JP2005269759A - サンプリング同期方式および時間管理方式 - Google Patents

サンプリング同期方式および時間管理方式 Download PDF

Info

Publication number
JP2005269759A
JP2005269759A JP2004077509A JP2004077509A JP2005269759A JP 2005269759 A JP2005269759 A JP 2005269759A JP 2004077509 A JP2004077509 A JP 2004077509A JP 2004077509 A JP2004077509 A JP 2004077509A JP 2005269759 A JP2005269759 A JP 2005269759A
Authority
JP
Japan
Prior art keywords
signal
time
master station
station
timing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004077509A
Other languages
English (en)
Inventor
Masaki Fukumura
政規 福村
Toshiyuki Okitsu
俊幸 興津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2004077509A priority Critical patent/JP2005269759A/ja
Publication of JP2005269759A publication Critical patent/JP2005269759A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Electric Clocks (AREA)

Abstract

【課題】複数の監視制御信号の有効活用および一括した時間管理を容易にする。また、複数の保護継電装置間のサンプリング同期を容易にする。
【解決手段】GPS受信機を有する1つの監視制御装置はマスター局11とし、他の監視制御装置は該マスター局とはバス接続またはスター接続の通信手段で接続されたスレーブ局121〜12Nとし、各装置間の時刻管理をGPSから受信する絶対時刻情報を利用した時間管理を行う。また、絶対時刻情報の補正をバイオレーションで行うことも含む。
また、マスター局がGPSに同期した系統の基本波周波数50Hz、60Hzを同期タイミング信号に使用することで、マスター局とスレーブ局のサンプリング同期を各信号を逓倍することで可能にすると共に、絶対時刻情報の補正をこの同期タイミング信号にバイオレーションをかけることによって実現する。
【選択図】 図1

Description

本発明は、電力系統や電力機器の電圧/電流を同時にサンプリングして系統や機器を保護するディジタル形保護継電システムや故障点標定システムなど、複数の計測信号を同期して取得するためのサンプリング同期方式、および電力系統や電力機器を監視制御するディジタル形監視制御システムなど、複数の監視制御信号を絶対時刻で管理するための時間管理方式に関する。
ディジタル形保護継電装置は、単機能型のものには距離継電装置、回線選択装置、母線保護継電装置、変圧器保護継電装置などがある。このような装置は、変電所の保護対象設備に設備される変圧器、送電線、母線など、保護対象系統または機器毎に設けられる。
また、電力系統線路や変電所等の全体を一括して保護する多機能型のディジタル形保護継電システムとして、多種多様の保護継電装置を広域に分散配置した総合保護継電システムや分散形保護継電システムがある。
これらディジタル形保護継電装置または保護継電システムにおいて、送配電線など遠隔した複数箇所の電流、電圧の計測信号をサンプリングで取得し、これらサンプリングデータを互いに他端の保護継電装置に伝送することで保護演算を行うものがある。例えば、図12に示す光PCM電流差動リレー等がある。
以上のようなディジタル形保護継電装置またはシステムでは、計測にはサンプリング同期を取る必要がある。このサンプリング同期において、線路の一か所の電流計測と電圧計測など、同じ箇所または近接した箇所の計測には、保護継電装置内で装置単位でのサンプリング同期を容易に得ることができる。しかし、上記の光PCM電流差動リレーなど、自端の計測信号と遠隔地からの計測信号との間には伝送遅れが介在する。このため、伝送遅れを補償できるサンプリング同期方式が種々提案されている。
例えば、図12構成の光PCM差動リレーの場合、図13に示すように、保護継電装置AとBとCがループ型光ファイバー伝送路で接続され、装置Aから装置B→装置C→装置B→装置Aのように、装置Cで折返したループ伝送路で同期信号を伝送する。そして、同期信号の送受信に対し、各装置A〜Cは伝送路での伝送遅れ時間の存在から、送信タイミングと受信タイミングの中間時刻をサンプリング同期点とすることで、各装置のサンプリングタイミングを一致させる。
他の同期方式として、図14に示すように、遠隔地の保護継電装置A,BがGPS(Global Positioning System:衛星測位システム)の人工衛星から発信される絶対時刻をそれぞれ受信し、この絶対時刻を基に計測信号のサンプリングを行うことでサンプリング同期を確立する方式がある(例えば、特許文献1参照)。
図15には装置A,Bのサンプリング回路例を示し、GPSシステムの受信機1で一定周期パルスを受信し、これをサンプリング同期回路2で逓倍することで50Hz/60Hzの同期信号を得、さらには600Hz/720Hzの同期信号を得、これらの同期信号をアナログ入力処理部3のサンプリング同期信号とし、電圧や電流信号をサンプリングする。
このGPSからの絶対時刻情報は1秒周期で発信され、保護継電装置では、図16に示すように、受信した絶対時刻パルスに同期したサンプリング同期信号を生成する。
次に、電力機器等のディジタル形監視制御システムは、各機器の状態、応動状態を監視するのに、絶対時刻で管理されたログが必要になり、その時の時間管理が必要となる。このための各種の状変情報(状態変化情報)に対して絶対時刻を付ける方式として、各装置内で時計機能を持ち、その時刻を定期的に中央からの補正指令により補正しておく方式のものがある。補正方式については、毎正時毎にパルスによってその正時に合わせる方法と、補正のための絶対時刻を伝送してもらい、それに合わせる方法等がある。
特開平11−191919号公報
(1)従来の保護継電装置単位でのサンプリング同期方式は、装置単位でサンプリング同期回路を構成するため、他の保護継電装置との間のサンプリング同期は非同期となる。従って、各装置間のサンプリング同期がとれないため、1つの瞬時データを複数の装置が有効活用することができない。これに加えて、変電所全体の保護を行うような総合保護システム等は、各保護継電装置毎または機能毎に計測装置を設けることから、そのハードウェア規模も大きくなる。
また、光PCM電流差動リレーは、複数の端子間で光伝送路を使用して同期を取り、同時サンプリングしたデータを共用で使用しているが、これらデータは光伝送路単位でクローズしたサンプリング同期システムであり、上記の方式と同様の問題が残る。同様に、変電所間をまたぐデータの共用利用するものとして、故障点標定システム(ロケータ)や系統安定化システム等があるが、これらシステムにも同様の問題がある。
本発明の目的は、多機能型のディジタル形保護継電システムや故障点標定システム等において、システム全体のサンプリング同期を確保及び集中管理でき、またサンプリング信号の性能を損なうことなく同じ系統や変電所全体のデータ、または、別の系統や変電所のデータを有効利用できるようにしたサンプリング同期方式を提供することにある。
(2)前記のように、ディジタル形監視制御システムは、絶対時刻で管理された時間ログが必要となるが、システム単位で個別に管理しようとすると、複数のシステムが1つのデータを有効活用することができないため、広範囲に亙る電力系統のそれぞれの電力用機器の応動が正しく評価できない等の問題がある。
本発明の他の目的は、ディジタル形監視制御システムなど、複数の監視制御信号の有効活用および一括した時間管理を容易にした時間管理方式を提供することにある。
本発明は、ディジタル形監制御システムにおける各装置間の時刻管理をGPSから受信する絶対時刻情報を利用した時間管理方式とすること、およびディジタル形保護継電システムにおける各装置間のサンプリング同期をGPSから受信する単位時間の周期信号を利用したサンプリング同期方式とするもので、以下の構成を特徴とする。
(1)複数の保護継電装置または手段を有し、前記各保護継電装置または手段がそれぞれ複数の計測信号をサンプリング同期で取得し、この複数のサンプリングデータを基にそれぞれ保護演算を行うためのサンプリング同期方式であって、
前記各保護継電装置または手段のうち、GPS受信機を有する1つの保護継電装置または手段はマスター局とし、他の保護継電装置または手段は該マスター局とはバス接続またはスター接続の通信手段で接続されたスレーブ局とし、
前記マスター局は、GPS受信機で受信する単位時間の周期信号を必要な周波数に逓倍して自局内のサンプリングパルスとすると共に、前記周期信号を前記スレーブ局に送信する手段を設け、
前記スレーブ局は、内部発振器のパルスでカウントするカウンタを前記マスター局から送信される前記単位時間の周期信号でリセットすることでマスター局と同期をとり、逓倍したタイミング信号を生成し、このタイミング信号を自局内のサンプリング同期信号とする手段を設けたことを特徴とする。
(2)複数の監視制御装置または手段を有し、前記各監視制御装置または手段がそれぞれ監視制御信号を絶対時刻で管理するための時間管理方式であって、
前記各監視制御装置または手段のうち、GPS受信機を有する1つの監視制御装置または手段はマスター局とし、他の監視制御装置または手段は該マスター局とはバス接続またはスター接続の通信手段で接続されたスレーブ局とし、
前記マスター局は、GPS受信機で受信する絶対時刻情報をメッセージシリアル信号として取り込み、該GPS受信機で受信する単位時間の周期信号のタイミングにより該メッセージシリアル信号を自局内の絶対時刻情報として時間管理すると共に、該絶対時刻情報を他のスレーブ局に一斉同報通信で分配する手段を設け、
前記各スレーブ局は、前記マスター局から一斉同報通信で分配された時刻情報を絶対時刻として時間管理する手段を設けたことを特徴とする。
(3)前記マスター局は、前記GPS受信機で単位時間の周期信号と絶対時刻情報を取得し、前記周期信号を分周して一定時間毎のタイミング信号を得、前記周期信号に前記タイミング信号でバイオレーションを掛けて単位時間周期のタイミングパルスを発生させて自局内のCPU処理部に割込みをかけ、この割り込みで一定時間でタイムアップするタイマを起動し、該CPU処理部が前記GPS受信機で受信した絶対時刻情報に一定時間を足して前記スレーブ局へ一斉同報通信をし、前記タイマのタイムアップで前記一定時間を足した絶対時刻情報をリアルタイム時計に書込む手段を設け、
前記スレーブ局は、前記バイオレーションのタイミングで自局内のCPU処理部に割込みをかけ、一定時間後にタイムアップするタイマを起動し、タイマのタイムアップ時に該CPU処理部が前回受信した絶対時刻情報をリアルタイム時計に書込み、前記マスター局からの一斉同報通信で該絶対時刻情報を取得する手段を設けたことを特徴とする。
(4)前記絶対時刻の管理は、年月日時分秒までの管理は一斉同報による前記メッセージシリアル信号とし、秒以下は前記単位時間の周期信号からカウンタ回路によって刻むことを特徴とする。
以上のとおり、本発明によれば、以下の効果がある。
(1)GPSの時刻データによる絶対時刻を使用することにより、変電所などの全体、または、広域に分散配置された装置で、絶対時刻のデータを取り扱うことが可能となる。絶対時刻が同一であることから、それぞれに発生した事象を同じ時系列で管理できる。
(2)GPSのハードウェア信号による同期方式を使用することにより、変電所などの全体、または、広域に分散配置された装置で、サンプリングのデータを取り扱うことが可能となる。サンプリング時刻が同一であることから、それぞれの位相演算が可能となる。例えば、母線保護継電装置のように、全てのフィーダの電流総和などの演算が可能となる。
1秒周期で同期をとる場合、マスター局から各スレーブ局に送るハードタイミング信号は1秒周期の同期タイミング信号のみで済むので、ハードで必要信号線は1本でよい。また、マスター局から50Hz等を送信する場合には各スレーブ局の逓倍周波数生成回路が簡単になる。また、この信号はGPSからの信号であり、同期の基準としてもっとも同期ずれが少ない信号であるので、同期ずれを最小限にできる。
(3)GPSによるサンプリング同期とその絶対時刻の関連付けを行うことにより、変電所などの全体、または、広域に分散配置された装置で、絶対時刻とサンプリングのデータを取り扱うことが可能となる。サンプリングと絶対時刻が同一であることから、それぞれの位相演算が可能となる。例えば、母線保護継電装置のように、全てのフィーダの電流総和などの演算が可能となる。
また、絶対時刻が同一であることから、それぞれに発生した事象を同じ時系列で管理できる。絶対時刻管理には、年月日時分秒までの管理と秒以下は、ハードウェアタイミングによって、同期した基本波(50Hzまたは60Hz)の12倍の600Hzまたは720Hz,96倍の4.8kHz,5.76kHzのサンプリング同期信号をカウントすれば、それ以下の精度で時間計測が可能である。
実施形態2の方法によれば、同期ずれが最小限にできる。また、ソフト処理がマスター局とスレーブ局が同時に認識できるタイミング信号によるため、同期ずれが少なくなる。
(4)詳細絶対時刻の管理は、年月日時分秒までの管理と、秒以下はハードウェアタイミングによって、カウンタによって刻み、秒以上はRTCにより刻むことにより、状態変化時の時間分解能の高精度化が可能である。
図1は、本発明における時間管理とサンプリング同期のためのシステム構成図であり、例えば変電所内の一か所に設けるGPS受信機が受信した時刻情報および1秒周期信号から変電所に設置される全ての計測データ処理装置(または同じ装置内の全ての機能)に対して一括した時間管理とサンプリング同期を取る。
図1において、GPS受信機を有する計測情報処理装置11をマスター局とし、このマスター局との通信で絶対時刻情報やサンプリング同期信号を受信する計測情報処理装置121〜12Nをスレーブ局とする。
図1の(a)は、マスター局とスレーブ局との間は、イーサネット(登録商標)などの伝送媒体でバス接続し、UDP(User Datafram Protocol)等でマスター局からスレーブ局に時刻情報の一斉同報通信を実施する通信システム構成とする場合である。また、図1の(b)は、マスター局とスレーブ局との間は、伝送媒体でスター接続する通信システム構成とする場合である。
マスター局は、例えば、図15のGPS受信機1とサンプリング同期回路2を備え、GPS受信機1が受信した一定周期の同期パルスをサンプリング同期回路2に入力して、必要な周波数に逓倍して、例えば、50Hzと600Hz、または、60Hzと720Hzの信号を得る。これらは、GPSの人工衛星から受信するパルスを元にしたもので異地点間においても同期している。
このサンプリング同期回路のタイミングは、図16のように、GPSで同期を取った一定周期のタイミング信号、同図では1秒周期で説明しているが、このGPSで同期を取った信号とサンプリング同期回路のDPLLを採用した自走タイミング回路で50Hz/60Hz、または、600Hz/720Hzのサンプリング同期信号を得る。
以下、サンプリング同期方式および時刻管理方式の実施形態を説明する。
(実施形態1)GPSの時刻データによる絶対時刻の同期方式
本実施形態は、GPSを利用した絶対時刻管理による各装置間の絶対時刻での補正方式である。
GPS受信機を備えたマスター局は、それ自体で、絶対時刻の管理と、ハードウェアによるタイミングの管理を行う。例えば、マスター局はGPS受信機とCPUとの間でシリアル通信(例えば、調歩同期伝送)により、絶対時刻情報として、年、月日、時分、秒を取得する。マスター局およびスレーブ局の絶対時刻管理が秒単位の管理であれば、これだけで十分であるが、電力向けの監視制御システムでは、ms(ミリ秒)単位までの分解能で絶対時刻管理が要求される場合がある。
このためのマスター局のブロック構成を図2に示す。GPS受信機21は絶対時刻情報を取得し、この絶対時刻情報を信号変換器22でメッセージシリアル信号fとして取り込み、メッセージを例えばRS232Cレベルの信号に変換して出力gを得る。一方、GPS受信機21から例えば1秒単位に発生する1Hzパルスaのタイミングにより割り込み処理部23がCPU24に割り込み信号bを発生して割込みを行い、そのとき、CPU24は信号変換器22からシリアル通信回線で絶対時刻情報を取得し、それを例えばイーサネット等の情報交換を行う通信システムに接続したスレーブ局にUDPプロトコル等で一斉同報通信で分配する。これにより、広域変電所内の通信システム内のスレーブ局が絶対時刻情報を取得可能とする。
上記のシリアル通信には、一般的には、非同期調歩同期通信、信号レベルではRS232Cレベルが使用されるので、信号変換器22は、例えば、TTL/RS232C変換回路で構成できる。
(実施形態2)GPSとH/W信号によるサンプリング同期方式
実施形態1のようなシリアル通信により絶対時刻情報をメッセージで取得できるが、サンプリング同期のようなハードウェアのサンプリング同期タイミングを得ることができない。本実施形態は、GPSシステムを利用して、ハードウェア的にサンプリング同期を取るものである。
GPS受信機からは、例えば1秒単位に発生するタイミング(図2の信号a)等があるが、1秒タイミング信号を使って同期させる方法を説明する。この信号は、GPS受信機からの直接の信号であり、この信号が絶対時刻と同期した信号であるため、この信号をマスター、スレーブ間の同期をとる信号にすることで、絶対時刻との同期ずれを最小限に防止できる効果が期待できる。
これには、マスター局は、GPS受信機を有し、このハードウェアタイミング信号の1秒周期信号を送信ドライバを介して、スレーブ局に伝送する。スレーブ局は、受信した1秒周期信号から、DPLLを行い、基本波周波数の50Hz,60Hz、サンプリング同期信号は基本波の12倍の600Hzまたは720Hz、または96倍の4.8kHzまたは5.76kHzを得る。
図3は、1秒単位に発生するタイミングによるサンプリング同期方式の主要部構成図である。
図3において、マスター局11は、GPS受信機21から取り出す1秒周期のパルスaをバッファ回路25で同期タイミング信号dとして取り出し、この信号を電気−光変換器(E/O)26で光信号hに変換してスレーブ局12に伝送する。または、RS422A,RS485等のドライバ27でドライブ信号iを得てスレーブ局12にメタル系で伝送する。
スレーブ局12は、マスター局11から伝送される光信号hを光−電気変換器28で電気信号jに変換する。または、マスター局11から伝送されるメタル系のドライブ信号iをレシーバ29で受信し、信号kを得る。マスター局とスレーブ局間が光信号であるかメタル信号であるかは、適用によって決定すればよい。例えば、変電所内装置間にまたがる場合は光信号、同一装置内であればメタル信号という適用となる。これら両信号を選択回路30で一方を選択し、選択した同期タイミング信号lに同期した基本同期信号n、サンプリング同期信号oをDPLL回路31で生成する。
このDPLL回路31は、例えばスレーブ局内に設ける発振器(図示省略)からのパルスをカウントする50Hzまたは、60Hzのカウンタを設け、このカウンタをGPSからの1秒周期の同期タイミング信号でリセットすることで同期を取る。また、この基本同期信号n(50Hz,60Hz)をもとにサンプリング同期信号o(600Hz,720Hz)等のサンプリング同期に必要な信号を1秒周期信号に同期して作成する。このことより、マスターからスレーブへのハードタイミング信号は、1秒周期の同期タイミング信号を送信するのみで済む。
なお、図3の場合はマスター局11から1秒周期の信号をスレーブ局12に伝送して同期させる方法を示すが、マスター局11が50Hzまたは60Hz信号を生成してスレーブ局12に伝送することで、多数のスレーブ局のDPLL31での50Hzまたは60Hz信号の生成を不要にすることができる。これには図3におけるバッファ25に代えて、1秒周期信号aのパルスを逓倍カウントする50Hzまたは60Hzのカウンタを設け、このカウンタをGPS受信機21からの1秒周期の同期タイミング信号でリセットする逓倍回路とすることで実現される。
また、1秒周期信号に限らず、GPS受信機21から1秒周期信号以上の高周波となる例えば10kHz信号を得、これをバッファ25に代えて1/200の分周回路とすることで、GPS信号に同期した50Hzを得ることができる。
(実施形態3)GPSによるサンプリング同期とその絶対時刻の関連付け
実施形態1では時刻データのマスタースレーブ間での同期方式、また、実施形態2ではマスター局でGPSからの1秒信号や50Hzまたは60Hzのタイミング信号を配信して、スレーブ局では、受信した1秒から同期した基本波50Hz,60Hzまたは受信した50Hz、60Hzから基本同期信号の12倍の600Hzまたは720Hz,または96倍の4.8kHz,5.76kHzのサンプリング信号を得るサンプリング同期方式とした。
実施形態2では、絶対時刻情報との関連を特に求めなくても、サンプリング同期には十分である。
実施形態3では、保護に必要なサンプリング同期と監視制御等に必要な絶対時刻を関連付ける。これにより、メッセージで管理できる秒単位の情報をハードウェアによるタイミング信号と関係させて利用することで、秒以下μs単位までも管理することを可能とする。
本実施形態では、実施形態1、実施形態2を合わせ、実施形態2のハードウェアタイミング回路で、絶対時刻の補正タイミングには、同期タイミング信号をバイオレーション(信号変換規則を意図的に逸脱させる)させることにより、受信側で、その逸脱したタイミングを検出させ、同期タイミングを伝達させる。このようにして、マスター局と、スレーブ局で、絶対時刻補正タイミングを共有し、しかも、ハードウェアで、秒以下のタイミングまで同期させられることから、マスター局と、スレーブ局でも秒以下の絶対時刻取得が可能となる。この例を図4で詳細に説明する
図4において、GPS受信機21から1秒周期に発生する同期タイミング信号を分周カウンタ回路32により1/600の同期信号を得る。例えば、時刻補正タイミングを10分周期とする場合、分周カウンタ回路32の出力には10分毎のタイミング信号cを得る。
タイミング重畳回路33では、1秒周期信号aに10分間毎のタイミング信号cでバイオレーションを掛け、10分毎のタイミングを重畳させる。バイオレーションの方法は、1秒の矩形波の正のパルスを発生させない処理を行う。
例えば、10分間の間には、1秒パルスは、60×10=600回あるが、595回までは、通常通りとし、最後の4回を休止させる。このバイオレーションは、本来、50%デューティ比の矩形波信号の正のパルス分をn回、この例では4回欠いた例である。1秒の矩形波信号に10分毎のタイミングを重畳させ、1回のバイオレーション同期タイミング信号を図5に示す。
このタイミングで、マスター局11は、CPU処理部24に割り込みをかける。次に、CPU処理部24は、信号変換器22からGPS受信機21の絶対時刻情報を読み出し、これに10分足してスレーブ局12へイーサネット経由で時刻補正データを送る。スレーブ局側およびマスター局側は、バイオレーションのタイミングでCPU処理部35、24に割り込みをかけ、前回もらった同期時刻データを、各局側に具備し、図4で図示しないRTC(リアルタイム時計)に書き込む。
1秒の矩形波信号に10分毎のタイミングを重畳させた同期タイミング信号eは、実施形態2と同様に、26または27によってスレーブ局12に伝送する。スレーブ局12側は、28〜30を経由してタイミング抽出回路34によってバイオレーション信号(4回の1秒パルス無し)を検出して次の1秒パルス信号に同期してCPU処理部35に割り込みを発生させ、CPU処理部35は、前回の時刻補正データをRTCにセツトする。
変電所内のスレーブ局には、光伝送方式、同一装置内であれば、メタル伝送という適用が考えられる。適用によって決定される光かメタルかの伝送方式によって定まる選択回路30を経て、タイミング抽出回路34で1秒の矩形波のバイオレーションの掛けられた正のパルスタイミングを検出し、重畳された10分毎のタイミングを得る。また、1秒の矩形波信号の立ち上がり状変で、位相比較をするDPLL回路31を経てスレーブ局内で必要とする50Hz/60Hz、基本波の12倍の600Hzまたは720Hz、更に必要であれば、96倍の4.8kHz,5.76kHzのサンプリング信号を得る。
マスター局とスレーブ局のCPU処理部の処理フローを図6に示す。マスター局は、図5の割り込みタイミングで前回送った時刻補正データをRTCにセットする。同期時間の10分毎は、マスター局とスレーブ局が絶対時刻を配信確認できる十分な時間である。例の10分以内にマスター局はGPS受信機より絶対時刻(年月日時分秒)を取得し、補正値を加えて(今の例では、10分)スレーブ局に一斉同報通信を行う。
スレーブ局は、図5の割り込みタイミングでマスター局と同じ時間に前回受け取った時刻補正データをRTCに書き込む。次の同期割り込みまでにマスターは、同期時刻をスレーブへ配信し、スレーブは、受け取る処理を行う。
以上により、マスター局とスレーブ局は同じ絶対時刻がRTCにセットされることになる。
図7は他の時刻補正方式を示す。図4に示す構成では、タイミング重畳回路33では、1秒周期信号aに10分間毎のタイミング信号cでバイオレーションを掛け、10分毎のタイミングを重畳させて時刻補正をする場合で示すが、図7では1kHz信号aに同期した50Hz(または60Hz)の同期タイミング信号に、1Hz信号aの分周による1時間毎のタイミングでバイオレーションをかける場合である。
図7が図4と異なる部分は、GPS受信機21から1秒周期に発生する同期タイミング信号aを分周回路42により1/3600にした1時間毎のタイミング信号cを得、これに並行してGPS受信機21から1Hz周期に発生する1秒周期信号aを同期回路37により50Hz(または60Hz)の矩形波信号dを得る。この場合、GPS受信機21から1秒単位に発生する同期タイミング信号aとこの発振回路はDPLLで同期している必要がある。
これにより、タイミング重畳回路33では、50Hz(または60Hz)の矩形波信号dに1時間毎のタイミング信号cでバイオレーションを掛け、1時間毎のタイミングを重畳させる。バイオレーションの仕方は、50Hz(または60Hz)の矩形波の正のパルスを発生させない処理を行う。
タイミング重畳回路33からの信号eは、スレーブ局12に伝送され、スレーブ局12ではタイミング抽出回路34によって50Hz(または60Hz)の矩形波のバイオレーションのかけられた正のパルスタイミングを検出し、重畳された1時間毎のタイミングを得る。図8に50Hz(または60Hz)の矩形波信号に1時間毎のタイミングを重畳させた同期タイミング信号を示す。
以後の処理は図4、図5、図6の場合と異なりハードウェアによって発生する割込みタイミングでRTCにセットしないで、一定時間後のソフトウェアタイマ割込みを利用してRTCをセットするものである。図9にマスター局とスレーブ局のCPU処理部の処理フローを示す。マスター局は、図8の割り込みタイミングで例えば1分後にソフトウェアタイマ割込みを行い、1分以内にマスター局はGPS受信機21より絶対時刻(年月日時分秒)を取得し、一定時間、この例では1分を足した時刻補正データとしてスレーブ局に一斉同報通信を行う。この1分は、マスター局とスレーブ局が絶対時刻を配信確認できる十分な時間であればよい。
スレーブ局は、図8の割り込みタイミングでマスター局と同じ時間にマスター局と同じ、例えば1分のソフトウェアタイマ割込みをセットする。マスター局は1分後のソフトウェアタイマ割込み処理で1分以内に送った時刻補正データをRTCにセットする。また、スレーブ局は1分以内にマスター局からの時刻補正データを一斉同報通信で取得し、マスター局と同じタイミングで時刻補正データ(絶対時刻に1分を足した時刻)をRTCにセットする。
以上により、マスター局とスレーブ局も同じ絶対時刻がセットされることになる。
(実施形態4)詳細絶対時刻メッセージの転送方式
前記のように、GPSを使用することにより、変電所等の全体、または、広域に分散配置された装置で、絶対時刻のデータを取り扱うことが可能となるが、実施形態1の場合は、マスター局のGPS受信機から年、月日、時分、秒が取得できるが、秒単位の管理ではメッセージ化できない。
実施形態4は、実施形態2で利用したGPS受信機のハードウェアタイミングを利用して、秒以下の管理も可能とするものである。
例えば、GPS受信機21からの10kHzのハードウェア信号があれば、16ビットカウンタを用意し、10kHzを10000(2710H,Hは16進数を示す)回カウントすることにより、0.1msの精度の時間管理を可能にする。
この例を図10で説明する。カウンタ回路36は、GPS受信機21から1Hz周期に発生するタイミングaでリセットされ、10kHz単位に発生するタイミングbでカウントする。カウンタラッチ回路39はカウンタ回路36のカウント値を一時保存する。
CPU処理部24は、状態変化検出などで絶対時刻が必要なときに、カウンタラッチ回路39から、リード信号rで秒以下の時間情報qを読み出し、メッセージ情報gから、絶対時刻情報として、年、月日、時分、秒を取得する。この方式により、マスター局は、0.1msから年までの絶対時刻情報を取得する。
その後、マスター局11は、イーサネットなどの伝送媒体を使用し、UDPプロトコル等で、スレーブ局12に時刻情報の一斉同報通信を実施する。
スレーブ局12は、マスター局からのタイミング信号に同期して発振するDPLL回路31から1Hzタイミングaと10kHzタイミングbを得、カウンタ回路40によるカウントとリセットでカウンタラッチ回路41にカウンタ回路40のカウント値を一時保存する。この場合のカウンタ回路40は、周期カウンタとなっており、10000(2710H)回カウントアップで、再び、0からカウントするカウンタであるとする。
CPU処理部35は、マスター局からの絶対時刻情報の一斉同報通信の受信で絶対時刻の年,月,日,時,分,秒を取得し、カウンタラッチ回路41から、リード信号rで秒以下の時間情報qを読み出し、マスター局と同期した0.1msから年までの絶対時刻情報を取得する。
図11は、マスター局とスレーブ局のCPU処理フローを示す。マスター局は、あらかじめ定めた一定時間毎、例えば1時間毎の毎時、カウンタ回路36と、GPS受信機から絶対時間を読み出し、各スレーブ局に一斉同報する。スレーブ局は、RTCを再設定する。
以上により、マスター局とスレーブ局も同じ絶対時刻と0.1msまでカウントしているカウンタ値がセットされることになる。状態変化発生時は、0.1msのカウンタ値とRTCから時間を読み出し、状態変化のメッセージ編集を行う。
これまでの手段は、マスター局の一斉同報によりスレーブ局へ絶対時間となる年、月日、時分、秒を送り、より高精度の1秒以下の時間はハードウェアカウンタによって刻むことで同期を取るものであった。この図10の例におけるマスター局の36は、実施形態2つまり図3、図4、図7のDPLL38であり、スレーブ局の40はDPLL31であるならば、マスター局とスレーブ局がハードウェアのサンプリング同期の精度でカウンタが同期をしており、μs単位まで時間管理が可能である。
本発明の実施形態を示すシステム構成図。 実施形態1におけるマスター局のブロック構成図。 実施形態2におけるサンプリング同期方式の主要部構成図。 実施形態3における絶対時刻の補正方式(10分毎の例)の主要部構成図。 実施形態3における同期タイミング信号(10分毎の例)を重畳させた波形図。 実施形態3におけるCPU処理部の処理フロー(10分毎の例)。 実施形態3における絶対時刻の補正方式(1時間の例)の主要部構成図。 実施形態3における同期タイミング信号(1時間の例)を重畳させた波形図。 実施形態3におけるCPU処理部の処理フロー(1時間の例)。 実施形態4におけるマスター局とスレーブ局のブロック構成図。 実施形態4におけるCPU処理部の処理フロー。 PCMリレーと伝送路接続形態。 同期タイミングの説明図。 GPSによるサンプリング同期の説明図。 サンプリング回路例。 サンプリングパルスの生成タイムチャート。
符号の説明
11…マスター局
121〜12N…スレーブ局
21…GPS受信機
22…信号変換器
23…割込み回路
24…CPU処理部
25…バッファ
26…電気−光変換器(E/O)
27…ドライバ
28…光−電気変換器(O/E)
29…レシーバ
30…選択回路
31…DPLL回路
32…分周カウンタ回路
33…タイミング重畳回路
34…タイミング抽出回路
35…CPU処理部
36、40…カウンタ回路
37…同期回路
38…DPLL回路
39、41…カウンタラッチ回路
42…分周回路
43…タイミング抽出回路

Claims (4)

  1. 複数の保護継電装置または手段を有し、前記各保護継電装置または手段がそれぞれ複数の計測信号をサンプリング同期で取得し、この複数のサンプリングデータを基にそれぞれ保護演算または標定演算等を行うためのサンプリング同期方式であって、
    前記各保護継電装置または手段のうち、GPS受信機を有する1つの保護継電装置または手段はマスター局とし、他の保護継電装置または手段は該マスター局とはバス接続またはスター接続の通信手段で接続されたスレーブ局とし、
    前記マスター局は、GPS受信機で受信する単位時間の周期信号を必要な周波数に逓倍して自局内のサンプリング同期信号とすると共に、前記周期信号を前記スレーブ局に送信する手段を設け、
    前記スレーブ局は、内部発振器の信号でカウントするカウンタを前記マスター局から送信される前記単位時間の周期信号でリセットすることでマスター局と同期をとり、逓倍したタイミング信号を生成し、このタイミング信号を自局内のサンプリング同期信号とする手段を設けたことを特徴とするサンプリング同期方式。
  2. 複数の監視制御装置または手段を有し、前記各監視制御装置または手段がそれぞれ監視制御信号を絶対時刻で管理するための時間管理方式であって、
    前記各監視制御装置または手段のうち、GPS受信機を有する1つの監視制御装置または手段はマスター局とし、他の監視制御装置または手段は該マスター局とはバス接続またはスター接続の通信手段で接続されたスレーブ局とし、
    前記マスター局は、GPS受信機で受信する絶対時刻情報をメッセージシリアル信号として取り込み、該GPS受信機で受信する単位時間の周期信号のタイミングにより該メッセージシリアル信号を自局内の絶対時刻情報として時間管理すると共に、該絶対時刻情報を他のスレーブ局に一斉同報通信で分配する手段を設け、
    前記各スレーブ局は、前記マスター局から一斉同報通信で分配された時刻情報を絶対時刻として時間管理する手段を設けたことを特徴とする時間管理方式。
  3. 前記マスター局は、前記GPS受信機で単位時間の周期信号と絶対時刻情報を取得し、前記周期信号を分周して一定時間毎のタイミング信号を得、前記周期信号に前記タイミング信号でバイオレーションを掛けて単位時間周期のタイミングパルスを発生させて自局内のCPU処理部に割込みをかけ、この割り込みで一定時間でタイムアップするタイマを起動し、該CPU処理部が前記GPS受信機で受信した絶対時刻情報に一定時間を足して前記スレーブ局へ一斉同報通信をし、前記タイマのタイムアップで前記一定時間を足した絶対時刻情報をリアルタイム時計に書込む手段を設け、
    前記スレーブ局は、前記バイオレーションのタイミングで自局内のCPU処理部に割込みをかけ、一定時間後にタイムアップするタイマを起動し、タイマのタイムアップ時に該CPU処理部が前回受信した絶対時刻情報をリアルタイム時計に書込み、前記マスター局からの一斉同報通信で該絶対時刻情報を取得する手段を設けたことを特徴とする請求項2に記載の時間管理方式。
  4. 前記絶対時刻の管理は、年月日時分秒までの管理は一斉同報による前記メッセージシリアル信号とし、秒以下は前記単位時間の周期信号からカウンタ回路によって刻むことを特徴とする請求項2または3に記載の時間管理方式。
JP2004077509A 2004-03-18 2004-03-18 サンプリング同期方式および時間管理方式 Pending JP2005269759A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004077509A JP2005269759A (ja) 2004-03-18 2004-03-18 サンプリング同期方式および時間管理方式

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004077509A JP2005269759A (ja) 2004-03-18 2004-03-18 サンプリング同期方式および時間管理方式

Publications (1)

Publication Number Publication Date
JP2005269759A true JP2005269759A (ja) 2005-09-29

Family

ID=35093712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004077509A Pending JP2005269759A (ja) 2004-03-18 2004-03-18 サンプリング同期方式および時間管理方式

Country Status (1)

Country Link
JP (1) JP2005269759A (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008098908A (ja) * 2006-10-11 2008-04-24 Mitsubishi Electric Corp フィールドネットワークシステム
CN101908988A (zh) * 2010-08-06 2010-12-08 北京交通大学 实时以太网***及其实现方法
JP2011019341A (ja) * 2009-07-09 2011-01-27 Toshiba Corp 電力系統遠方監視制御装置
WO2011096011A1 (ja) * 2010-02-03 2011-08-11 株式会社 日立製作所 ディジタル保護制御システムおよびディジタル保護制御装置
JP2011188572A (ja) * 2010-03-05 2011-09-22 Hitachi Ltd 保護継電装置、並びに電流差動保護継電装置
JP2012175846A (ja) * 2011-02-23 2012-09-10 Hitachi Ltd 伝送路を利用する保護継電装置
CN103308102A (zh) * 2013-06-14 2013-09-18 上海理工大学 一种涡轮流量传感器脉冲信号无线传输方法
CN105700337A (zh) * 2014-11-28 2016-06-22 奇点新源国际技术开发(北京)有限公司 应用于车载终端的时钟同步方法及装置
CN109669192A (zh) * 2019-02-25 2019-04-23 哈尔滨工程大学 水声试验中多站点距离和方位测量仪及测量方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6152107A (ja) * 1984-08-22 1986-03-14 株式会社日立製作所 保護リレ−システム
JPS61142918A (ja) * 1984-12-12 1986-06-30 株式会社日立製作所 保護リレ−システム
JP2000078740A (ja) * 1998-08-27 2000-03-14 Meidensha Corp ディジタル形保護継電システム
JP2001004764A (ja) * 1999-06-16 2001-01-12 Matsushita Electric Ind Co Ltd 時計装置
JP2001221874A (ja) * 2000-02-14 2001-08-17 Toshiba Corp 時刻同期方式
JP2001324584A (ja) * 2000-05-15 2001-11-22 Nec Eng Ltd 時刻同期装置、時刻同期システム及び時刻同期装置の制御方法
JP2002315233A (ja) * 2001-02-09 2002-10-25 Toshiba Corp 変電機器保護制御システム
JP2004072905A (ja) * 2002-08-06 2004-03-04 Toshiba Corp ディジタル形保護制御装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6152107A (ja) * 1984-08-22 1986-03-14 株式会社日立製作所 保護リレ−システム
JPS61142918A (ja) * 1984-12-12 1986-06-30 株式会社日立製作所 保護リレ−システム
JP2000078740A (ja) * 1998-08-27 2000-03-14 Meidensha Corp ディジタル形保護継電システム
JP2001004764A (ja) * 1999-06-16 2001-01-12 Matsushita Electric Ind Co Ltd 時計装置
JP2001221874A (ja) * 2000-02-14 2001-08-17 Toshiba Corp 時刻同期方式
JP2001324584A (ja) * 2000-05-15 2001-11-22 Nec Eng Ltd 時刻同期装置、時刻同期システム及び時刻同期装置の制御方法
JP2002315233A (ja) * 2001-02-09 2002-10-25 Toshiba Corp 変電機器保護制御システム
JP2004072905A (ja) * 2002-08-06 2004-03-04 Toshiba Corp ディジタル形保護制御装置

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008098908A (ja) * 2006-10-11 2008-04-24 Mitsubishi Electric Corp フィールドネットワークシステム
JP2011019341A (ja) * 2009-07-09 2011-01-27 Toshiba Corp 電力系統遠方監視制御装置
US9118173B2 (en) 2010-02-03 2015-08-25 Hitachi, Ltd. Digital Protection control system and digital protection control apparatus
WO2011096011A1 (ja) * 2010-02-03 2011-08-11 株式会社 日立製作所 ディジタル保護制御システムおよびディジタル保護制御装置
JP5488618B2 (ja) * 2010-02-03 2014-05-14 株式会社日立製作所 ディジタル保護制御システムおよびディジタル保護制御装置
JP2011188572A (ja) * 2010-03-05 2011-09-22 Hitachi Ltd 保護継電装置、並びに電流差動保護継電装置
CN101908988A (zh) * 2010-08-06 2010-12-08 北京交通大学 实时以太网***及其实现方法
JP2012175846A (ja) * 2011-02-23 2012-09-10 Hitachi Ltd 伝送路を利用する保護継電装置
CN103308102A (zh) * 2013-06-14 2013-09-18 上海理工大学 一种涡轮流量传感器脉冲信号无线传输方法
CN103308102B (zh) * 2013-06-14 2015-09-30 上海理工大学 一种涡轮流量传感器脉冲信号无线传输方法
CN105700337A (zh) * 2014-11-28 2016-06-22 奇点新源国际技术开发(北京)有限公司 应用于车载终端的时钟同步方法及装置
CN109669192A (zh) * 2019-02-25 2019-04-23 哈尔滨工程大学 水声试验中多站点距离和方位测量仪及测量方法
CN109669192B (zh) * 2019-02-25 2022-10-18 哈尔滨工程大学 水声试验中多站点距离及方位测量仪的使用方法

Similar Documents

Publication Publication Date Title
CN102577194B (zh) 使分布式网络内时钟同步的***和方法
US9590411B2 (en) Systems and methods for time synchronization of IEDs via radio link
Gergeleit et al. Implementing a distributed high-resolution real-time clock using the CAN-bus
US9838196B2 (en) Synchronization apparatus, synchronization system, radio communication apparatus and synchronization method
KR20010082067A (ko) 시각 동기방식
Behrendt et al. The perfect time: An examination of time-synchronization techniques
US20010023464A1 (en) Time synchronization of units in a system
KR20080101978A (ko) 무선 시각송수신시스템 및 무선 시각동기방법
CN110492965A (zh) 一种主从***内串行报文对时的方法和装置
JP2000172660A (ja) 分散型システム
Han et al. IEEE 1588 time synchronisation performance for IEC 61850 transmission substations
WO2012088931A1 (zh) 时间同步的监测方法和装置
JP2005269759A (ja) サンプリング同期方式および時間管理方式
CN102830612A (zh) 一种播出控制机高精度授时与守时***和方法
US7930460B2 (en) Universal measurement or protective device
JP3718977B2 (ja) サンプリング同期方式
RU172628U1 (ru) Сервер синхронизации времени
RU166018U1 (ru) Устройство для синхронизации часов
JP3538374B2 (ja) 時刻供給システム及び時刻供給装置
JP6823568B2 (ja) 時刻管理装置、基準時刻管理システム、および基準時刻管理方法
JP2004272403A (ja) プロセス入出力装置及びこれを用いた監視制御システム
JPH08137572A (ja) 分散処理プロセッサシステムにおける性能データ処理方法
US11360505B2 (en) Distributed network time synchronization
JP2013007684A (ja) 時刻精度測定装置および方法
JPH11223687A (ja) 複数計算機間の内部時計同期方式

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071018

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080304