JP2005263522A - Silicon particles, silicon powder and method for manufacturing silicon particles - Google Patents

Silicon particles, silicon powder and method for manufacturing silicon particles Download PDF

Info

Publication number
JP2005263522A
JP2005263522A JP2004075521A JP2004075521A JP2005263522A JP 2005263522 A JP2005263522 A JP 2005263522A JP 2004075521 A JP2004075521 A JP 2004075521A JP 2004075521 A JP2004075521 A JP 2004075521A JP 2005263522 A JP2005263522 A JP 2005263522A
Authority
JP
Japan
Prior art keywords
silicon
particles
powder
gas
silicon particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004075521A
Other languages
Japanese (ja)
Other versions
JP4791697B2 (en
Inventor
Iichi Sato
井一 佐藤
Hirosaku Kimura
啓作 木村
Taku Kawasaki
卓 川崎
Takuya Okada
拓也 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2004075521A priority Critical patent/JP4791697B2/en
Priority to US10/592,864 priority patent/US7850938B2/en
Priority to PCT/JP2005/002574 priority patent/WO2005090234A1/en
Priority to CN2005800082566A priority patent/CN1956920B/en
Publication of JP2005263522A publication Critical patent/JP2005263522A/en
Priority to US12/823,314 priority patent/US8221881B2/en
Application granted granted Critical
Publication of JP4791697B2 publication Critical patent/JP4791697B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide high purity silicon nanoparticles, on an industrial scale, having a practical use as a powdery starting material for a high performance light emitting element and electronic components. <P>SOLUTION: The silicon particles have a particle diameter of 1-50 nm and contain ≤10 ppm, in total, of Na, Fe, Al and Cl. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、ナノメートル(nm)サイズの高純度シリコン粒子及びその製造方法に関する。   The present invention relates to nanometer (nm) size high-purity silicon particles and a method for producing the same.

ナノメートルオーダーの粒径を有するシリコン粒子(以下、「シリコンナノ粒子」と言う。)は、バルクシリコンとは著しく異なる物理的、化学的性質を有するため、近年、新規機能性材料として大きな関心を集めている。例えば、シリコンナノ粒子は、量子論的閉じ込め効果や表面準位効果に基づく、バルクシリコンとは異なるバンド構造を有しており、バルクシリコンでは観測されない発光現象が認められるため、新規なシリコン発光デバイス用原料としての応用が期待されている。   Silicon particles having a particle size on the order of nanometers (hereinafter referred to as “silicon nanoparticles”) have physical and chemical properties that are significantly different from those of bulk silicon. Collecting. For example, silicon nanoparticles have a band structure different from bulk silicon based on quantum confinement effects and surface level effects, and light emission phenomena that are not observed in bulk silicon are observed. Application as a raw material is expected.

シリコンを微粉砕して得られる通常のシリコン微粉末は、バルクシリコンとほぼ一致する物理的、化学的性質を有している。これに対し、シリコンナノ粒子は、粒径が微細で粒度分布幅が比較的小さく、しかも高純度である。このため、バルクシリコンとは著しく異なる、発光現象等の特異な性質が発現すると考えられている。   Ordinary silicon fine powder obtained by finely pulverizing silicon has physical and chemical properties almost identical to bulk silicon. In contrast, silicon nanoparticles have a fine particle size, a relatively small particle size distribution width, and high purity. For this reason, it is thought that peculiar properties, such as a luminescence phenomenon, which are remarkably different from bulk silicon are expressed.

従来、シリコンナノ粒子の製造方法としては、例えば、(1)対向するシリコン電極間で発生させた第一の高温プラズマによって蒸発させたシリコンを、減圧雰囲気中において無電極放電で発生させた第二の高温プラズマ中に通過させる方法(特許文献1)、(2)電気化学的エッチングによって、シリコンウェハーからなる陽極からシリコンナノ粒子を分離・除去する方法(特許文献2)、(3)含ハロゲン有機シリコン化合物を、反応性電極を用いて電極還元する方法(特許文献3)等が用いられてきた。   Conventionally, as a method for producing silicon nanoparticles, for example, (1) a second method in which silicon evaporated by a first high-temperature plasma generated between opposing silicon electrodes is generated by electrodeless discharge in a reduced-pressure atmosphere. (2) Method of separating and removing silicon nanoparticles from an anode made of a silicon wafer by electrochemical etching (Patent Document 2), (3) Halogen-containing organic A method of electrode reduction of a silicon compound using a reactive electrode (Patent Document 3) has been used.

特開平6−279015号公報JP-A-6-279015 特表2003−515459号公報Special table 2003-515459 gazette 特開2002−154817号公報JP 2002-154817 A

しかし、上記(1)、(2)の方法は、シリコンナノ粒子の生成速度が著しく小さいため、生産性向上が困難である。また、上記(3)の方法は、原料がCl等のハロゲン元素を含んでおり、これが生成物に混入しやすいため、Na,Fe,Al,Clの合計量10ppm以下にはなり難い。   However, in the methods (1) and (2), it is difficult to improve productivity because the production rate of silicon nanoparticles is extremely low. In the method (3), since the raw material contains a halogen element such as Cl, which is likely to be mixed into the product, the total amount of Na, Fe, Al, and Cl is less than 10 ppm.

従って、高性能な発光素子や電子部品用の原料粉末として有用な、高純度のシリコンナノ粒子を工業的な規模で生産することは、極めて困難であった。   Therefore, it has been extremely difficult to produce high-purity silicon nanoparticles useful as a raw material powder for high-performance light-emitting elements and electronic parts on an industrial scale.

そこで、本発明者等は高性能な発光素子や電子部品が実現可能な、高純度のシリコンナノ粒子を、工業的規模で生産可能な製造方法がないか鋭意検討した。その結果、特定の原料を用いて気相法で作製した、シリコン粒子内包シリコン酸化物を、特定の条件で加熱処理した後にフッ化水素酸で余分のシリコン酸化物を除去する方法によって、粒径が比較的揃った高純度のナノメートルサイズのシリコン粒子が、工業的規模で製造可能であることを見出し、本発明を完成するに至った。   Therefore, the present inventors diligently studied whether there is a manufacturing method capable of producing high-purity silicon nanoparticles capable of realizing high-performance light-emitting elements and electronic components on an industrial scale. As a result, the silicon particle-containing silicon oxide produced by a vapor phase method using a specific raw material was heated under specific conditions, and then the excess silicon oxide was removed with hydrofluoric acid. As a result, it was found that high-purity nanometer-sized silicon particles having a relatively uniform diameter can be produced on an industrial scale, and the present invention has been completed.

すなわち、本発明のシリコン粒子は、粒径が1〜50nmであり、Na,Fe,Al,Clの合計量が10ppm以下であることを特徴とする。   That is, the silicon particles of the present invention have a particle size of 1 to 50 nm and a total amount of Na, Fe, Al, and Cl is 10 ppm or less.

また、本発明のシリコン粉末は、粒径が1〜50nmであり、Na,Fe,Al,Clの合計量が10ppm以下であるシリコン粒子を90質量%以上含有することを特徴とする。   In addition, the silicon powder of the present invention is characterized by containing 90% by mass or more of silicon particles having a particle diameter of 1 to 50 nm and a total amount of Na, Fe, Al, and Cl of 10 ppm or less.

さらに、本発明のシリコン粒子の製造方法は、モノシランガスと、該モノシランガスを酸化するための酸化性ガスとを気相反応させて、シリコン粒子を内包するシリコン酸化物粒子を含む粉末を合成する工程と、該粉末を不活性雰囲気下800〜1400℃で保持した後、フッ化水素酸にて前記シリコン酸化物を除去する工程を有することを特徴とする。   Furthermore, the method for producing silicon particles of the present invention includes a step of synthesizing a powder containing silicon oxide particles containing silicon particles by causing a gas phase reaction between monosilane gas and an oxidizing gas for oxidizing the monosilane gas. The method further comprises a step of removing the silicon oxide with hydrofluoric acid after holding the powder at 800 to 1400 ° C. under an inert atmosphere.

本発明のシリコン粒子は、粒径が1〜50nmで比較的揃ったナノ粒子であり、しかもNa,Fe,Al,Clの合計量が10ppm以下であり高純度である。   The silicon particles of the present invention are nanoparticles having a relatively uniform particle size of 1 to 50 nm, and the total amount of Na, Fe, Al, and Cl is 10 ppm or less and has high purity.

一般に、シリコン粒子が、量子論的閉じ込め効果や表面準位効果に基づくバルクシリコンとは異なるバンド構造を有し、バルクシリコンでは観測されない発光現象を示す際の粒径は、1〜5nmとされており、電子部品に適用する際に重要になる量子井戸構造は、10nm以下でかつ揃った粒径を有する粒子の集合体において認められるとされている。本発明のシリコン粒子の粒径は1〜50nmであり、これらの量子論的閉じ込め効果、表面準位効果あるいは量子井戸構造が発現する粒径の範囲を包含している。   In general, silicon particles have a band structure different from that of bulk silicon based on the quantum confinement effect and the surface level effect, and the particle size when exhibiting a light emission phenomenon that is not observed in bulk silicon is 1 to 5 nm. In addition, it is said that the quantum well structure that is important when applied to an electronic component is recognized in an aggregate of particles having a uniform particle size of 10 nm or less. The particle size of the silicon particles of the present invention is 1 to 50 nm, and includes the range of particle sizes in which the quantum confinement effect, surface level effect, or quantum well structure is manifested.

また、シリコンがNa,Fe,AlあるいはClなどの不純物を含むと、バンド構造内に不純物準位が形成されてこれが発光素子における発光効率の低下や電子部品の誤動作を引き起してしまう。本発明のシリコン粒子のNa,Fe,Al,Clの合計量は10ppm以下であるため、不純物準位は形成されず、発光素子や電子部品における上記の不具合は生じない。   In addition, when silicon contains impurities such as Na, Fe, Al, or Cl, impurity levels are formed in the band structure, which causes a decrease in light emission efficiency in the light emitting element and malfunction of electronic components. Since the total amount of Na, Fe, Al, and Cl of the silicon particles of the present invention is 10 ppm or less, no impurity level is formed, and the above-described problems in the light emitting element and the electronic component do not occur.

このため本発明のシリコン粒子は、従来のシリコンナノ粒子とは異なり高性能な発光素子や電子部品用の原料粉末としての実用性が高い。   Therefore, unlike the conventional silicon nanoparticles, the silicon particles of the present invention are highly practical as a raw material powder for high-performance light-emitting elements and electronic parts.

また、本発明のシリコン粒子の製造方法は、原料として特定のシリコン含有気体(モノシランガス)を用い、これを特定の条件で酸化性ガスと反応させて一旦シリコン粒子を内包するシリコン酸化物を合成し、さらにこれを特定の条件で加熱処理した後にフッ化水素酸で余分のシリコン酸化物を除去する方法であり、従来のシリコンナノ粒子製造方法とは異なり、生産性が高く工業的規模での生産も可能である。このため、工業的規模でのシリコンナノ粒子の発光素子や電子部品への適用が可能になり、産業上非常に有用である。   In addition, the silicon particle production method of the present invention uses a specific silicon-containing gas (monosilane gas) as a raw material, reacts with an oxidizing gas under specific conditions, and synthesizes a silicon oxide once containing silicon particles. In addition, this is a method in which excess silicon oxide is removed with hydrofluoric acid after heat treatment under specific conditions. Unlike conventional silicon nanoparticle production methods, it is highly productive and produced on an industrial scale. Is also possible. For this reason, it becomes possible to apply silicon nanoparticles to light-emitting elements and electronic components on an industrial scale, which is very useful industrially.

本発明のシリコン粒子は、粒径が1〜50nm、好ましくは1〜30nmである。粒径がこの範囲を外れると、発光素子や電子部品への応用に適した量子論的閉じ込め効果、表面準位効果、あるいは量子井戸構造が発現しない。また、本発明のシリコン粒子のNa,Fe,Al,Clの合計量は10ppm以下、好ましくは5ppm以下である。Na,Fe,Al,Clの合計量が10ppmを超えると、発光素子や電子部品の特性に不純物の影響が生じ得る。   The silicon particles of the present invention have a particle size of 1 to 50 nm, preferably 1 to 30 nm. If the particle size is out of this range, the quantum confinement effect, surface level effect, or quantum well structure suitable for application to light-emitting elements and electronic components will not be exhibited. Further, the total amount of Na, Fe, Al and Cl in the silicon particles of the present invention is 10 ppm or less, preferably 5 ppm or less. When the total amount of Na, Fe, Al, and Cl exceeds 10 ppm, the influence of impurities may occur on the characteristics of the light emitting element and the electronic component.

本発明のシリコン粉末は、本発明のシリコン粒子を90質量%以上含有する。本発明シリコン粒子の含有量が90質量%以上であれば、そのまま、または簡便な後処理で不要粒子を除去することができるが、90質量%未満では不要粒子の除去が容易でなくなる。   The silicon powder of the present invention contains 90% by mass or more of the silicon particles of the present invention. If the content of the silicon particles of the present invention is 90% by mass or more, unnecessary particles can be removed as it is or by simple post-treatment, but if it is less than 90% by mass, removal of unnecessary particles is not easy.

本発明のシリコン粒子は、例えば、モノシランガスと酸化性ガスを用いて気相から合成したシリコン粒子含有シリコン酸化物粒子を所定の雰囲気・温度で加熱処理した後、シリコン酸化物を除去することにより製造することができる。   The silicon particles of the present invention are produced, for example, by removing silicon oxide after heat-treating silicon particle-containing silicon oxide particles synthesized from a gas phase using monosilane gas and oxidizing gas at a predetermined atmosphere and temperature. can do.

具体的には、ます、モノシランガスを酸化性ガスと気相中で反応させることによって、シリコン粒子を内包するシリコン酸化物粒子を含む粉末が合成される。反応は、反応容器内にモノシランガスと酸化性ガスを導入することによって行われる。   Specifically, by reacting monosilane gas with oxidizing gas in the gas phase, a powder containing silicon oxide particles containing silicon particles is synthesized. The reaction is performed by introducing monosilane gas and oxidizing gas into the reaction vessel.

ここで、本発明においてシリコン源となる原料は、モノシランガスである。モノシランガス以外のシリコン含有気体、例えばクロロシラン類(SiHnCl4-n、n=0〜3の整数)を原料として用いると、Na,Fe,Al,Clの合計量が10ppmを超える。 Here, the raw material which becomes a silicon source in the present invention is monosilane gas. When a silicon-containing gas other than monosilane gas, for example, chlorosilanes (SiH n Cl 4-n , n = 0 to 3) is used as a raw material, the total amount of Na, Fe, Al, and Cl exceeds 10 ppm.

酸化性ガスは、モノシランガスを酸化させるものであれば特に限定されないが、酸素ガス、空気、水蒸気、二酸化窒素、二酸化炭素等を用いることができ、取扱いの簡便性、反応制御の容易性等の点から、特に酸素ガスが好ましい。また、反応制御を容易にするために、モノシランガス及び酸化性ガスを希釈する目的で、アルゴン、ヘリウムのような不活性ガスの他、反応を妨げない限りで、水素、窒素、アンモニア、一酸化炭素等の第三のガスを反応容器内に導入することもできる。   The oxidizing gas is not particularly limited as long as it oxidizes monosilane gas, but oxygen gas, air, water vapor, nitrogen dioxide, carbon dioxide, etc. can be used, and the points such as easy handling and ease of reaction control can be used. Therefore, oxygen gas is particularly preferable. In order to facilitate the reaction control, hydrogen, nitrogen, ammonia, carbon monoxide, as well as inert gases such as argon and helium, as well as inert gases such as argon and helium, are used for the purpose of diluting monosilane gas and oxidizing gas. A third gas such as can also be introduced into the reaction vessel.

反応は、反応容器の温度を500℃〜1000℃、圧力を10〜1000kPaに保持して行うことが好ましい。反応容器は、石英ガラス等の高純度材料で作製されたものが一般的に使用され、その形状は特に制限が無いが管状が好ましく、管の軸方向は、垂直、水平何れの方向であっても良い。反応容器の加熱方式については、抵抗加熱、高周波誘導加熱、赤外線輻射加熱等、任意の方式を用いることができる。   The reaction is preferably carried out while maintaining the temperature of the reaction vessel at 500 to 1000 ° C. and the pressure at 10 to 1000 kPa. A reaction vessel made of a high-purity material such as quartz glass is generally used, and its shape is not particularly limited, but a tube is preferred, and the axial direction of the tube is either vertical or horizontal. Also good. As for the heating method of the reaction vessel, any method such as resistance heating, high frequency induction heating, infrared radiation heating and the like can be used.

反応容器内で生成したシリコン粒子を内包するシリコン酸化物粒子を含む粉末は、ガス流とともに系外へ排出され、バグフィルター等の粉末捕集装置から回収される。   The powder containing silicon oxide particles containing silicon particles generated in the reaction vessel is discharged out of the system together with the gas flow, and is collected from a powder collecting device such as a bag filter.

回収された粉末は、次いで不活性雰囲気下800〜1400℃で保持される。かかる処理によって、粉末のシリコン酸化物粒子に内包されるシリコン粒子の粒径が1〜50nmに調整される。保持温度が800℃未満では、シリコン粒子の粒径が1nm未満になるし、不純物がシリコン中に残留しやすくなり、Na,Fe,Al,Clの合計量が10ppmを超えてしまう。また1400℃を超えると、シリコン粒子の粒径が50nmを超える。   The recovered powder is then held at 800-1400 ° C. under an inert atmosphere. By such treatment, the particle size of the silicon particles included in the powdered silicon oxide particles is adjusted to 1 to 50 nm. When the holding temperature is less than 800 ° C., the particle size of the silicon particles is less than 1 nm, impurities are likely to remain in the silicon, and the total amount of Na, Fe, Al, and Cl exceeds 10 ppm. Moreover, when it exceeds 1400 degreeC, the particle size of a silicon particle will exceed 50 nm.

不活性雰囲気ガスとしては、アルゴン、ヘリウムのような不活性ガスの他、水素、窒素、アンモニア、一酸化炭素等も使用可能ではあるが、取扱いの簡便性等の点から、特にアルゴンガスが好ましい。   As the inert atmosphere gas, hydrogen, nitrogen, ammonia, carbon monoxide and the like can be used in addition to an inert gas such as argon and helium, but argon gas is particularly preferable from the viewpoint of easy handling and the like. .

内包するシリコン粒子の粒径調整後、シリコン酸化物粒子を含む粉末は、水中に添加・分散される。分散は、超音波や攪拌機を用いて行われるが、特に超音波を用いることが好ましい。粉末が水中に分散して懸濁化した後、この懸濁液にフッ化水素酸が添加される。フッ化水素酸によって、シリコン酸化物粒子に内包されるシリコン粒子は溶解しないが、周囲のシリコン酸化物は溶解・除去されるため、シリコンのみが残存して本発明のシリコン粒子を得ることができる。   After adjusting the particle size of the silicon particles to be included, the powder containing the silicon oxide particles is added and dispersed in water. The dispersion is performed using ultrasonic waves or a stirrer, and it is particularly preferable to use ultrasonic waves. After the powder is dispersed and suspended in water, hydrofluoric acid is added to the suspension. The silicon particles contained in the silicon oxide particles are not dissolved by hydrofluoric acid, but the surrounding silicon oxide is dissolved and removed, so that only the silicon remains and the silicon particles of the present invention can be obtained. .

以下、実施例及び比較例をあげて、さらに本発明を説明する。   Hereinafter, the present invention will be further described with reference to Examples and Comparative Examples.

<実施例1>
モノシランガス0.16L/min、酸素ガス0.4L/min及び希釈用の窒素ガス17.5L/minを、温度700℃、圧力90kPaに保持した石英ガラス製反応管(内径50mm、長さ1000mm)からなる反応容器に導入したところ、茶褐色の粉末が生成した。これを反応管の下流側に設けた金属製フィルターで捕集した。
<Example 1>
From a quartz glass reaction tube (inner diameter 50 mm, length 1000 mm) in which monosilane gas 0.16 L / min, oxygen gas 0.4 L / min and dilution nitrogen gas 17.5 L / min were maintained at a temperature of 700 ° C. and a pressure of 90 kPa. When introduced into a reaction vessel, a brown powder was produced. This was collected with a metal filter provided on the downstream side of the reaction tube.

捕集した生成粉末の比表面積をBET1点法で測定したところ55m2/gであった。化学分析を行ったところ、主成分はシリコン(Si)及び酸素(O)であった。またXPS(X線光電子スペクトル)のSi2pスペクトルによってSiの結合状態を調べた結果、Si−O結合に帰属されるピークの他に、Si−Si結合に帰属されるピークが認められ、生成したシリコン酸化物粒子にシリコン粒子が内包されていることが確認された。 It was 55 m < 2 > / g when the specific surface area of the collected produced | generated powder was measured by the BET 1 point method. When chemical analysis was performed, the main components were silicon (Si) and oxygen (O). Moreover, as a result of examining the bonding state of Si by the XPS (X-ray photoelectron spectrum) Si 2p spectrum, in addition to the peak attributed to the Si—O bond, a peak attributed to the Si—Si bond was observed and produced It was confirmed that silicon particles were included in the silicon oxide particles.

この粉末20gをアルゴン雰囲気下、1100℃の温度で1時間保持した後、室温まで冷却し、蒸留水1リットルを加え、さらに超音波を1時間かけて粉末を分散させ、懸濁液を作製した。これに濃度5%のフッ化水素酸(HF)0.1リットルを加えて超音波を30分間かけ、シリコン酸化物を溶解・除去した。その後メンブレンフィルターを用いて懸濁液を濾過・洗浄して生成物を分離し、乾燥してシリコン粉末を得た。   After maintaining 20 g of this powder at a temperature of 1100 ° C. for 1 hour under an argon atmosphere, it was cooled to room temperature, 1 liter of distilled water was added, and the powder was further dispersed for 1 hour by ultrasonication to prepare a suspension. . To this was added 0.1 liter of 5% hydrofluoric acid (HF) and ultrasonic waves were applied for 30 minutes to dissolve and remove the silicon oxide. Thereafter, the suspension was filtered and washed using a membrane filter to separate the product and dried to obtain a silicon powder.

この粉末の主成分はSiであり、Na,Fe,Al,Clの合計量は5ppmであることを化学分析により確認した。さらに透過型電子顕微鏡(TEM)で粉末に含まれる粒子の粒径を測定したところ、10〜40nmであった。   The main component of this powder was Si, and it was confirmed by chemical analysis that the total amount of Na, Fe, Al, and Cl was 5 ppm. Furthermore, when the particle size of the particles contained in the powder was measured with a transmission electron microscope (TEM), it was 10 to 40 nm.

<実施例2>
モノシランガス0.08L/min、酸素ガス0.044L/min及び希釈用のアルゴンガス18L/minを、温度750℃、圧力50kPaに保持した実施例1と同じ石英ガラス製反応管からなる反応容器に導入したところ、茶褐色の粉末が生成した。これを実施例1と同様にして捕集した。
<Example 2>
Monosilane gas 0.08 L / min, oxygen gas 0.044 L / min, and argon gas 18 L / min for dilution were introduced into a reaction vessel composed of the same quartz glass reaction tube as in Example 1 maintained at a temperature of 750 ° C. and a pressure of 50 kPa. As a result, a brown powder was produced. This was collected in the same manner as in Example 1.

捕集した生成粉末の比表面積測定を行ったところ、150m2/gであった。化学分析を行ったところ、主成分はSi及び酸素、XPSのSi2pスペクトルを調べた結果、Si−Si結合に帰属されるピークが認められ、生成物がシリコン粒子を内包したシリコン酸化物粒子であることを確認した。 It was 150 m < 2 > / g when the specific surface area measurement of the collected production | generation powder was performed. As a result of chemical analysis, Si and oxygen as main components and the Si 2p spectrum of XPS were examined. As a result, a peak attributed to the Si—Si bond was observed, and the product was silicon oxide particles containing silicon particles. I confirmed that there was.

この粉末20gを、ヘリウム雰囲気下、900℃の温度で1時間保持した以外は実施例1と同様にしてシリコン粉末を得た。この粉末の主成分はSiであり、Na,Fe,Al,Clの合計量は8ppmであることを化学分析により確認した。さらにTEMで粒子の粒径を測定したところ、2〜24nmであった。   A silicon powder was obtained in the same manner as in Example 1 except that 20 g of this powder was held at a temperature of 900 ° C. for 1 hour in a helium atmosphere. The main component of this powder was Si, and it was confirmed by chemical analysis that the total amount of Na, Fe, Al, and Cl was 8 ppm. Furthermore, when the particle size of the particles was measured by TEM, it was 2 to 24 nm.

<比較例1>
Siを内包するシリコン酸化物粒子からなる粉末20gを、アルゴン雰囲気下1450℃の温度で1時間保持した以外は、実施例1と同様にしてシリコン粉末を得た。
<Comparative Example 1>
A silicon powder was obtained in the same manner as in Example 1 except that 20 g of powder composed of silicon oxide particles containing Si was held at a temperature of 1450 ° C. for 1 hour in an argon atmosphere.

この粉末の主成分はSiであり、Na,Fe,Al,Clの合計量は4ppmであることを化学分析により確認した。さらにTEMで粒子の粒径を測定したところ、50nmを超える粒子12質量%を含む、35nm以上の粒子からなる粉末であった。   The main component of this powder was Si, and it was confirmed by chemical analysis that the total amount of Na, Fe, Al, and Cl was 4 ppm. Further, when the particle size of the particles was measured by TEM, it was a powder composed of particles of 35 nm or more containing 12% by mass of particles exceeding 50 nm.

<比較例2>
Siを内包するシリコン酸化物粒子からなる粉末20gを、アルゴン雰囲気下700℃の温度で1時間保持した以外は、実施例1と同様にしてシリコン粉末を得た。
<Comparative example 2>
A silicon powder was obtained in the same manner as in Example 1 except that 20 g of powder composed of silicon oxide particles containing Si was held at a temperature of 700 ° C. for 1 hour in an argon atmosphere.

この粉末の主成分はSiであり、Na,Fe,Al,Clの合計量は18ppmであることを化学分析により確認した。さらにTEMで粒子の粒径を測定し、1nm未満の粒子16質量%を含む、10nm以下の粒子からなる粉末であった。   The main component of this powder was Si, and it was confirmed by chemical analysis that the total amount of Na, Fe, Al, and Cl was 18 ppm. Further, the particle diameter of the particles was measured by TEM, and the powder was composed of particles of 10 nm or less including 16% by mass of particles of less than 1 nm.

<比較例3>
Siを内包するシリコン酸化物粒子からなる粉末20gを、ヘリウム雰囲気下700℃の温度で1時間保持した以外は、実施例2と同様にしてシリコン粉末を得た。
<Comparative Example 3>
A silicon powder was obtained in the same manner as in Example 2 except that 20 g of powder composed of silicon oxide particles containing Si was held at a temperature of 700 ° C. for 1 hour in a helium atmosphere.

この粉末の主成分はSiであり、Na,Fe,Al,Clの合計量は23ppmであることを化学分析により確認した。さらにTEMで粒子の粒径を測定し、1nm未満の粒子40質量%を含む、6nm以下の粒子からなる粉末であることを確認した。   The main component of this powder was Si, and it was confirmed by chemical analysis that the total amount of Na, Fe, Al, and Cl was 23 ppm. Further, the particle diameter of the particles was measured by TEM, and it was confirmed that the powder was composed of particles of 6 nm or less including 40% by mass of particles less than 1 nm.

<比較例4>
モノシランガスの代わりに、多結晶シリコンの原料として多用される四塩化珪素(SiCl4)ガスを用いた以外は実施例1と同様にして反応容器にガスを導入したところ、茶褐色の粉末を生成し、これを実施例1と同様にして捕集した。
<Comparative example 4>
When the gas was introduced into the reaction vessel in the same manner as in Example 1 except that silicon tetrachloride (SiCl 4 ) gas frequently used as a raw material for polycrystalline silicon was used instead of monosilane gas, a brown powder was produced. This was collected in the same manner as in Example 1.

捕集した生成粉末の比表面積測定を行ったところ45m2/gであった。化学分析を行ったところ、主成分はSi及び酸素、XPSのSi2pスペクトルを調べた結果、Si−Si結合に帰属されるピークが認められ、生成物がシリコン粒子を内包したシリコン酸化物粉末粒子であることを確認した。 It was 45 m < 2 > / g when the specific surface area measurement of the collected production | generation powder was performed. As a result of chemical analysis, the main components were Si and oxygen, and as a result of examining the Si 2p spectrum of XPS, a peak attributed to the Si—Si bond was observed, and the silicon oxide powder particles in which the product contained silicon particles It was confirmed that.

この粉末20gを用い、実施例1と同様にしてシリコン粉末を得た。この粉末の主成分はSiであり、TEMで測定した粒子の粒径は5〜35nmであったが、特に塩素(Cl)を多く含み、Na,Fe,Al,Clの合計量は50ppmであった。   Using 20 g of this powder, silicon powder was obtained in the same manner as in Example 1. The main component of this powder was Si, and the particle size of the particles measured by TEM was 5 to 35 nm. In particular, the powder contained a large amount of chlorine (Cl), and the total amount of Na, Fe, Al, and Cl was 50 ppm. It was.

本発明によれば、特別な電解装置やプラズマ発生装置等を必要とせず高い生産性でナノメートルサイズのシリコン粒子からなる粉末を、工業的規模で大量に合成することが可能であり、これを原料粉末として用いることによって、新規で高性能な発光素子や電子部品等の機能性材料の実用化に寄与することができる。   According to the present invention, it is possible to synthesize a large amount of powder composed of nanometer-sized silicon particles on an industrial scale with high productivity without requiring a special electrolysis apparatus or plasma generation apparatus. By using it as a raw material powder, it can contribute to the practical application of functional materials such as new and high-performance light-emitting elements and electronic parts.

Claims (3)

粒径が1〜50nmであり、Na,Fe,Al,Clの合計量が10ppm以下であることを特徴とするシリコン粒子。   Silicon particles having a particle diameter of 1 to 50 nm and a total amount of Na, Fe, Al, and Cl of 10 ppm or less. 粒径が1〜50nmであり、Na,Fe,Al,Clの合計量が10ppm以下であるシリコン粒子を90質量%以上含有することを特徴とするシリコン粉末。   A silicon powder characterized by containing 90% by mass or more of silicon particles having a particle size of 1 to 50 nm and a total amount of Na, Fe, Al, and Cl of 10 ppm or less. モノシランガスと、該モノシランガスを酸化するための酸化性ガスとを気相反応させて、シリコン粒子を内包するシリコン酸化物粒子を含む粉末を合成する工程と、該粉末を不活性雰囲気下800〜1400℃で保持した後、フッ化水素酸にて前記シリコン酸化物を除去する工程を有することを特徴とするシリコン粒子の製造方法。   A step of synthesizing a powder containing silicon oxide particles containing silicon particles by reacting a monosilane gas with an oxidizing gas for oxidizing the monosilane gas, and the powder under an inert atmosphere at 800 to 1400 ° C. And a step of removing the silicon oxide with hydrofluoric acid after being held in step 1.
JP2004075521A 2004-03-17 2004-03-17 Method for producing silicon particles Expired - Fee Related JP4791697B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2004075521A JP4791697B2 (en) 2004-03-17 2004-03-17 Method for producing silicon particles
US10/592,864 US7850938B2 (en) 2004-03-17 2005-02-18 Silicon particles, silicon particle superlattice and method for producing the same
PCT/JP2005/002574 WO2005090234A1 (en) 2004-03-17 2005-02-18 Silicon particle, silicon particle superlattice and method for production thereof
CN2005800082566A CN1956920B (en) 2004-03-17 2005-02-18 Silicon particle, silicon particle superlattice and method for production thereof
US12/823,314 US8221881B2 (en) 2004-03-17 2010-06-25 Silicon particle, silicon particle superlattice and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004075521A JP4791697B2 (en) 2004-03-17 2004-03-17 Method for producing silicon particles

Publications (2)

Publication Number Publication Date
JP2005263522A true JP2005263522A (en) 2005-09-29
JP4791697B2 JP4791697B2 (en) 2011-10-12

Family

ID=35088456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004075521A Expired - Fee Related JP4791697B2 (en) 2004-03-17 2004-03-17 Method for producing silicon particles

Country Status (2)

Country Link
JP (1) JP4791697B2 (en)
CN (1) CN1956920B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006024490A1 (en) * 2006-05-26 2007-11-29 Forschungszentrum Karlsruhe Gmbh Suspension used in the production of a semiconductor for printed circuit boards contains a silicon dioxide layer arranged on silicon particles
WO2009069416A1 (en) * 2007-11-29 2009-06-04 Konica Minolta Medical & Graphic, Inc. Semiconductor nanoparticle and method for producing the same
JP2013119489A (en) * 2011-12-06 2013-06-17 Bridgestone Corp Method for manufacturing silicon fine particle
WO2014123331A1 (en) * 2013-02-05 2014-08-14 주식회사 케이씨씨 Method for continuously preparing silicon nanoparticles, and anode active material for lithium secondary battery comprising same
WO2016052643A1 (en) * 2014-10-02 2016-04-07 山陽特殊製鋼株式会社 Powder for conductive fillers
JP2016072192A (en) * 2014-10-02 2016-05-09 山陽特殊製鋼株式会社 Powder for electrical conductive filler
JP2016110773A (en) * 2014-12-04 2016-06-20 山陽特殊製鋼株式会社 Powder for conductive filler

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103204507B (en) * 2013-04-07 2018-03-06 李绍光 A kind of Halogen silane thermal decomposition process for producing solar energy level silicon
CN104528727B (en) * 2014-12-24 2016-08-24 东北大学 A kind of porous silicon block materials with multistage directional hole and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0672705A (en) * 1992-08-26 1994-03-15 Ube Ind Ltd Production of crystalline silicon superfine particle
JPH06279015A (en) * 1993-03-30 1994-10-04 Matsushita Electric Ind Co Ltd Production of ultrafine silicon particle

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6585947B1 (en) * 1999-10-22 2003-07-01 The Board Of Trustess Of The University Of Illinois Method for producing silicon nanoparticles

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0672705A (en) * 1992-08-26 1994-03-15 Ube Ind Ltd Production of crystalline silicon superfine particle
JPH06279015A (en) * 1993-03-30 1994-10-04 Matsushita Electric Ind Co Ltd Production of ultrafine silicon particle

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006024490A1 (en) * 2006-05-26 2007-11-29 Forschungszentrum Karlsruhe Gmbh Suspension used in the production of a semiconductor for printed circuit boards contains a silicon dioxide layer arranged on silicon particles
WO2009069416A1 (en) * 2007-11-29 2009-06-04 Konica Minolta Medical & Graphic, Inc. Semiconductor nanoparticle and method for producing the same
JP2013119489A (en) * 2011-12-06 2013-06-17 Bridgestone Corp Method for manufacturing silicon fine particle
WO2014123331A1 (en) * 2013-02-05 2014-08-14 주식회사 케이씨씨 Method for continuously preparing silicon nanoparticles, and anode active material for lithium secondary battery comprising same
KR20140100122A (en) * 2013-02-05 2014-08-14 주식회사 케이씨씨 Continuous manufacturing method for silicon nanoparticles and anode active materials containing the same for lithium ion battery
KR101583216B1 (en) * 2013-02-05 2016-01-07 주식회사 케이씨씨 Continuous manufacturing method for silicon nanoparticles and anode active materials containing the same for lithium ion battery
WO2016052643A1 (en) * 2014-10-02 2016-04-07 山陽特殊製鋼株式会社 Powder for conductive fillers
JP2016072192A (en) * 2014-10-02 2016-05-09 山陽特殊製鋼株式会社 Powder for electrical conductive filler
JP2016110773A (en) * 2014-12-04 2016-06-20 山陽特殊製鋼株式会社 Powder for conductive filler

Also Published As

Publication number Publication date
CN1956920B (en) 2012-03-07
CN1956920A (en) 2007-05-02
JP4791697B2 (en) 2011-10-12

Similar Documents

Publication Publication Date Title
US8221881B2 (en) Silicon particle, silicon particle superlattice and method for producing the same
US10023488B2 (en) Synthetic amorphous silica powder and method for producing same
JP5825145B2 (en) Synthetic amorphous silica powder and method for producing the same
JP5648640B2 (en) Synthetic amorphous silica powder
JP2007513041A (en) Nanoscale crystalline silicon powder
JP5724881B2 (en) Synthetic amorphous silica powder and method for producing the same
JP4791697B2 (en) Method for producing silicon particles
JPWO2018180901A1 (en) Fibrous carbon nanostructure dispersion, method for producing the same, and fibrous carbon nanostructure
WO2011083697A1 (en) Synthetic amorphous silica powder and method for producing same
JP2013532626A (en) Silicon carbide and method for producing the same
JP4556015B2 (en) Zinc sulfide / silicon core / shell nanowire and method for producing the same
JP3985044B2 (en) Single crystal silicon nanotube and method for producing the same
JP2007084369A (en) TiC ULTRAFINE PARTICLE-SUPPORTED OR TiO2 ULTRAFINE PARTICLE-SUPPORTED CARBON NANOTUBE, TiC NANOTUBE, AND METHOD FOR PRODUCING THEM
CN107598183B (en) Macroscopic quantity preparation method of nano-silver particles
CN107473228A (en) A kind of nanoscale crystalline silicon and preparation method thereof
JP5962219B2 (en) Synthetic amorphous silica powder and method for producing the same
CN107934946B (en) Graphene powder and preparation method thereof
WO2008071504A2 (en) Porous silicon
JP2004161507A (en) Silicon carbide nanorod and its production process
WO2021049557A1 (en) Method for producing purified silicon fine particles
JP4756239B2 (en) Hollow spherical particles made of gallium nitride and method for producing the same
JP4576603B2 (en) Method for producing indium phosphide nanotubes
KR101796076B1 (en) Process for the preparation of hydrophobic silicon particles and hydrophobic silicon particles produced therefrom
JP2013203641A (en) Synthetic amorphous silica powder and production method therefor
Wang et al. Characterization of ZnO nanorods grown on Si substrates coated with NiCl2

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110722

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4791697

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees