JP2005280112A - Method for manufacturing copper-clad laminated sheet - Google Patents

Method for manufacturing copper-clad laminated sheet Download PDF

Info

Publication number
JP2005280112A
JP2005280112A JP2004097750A JP2004097750A JP2005280112A JP 2005280112 A JP2005280112 A JP 2005280112A JP 2004097750 A JP2004097750 A JP 2004097750A JP 2004097750 A JP2004097750 A JP 2004097750A JP 2005280112 A JP2005280112 A JP 2005280112A
Authority
JP
Japan
Prior art keywords
copper foil
resin
copper
layer
resin layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004097750A
Other languages
Japanese (ja)
Other versions
JP4390055B2 (en
Inventor
Nobuyuki Ikeguchi
信之 池口
Takafumi Omori
貴文 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2004097750A priority Critical patent/JP4390055B2/en
Publication of JP2005280112A publication Critical patent/JP2005280112A/en
Application granted granted Critical
Publication of JP4390055B2 publication Critical patent/JP4390055B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a copper-clad laminated sheet which is good in adhesive force with a copper foil, and has an extremely small surface irregularity of the copper foil surface into contact with a resin layer. <P>SOLUTION: The face of the resin layer of a resin composite copper foil in which a highly heat-resistant resin layer with a film formability is formed on one face of the copper foil, is arranged by facing it to a B-stage resin composition layer, and is laminated and molded to obtain the copper-clad laminated sheet. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、銅張積層板の新規な製造方法であり、詳しくは銅箔の接着力が良好で、銅箔の樹脂層と接する面の表面凹凸が極めて小さい銅張積層板の製造方法に関するものである。本発明の製造方法により得られる銅張積層板は、細密回路を作製するのに好適で、伝送損失が少なく、高周波用途等の高密度プリント配線板として好適に使用される。   The present invention relates to a novel method for producing a copper clad laminate, and more particularly to a method for producing a copper clad laminate with good adhesion of copper foil and extremely small surface irregularities on the surface of the copper foil contacting the resin layer. It is. The copper clad laminate obtained by the production method of the present invention is suitable for producing a fine circuit, has a small transmission loss, and is suitably used as a high-density printed wiring board for high frequency applications.

近年、小型、薄型、軽量化する電子機器において、プリント配線板の更なる高密度化の要求がますます増加している。従来、プリント配線板に使用する銅張積層板の銅箔としては、銅箔接着力が良好な、銅箔マット面の凹凸が顕著な電解銅箔が使用されている。これらの電解銅箔は、回路形成するためのエッチング工程で、銅箔の足部の一部が、積層板の樹脂表面に残り易く、これを完全に除去するため、エッチング時間を伸ばすと回路がオーバーエッチングされ、細密回路では、接着力が低下する等の問題点があった。また電気信号の伝送回路において、銅箔表面の凹凸の小さい銅箔の方が、伝送損失が少なくなることから、特に高周波用途用に、樹脂層に接する銅箔面を平滑化した積層板が開示(例えば特許文献1参照)されているが、銅箔表面凹凸が 2μm以下になると、幅 40μm以下の回路では接着力が弱く、プリント配線板加工工程中に銅箔が剥離する等の問題点があった。更に、表層銅箔とプリプレグ中のガラス繊維が接触し、耐マイグレーション性等の電気絶縁性が低下するのを防止するため、表層銅箔とプリプレグ間に、ガラス繊維基材を含まない熱硬化性樹脂絶縁層を配置する方法(例えば特許文献2参照)が提案されているが、銅箔のマット面の凹凸が小さい場合、銅箔との接着力が低下し、改善が必要であった。   In recent years, there has been an increasing demand for higher density printed wiring boards in electronic devices that are becoming smaller, thinner, and lighter. Conventionally, as a copper foil of a copper clad laminate used for a printed wiring board, an electrolytic copper foil having a good copper foil adhesive force and a conspicuous unevenness of a copper foil mat surface has been used. These electrolytic copper foils are an etching process for forming a circuit, and a part of the foot of the copper foil is likely to remain on the resin surface of the laminated plate, and in order to completely remove this, the circuit is formed by extending the etching time. Over-etching has caused problems such as a decrease in adhesive strength in a fine circuit. In addition, in a transmission circuit for electrical signals, a copper foil with less unevenness on the surface of the copper foil has a lower transmission loss, so that a laminated board with a smoothed copper foil surface in contact with a resin layer is disclosed, particularly for high frequency applications. (For example, refer to Patent Document 1) However, when the copper foil surface irregularity is 2 μm or less, the adhesive strength is weak in a circuit having a width of 40 μm or less, and the copper foil peels off during the printed wiring board processing step. there were. Furthermore, in order to prevent the surface copper foil and the glass fiber in the prepreg from coming into contact with each other and preventing the electrical insulation properties such as migration resistance from being lowered, the thermosetting that does not include a glass fiber substrate between the surface copper foil and the prepreg. A method of arranging a resin insulating layer (see, for example, Patent Document 2) has been proposed. However, when the unevenness of the mat surface of the copper foil is small, the adhesive strength with the copper foil is reduced, and improvement is required.

特開平5-55746号公報JP-A-5-55746 特開平9-11397号公報Japanese Patent Laid-Open No. 9-11397

本発明は、銅箔の接着力が良好で、樹脂層と接する銅箔面の表面凹凸が極めて小さい銅張積層板の製造方法の提供を目的とするものである。   An object of the present invention is to provide a method for producing a copper-clad laminate in which the adhesive strength of a copper foil is good and the surface roughness of the copper foil surface in contact with the resin layer is extremely small.

本発明は、銅箔の片面に、フィルム形成能を有する高耐熱性樹脂層を形成した樹脂複合銅箔の樹脂層面を、Bステージ樹脂組成物層に対向させて配置し、積層成形する銅張積層板の製造方法であり、好ましくは、該高耐熱性樹脂層を形成する銅箔面の最大表面凹凸が 2μm以下であり、高耐熱性樹脂層の厚みが 5〜10μmである銅張積層板の製造方法である。   The present invention provides a copper-clad laminate in which a resin layer surface of a resin composite copper foil in which a high heat-resistant resin layer having film-forming ability is formed on one side of a copper foil is opposed to a B-stage resin composition layer and laminated. A method for producing a laminate, preferably a copper clad laminate in which the maximum surface unevenness of the copper foil surface forming the high heat resistant resin layer is 2 μm or less and the thickness of the high heat resistant resin layer is 5 to 10 μm It is a manufacturing method.

本発明の製造方法で得られた銅張積層板は、銅箔との接着力が良好で、銅箔の樹脂層と接する面の表面凹凸が極めて小さい特性を有するため、細密回路を作製するのに好適であり、伝送損失が少ないことから、高周波用途等の高密度のプリント配線板に好適であり、工業的な実用性は極めて高いものである。   The copper-clad laminate obtained by the production method of the present invention has good adhesion to the copper foil and has extremely small surface irregularities on the surface in contact with the resin layer of the copper foil. Since the transmission loss is small, it is suitable for high-density printed wiring boards for high-frequency applications and the like, and industrial practicality is extremely high.

本発明は、銅箔の片面に、フィルム形成能を有する高耐熱性樹脂層を形成した樹脂複合銅箔の樹脂層面を、Bステージ樹脂組成物層に対向させて配置し、多層板とする場合には、内層板をBステージ樹脂組成物層の内側に配置して、加熱、加圧、好ましくは真空下で積層成形する銅張積層板、銅張多層積層板の製造方法である。本発明により得られる銅張積層板は、銅箔との接着力が良好で、樹脂層と接する銅箔面の表面凹凸が極めて小さいことから、細密回路を作製するのに好適であり、且つ伝送損失が少ないことから、高周波用途等の高密度プリント配線板として好適である。   The present invention is a case where a resin layer surface of a resin composite copper foil in which a high heat resistance resin layer having film forming ability is formed on one side of a copper foil is opposed to a B stage resin composition layer to form a multilayer board Is a method for producing a copper-clad laminate and a copper-clad multilayer laminate in which an inner layer plate is placed inside a B-stage resin composition layer and laminated by heating and pressurization, preferably under vacuum. The copper-clad laminate obtained by the present invention has good adhesive strength with copper foil, and the surface roughness of the copper foil surface in contact with the resin layer is extremely small. Therefore, the copper-clad laminate is suitable for producing a fine circuit and transmission. Since the loss is small, it is suitable as a high-density printed wiring board for high frequency applications.

本発明で使用する樹脂複合銅箔の高耐熱性樹脂層に使用する高耐熱性樹脂は、フィルム形成能を有する、軟化点250℃以上の高耐熱性樹脂であれば特に限定されない。これらの高耐熱性樹脂としては、具体的には、ポリアミドイミド、熱縮合型ポリイミド、全芳香族ポリアミド、ポリオキシベンザゾール、及びこれらの公知の変性品等が例示される。高耐熱性樹脂の軟化点が250℃未満では、吸湿時に250℃を越えるリフローハンダ処理等の加熱において、膨れを生じる場合があり、軟化点は300℃以上のものが好適である。樹脂複合銅箔の高耐熱性樹脂層の厚さは特に限定はないが、好適には 5〜10μmである。   The high heat resistant resin used for the high heat resistant resin layer of the resin composite copper foil used in the present invention is not particularly limited as long as it has a film forming ability and has a softening point of 250 ° C. or higher. Specific examples of these high heat resistant resins include polyamide imide, heat condensation type polyimide, wholly aromatic polyamide, polyoxybenzazole, and known modified products thereof. When the softening point of the high heat resistance resin is less than 250 ° C., swelling may occur in heating such as reflow soldering treatment exceeding 250 ° C. when moisture is absorbed, and the softening point is preferably 300 ° C. or more. The thickness of the high heat-resistant resin layer of the resin composite copper foil is not particularly limited, but is preferably 5 to 10 μm.

本発明の樹脂複合銅箔に使用される銅箔は、プリント配線板に使用される公知の銅箔であれば、特に限定されないが、好適には電解銅箔、圧延銅箔、これらの銅合金等が使用される。これらの銅箔に、例えばニッケル、コバルト処理等、公知の表面処理が施されたものも使用可能である。銅箔の厚さは特に限定されないが、好適には35μm以下である。高耐熱性樹脂層を形成する銅箔面の最大表面凹凸は、2μm以下が好適である。   Although the copper foil used for the resin composite copper foil of this invention will not be specifically limited if it is a well-known copper foil used for a printed wiring board, Preferably it is an electrolytic copper foil, a rolled copper foil, and these copper alloys Etc. are used. These copper foils that have been subjected to a known surface treatment such as nickel or cobalt treatment can also be used. The thickness of the copper foil is not particularly limited, but is preferably 35 μm or less. The maximum surface unevenness of the copper foil surface forming the high heat resistant resin layer is preferably 2 μm or less.

本発明の銅箔と高耐熱性樹脂からなる樹脂複合銅箔を作製する方法は、特に限定はなく、例えば、熱縮合型ポリイミド樹脂溶液をロール等で銅箔上に塗布・乾燥して、溶剤除去後、更に加熱し、架橋させて樹脂複合銅箔とする方法、半硬化状態の熱縮合型ポリイミド樹脂をシート状に形成したものを、銅箔の片面に配置し、真空プレス等で圧着させるとともに加熱し、架橋させて樹脂複合銅箔とする方法等、公知の方法が用いられ得る。   The method for producing a resin composite copper foil comprising the copper foil of the present invention and a high heat-resistant resin is not particularly limited. For example, the solvent is obtained by applying and drying a heat condensation type polyimide resin solution on a copper foil with a roll or the like. After removal, further heating and crosslinking to form a resin composite copper foil, a semi-cured heat-condensed polyimide resin formed into a sheet, placed on one side of the copper foil and crimped with a vacuum press or the like In addition, a known method such as a method of heating and crosslinking to form a resin composite copper foil can be used.

Bステージ樹脂組成物層に使用する樹脂組成物は、プリント配線板に使用される公知の熱硬化性樹脂組成物であれば、特に限定されない。これらの樹脂としては、例えば、エポキシ樹脂、ポリイミド樹脂、シアン酸エステル樹脂、マレイミド樹脂、2重結合付加ポリフェニレンエーテル樹脂、これらの樹脂の臭素やリン含有化合物等の樹脂組成物などが挙げられ、1種或いは2種以上が組み合わせて使用される。耐マイグレーション性等の信頼性、耐熱性等の点から、シアン酸エステル樹脂を必須成分とする樹脂組成物、例えばエポキシ樹脂等との併用が好適である。これら熱硬化性樹脂には、必要に応じて、公知の触媒、硬化剤、硬化促進剤を使用する。   The resin composition used for a B stage resin composition layer will not be specifically limited if it is a well-known thermosetting resin composition used for a printed wiring board. Examples of these resins include epoxy resins, polyimide resins, cyanate ester resins, maleimide resins, double bond-added polyphenylene ether resins, and resin compositions such as bromine and phosphorus-containing compounds of these resins. Species or two or more are used in combination. From the viewpoint of reliability such as migration resistance and heat resistance, it is preferable to use a resin composition containing a cyanate ester resin as an essential component, for example, an epoxy resin. For these thermosetting resins, known catalysts, curing agents, and curing accelerators are used as necessary.

Bステージ樹脂組成物層に使用する樹脂組成物に好適に使用されるシアン酸エステル樹脂とは、分子内に2個以上のシアナト基を有する化合物である。具体的に例示すると、1,3-又は1,4-ジシアナトベンゼン、1,3,5-トリシアナトベンゼン、1,3-、1,4-、1,6-、1,8-、2,6-又は2,7-ジシアナトナフタレン、1,3,6-トリシアナトナフタレン、4,4-ジシアナトビフェニル、ビス(4-ジシアナトフェニル)メタン、2,2-ビス(4-シアナトフェニル)プロパン、2,2-ビス(3,5-ジブロモー4-シアナトフェニル)プロパン、ビス(4-シアナトフェニル)エーテル、ビス(4-シアナトフェニル)チオエーテル、ビス(4-シアナトフェニル)スルホン、トリス(4-シアナトフェニル)ホスファイト、トリス(4-シアナトフェニル)ホスフェート、およびノボラックとハロゲン化シアンとの反応により得られるシアネート類等である。   The cyanate ester resin suitably used for the resin composition used for the B-stage resin composition layer is a compound having two or more cyanato groups in the molecule. Specific examples include 1,3- or 1,4-dicyanatobenzene, 1,3,5-tricyanatobenzene, 1,3-, 1,4-, 1,6-, 1,8-, 2 , 6- or 2,7-dicyanatonaphthalene, 1,3,6-tricyanatonaphthalene, 4,4-dicyanatobiphenyl, bis (4-dicyanatophenyl) methane, 2,2-bis (4-cyanato Phenyl) propane, 2,2-bis (3,5-dibromo-4-cyanatophenyl) propane, bis (4-cyanatophenyl) ether, bis (4-cyanatophenyl) thioether, bis (4-cyanatophenyl) ) Sulfone, tris (4-cyanatophenyl) phosphite, tris (4-cyanatophenyl) phosphate, and cyanates obtained by the reaction of novolac and cyanogen halide.

これらのほかに特公昭41-1928、同43-18468、同44-4791、同45-11712、同46-41112、同47-26853及び特開昭51-63149等に記載のフェノールノボラック型シアン酸エステル化合物類等も用い得る。又、ナフタレン型シアン酸エステル化合物類も用いられ得る。更に、これらシアン酸エステル化合物のシアナト基の三量化によって形成されるトリアジン環を有する分子量 400〜6,000 のプレポリマーが使用される。このプレポリマーは、上記のシアン酸エステルモノマーを、例えば鉱酸、ルイス酸等の酸類;ナトリウムアルコラート等、第三級アミン類等の塩基;炭酸ナトリウム等の塩類等を触媒として重合させることにより得られる。この樹脂中には一部未反応のモノマーも含まれており、モノマーとプレポリマーとの混合物の形態をしており、このような原料は本発明の用途に好適に使用される。更にはシアナト化ポリフェニレンエーテル樹脂も使用できる。これらに1官能のシアン酸エステル化合物も特性に大きく影響しない量を添加できる。好適には 1〜10重量%である。これらのシアン酸エステル化合物は上記のものに限定されず、公知のものが使用可能である。これらは1種或いは2種以上が適宜組み合わせて使用される。   In addition to these, phenol novolac type cyanic acid described in JP-B-41-1928, 43-18468, 44-4791, 45-11712, 46-41112, 47-26853 and JP-A-51-63149, etc. Ester compounds and the like can also be used. Naphthalene-type cyanate ester compounds can also be used. Further, a prepolymer having a molecular weight of 400 to 6,000 having a triazine ring formed by trimerization of cyanate groups of these cyanate ester compounds is used. This prepolymer is obtained by polymerizing the above-mentioned cyanate ester monomers using, for example, acids such as mineral acids and Lewis acids; bases such as sodium alcoholates and tertiary amines; salts such as sodium carbonate and the like as catalysts. It is done. This resin also contains a partially unreacted monomer and is in the form of a mixture of a monomer and a prepolymer, and such a raw material is suitably used for the application of the present invention. Furthermore, cyanated polyphenylene ether resin can also be used. A monofunctional cyanate ester compound can also be added to these in an amount that does not significantly affect the properties. 1 to 10% by weight is preferred. These cyanate ester compounds are not limited to those described above, and known compounds can be used. These may be used alone or in combination of two or more.

シアン酸エステル樹脂に好適に併用されるエポキシ樹脂としては、公知のものが使用できる。具体的には、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、脂環式エポキシ樹脂、ビフェニル型エポキシ樹脂、フルオレン型エポキシ樹脂、レゾルシン型エポキシ樹脂、ナフタレン型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、エポキシ化ポリフェニレンエーテル樹脂;ブタジエン、ペンタジエン、ビニルシクロヘキセン、ジシクロペンチルエーテル等の二重結合をエポキシ化したポリエポキシ化合物類;ポリオール、水酸基含有シリコン樹脂類とエポハロヒドリンとの反応によって得られるポリグリシジル化合物類等が挙げられる。又、これらの公知の臭素付加樹脂、リン含有エポキシ樹脂等が挙げられる。これらは1種或いは2種類以上が適宜組み合わせて使用される。   As an epoxy resin suitably used in combination with a cyanate ester resin, known resins can be used. Specifically, bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, alicyclic epoxy resin, biphenyl type epoxy resin, fluorene type epoxy resin, resorcin type epoxy resin, Naphthalene type epoxy resin, phenol aralkyl type epoxy resin, biphenyl aralkyl type epoxy resin, epoxidized polyphenylene ether resin; polyepoxy compounds with epoxidized double bonds such as butadiene, pentadiene, vinylcyclohexene, dicyclopentyl ether; polyol, hydroxyl group And polyglycidyl compounds obtained by the reaction of the containing silicon resins with epohalohydrin. Moreover, these well-known bromine addition resin, phosphorus containing epoxy resin, etc. are mentioned. These may be used alone or in combination of two or more.

Bステージ樹脂組成物層に使用する樹脂組成物には、組成物本来の特性が損なわれない範囲で、所望に応じて種々の添加物を配合することができる。これらの添加物としては、不飽和ポリエステル等の重合性二重結合含有モノマー類及びそのプレポリマー類;ポリブタジエン、マレイン化ブタジエン、ブタジエン-アクリロニトリル共重合体、ポリクロロプレン、ブタジエン-スチレン共重合体、ポリイソプレン、ブチルゴム、フッ素ゴム、天然ゴム等の低分子量液状〜高分子量のelasticなゴム類;ポリエチレン、ポリプロピレン、ポリブテン、ポリ-4-メチルペンテン、ポリスチレン、AS樹脂、ABS樹脂、MBS樹脂、スチレン-イソプレンゴム、アクリルゴム、これらのコアシェルゴム、ポリエチレン-プロピレン共重合体、4-フッ化エチレン-6-フッ化エチレン共重合体類;ポリカーボネート、ポリフェニレンエーテル、ポリスルホン、ポリエステル、ポリフェニレンサルファイド等の高分子量プレポリマー若しくはオリゴマー;ポリウレタン等が例示され、適宜使用される。また、その他、公知の有機、無機の充填剤、染料、顔料、増粘剤、滑剤、消泡剤、分散剤、レベリング剤、光増感剤、難燃剤、光沢剤、重合禁止剤、チキソ性付与剤等の各種添加剤が、所望に応じて適宜組み合わせて用いられる。   In the resin composition used for the B-stage resin composition layer, various additives can be blended as desired within a range that does not impair the original characteristics of the composition. These additives include unsaturated double bond-containing monomers such as unsaturated polyesters and prepolymers thereof; polybutadiene, maleated butadiene, butadiene-acrylonitrile copolymer, polychloroprene, butadiene-styrene copolymer, poly Low molecular weight liquid to high molecular weight elastic rubber such as isoprene, butyl rubber, fluoro rubber, natural rubber; polyethylene, polypropylene, polybutene, poly-4-methylpentene, polystyrene, AS resin, ABS resin, MBS resin, styrene-isoprene Rubber, acrylic rubber, these core-shell rubbers, polyethylene-propylene copolymers, 4-fluoroethylene-6-fluoroethylene copolymers; high molecular weight prepolymers such as polycarbonate, polyphenylene ether, polysulfone, polyester, polyphenylene sulfide Properly oligomer; are exemplified polyurethane, etc., it is suitably used. In addition, other known organic and inorganic fillers, dyes, pigments, thickeners, lubricants, antifoaming agents, dispersants, leveling agents, photosensitizers, flame retardants, brighteners, polymerization inhibitors, thixotropic properties Various additives such as an imparting agent are used in appropriate combination as desired.

本発明のBステージ樹脂組成物層の作製方法は特に限定されないが、例えば、熱硬化性樹脂組成物を溶剤に溶解・分散させるか無溶剤でワニスとし、離型フィルムの片面に塗布、乾燥してBステージ樹脂組成物シートとする方法、基材に塗布、乾燥してBステージ化しプリプレグとする方法、導体回路を形成した基板の上に、直接塗布、乾燥してBステージ樹脂組成物層を形成する方法等、公知の方法で作製する。このBステージ樹脂組成物層の厚さは特に限定されないが、シートの場合は、好適には 4〜150μmであり、塗布する場合も同様である。プリプレグの場合は、好適には、厚さ 10〜200μmとする。   The method for producing the B-stage resin composition layer of the present invention is not particularly limited. For example, the thermosetting resin composition is dissolved / dispersed in a solvent or made into a varnish without a solvent, and applied to one side of a release film and dried. A B-stage resin composition sheet, a method of applying to a base material, drying and forming a B-stage to form a prepreg, and directly applying and drying a B-stage resin composition layer on a substrate on which a conductor circuit is formed. It is produced by a known method such as a forming method. The thickness of the B-stage resin composition layer is not particularly limited, but in the case of a sheet, it is preferably 4 to 150 μm, and the same applies when applied. In the case of a prepreg, the thickness is preferably 10 to 200 μm.

本発明のBステージ樹脂組成物層には、全体のプリント配線板の剛性率を向上させる目的で、基材を補強使用することが好ましい。使用される基材としては、プリント配線板に使用される公知の基材であれば、特に限定されない。具体的には、E、NE、D、S、Tガラス等の一般に公知のガラス繊維の不織布、織布;ポリオキシベンザゾール、全芳香族ポリアミド、液晶ポリエステル等の一般に公知の有機繊維不織布、織布;これらの混抄布;ポリイミドフィルム、全芳香族ポリアミドフィルム、ポリオキシベンザゾールフィルム、液晶ポリエステルフィルム等が挙げられる。これらの基材は、樹脂組成物との密着性を向上させるため、その基材に公知の表面処理を施すことが好ましい。   In the B stage resin composition layer of the present invention, it is preferable to reinforce the base material for the purpose of improving the rigidity of the entire printed wiring board. As a base material to be used, if it is a well-known base material used for a printed wiring board, it will not specifically limit. Specifically, generally known non-woven fabrics and woven fabrics of glass fibers such as E, NE, D, S, and T glass; generally known non-woven fabrics and woven fabrics such as polyoxybenzazole, wholly aromatic polyamide, and liquid crystalline polyester. Cloth; these mixed papers; polyimide film, wholly aromatic polyamide film, polyoxybenzazole film, liquid crystal polyester film and the like. In order for these base materials to improve adhesiveness with a resin composition, it is preferable to perform well-known surface treatment to the base material.

本発明の銅張積層板の製造方法は、前記樹脂複合銅箔の樹脂層面を、上記Bステージ樹脂組成物層に対向させて配置し、積層成形するものである。具体的には、プリプレグの少なくとも片面に、樹脂複合銅箔の樹脂層面を対向させて配置し、加熱、加圧、好ましくは真空下で積層成形して銅張積層板とする。又、多層板を作製する場合は、導体回路を形成した内層基板の両面にBステージ樹脂組成物層を配置又は形成し、このBステージ樹脂組成物層面に、樹脂複合銅箔の樹脂層面を対向させて配置し、加熱、加圧、好ましくは真空下で積層成形して多層銅張積層板とする。この際、樹脂複合銅箔の樹脂層面は公知のプラズマ処理、コロナ処理等の樹脂と密着性を高める処理を施すのが好ましい。   The manufacturing method of the copper clad laminated board of this invention arrange | positions the resin layer surface of the said resin composite copper foil facing the said B stage resin composition layer, and carries out lamination molding. Specifically, the resin layer surface of the resin composite copper foil is disposed opposite to at least one surface of the prepreg, and is laminated by heating and pressurization, preferably under vacuum, to obtain a copper-clad laminate. When producing a multilayer board, a B-stage resin composition layer is disposed or formed on both surfaces of the inner substrate on which the conductor circuit is formed, and the resin layer surface of the resin composite copper foil is opposed to the B-stage resin composition layer surface. The multilayer copper-clad laminate is formed by heating and pressurizing, preferably under vacuum, and forming by lamination. At this time, the resin layer surface of the resin composite copper foil is preferably subjected to a treatment for improving adhesion with a resin such as a known plasma treatment or corona treatment.

これらに使用する積層板や回路基板の種類は、特に限定されず、プリント配線板材料用の公知の積層板、金属箔張板、好適には銅張板が使用できる。具体的には、熱硬化性樹脂組成物及び/又は熱可塑性樹脂組成物などを使用した、無機繊維及び/又は有機繊維基材銅張積層板、耐熱性フィルム基材銅張板、更にはこれらの基材の組み合わせた複合基材銅張積層板及びこれらの多層銅張板、アディティブ法等で作製した多層銅張板等、公知のものが使用できる。回路基板の導体厚さは特に限定されないが、好適には 3〜35μmである。この導体回路上は、Bステージ樹脂組成物層の樹脂との密着性を高める公知の処理、例えば黒色酸化銅処理、薬液処理(例えばメック社のCZ処理)等を施すのが好ましい。   The kind of the laminated board and circuit board used for these is not specifically limited, A well-known laminated board for printed wiring board materials, a metal foil tension board, Preferably a copper tension board can be used. Specifically, inorganic fiber and / or organic fiber-based copper-clad laminates, heat-resistant film-based copper-clad plates using thermosetting resin compositions and / or thermoplastic resin compositions, and further these Known materials such as composite base material copper clad laminates obtained by combining these base materials, multilayer copper clad plates, multilayer copper clad plates prepared by the additive method, and the like can be used. The conductor thickness of the circuit board is not particularly limited, but is preferably 3 to 35 μm. On this conductor circuit, it is preferable to perform a known process for improving the adhesion of the B-stage resin composition layer to the resin, for example, a black copper oxide process, a chemical solution process (for example, CZ process of MEC).

本発明の積層条件は特に限定されないが、好ましくは、温度 100〜250℃、圧力 5〜40kgf/cm、真空度 30mmHg以下で 30分〜5時間積層成形する。積層は、最初から最後までこの条件でも良いが、ゲル化までは積層成形し、その後、取り出して加熱炉で後硬化することも可能である。 The lamination conditions of the present invention are not particularly limited. Preferably, the lamination is performed at a temperature of 100 to 250 ° C., a pressure of 5 to 40 kgf / cm 2 , and a degree of vacuum of 30 mmHg or less for 30 minutes to 5 hours. Lamination may be performed under these conditions from the beginning to the end, but it is also possible to laminate and form until gelation, and then take out and post-cure in a heating furnace.

以下に実施例、比較例で本発明を具体的に説明する。尚、『部』は重量部を表す。
実施例1
5リットルのフラスコにp-フェニレンジアミン 108部、及びN-メチル-2-ピロリドン(以下NMP)2500部を加えてよく攪拌混合して溶解させた。このフラスコを氷水で冷やして液温を 30℃以下に保持しながら、攪拌下に、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物 294部を徐々に加え、添加終了後に2時間反応させ、ポリアミド酸NMP溶液Aを得た。この溶液Aを加温して粘度 1000ポイズ以下に下げ、これをガラス板の上に置いた厚さ 12μmの電解銅箔(最大表面凹凸:1.1μm、Rz:0.9μm)に塗布し、150℃で30分、200℃で60分加熱乾燥し、更に 300℃で1時間反応させ、その後室温まで冷却し、軟化点300℃以上のポリイミド層(厚さ:8μm)を有する樹脂複合銅箔Bを得た。これとは別に、2,2-ビス(4-シアナトフェニル)プロパンモノマー 400部を 150℃に溶融させ、撹拌しながら4時間反応させ、モノマーとプレポリマーの混合物を得、これをメチルエチルケトンに溶解し、ワニスCとした。これにビスフェノールA型エポキシ樹脂(エピコート1001、ジャパンエポキシレジン<株>製) 350部、ビフェニル型エポキシ樹脂(NC3000、日本化薬<株>製) 50部、フェノールノボラック型エポキシ樹脂(DEN438、ダウ・ケミカル<株>製) 100部を配合し、アセチルアセトン鉄 0.3部をメチルエチルケトンに溶解混合し、更に焼成タルク(BST200、日本タルク<株>製) 500部を加え、均一に混合してワニスDとした。このワニスDを、厚さ 100μmのガラス織布基材に含浸、乾燥して、厚さ 105μmでゲル化時間(at170℃、以下同じ) 112秒のBステージ樹脂組成物シート(プリプレグ) Eを作製した。次に、樹脂複合銅箔Bの樹脂面をプラズマ処理した後、その樹脂面を、プリプレグEを 8枚を重ねたもの上下面に、プリプレグ面と対向して配置し、190℃、20kgf/cm2、10mmHgの真空下で2時間積層成形して両面銅張積層板Fを作製した。評価結果を表1に示す。
The present invention will be specifically described below with reference to examples and comparative examples. “Parts” represents parts by weight.
Example 1
108 parts of p-phenylenediamine and 2500 parts of N-methyl-2-pyrrolidone (hereinafter referred to as NMP) were added to a 5 liter flask, and the mixture was thoroughly stirred and dissolved. While this flask was cooled with ice water and the liquid temperature was kept at 30 ° C. or lower, 294 parts of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride was gradually added under stirring, and 2 was added after the addition was completed. Reaction was performed for a time to obtain a polyamic acid NMP solution A. This solution A is heated to reduce the viscosity to 1000 poise or less, and this is applied to a 12 μm thick electrolytic copper foil (maximum surface irregularities: 1.1 μm, Rz: 0.9 μm) placed on a glass plate, and 150 ° C. For 30 minutes at 200 ° C for 60 minutes, and further reacted at 300 ° C for 1 hour, then cooled to room temperature, and a resin composite copper foil B having a polyimide layer (thickness: 8 µm) with a softening point of 300 ° C or higher Obtained. Separately, 400 parts of 2,2-bis (4-cyanatophenyl) propane monomer was melted at 150 ° C. and reacted for 4 hours with stirring to obtain a mixture of monomer and prepolymer, which was dissolved in methyl ethyl ketone. And it was set as Varnish C. To this, 350 parts of bisphenol A type epoxy resin (Epicoat 1001, manufactured by Japan Epoxy Resin Co., Ltd.), 50 parts of biphenyl type epoxy resin (NC3000, manufactured by Nippon Kayaku Co., Ltd.), phenol novolac type epoxy resin (DEN438, Dow Chemical 100), 100 parts of acetylacetone iron 0.3 parts is dissolved and mixed in methyl ethyl ketone, and 500 parts of baked talc (BST200, Nippon Talc Co., Ltd.) is added and mixed uniformly to make varnish D. . This varnish D is impregnated into a glass woven fabric substrate having a thickness of 100 μm, dried, and a B-stage resin composition sheet (prepreg) E having a thickness of 105 μm and a gel time (at 170 ° C., the same applies hereinafter) of 112 seconds is produced. did. Next, after the resin surface of the resin composite copper foil B is subjected to plasma treatment, the resin surface is placed on the upper and lower surfaces of the stacked 8 sheets of prepreg E so as to face the prepreg surface, 190 ° C., 20 kgf / cm 2. Double-sided copper-clad laminate F was produced by laminate molding for 2 hours under a vacuum of 10 mmHg. The evaluation results are shown in Table 1.

実施例2
ブロム化ビスフェノールA型エポキシ樹脂(エピコート5045、ジャパンエポキシレジン<株>製) 800部、フェノールノボラック型エポキシ樹脂(DEN431)200部、ジシアンジアミド 35部、2-エチル-4-メチルイミダゾール 1部をメチルエチルケトンとジメチルホルムアミド混合溶剤に溶解混合し、更にタルク(P-3、日本タルク<株>製)700部を添加し、均一に混合してワニスGとした。このワニスGを、厚さ 25μmのPETフィルムの片面に塗布、乾燥して、厚さ 105μmでゲル化時間 137秒の離型フィルム付きBステージ樹脂組成物シートHを作製した。次に、厚さ 0.2mmのBTレジン両面銅張(3μm)積層板(CCL-HL832HS、三菱ガス化学<株>製)に金属ドリルで孔径 75μmの貫通孔をあけ、デスミア処理後に全体を銅メッキするとともに貫通孔内を銅メッキで充填し、表面を研磨して平滑にした後、回路を形成し、表層回路にメック社のCZ処理を施して回路基板Iとした。この回路基板Iの両面に、離型フィルムを剥離したBステージ樹脂組成物シートHを配置し、その両外側に樹脂面をプラズマ処理した樹脂複合銅箔Bの樹脂面を、Bステージ樹脂組成物シートHと対向させて配置し、160℃、20kgf/cm、10mmHgの真空下で 30分積層成形後にプレス装置から取り出し、加熱炉で 170℃にて5時間硬化させ、4層銅張積層板Jを得た。評価結果を表1に示す。
Example 2
Brominated bisphenol A type epoxy resin (Epicoat 5045, manufactured by Japan Epoxy Resins Co., Ltd.) 800 parts, phenol novolac type epoxy resin (DEN431) 200 parts, dicyandiamide 35 parts, 2-ethyl-4-methylimidazole 1 part with methyl ethyl ketone Dissolved and mixed in a dimethylformamide mixed solvent, 700 parts of talc (P-3, manufactured by Nippon Talc Co., Ltd.) was further added, and mixed uniformly to make varnish G. This varnish G was applied to one side of a PET film having a thickness of 25 μm and dried to prepare a B-stage resin composition sheet H with a release film having a thickness of 105 μm and a gel time of 137 seconds. Next, a 0.2 mm thick BT resin double-sided copper-clad (3 μm) laminated plate (CCL-HL832HS, manufactured by Mitsubishi Gas Chemical Co., Ltd.) was drilled with a metal drill with a hole diameter of 75 μm, and the whole was plated with copper after desmear treatment At the same time, the inside of the through hole was filled with copper plating, and the surface was polished and smoothed. Then, a circuit was formed, and the surface layer circuit was subjected to CZ treatment by MEC to obtain a circuit board I. A B-stage resin composition sheet H from which a release film has been peeled is disposed on both surfaces of the circuit board I, and the resin surface of the resin composite copper foil B obtained by subjecting the resin surface to plasma treatment on both outer sides of the B-stage resin composition. 4 layers copper clad laminate, placed facing sheet H, removed from press machine after 30 minutes lamination molding under vacuum of 160 ° C, 20kgf / cm 2 , 10mmHg, and cured at 170 ° C for 5 hours in heating furnace J was obtained. The evaluation results are shown in Table 1.

比較例1
実施例2において、樹脂複合銅箔Bの代わり実施例1で使用した銅箔を使用する以外は実施例2と同様に行い、4層銅張積層板Kを作製した。評価結果を表1に示す。
Comparative Example 1
In Example 2, a four-layer copper clad laminate K was produced in the same manner as in Example 2 except that the copper foil used in Example 1 was used instead of the resin composite copper foil B. The evaluation results are shown in Table 1.

比較例2
実施例1において、樹脂複合銅箔Bの代わりに、銅箔として厚さ 12μmキャリア銅箔付き 3μm電解銅箔(マット面最大表面凹凸Max.4.1μm、Rz:3.3μm)を使用する以外は、実施例1と同様に積層成形して両面銅張積層板Lを作製した。評価結果を表1に示す。
Comparative Example 2
In Example 1, instead of the resin composite copper foil B, a 3 μm electrolytic copper foil with a thickness of 12 μm carrier copper foil (maximum surface roughness of mat surface: 4.1 μm, Rz: 3.3 μm) was used as the copper foil. A double-sided copper-clad laminate L was produced by laminate molding in the same manner as Example 1. The evaluation results are shown in Table 1.

比較例3
樹脂複合銅箔としてポリイミドの代わりにポリフェニレンエーテル樹脂(軟化点240℃)を使用した樹脂複合銅箔Mを作製し、実施例1において、樹脂複合銅箔Bの代わりに樹脂複合銅箔Mを使用する以外は、実施例1と同様に行い、両面銅張板Nを作製した。評価結果を表1に示す。
Comparative Example 3
A resin composite copper foil M using a polyphenylene ether resin (softening point 240 ° C.) instead of polyimide is prepared as the resin composite copper foil. In Example 1, the resin composite copper foil M is used instead of the resin composite copper foil B. A double-sided copper-clad plate N was produced in the same manner as in Example 1 except that. The evaluation results are shown in Table 1.

実 施 例 比 較 例
項 目 1 2 1 2 3
銅箔接着力(kgf/cm) 1.57 1.53 0.15 1.50 1.41
最大表面凹凸(μm) 1.1 1.2 1.2 3.8 1.2
吸湿耐熱性 異常なし 異常なし 膨れ発生 異常なし 膨れ発生
孔壁間又は回路間耐マイグレーション性(Ω)
常態 7×1014 5×1014 6×1014 5×1014 3×1014
300hrs. 5×1011 <108 <108 6×1011 2×1011
500hrs. 1×1011 − 8×1010 3×1010
700hrs. 4×1010 9×109 7×109
1000hrs. 2×1010 8×109 2×109
Z方向耐マイグレーション性(Ω)
常態 5×1014 3×1014 4×1014 4×1014 3×1014
300hrs. 7×1011 6×1011 <108 9×1010 8×1010
500hrs. 9×1010 8×1010 − 3×1010 2×1010
700hrs. 5×1010 4×1010 2×109 9×109
1000hrs. 4×1010 2×1010 4×108 4×109
弾性率 (kgf/mm2) 2384 2103 2145 2370 2343
伝送損失減衰量(dB) 0.09 0.11 0.12 0.39 0.11
Example Comparison example
Item 1 2 1 2 3
Copper foil adhesive strength (kgf / cm) 1.57 1.53 0.15 1.50 1.41
Maximum surface irregularities (μm) 1.1 1.2 1.2 3.8 1.2
Absorption heat resistance No abnormality No abnormality Bulging occurrence No abnormality Bulging occurrence Migration resistance between hole walls or circuits (Ω)
Normal 7 × 10 14 5 × 10 14 6 × 10 14 5 × 10 14 3 × 10 14
300hrs. 5 × 10 11 <10 8 <10 8 6 × 10 11 2 × 10 11
500hrs. 1 × 10 11 − 8 × 10 10 3 × 10 10
700hrs. 4 × 10 10 9 × 10 9 7 × 10 9
1000hrs. 2 × 10 10 8 × 10 9 2 × 10 9
Z-direction migration resistance (Ω)
Normal 5 × 10 14 3 × 10 14 4 × 10 14 4 × 10 14 3 × 10 14
300hrs. 7 × 10 11 6 × 10 11 <10 8 9 × 10 10 8 × 10 10
500hrs. 9 × 10 10 8 × 10 10 −3 × 10 10 2 × 10 10
700hrs. 5 × 10 10 4 × 10 10 2 × 10 9 9 × 10 9
1000hrs. 4 × 10 10 2 × 10 10 4 × 10 8 4 × 10 9
Elastic modulus (kgf / mm 2 ) 2384 2103 2145 2370 2343
Transmission loss attenuation (dB) 0.09 0.11 0.12 0.39 0.11

<測定方法>
1)銅箔接着力:銅箔に銅メッキして厚さ 18μmとしてから JIS C6481に準じて測定した。
2)最大表面凹凸:銅箔をエッチングした積層板の表面凹凸を表面粗さ計で測定し最大値を示した。
3)吸湿耐熱性:プレッシャクッカー試験機で 121℃/203kPaで3時間処理した後、260℃の半田に 30sec.浸漬し、外観の異常の有無を目視で判定。
4)孔壁間又は回路間耐マイグレーション性:実施例1、比較例2,3は孔壁間 150μmの貫通孔を有するプリント板を作製し、この孔壁間の絶縁抵抗値を、実施例2、比較例1は内層の回路導体間距離を 40μmとした表層回路のないプリント配線板を作製し、内層の回路間の絶縁抵抗値を、85℃・85%RH、100VDC 印加して測定した。
5)Z方向耐マイグレーション性:表裏に回路を形成したプリント板を作製し、実施例1、比較例2,3は表裏の絶縁抵抗値を、実施例2、比較例1は内層と表面回路間の絶縁抵抗値を、85℃・85%RH、100VDC 印加して測定した。
6)弾性率:回路導体及び孔の形成を行わずに、同様の構成で絶縁体だけの積層板を作製し、JIS C6481のDMA法に準じて弾性率を測定し、25℃の弾性率を示した。
7)伝送損失減衰量:銅張積層板の表層にマイクロストリップライン{ライン幅 250μm、長さ 100mm、銅箔(+銅メッキ)厚さ35μm、絶縁層厚さ 100μm}を作製し、1GHzで測定した。測定器:ネットワークアナライザー(アジデントテクノロジー<株>製、8722ES)
<Measurement method>
1) Copper foil adhesive strength: The copper foil was plated with copper to a thickness of 18 μm and then measured according to JIS C6481.
2) Maximum surface unevenness: The surface unevenness of the laminated plate etched with copper foil was measured with a surface roughness meter, and the maximum value was shown.
3) Moisture absorption and heat resistance: Treated with a pressure cooker at 121 ° C / 203 kPa for 3 hours, then immersed in 260 ° C solder for 30 seconds and visually checked for abnormal appearance.
4) Migration resistance between hole walls or between circuits: Example 1 and Comparative Examples 2 and 3 produced printed boards having through-holes of 150 μm between the hole walls. In Comparative Example 1, a printed wiring board without a surface layer circuit having a distance between circuit conductors of the inner layer of 40 μm was prepared, and the insulation resistance value between the circuits of the inner layer was measured by applying 100 VDC at 85 ° C./85% RH.
5) Migration resistance in the Z direction: A printed board having a circuit formed on the front and back sides was prepared. In Example 1, Comparative Examples 2 and 3, the insulation resistance values on the front and back sides were measured. In Example 2 and Comparative Example 1, between the inner layer and the surface circuit The insulation resistance was measured by applying 100 VDC at 85 ° C / 85% RH.
6) Modulus of elasticity: Without the formation of circuit conductors and holes, a laminated board made of only an insulator with the same configuration was measured. The modulus of elasticity was measured according to the DMA method of JIS C6481, and the modulus of elasticity at 25 ° C was measured. Indicated.
7) Transmission loss attenuation: A microstrip line {line width 250μm, length 100mm, copper foil (+ copper plating) thickness 35μm, insulation layer thickness 100μm} on the surface layer of a copper clad laminate was measured at 1GHz. did. Measuring instrument: Network analyzer (manufactured by Agilent Technology Co., Ltd., 8722ES)

Claims (3)

銅箔の片面に、フィルム形成能を有する高耐熱性樹脂層を形成した樹脂複合銅箔の樹脂層面を、Bステージ樹脂組成物層に対向させて配置し、積層成形する銅張積層板の製造方法。 Manufacture of a copper-clad laminate for laminating and molding a resin layer surface of a resin composite copper foil in which a high heat-resistant resin layer having film-forming ability is formed on one side of a copper foil facing a B-stage resin composition layer Method. 該高耐熱性樹脂層を形成する銅箔面の最大表面凹凸が、2μm以下である請求項1記載の銅張積層板の製造方法。 The method for producing a copper-clad laminate according to claim 1, wherein the maximum surface unevenness of the copper foil surface forming the high heat-resistant resin layer is 2 µm or less. 該高耐熱性樹脂層の厚みが、5〜10μmである請求項1又は2記載の銅張積層板の製造方法。 The method for producing a copper-clad laminate according to claim 1 or 2, wherein the high heat-resistant resin layer has a thickness of 5 to 10 µm.
JP2004097750A 2004-03-30 2004-03-30 Method for producing copper clad laminate Expired - Lifetime JP4390055B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004097750A JP4390055B2 (en) 2004-03-30 2004-03-30 Method for producing copper clad laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004097750A JP4390055B2 (en) 2004-03-30 2004-03-30 Method for producing copper clad laminate

Publications (2)

Publication Number Publication Date
JP2005280112A true JP2005280112A (en) 2005-10-13
JP4390055B2 JP4390055B2 (en) 2009-12-24

Family

ID=35179004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004097750A Expired - Lifetime JP4390055B2 (en) 2004-03-30 2004-03-30 Method for producing copper clad laminate

Country Status (1)

Country Link
JP (1) JP4390055B2 (en)

Also Published As

Publication number Publication date
JP4390055B2 (en) 2009-12-24

Similar Documents

Publication Publication Date Title
US9949371B2 (en) Resin composite electrolytic copper foil, copper clad laminate and printed wiring board
US7115681B2 (en) Resin composition
KR101289043B1 (en) Resin Composite Metal Foil, Laminate and Process for the Production of Printed Wiring Board Using the Laminate
JP5641942B2 (en) Resin composite copper foil
KR20120125989A (en) Resin composition for printed circuit board
JP2007196471A (en) Resin composite copper foil, and its manufacturing method
JP4767517B2 (en) Resin composite copper foil, copper-clad laminate and printed wiring board using the same
JP2003340952A (en) Method for manufacturing b-stage resin composition sheet containing fibrous cloth base material for additive
JP2003313324A (en) Method for manufacturing base material-filled b-staged resin composition sheet
JP4390056B2 (en) B-stage resin composition sheet and method for producing copper-clad laminate using the same
JP2003249751A (en) Method for producing multilayer printed wiring board using additive method
JP2003251757A (en) B-stage resin composition sheet having heat resistant film base material for lamination
JP5253754B2 (en) Resin composite copper foil
KR100736634B1 (en) Laminated layer, printed circuit board and fabricating method therefore
JP4390055B2 (en) Method for producing copper clad laminate
JP4888517B2 (en) Method for manufacturing printed circuit board for extra fine wire circuit
JP2003238772A (en) Curable resin composition and sheet of b-stage resin composition
JP2003332734A (en) Method of manufacturing printed wiring board using additive method
JP2005074819A (en) Copper clad laminateed sheet and multilayered board using it
JP2005074933A (en) Copper clad laminated sheet and multilayered board using it
JP2004165411A (en) Method of manufacturing extremely thin copper foil-plated board excellent in thickness uniformity of copper foil
JPH10337809A (en) Ultra-thin copper foil with base material reinforced b-stage resin and its manufacture
JP2004273911A (en) Method for manufacturing superthin-wire circuit printed wiring board
JP2003260755A (en) B-stage resin composition sheet with metallic foil containing heat resisting film base material for lamination
JP2005041148A (en) Stage b resin composition sheet having film substrate in it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090916

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4390055

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090929

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131016

Year of fee payment: 4