JP2005278344A - モータ制御装置 - Google Patents

モータ制御装置 Download PDF

Info

Publication number
JP2005278344A
JP2005278344A JP2004090457A JP2004090457A JP2005278344A JP 2005278344 A JP2005278344 A JP 2005278344A JP 2004090457 A JP2004090457 A JP 2004090457A JP 2004090457 A JP2004090457 A JP 2004090457A JP 2005278344 A JP2005278344 A JP 2005278344A
Authority
JP
Japan
Prior art keywords
wiring pattern
temperature sensor
circuit board
motor control
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004090457A
Other languages
English (en)
Inventor
Etsuo Ota
悦生 太田
Hiroyuki Kawada
川田  裕之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2004090457A priority Critical patent/JP2005278344A/ja
Publication of JP2005278344A publication Critical patent/JP2005278344A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Power Steering Mechanism (AREA)
  • Control Of Electric Motors In General (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

【課題】 温度伝達遅れ並びに温度検出値オフセットを少ないものとし、過熱保護機能の確実性を向上させたモータ制御装置を提供する。
【解決手段】 モータ制御装置40は、回路基板50に実装された温度センサ17の検出温度に応じて過熱保護機能を作動するように構成されている。トランジスタT1,T2を含む回路の配線パターン54が、トランジスタT1,T2から温度センサ17への熱伝導経路に兼用されている。
【選択図】 図5

Description

本発明は、たとえば車両用の電動パワーステアリング装置に好適に採用されるモータ制御装置に関する。
車両用の電動パワーステアリング装置は、IGBTやパワーMOSFET等のパワー素子(スイッチング素子)を用いたHブリッジ回路や三相ブリッジ回路でアシスト用モータをドライブする構成となっている。パワー素子は、ハンドル操舵時に大電流が流れるので発熱する。過度な発熱によって制御系に故障が発生することを防止するため、パワー素子を実装する回路基板の特定位置の温度をサーミスタ等の温度センサで検出し、該検出結果に応じて作動する過熱保護機能を設けている。
回路基板上において、温度センサとパワー素子とは、構造や配置の都合で位置的に近くできない場合が多く、位置が離れているがゆえに、温度伝達遅れが生じる。温度伝達遅れが大きい場合、パワー素子の温度上昇が急激に生じたとき過熱保護機能の作動が間に合わず、熱故障の発生を防げない可能性がでてくる。また、パワー素子の実際温度と、温度センサの検出温度には、差(温度検出値オフセット)がある。したがって、こうした温度伝達遅れや温度検出値オフセットを勘案して過熱保護を行なうことが必要であるが、実際問題として、温度伝達遅れや温度検出値オフセットを正確に算出することは難しいので、予測される誤差分をマージンとして過熱保護機能の作動温度に繰り込み、早めに過熱保護を行なうようにしている。
このマージンをできるだけ小さくし、過熱保護機能の作動開始温度を高くすることができれば、頻度多くハンドル操作を行なっても過熱保護機能が作動しにくくなり、常に十分なアシスト力を得られる高性能の電動パワーステアリング装置を実現できる。そのためには、パワー素子と温度センサとの間の温度伝達遅れ並びに温度検出値オフセットを小さくすることが重要である。たとえば、下記特許文献1には、パワー素子と温度センサとの両者に接する導体パターンを回路基板に設けることで、パワー素子と温度センサとの間の温度伝達遅れ並びに温度検出値オフセット小さくする技術が開示されている。
特開平10−48057号公報
しかしながら、上記技術では回路に無関係な導体パターンを設ける必要性があるのでスペースの無駄が多く、モータ制御装置の小型化の流れにも逆行する。また、面実装式の温度センサにも適用できるか否か等、汎用性の面でも依然として不十分である。したがって、上記技術と同等あるいはそれ以上に、温度伝達遅れ並びに温度検出値オフセットを解消できる他の技術が望まれている。
上記事情に鑑み、本発明の課題は、温度伝達遅れ並びに温度検出値オフセットを少ないものとし、過熱保護機能の確実性を向上させたモータ制御装置を提供することにある。
課題を解決するための手段および発明の効果
上記課題を解決するために本発明の第一は、モータへの通電を制御するパワー素子が回路基板に実装され、その回路基板を介してパワー素子と熱結合するように、当該回路基板に温度センサが実装されており、温度センサの検出温度に応じて過熱保護機能を作動するように構成されたモータ制御装置において、パワー素子を含む回路の配線パターンが回路基板の基板要素として設けられ、この配線パターンがパワー素子から温度センサへの熱伝導経路に兼用されていることを主要な特徴とする。
上記本発明のモータ制御装置は、熱が原因で制御系が故障することを防止するための過熱保護機能を備えたものである。温度センサとパワー素子との熱伝達経路として、熱伝導性の良好な配線パターンを用いている。そのため、温度伝達遅れ並びに温度検出値オフセットを小さくすることができる。これにより、過熱保護機能の作動開始設定温度のマージンを小さくでき、ひいては過熱保護機能の確実性を向上させることができる。また、回路の配線パターン自体を熱伝導経路に兼用しているので、回路に無関係な導体パターンを熱伝導経路として設ける場合に比べて、回路設計の面で有利である。
具体的には、Hブリッジ回路または三相ブリッジ回路の上相または下相を構成するトランジスタであるパワー素子同士を接続する配線パターンを、熱伝導経路に兼用することが好適である。これによれば、各パワー素子に個別に温度センサを設ける必要が無い。たとえば、Hブリッジ回路であれば、上相または下相に温度センサを設ければ足りることになり、部品点数の増大を抑制するという観点でも好ましい。
より好適には、温度が高くなりやすいドレイン端子同士を接続する配線パターンを熱伝導経路として用いることができる。また、上相と下相とに個別に対応して温度センサを設けてもよい。その場合は、いっそう高精度にて温度検出を行なうことが可能になる。
また、一つの好適な態様において、上記した回路基板は、誘電体層と導体層とを交互に積層させた構造を有する。熱伝導経路としての配線パターンは、基板内部の導体層を構成する基板要素として設けられる。さらに、回路基板には、配線パターンが設けられている一の導体層とは別の導体層に、温度センサを実装するためランドが配線パターンと基板厚さ方向において重なりを有する配置にて設けられる。熱伝導経路としての配線パターンと、温度センサ実装用のランドとの間には、誘電体層が介在することとなる。しかしながら、通常のプリント回路基板における一層分の誘電体層の厚さは大したことない(たとえば300μm程度)。そうだとすれば、配線パターンとランドとの熱結合を考慮すると、それらが基板厚さ方向で重なりを有するのがよい。また、熱伝導経路としての配線パターンは、基板の内層に設けられるので、基板表面に露出する場合に比して冷却されにくい。つまり、基板の内層の配線パターンを積極的に熱伝導経路として利用することは、温度検出値オフセットを減じることに資する。なお、一の導体層とは別の導体層とは、一つの誘電体層を介して隣接する導体層同士であることが望ましい。そうした場合に、熱伝導経路としての配線パターンと、温度センサ実装用のランドとを最も近づけることになり、熱結合性を高めることに直結するからである。
ただし、熱伝導経路としての配線パターンを、温度センサ実装用のランドと同じ導体層に設けることも可能である。すなわち、上記した回路基板には、配線パターンの一部を切り欠いて形成される切欠領域において、その配線パターンに囲われるように温度センサを実装するためのランドを設けることができる。このようにすると、配線パターンからランドに対して複数方向から熱が伝導する作用を得ることができ、温度伝達遅れ並びに温度検出値オフセットを小さくする効果を高めることができる。
さらに、上記各態様を組み合わせることもできる。すなわち、他の一つの好適な態様において、上記した回路基板は、誘電体層と導体層とを交互に積層させた構造を有し、配線パターンは基板内部の導体層を構成する基板要素として設けられた第一配線パターンと、温度センサの実装面に設けられた第二配線パターンとを含んで構成され、さらに、上記回路基板には、温度センサを実装するための基板要素であるランドが、第一配線パターンと基板厚さ方向において重なりを有し、且つ第二配線パターンの一部を切り欠いて形成される切欠領域に、その第二配線パターンに囲われる配置にて設けられている。この構成によれば、(1)温度センサ実装用ランドと、熱伝達経路としての配線パターンとが、基板厚さ方向において重なりを有する構成の効果と、(2)温度センサ実装用ランドが、熱伝達経路としての配線パターンに囲われる構成の効果、との相乗効果を見込める。
なお、温度センサとしては、面実装式のものを採用することが望ましい。この場合、温度センサ実装用のランド(半田ランド)は、該温度センサの端子面よりも大面積に形成するとよい。そして、ランドの外周の一部から延びるように温度センサの信号取出用の配線パターンを設けることとなる。つまり、温度センサ実装用のランドは、熱容量を適度に大きくして受熱が促進されるようにしつつ、該ランドとA/D変換回路等を接続する配線パターンは、放熱を抑制するために細くする。
他の局面において、課題を解決するために本発明の第二は、モータへの通電を制御するパワー素子が回路基板に実装され、回路基板を介してパワー素子と熱結合するように、当該回路基板に温度センサが面実装されており、温度センサの検出温度に応じて過熱保護機能を作動するように構成されたモータ制御装置において、パワー素子を含む回路の配線パターンと、温度センサを含む回路の配線パターンとが回路基板の基板要素として設けられ、これら両配線パターンがパワー素子から温度センサへの熱伝導経路に兼用されていることを主要な特徴とする。温度センサを含む回路の配線パターンの具体例は、該温度センサを面実装するためのランドを示せる。その他の部分は、前述した発明と同じである。
以下、添付の図面を参照しつつ本発明の実施形態について説明する。
図1は、電動パワーステアリング装置1の構成図である。操舵ハンドル10が操舵軸12aに接続されている。また、この操舵軸12aの下端はトルクセンサ11に接続されており、ピニオンシャフト12bの上端がトルクセンサ11に接続されている。また、ピニオンシャフト12bの下端には、ピニオン(図示せず)が設けられ、このピニオンがステアリングギヤボックス16内においてラックバー18に噛合されている。更に、ラックバー18の両端には、それぞれタイロッド20の一端が接続されると共に各タイロッド20の他端にはナックルアーム22を介して操舵輪24が接続されている。また、ピニオンシャフト12bには電動モータ15が歯車(図示せず)を介して取り付けられていて、いわゆる、コラムタイプの電動パワーステアリング装置を構成している。
電動モータ15の取り付け位置は、図1の構成の他にラックバー18に同軸的に取り付けられるラックタイプ、あるいは電動モータ15がステアリングギヤボックス16に取り付けられ、操舵軸12aを回転させるピニオンタイプを用いてもよい。
トルクセンサ11は、運転者の操舵ハンドル10の動きを検出する操舵力検出手段に相当し、トーションバーおよびその軸線方向に離間して設置された一対のレゾルバ等の周知のトルク検出部から構成される。ハンドル軸12aが回転すると、トーションバーのねじれ量に応じたトルクが検出され、検出された情報は操舵制御部30に送られる。
操舵軸12aには、操舵ハンドル10の操舵角度を検出する操舵角センサ13が取り付けられている。操舵角センサ13は操舵角検出手段に相当し、ロータリエンコーダあるいはレゾルバ等の周知の角度検出部から構成される。検出された情報は操舵制御部30に送られる。
操舵制御部30は周知のCPU31、RAM32、ROM33、入出力インターフェースであるI/O34およびこれらの構成を接続するバスライン35が備えられている。CPU31は、ROM33およびRAM32に記憶されたプログラムおよびデータにより制御を行なう。ROM33は、プログラム格納領域33aとデータ記憶領域33bとを有している。プログラム格納領域33aには操舵制御プログラム33pが格納される。データ記憶領域33bには操舵制御プログラム33pの動作に必要なデータが格納されている。なお、操舵制御プログラム33pは、後述するモータ制御装置40の過熱保護機能を実現するプログラムを含むものである。
操舵制御部30においてCPU31がROM33に格納された操舵制御プログラムを実行することにより、トルクセンサ11で検出されたトルクおよび操舵角センサ13で検出された操舵角に対応した電動モータ15で発生させる駆動トルクを算出し、モータドライバ14を介して電動モータ15に、算出した駆動トルクを発生させるための電圧を印加する。なお、電動モータ15については、本発明の電動パワーステアリング装置1に使用可能であれば特に種類(DCモータ、ブラシレスモータ等)を問わない。
次に、図2に示すのは、図1の電動パワーステアリング装置1が備えるモータ制御装置40の制御ブロック図である。モータ制御装置40は、前述した操舵制御部30と、温度センサ17、PWM出力器14(モータドライバ14)および電流検出器8を備える。操舵制御部30の電流指令値演算部30aは、操舵軸12aに発生する操舵トルクを電気信号に変換した操舵トルク信号を受け、該操舵トルク信号から電流指令値を算出する。一方、モータ実電流が電流検出器8にて検出され、検出値が操舵制御部30にフィードバックされる。電圧指令値演算部30は、電流検出器8の電流検出値と、電流指令値演算部30aの電流指令値との差分から電圧指令値を決定する。得られた電圧指令値は、PWM出力器14によりPWM駆動の形でモータ印加電圧としてモータ15に加えられる。
図3に示すごとく、PWM出力器14の最終段は、トランジスタT1,T2,T3,T4を含むHブリッジ回路(三相ブリッジ回路でもよい)で構成されている。各トランジスタT1,T2,T3,T4は、電圧指令値に基づくPWM(パルス幅変調)デューティーでスイッチングされる。ここでモータ15に通電される電流は数十アンペアと大きいため、トランジスタT1,T2,T3,T4がかなりの発熱をする。各トランジスタT1,T2,T3,T4には、ヒートシンク52(図4参照)が取り付けられるが、このヒートシンク52は比較的小型に設定される。ハンドル非操舵時には、トランジスタT1,T2,T3,T4が発熱しないことや、制御装置全体の現実的なサイズを考慮しているからである。
ただし、ハンドル操舵が短時間に集中的に行なわれ、トランジスタT1,T2,T3,T4が急激に発熱した場合の当該モータ制御装置40の熱故障を防止するために、該トランジスタT1,T2,T3,T4を実装する回路基板50の温度検出を行ない、その検出結果に応じて過熱保護機能が作動するようにしている。本実施形態では、温度センサ17の検出温度と、トランジスタT1,T2,T3,T4の稼働率とに基づき、モータ15に供給する電流を制限する(アシスト力を制限する)制御を行なうようにしている。
図4に示すのは、トランジスタT1,T2,T3,T4および温度センサ17を実装した回路基板50の斜視図である。回路基板50は、図2のブロック図では表れていないが、モータ制御装置40を構成する一部品であるとともに、操舵制御部30としてのマイクロコンピュータ、温度センサ17、PWM出力器14のトランジスタT1,T2,T3,T4等の電子部品が実装される多層回路基板として構成され、各電子部品を相互に接続する配線パターンが基板要素として設けられる。
回路基板50に実装されたトランジスタT1,T2,T3,T4には、共通のヒートシンク52が取り付けられている。また、トランジスタT1とT2の間付近に設けられた配線パターン60,62に接続される形で、温度センサ17が面実装されている。すなわち、トランジスタT1,T2,T3,T4(特にT1,T2)と温度センサ17とは、回路基板50を介して熱結合する。温度センサ17の出力信号は、配線パターン60b,62bを介して操舵制御部30のA/Dに入力される。温度センサ17には、公知のサーミスタを用いることができる。
次に、図5に示すのは、図4の回路基板50の上面図である。図5中の破線は、直接見えない部分を表しており、基板厚さ方向の位置関係の理解に役立つ。トランジスタT1,T2に付された符号G、D、Sは、それぞれゲート、ドレイン、ソースを意味する。トランジスタT1とT2のドレイン端子同士は、内層の配線パターン54によって接続されている。この配線パターン54を介して、トランジスタT1,T2の熱が温度センサ17に伝達する。すなわち、図3のHブリッジ回路の一部をなす配線パターン54は、トランジスタT1,T2から温度センサ17への熱伝導経路に兼用されている。
図6に図4の回路基板50の部分断面図を示す。図6に示すごとく、回路基板50は、誘電体層V1,V2と導体層M1、M2とを交互に積層させた構造を有する。トランジスタT1,T2から温度センサ17への熱伝導経路に兼用された配線パターン54は、基板内部の導体層M1を構成する基板要素として設けられている。そして、誘電体層V2を挟んで一層上の導体層M2に、温度センサ17を実装するためのランド60a,62a(半田ランド)が設けられている。そして、このランド60a,62aと配線パターン54とが、基板厚さ方向において重なりを有する構成となっている。すなわち、基板厚さ方向の熱結合が生じやすい配置となっている。
上記構成により、図7に示すごとく、発熱部であるトランジスタT1,T2から温度センサ17への温度伝達遅れを、従来に比して小さくできる。また、上下に誘電体層V1,V2が配置されることから、配線パターン54の温度保持性に優れ、トランジスタT1,T2の実際温度と、温度センサ17の検出温度との差(温度検出値オフセット)を小さくすることができる。この結果、温度伝達遅れや温度検出値オフセットに基づくマージンを小さく設計することが可能になり、過熱保護機能を作動するべきタイミングの適正化を図ることができる。なお、図7は横軸が時間の経過、縦軸が温度を示している。
図5に戻って説明する。本実施形態において、熱伝達経路としての配線パターン54は、トランジスタT1,T2のドレイン端子同士を接続する配線パターン54としている。ドレイン端子は、トランジスタT1,T2の熱が最も伝わりやすい部品の一つだからである。また、ドレイン端子同士を接続する配線パターン54は、もともと太く形成されるので熱伝導が良い。したがって、熱伝導経路として利用するのに好適である。一般的なMOSFETはチップの下面がドレイン電極になっており、この電極は外部へのドレイン端子と一体になったリードフレームに直接半田付けされるので、ドレイン端子温度はチップ温度を他の端子に比べて正確に示しやすい。
なお、本実施形態では、Hブリッジ回路の上相をなすトランジスタT1,T2の端子(ドレイン)同士を接続する配線パターン54を熱伝達経路として利用しているが、これに代えて又はこれとともにHブリッジ回路の下相をなすトランジスタT3,T4の端子(ソース)同士を接続する配線パターンを熱伝達経路として利用することも可能である。
また、図5および図6から分かるように、温度センサ17を面実装するためのランド60a,62aは、温度センサ17の端子面17p,17qよりも大面積とされる。こうすることにより、真下の配線パターン54から高効率で受熱する。また、ランド60a,62aの外周の一部から細い配線パターン60b,62bが延びている。これらの配線パターン60b,62bは、放熱を抑制するためにランド60a,62aよりも幅が狭いものとする。
また、図5に示すごとく基板厚さ方向において、温度センサ17およびランド60a,62aの全部が配線パターン54の外周縁よりも内側に位置するように構成することができる。また、センサ信号取出用の配線パターン60b,62bについては、ランド60a,62aとの接続するための一端部のみが配線パターン54と重なるようにすることができる。これにより、センサ信号取出用の配線パターン60b,62bからの放熱を効果的に抑制できる。具体的には、ランド60a,62aに接続された信号取出用の配線パターン60b,62bの熱容量が、温度センサ17の使用温度範囲で、ランド60a,62aの熱容量と、温度センサ17の熱容量との和の1/2以下となるように調整する。このようにすれば、温度センサ17およびランド60a,62aで構成される検出部からの放熱誤差を確実に抑制することが可能になる。なお、信号取出用の配線パターン60b,62bの熱容量が、ランド60a,62aの熱容量の1/2以下となるように、ランド60a,62aの大きさ、信号取出用の配線パターン60b,62bの線幅を調整すると、より好適である。また、配線パターン60b,62bは、A/D変換回路を含むマイコン(操舵制御部)等の実装ランドに至るまでの配線をいう。
(第二実施例)
図8に他の一つの実施形態を示す。図8では、これまで説明した実施形態と異なる部分のみ(図5に対応する部分)を示している。この実施形態は、トランジスタT1,T2を含む回路の配線パターン58を、温度センサ17への熱伝導経路に兼用する点で、これまで説明した実施形態と共通する。相違する点は、温度センサ実装用のランド60a,62aと同一の導体層に、Hブリッジ回路の配線パターン58を配している点である。
具体的には、配線パターン58の一部を凹状に切り欠いて形成される切欠領域KAにおいて、その配線パターン58に囲われるように温度センサ17を実装するためのランド60a,62aが設けられる。本実施形態では、前述した実施形態も含めて、ランド60a,62aを方形状に形成しているので、切欠領域KAもそれに合わせて方形状に切り欠いたものとなっている。こうした構成によれば、配線パターン58とランド60a,62aとの距離を、非常に近接させることができるので、基板面内方向の熱結合性が高まり、図5の実施形態同様の効果を達成することができるようになる。なお、図8の実施形態は、場合によっては導体層が一層のみの回路基板にも採用できる利点がある。
(第三実施例)
図9に他の一つの実施形態を示す。図9の実施形態は、簡単に言えば図5の実施形態と図8の実施形態とを合体させたものである。回路基板は、多層のものを使用することとなる。熱伝導経路として利用する配線パターンは、基板の内層に設けられた第一配線パターン54’と、温度センサ17の実装面に設けられた第二配線パターン58’である。温度センサ17を実装するためのランド60a,62aは、第一配線パターン54’と基板厚さ方向において重なりを有し、且つ第二配線パターン58’の一部を切り欠いて形成される切欠領域KAにおいて、第二配線パターン58’に包囲される形となっている。こうした構成によれば、トランジスタT1,T2,T3,T4から温度センサ17への伝熱効率がいっそう高まり、更なる温度検出精度の向上を見込める。
なお、これら配線パターン54’,58’のいずれもがブリッジ回路の上相に属するものでなければならない理由はない。たとえば、第一配線パターン54’がブリッジ回路の上相を形成し、第二配線パターン58’が同じくブリッジ回路の下相を形成する場合を考え得る(逆も可)。
(第四実施例)
これまでの実施形態では温度センサ17を1個のみ設けたモータ制御装置40を説明したが、場合によっては温度センサ17を2個以上設けてもよい。その実施形態を図10に示す。図10の実施形態では、トランジスタT1,T2,T3,T4の配置が、図4の場合とは異なっている。トランジスタT1,T2がHブリッジ回路の上相、トランジスタT3,T4がHブリッジ回路の下相とすることができる。すなわち、Hブリッジ回路の上相の配線パターンと、下相の配線パターンとのそれぞれに、温度センサ17を個別に設けたのが図10の実施形態である。
たとえば、三相ブリッジ回路になると温度分布のバラツキが大きくなってくると予測される。その場合には、複数個の温度センサ17にて回路基板50の複数箇所の温度検出を行ない、最も高い検出温度に基づいて過熱保護機能の作動/非作動を決定するといった制御を行なうことが可能になる。
電動パワーステアリング装置の全体構成を示すブロック図。 電動パワーステアリング装置の制御ブロック図。 熱伝導経路として利用される部分を明記したHブリッジ回路図。 トランジスタおよび温度センサを実装した回路基板の斜視図。 図4の回路基板の上面図。 図4の回路基板の断面図。 本発明の効果を説明する図。 第二実施例を説明する模式図。 第三実施例を説明する模式図。 第四実施例を示す回路基板の斜視図。
符号の説明
1 電動パワーステアリング装置
14 PWM出力器
15 電動モータ
17 温度センサ
40,40’ モータ制御装置
50 回路基板
54,58,54’,58’ 配線パターン
60,62 配線パターン(センサ信号取出用)
60a,62a ランド
T1,T2,T3,T4 トランジスタ
V1,V2 誘電体層
M1,M2 導体層

Claims (8)

  1. モータへの通電を制御するためのパワー素子が回路基板に実装され、その回路基板を介して前記パワー素子と熱結合するように、当該回路基板に温度センサが実装されており、前記温度センサの検出温度に応じて過熱保護機能を作動するように構成されたモータ制御装置において、前記パワー素子を含む回路の配線パターンが前記回路基板の基板要素として設けられ、この配線パターンが前記パワー素子から前記温度センサへの熱伝導経路に兼用されていることを特徴とするモータ制御装置。
  2. 熱伝導経路に兼用された前記配線パターンは、Hブリッジ回路または三相ブリッジ回路の上相と下相との少なくとも一方を構成するトランジスタである前記パワー素子同士を接続するものである請求項1記載のモータ制御装置。
  3. 前記回路基板は、誘電体層と導体層とを交互に積層させた構造を有し、前記配線パターンは基板内部の前記導体層を構成する基板要素として設けられ、
    さらに、前記回路基板には、前記配線パターンが設けられている一の前記導体層とは別の前記導体層に、前記温度センサを実装するためランドが前記配線パターンと基板厚さ方向において重なりを有する配置にて設けられている請求項1または2記載のモータ制御装置。
  4. 前記配線パターンの一部を切り欠いて形成される切欠領域において、その配線パターンに囲われるように前記温度センサを実装するためのランドが設けられている請求項1または2記載のモータ制御装置。
  5. 前記回路基板は、誘電体層と導体層とを交互に積層させた構造を有し、
    前記配線パターンは基板内部の前記導体層を構成する基板要素として設けられた第一配線パターンと、前記温度センサの実装面に設けられた第二配線パターンとを含んで構成され、
    さらに、前記回路基板には、前記温度センサを実装するための基板要素であるランドが、前記第一配線パターンと基板厚さ方向において重なりを有し、且つ前記第二配線パターンの一部を切り欠いて形成される切欠領域に、その第二配線パターンに囲われる配置にて設けられている請求項1または2記載のモータ制御装置。
  6. 前記温度センサが面実装式とされ、前記ランドは前記温度センサの端子面よりも大面積に形成される一方、該ランドの外周の一部から延びるように前記温度センサの信号取出用の配線パターンが前記回路基板に設けられている請求項1ないし5のいずれか1項に記載のモータ制御装置。
  7. 前記ランドに接続された前記信号取出用の配線パターンの熱容量が、前記ランドの熱容量と前記温度センサの熱容量との和の1/2以下となるように調整されている請求項6記載のモータ制御装置。
  8. モータへの通電を制御するパワー素子が回路基板に実装され、その回路基板を介して前記パワー素子と熱結合するように、当該回路基板に温度センサが面実装されており、前記温度センサの検出温度に応じて過熱保護機能を作動するように構成されたモータ制御装置において、前記パワー素子を含む回路の配線パターンと、前記温度センサを含む回路の配線パターンとが前記回路基板の基板要素として設けられ、これら両配線パターンが前記パワー素子から前記温度センサへの熱伝導経路に兼用されていることを特徴とするモータ制御装置。
JP2004090457A 2004-03-25 2004-03-25 モータ制御装置 Pending JP2005278344A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004090457A JP2005278344A (ja) 2004-03-25 2004-03-25 モータ制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004090457A JP2005278344A (ja) 2004-03-25 2004-03-25 モータ制御装置

Publications (1)

Publication Number Publication Date
JP2005278344A true JP2005278344A (ja) 2005-10-06

Family

ID=35177418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004090457A Pending JP2005278344A (ja) 2004-03-25 2004-03-25 モータ制御装置

Country Status (1)

Country Link
JP (1) JP2005278344A (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009099026A1 (ja) 2008-02-07 2009-08-13 Jtekt Corporation モータ制御装置及びこれを備える車両用操舵装置
JP2010185688A (ja) * 2009-02-10 2010-08-26 Yazaki Corp 温度検出用回路体
JP2010195219A (ja) * 2009-02-25 2010-09-09 Nsk Ltd 電動パワーステアリング装置
JP2011185701A (ja) * 2010-03-08 2011-09-22 Nec Corp 温度検出素子の実装構造
JP2014146545A (ja) * 2013-01-30 2014-08-14 Mitsubishi Electric Corp プリント基板実装端子台
JP2015108543A (ja) * 2013-12-04 2015-06-11 株式会社デンソー 温度検出装置
WO2016190292A1 (ja) * 2015-05-25 2016-12-01 日本電気株式会社 蓄電装置
JP2017163774A (ja) * 2016-03-11 2017-09-14 日本精工株式会社 モータ制御装置及びそれを搭載した電動パワーステアリング装置
US9875950B2 (en) 2014-03-04 2018-01-23 Rohm Co., Ltd. Semiconductor device
JP2019057658A (ja) * 2017-09-22 2019-04-11 ダイヤモンド電機株式会社 電源基板
WO2019189645A1 (ja) * 2018-03-30 2019-10-03 日本電産エレシス株式会社 電動パワーステアリング用の電子制御ユニット
WO2023195311A1 (ja) * 2022-04-08 2023-10-12 三菱重工サーマルシステムズ株式会社 基板構造及びこれを備えた電動圧縮機

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0763619A (ja) * 1993-08-31 1995-03-10 Toshiba Lighting & Technol Corp 温度検出装置、電力制御装置および電気機器
JPH08292202A (ja) * 1995-04-25 1996-11-05 Ricoh Seiki Co Ltd 検出装置
JPH09175145A (ja) * 1995-12-26 1997-07-08 Toyota Motor Corp 駆動装置
JPH1048057A (ja) * 1996-08-07 1998-02-20 R B Controls Kk 温度センサの実装構造
JP2000208888A (ja) * 1999-01-11 2000-07-28 Denso Corp プリント基板の実装構造
JP2001309690A (ja) * 2000-04-19 2001-11-02 Denso Corp 電気負荷の駆動装置
JP2002141622A (ja) * 2000-11-01 2002-05-17 Mitsubishi Electric Corp 電子回路基板
JP2003303702A (ja) * 2002-04-08 2003-10-24 Murata Mfg Co Ltd 温度検出素子およびこれを備える回路基板

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0763619A (ja) * 1993-08-31 1995-03-10 Toshiba Lighting & Technol Corp 温度検出装置、電力制御装置および電気機器
JPH08292202A (ja) * 1995-04-25 1996-11-05 Ricoh Seiki Co Ltd 検出装置
JPH09175145A (ja) * 1995-12-26 1997-07-08 Toyota Motor Corp 駆動装置
JPH1048057A (ja) * 1996-08-07 1998-02-20 R B Controls Kk 温度センサの実装構造
JP2000208888A (ja) * 1999-01-11 2000-07-28 Denso Corp プリント基板の実装構造
JP2001309690A (ja) * 2000-04-19 2001-11-02 Denso Corp 電気負荷の駆動装置
JP2002141622A (ja) * 2000-11-01 2002-05-17 Mitsubishi Electric Corp 電子回路基板
JP2003303702A (ja) * 2002-04-08 2003-10-24 Murata Mfg Co Ltd 温度検出素子およびこれを備える回路基板

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009099026A1 (ja) 2008-02-07 2009-08-13 Jtekt Corporation モータ制御装置及びこれを備える車両用操舵装置
US8681506B2 (en) 2008-02-07 2014-03-25 Jtekt Corporation Motor control device and vehicle steering system
JP2010185688A (ja) * 2009-02-10 2010-08-26 Yazaki Corp 温度検出用回路体
US8801283B2 (en) 2009-02-10 2014-08-12 Yazaki Corporation Electric circuit body for measuring temperature
JP2010195219A (ja) * 2009-02-25 2010-09-09 Nsk Ltd 電動パワーステアリング装置
JP2011185701A (ja) * 2010-03-08 2011-09-22 Nec Corp 温度検出素子の実装構造
JP2014146545A (ja) * 2013-01-30 2014-08-14 Mitsubishi Electric Corp プリント基板実装端子台
JP2015108543A (ja) * 2013-12-04 2015-06-11 株式会社デンソー 温度検出装置
US9875950B2 (en) 2014-03-04 2018-01-23 Rohm Co., Ltd. Semiconductor device
WO2016190292A1 (ja) * 2015-05-25 2016-12-01 日本電気株式会社 蓄電装置
JPWO2016190292A1 (ja) * 2015-05-25 2018-03-15 日本電気株式会社 蓄電装置
GB2566124A (en) * 2015-05-25 2019-03-06 Nec Corp Power storage device
US10797491B2 (en) 2015-05-25 2020-10-06 Nec Corporation Power storage device
GB2566124B (en) * 2015-05-25 2022-02-23 Nec Corp Power storage device
JP2017163774A (ja) * 2016-03-11 2017-09-14 日本精工株式会社 モータ制御装置及びそれを搭載した電動パワーステアリング装置
JP2019057658A (ja) * 2017-09-22 2019-04-11 ダイヤモンド電機株式会社 電源基板
WO2019189645A1 (ja) * 2018-03-30 2019-10-03 日本電産エレシス株式会社 電動パワーステアリング用の電子制御ユニット
CN111903198A (zh) * 2018-03-30 2020-11-06 日本电产艾莱希斯株式会社 电动助力转向用的电子控制单元
JPWO2019189645A1 (ja) * 2018-03-30 2021-04-22 日本電産エレシス株式会社 電動パワーステアリング用の電子制御ユニット
CN113873749A (zh) * 2018-03-30 2021-12-31 日本电产艾莱希斯株式会社 电动助力转向用的电子控制单元
WO2023195311A1 (ja) * 2022-04-08 2023-10-12 三菱重工サーマルシステムズ株式会社 基板構造及びこれを備えた電動圧縮機

Similar Documents

Publication Publication Date Title
JP6680054B2 (ja) 駆動装置、および、これを用いた電動パワーステアリング装置
JP5444619B2 (ja) 多層回路基板およびモータ駆動回路基板
JP2015193371A (ja) 電動パワーステアリング用電子制御装置
JP2013103535A (ja) 電動パワーステアリング用電子制御ユニット
JP6658858B2 (ja) 電子部品搭載用放熱基板
JP5375874B2 (ja) モータ駆動装置
CN112039408B (zh) 电力转换装置
US8520394B2 (en) Control device
US10800444B2 (en) Electric driving device and electric power steering device
JP5397417B2 (ja) 半導体装置、および、それを用いた駆動装置
JP2005278344A (ja) モータ制御装置
CN107004647A (zh) 电子部件搭载用散热基板
JP2018061363A (ja) モータ駆動装置、モータシステム及び電動パワーステアリング装置
JP6337986B2 (ja) パワー半導体モジュール及びこれを用いた電動パワーステアリング装置。
WO2019189645A1 (ja) 電動パワーステアリング用の電子制御ユニット
JP2013103534A (ja) 電動パワーステアリング用電子制御ユニット
CN110654452A (zh) 电路板、电动动力转向用电子控制单元、电动动力转向装置
EP2635096B1 (en) Control unit for electric motor and vehicle steering system including the same
US9066429B2 (en) Control device and vehicle steering system including control device
JP2020188658A (ja) 駆動装置
JP5804869B2 (ja) 電動パワーステアリング装置のコントロールユニット
JP2009189186A (ja) モータ駆動回路基板
JP6683020B2 (ja) 電力変換装置、及び、これを用いた電動パワーステアリング装置
JP4320611B2 (ja) モータ駆動装置
KR100764176B1 (ko) 보조 방열판을 구비한 전자 제어 장치

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090406

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090728