縁膜24のエッジより0.5mm以上内側になるように形成すればよいので、絶縁膜の剥がれを防止するとともにウエハ内のチップの理収を高めることができる。
次に、各種絶縁膜の密着性を調査した。下層の膜としては、酸化シリコン(SiO2)膜、窒化シリコン(SiN)膜、窒化炭化シリコン(SiCN)膜、炭化シリコン(SiC)膜、SiOC膜(BD)、SiOC膜(Coral:Novellus社製のSiOC膜でCVD法により形成したk=3.0程度のSiOC膜)、SiOC膜(BD2)、ポーラスシリカ(LKD5109:エルケーディー(JSR)社製のMSQ膜でスピンコート法により形成したMSQ膜)、ポーラスシリカ(例えば、ナノグラス社製のNanoglass)、ポーラスシリカ(例えば、ナノグラス社製のNanoglass−E)、ポリアリールエーテル(SiLK)、ポリアリールエーテル(FLARE)、ポリアリールエーテル(porous−SiLK)を用いた。また、上層の膜としては、酸化シリコン(SiO2)膜、窒化シリコン(SiN)膜、窒化炭化シリコン(SiCN)膜、炭化シリコン(SiC)膜、SiOC膜(BD)、SiOC膜(Coral)、SiOC膜(BD2)、ポーラスシリカ(LKD5109)、ポーラスシリカ(Nanoglass)、ポーラスシリカ(Nanoglass−E)、ポリアリールエーテル(SiLK)、ポリアリールエーテル(FLARE)、ポリアリールエーテル(porous−SiLK)を用いた。
そして、上記下層の膜の1種と上記上層の膜の1種とを選択して、積層膜を形成し、下層の膜に対する上層の膜の密着性を調べた。
膜剥がれの検査は顕微鏡による目視検査により実施した。検査の結果を表6〜表9に示す。
表6〜表9中、◎印は剥がれ無し、○印は2%以下の領域で剥がれあり、△印は2%を超え20%以下の領域で剥がれあり、×印は20%を超える領域で剥がれがあることを示している。上記評価において、20%を境界にした理由は、経験的に20%を超える領域での剥がれは、剥がれの再現性が良く、本質的なものであると考えられるためである。実際に剥がれ状態を観察すると、「剥がれ無し」、「ほぼ剥がれないが、1%程度の領域で剥がれる」、「5%〜10%程度の領域で剥がれる」、「ほぼ全ての領域で剥がれる」の4段階にはっきりと分かれて観察され、◎,○,△,×の差は、はっきりした違いとして認められた。
Figure 2005294722
Figure 2005294722
Figure 2005294722
Figure 2005294722
表6〜表9に示すように、BD2/SiO2の界面がSiO2/SiO2界面より密着性が弱いことがわかる。したがって、例えば、第1絶縁膜23にBD2などの無機膜、第2絶縁膜24およびビア層絶縁膜21がSiO2などの無機膜であっても、本発明の効果が得られることは明らかである。また、この結果から、有機絶縁膜と他の絶縁膜との密着性が、特に弱いことがわかった。すなわち、第1絶縁膜23として有機絶縁膜を用いた場合、特に剥がれやすいと言える。したがって、本発明は、第1絶縁膜23が有機絶縁膜であるときに特に効果的であることがわかる。
次に、本発明の構成および製造方法を適用して、多層配線構造を形成した一例を、図7の概略構成断面図によって説明する。
図7に示すように、ビア層絶縁膜21としてSiOC(例えばBD)膜(厚さが例えば200nm)/SiCN膜(厚さが例えば35nm)を用い、配線層絶縁膜22として第1絶縁膜23に有機膜を用い、第2絶縁膜24に酸化シリコン(SiO2)膜(成膜時の厚さが例えば200nm、CMP後の厚さが約150nm)を用いる。上記有機膜としては、ポリアリールエーテル膜を用い、ポリアリールエーテル膜としてはここではSiLK膜(厚さが例えば100nm)を用いた。上記第1絶縁膜23(SiLK膜)のエッジ部分の除去幅は5mmに設定し、第2絶縁膜24(SiO2膜)およびビア層絶縁膜21のエッジ部分の除去幅は4mmに設定した。また配線材料層25のエッジ部分の除去幅を3mmに設定した。そして上記実施例3および4によって説明した製造方法を用いて、図示したような5層の溝配線71および接続部(ビア)72を有する半導体装置の形成を行った。この結果、エッジ剥がれを起こすこと無く半導体装置を製造することができた。
本発明の半導体装置の製造方法および半導体装置は、各種半導体装置の多層配線という用途に適用することが好適である。
本発明の半導体装置に係る第1実施例を示した概略構成断面図である。 本発明の半導体装置に係る第2実施例を示した概略構成断面図である。 本発明の半導体装置の製造方法に係る一実施例を示した概略構成斜視図および概略構成断面図である。 本発明の半導体装置の製造方法に係る第1実施例を示した概略構成斜視図および概略構成断面図である。 本発明の半導体装置の製造方法に係る第1実施例を示した概略構成斜視図および概略構成断面図である。 本発明の半導体装置の製造方法に係る第2実施例を示した概略構成斜視図および概略構成断面図である。 本発明の半導体装置に係る一実施例を示した概略構成断面図である。
符号の説明
1…半導体装置、11…基板、21…ビア層絶縁膜、22…配線層絶縁膜、23…第1絶縁膜、24…第2絶縁膜、

Claims (9)

  1. 基板上にビアを形成するビア層絶縁膜と、前記ビア層絶縁膜上に配線層を形成する配線層絶縁膜とを備えた半導体装置であって、
    前記配線層絶縁膜は第1絶縁膜と第2絶縁膜との積層膜からなり、
    前記第1絶縁膜のエッジは前記第2絶縁膜のエッジより内側になるように形成されていて、
    前記配線層絶縁膜のエッジと前記ビア層絶縁膜のエッジとが一致した位置に形成されている
    ことを特徴とする半導体装置。
  2. 前記第1絶縁膜のエッジは前記第2絶縁膜のエッジより0.5mm以上5.0mm以下の範囲で内側に形成されている
    ことを特徴とする請求項1記載の半導体装置。
  3. 前記第1絶縁膜は誘電率が3未満の低誘電率膜からなる
    ことを特徴とする請求項1記載の半導体装置。
  4. 前記第1絶縁膜は有機絶縁膜で形成されている
    ことを特徴とする請求項1記載の半導体装置。
  5. 基板上にビアを形成するビア層絶縁膜を形成する工程と、
    前記ビア層絶縁膜上に配線層を形成する配線層絶縁膜を形成する工程と、
    前記配線層絶縁膜に凹部を形成して、該凹部に埋め込むように配線材料膜を形成した後、前記配線層絶縁膜上の余剰な配線材料膜を化学的機械研磨によって除去することで、前記凹部のみに前記配線材料膜を残して配線を形成する工程と
    を備えた半導体装置の製造方法であって、
    前記配線層絶縁膜を第1絶縁膜と第2絶縁膜との積層膜で形成し、
    その際、前記第1絶縁膜のエッジが前記第2絶縁膜のエッジより内側になるように形成し、
    前記配線層絶縁膜のエッジと前記ビア層絶縁膜のエッジとを一致した位置に形成する
    ことを特徴とする半導体装置の製造方法。
  6. 前記第1絶縁膜のエッジを前記第2絶縁膜のエッジより0.5mm以上5mm以下の範囲で内側に形成する
    ことを特徴とする請求項5記載の半導体装置の製造方法。
  7. 前記配線材料膜を形成する前に、前記第2絶縁膜のエッジが形成しようとする配線材料膜のエッジより内側になるように、前記第2絶縁膜およびビア層絶縁膜を加工する
    ことを特徴とする請求項5記載の半導体装置の製造方法。
  8. 前記第1絶縁膜を誘電率が3未満の低誘電率膜で形成する
    ことを特徴とする請求項5記載の半導体装置の製造方法。
  9. 前記第1絶縁膜を有機絶縁膜で形成する
    ことを特徴とする請求項5記載の半導体装置の製造方法。
JP2004110864A 2004-04-05 2004-04-05 半導体装置および半導体装置の製造方法 Pending JP2005294722A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004110864A JP2005294722A (ja) 2004-04-05 2004-04-05 半導体装置および半導体装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004110864A JP2005294722A (ja) 2004-04-05 2004-04-05 半導体装置および半導体装置の製造方法

Publications (1)

Publication Number Publication Date
JP2005294722A true JP2005294722A (ja) 2005-10-20

Family

ID=35327281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004110864A Pending JP2005294722A (ja) 2004-04-05 2004-04-05 半導体装置および半導体装置の製造方法

Country Status (1)

Country Link
JP (1) JP2005294722A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009038061A (ja) * 2007-07-31 2009-02-19 Renesas Technology Corp 半導体ウエハおよび半導体装置の製造方法
JP2009206241A (ja) * 2008-02-27 2009-09-10 Renesas Technology Corp 半導体装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009038061A (ja) * 2007-07-31 2009-02-19 Renesas Technology Corp 半導体ウエハおよび半導体装置の製造方法
JP2009206241A (ja) * 2008-02-27 2009-09-10 Renesas Technology Corp 半導体装置
JP4646993B2 (ja) * 2008-02-27 2011-03-09 ルネサスエレクトロニクス株式会社 半導体装置

Similar Documents

Publication Publication Date Title
JP4160569B2 (ja) 半導体装置の製造方法
JP4948715B2 (ja) 半導体ウエハ装置およびその製造方法
US20100255682A1 (en) Method for thinning a bonding wafer
US8164196B2 (en) Semiconductor device and method for manufacturing the same
US8093149B2 (en) Semiconductor wafer and manufacturing method for semiconductor device
US6379782B2 (en) Semiconductor device formed with metal wiring on a wafer by chemical mechanical polishing, and method of manufacturing the same
JP5487469B2 (ja) 半導体装置の製造方法
JPWO2004097923A1 (ja) 半導体装置の製造方法
US7217663B2 (en) Via hole and trench structures and fabrication methods thereof and dual damascene structures and fabrication methods thereof
KR100571417B1 (ko) 반도체 소자의 듀얼 다마신 배선 및 그 제조 방법
JP2007059434A (ja) 半導体装置の製造方法
JP3530073B2 (ja) 半導体装置及びその製造方法
JP2006216964A (ja) ビアキャッピング保護膜を使用する半導体素子のデュアルダマシン配線の製造方法
JP2001176965A (ja) 半導体装置及びその製造方法
JP2008282852A (ja) 半導体装置の製造方法
JP2005294722A (ja) 半導体装置および半導体装置の製造方法
US7622331B2 (en) Method for forming contacts of semiconductor device
US20060148244A1 (en) Method for cleaning a semiconductor substrate
US20030201121A1 (en) Method of solving the unlanded phenomenon of the via etch
JP2005235979A (ja) 半導体装置および半導体装置の製造方法
US6352918B1 (en) Method of forming inter-metal interconnection
US20080274614A1 (en) fabricating method of metal line
JP2005235978A (ja) 半導体装置および半導体装置の製造方法
JP2008041783A (ja) 半導体装置の製造方法
JP2006294770A (ja) 半導体装置の製造方法および半導体装置