JP2005232584A - インライン・コーティング設備の作動方法 - Google Patents

インライン・コーティング設備の作動方法 Download PDF

Info

Publication number
JP2005232584A
JP2005232584A JP2004129265A JP2004129265A JP2005232584A JP 2005232584 A JP2005232584 A JP 2005232584A JP 2004129265 A JP2004129265 A JP 2004129265A JP 2004129265 A JP2004129265 A JP 2004129265A JP 2005232584 A JP2005232584 A JP 2005232584A
Authority
JP
Japan
Prior art keywords
chamber
transfer
gate
pressure
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004129265A
Other languages
English (en)
Other versions
JP4054003B2 (ja
Inventor
Holger Richert
ホルガー・リッヒェルト
Manfred Weimann
マンフレート・ヴァイマン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials GmbH and Co KG
Original Assignee
Applied Films GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Films GmbH and Co KG filed Critical Applied Films GmbH and Co KG
Publication of JP2005232584A publication Critical patent/JP2005232584A/ja
Application granted granted Critical
Publication of JP4054003B2 publication Critical patent/JP4054003B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C15/00Enclosures for apparatus; Booths
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/564Means for minimising impurities in the coating chamber such as dust, moisture, residual gases
    • C23C14/566Means for minimising impurities in the coating chamber such as dust, moisture, residual gases using a load-lock chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/568Transferring the substrates through a series of coating stations

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Abstract

【課題】 1つのコーティング設備だけで、通常の基板もサイズの大きい基板もコーティングすることができるようにする方法を提供する。
【解決手段】 本発明は、2n+1個のチャンバを備えるインライン・コーティング構成を作動するための方法に関する。ここで、nは整数であり、特に2であることが好ましい。この設備の2つのチャンバを2回の間に少なくとも1つのゲートをそれぞれ開閉することができるので、同じ設備で過度のサイズの基板もコーティングすることができる。標準動作と比較すると、ゲートを開閉すると必ず圧力の推移が変化する。
【選択図】 図1

Description

本発明は、請求項1の前文に記載する方法に関する。
基板をコーティングするためには、粒子が真空状態でいわゆるターゲットからスパッタされ、それに続いて粒子が基板上に堆積されるスパッタリング設備が使用される。
このプロセスにおいて、基板がインターロックを通してスパッタリング設備に連続的に搬送され、再びインターロックを通してスパッタリング設備から取り出される場合には、この設備は、インライン・コーティング設備または「通過」コーティング設備とも呼ばれる。
このような設備は、比較的小さいが、相互接続している個々のチャンバの線形構成になっているかまたはラインの各端部において真空転位ロッキングで1つまたは2つの大きなチャンバから構成されている。処理チャンバは、1つの大きなチャンバに沿ってまたは個々の各チャンバ内に設けられている。
3つの同心シリンダを備え、内部および外部シリンダがシリンダー状の壁部を有する環状チャンバを形成するインライン・スパッタリング・システムは周知のものである(米国特許第5,753,092号)。内部および外部シリンダの間に配置される中央シリンダは、基板を支持する開口部を有し、環状通過チャンバをほぼ満たしていて、段階的に回転するシリンダー状サポートとしての働きをする。
真空コーティング・セクションおよび入口および出口インターロックを含む、コーティング・セグメントを備える基板の欠点のないコーティング用の装置はさらに周知のものである(ドイツ特許第200 22 564 U1号)。さらに、この場合、基板を収容するためのキャリヤ・インサートを含むキャリヤも設置されている。キャリヤ経路は閉経路として実施されている。
インライン・コーティング設備内の空間を節約するために、戻りチャンバを設けることにより必要なサポートの数を少なくすることも周知である(日本国公開特許特開2002−309372 A号)。この場合、サポートは基板と一緒に第1の方向に移動し、約180度回転し、その後で第2の方向に移動する。
米国特許第5,753,092号 ドイツ公開実用新案第200 22 564 U1号 日本国特開2002−309372 A号
上記周知の装置のチャンバは、基板の特定の大きさに合うように調整される。サイズの大きな基板を加工しなければならない場合には、もっと大きなチャンバを有する異なる装置を使用しなければならない。
それ故、本発明は、この問題を、1つのコーティング設備だけで、通常の基板もサイズの大きい基板もコーティングすることができるようにすることで解決する。
この問題は請求項1に記載の特徴により解決することができる。
それ故、本発明は、2n+1個のチャンバを備えるインライン・コーティング構成を作動するための方法に関する。ここで、nは整数であり、特に2であることが好ましい。この設備の2つのチャンバを2回の間に少なくとも1つのゲートを開閉することができるので、同じ設備でサイズの大きな基板もコーティングすることができる。標準動作と比較すると、ゲートを開閉すると必ず圧力の推移が変化する。
本発明の利点としては、特に入手可能な設備をよりよく使用することができること等がある。
図面に本発明の例示としての実施形態を示し、以下にさらに詳細に説明する。
図1は、コーティング設備1の側面図である。このコーティング設備1は、3つのチャンバ、すなわち、内部への搬送チャンバ2、処理チャンバ3および外部への搬送チャンバ4を備える。異なるチャンバ2、3、4の間と、チャンバ2、4の入り口には、真空を維持するように開閉できる全部で4つのゲートが位置している。図1においては、ゲート自身を見ることはできないが、ゲートの位置を示す延長部材5〜8を見ることができる。例えば、平らな建築用ガラス、金属プレート、シリコン・ウェハ、合成材料のプレート等のようなコーティングされる基板は、内部への搬送チャンバ2内に導入され、その後で処理チャンバ3内でコーティングされ、その後で外部への搬送チャンバ4を通して排出される。基板はチャンバ2、3、4内をサポートによりまたはサポートなしで送られることができる。しかし、いかなる場合でも、基板を移送するための移送システムがチャンバ2、3、4内に設置される。
参照符号9〜17は、チャンバ2、3、4を真空にして指定の圧力値にするためのポンプである。ポンプは、この場合、チャンバの側壁上に配置される。しかし、ポンプはチャンバの天井に配置することもできる。
チャンバ2〜4の大きさは、例えば、建築用ガラスの場合には、2.54m×3.66mまたは3.21m×6.00mである最大基板の寸法により決まる。チャンバの数は、必要な最少サイクル時間により決まる。サイクル時間とは、第1の基板をチャンバ2に導入してから第2の基板を同じチャンバ2に導入するまでの時間である。通常、約90秒までのサイクル時間の場合には、図1に示す、いわゆる3チャンバ原理が使用される。
ゲートが開いている場合には、基板は、延長部材5のところでチャンバ2内に導入される。チャンバ2の内部圧力は、次に、延長部材5のところのゲートが再度閉まり、延長部材6のところのゲートが閉まると、ポンプ9〜11により、例えば、0.05mbarに低下する。通常、サポートまたはキャリヤ上で位置を知ることができる基板の動きが中断する。何故なら、延長部材6のところのゲートも、最初は閉じていて、基板は、このゲートにより停止しなければならないからである。
内部への搬送チャンバ2内の圧力が、例えば、0.05mbarのような指定の値に達すると、延長部材6のところのゲートが開き、基板は真空状態に維持されているチャンバ3を通って連続的に搬送される。チャンバ3においては、その後でコーティングが行われる。コーティング後、基板は外部への搬送チャンバ4を通して外部に搬送される。
3つのチャンバを備えるコーティング設備内のサイクル時間は比較的長い。何故なら、チャンバ内の圧力を指定の低い値にするために、基板が内部への搬送チャンバ2内に比較的長い時間留まっていなければならないからである。
図2に示すような5つのチャンバを備えるコーティング設備20を使用すれば、サイクル時間を短くすることができる。3つのチャンバを備えるコーティング設備1と比較すると、この5つのチャンバを備えるコーティング設備20は、延長部材25、26のところに対応するポンプ23、24を含む2つの追加のバッファ・チャンバ21、22を備える。5つのチャンバを備えるコーティング設備20内の基板は、チャンバ2、21、3、22、4を通してもっと速く移動させることができるので、サイクル時間が短くなる。この迅速な移動は、チャンバ2、21または22、4の真空形成が、図1の3つのチャンバを備えるシステム内のチャンバ2、4の真空形成とは異なる方法で行われるからである。
5つのチャンバを備えるコーティング設備20の場合には、基板は、その設備のタイミングで内部への搬送チャンバ2内に間欠的に送られる。この場合、内部への搬送チャンバ2内の圧力は、3つのチャンバを備える設備の場合の0.05mbarではなく、約15mbarに低下する。次のタイミングで、基板はインターロックを通してバッファ・チャンバ21に搬送され、バッファ・チャンバ21内の圧力は、処理チャンバ3内の圧力に近くなる。基板が処理チャンバ3を通して連続的に送られた後で、基板はバッファ・チャンバ22および大気圧の外部への搬送チャンバ4を通して外部に送られる。
5つのチャンバを備えるコーティング設備20の場合には、サイクル時間は、本質的には90秒未満に短縮し、それによりコーティング設備内への基板の内部への搬送プロセスは、内部への搬送チャンバ2とバッファ・チャンバ21上で分割され、従って両方のチャンバ内で並行して行うことができる。すなわち、基板が内部への搬送チャンバ2からバッファ・チャンバ21へ移送された後で、もう1つの基板を内部への搬送チャンバ2に移送することができる。処理チャンバ3内に基板を導入することができるようにするために、処理チャンバ3の前に位置するチャンバ内の圧力を約0.05mbarに下げなければならない。3つのチャンバを備えるコーティング設備1においては、この0.05mbarへのポンプによる減圧は、内部への搬送チャンバ2内だけで行われる。
対照的に、5つのチャンバを備えるコーティング設備20の場合には、内部への搬送チャンバ2内の圧力は、大気圧から約15mbarにポンプにより減圧されるだけで、加工される基板はその後でバッファ・チャンバ21内に搬送される。内部への搬送チャンバ2とバッファ・チャンバ21間の延長部材6のところのゲートが開いている場合には、圧力は等化される。圧力は、処理チャンバ3の方に前に開いていて、例えば、圧力が3×10−3mbarであるバッファ・チャンバ21内の0.05mbarより著しく低い。従って、バッファ・チャンバ21自身は、最初、もっと低い圧力にポンプにより減圧する必要は全然ない。それにより、圧力が15mbarである内部への搬送チャンバ2は、延長部材6のところのゲートが開いた後で、圧力が3×10−3mbarであるバッファ・チャンバ21と接続し、両方の等しい大きさのチャンバ2および21内の全圧力は約7mbarの平均圧力値に低下する。延長部材6のところのゲートが閉じた後で、バッファ・チャンバ21内の圧力はポンプによる減圧のために、約7mbarから約0.05mbarに減圧される。基板がバッファ・チャンバ21から処理チャンバ3内に移送されている間に、内部への搬送チャンバ2に空気が流入し、その後で延長部材5のところのゲートが開いた後で、内部への搬送チャンバ2内で次の基板に対する内部への搬送プロセスを再開することができる。ゲートが開いたために、内部への搬送チャンバ2内の圧力は再び大気圧になり、その後で再びポンプによる減圧により約15mbarに低下する。従って、内部への搬送チャンバ2の圧力は大気圧と約15mbarの間で変動する。対照的に、バッファ・チャンバ21内の圧力は7mbarから0.05mbarに変化するだけである。
真空設備のチャンバをポンプで減圧すると、指数関数に従って圧力が低下する。約1000mbarから約15mbarへの圧力の変化は比較的急速に起こる。対照的に、例えば、0.05mbarのようなもっと低い圧力へのポンプによる減圧はもっと長い時間がかかる。
例えば、羽根型回転ポンプ、ルーツ・ポンプまたはターボ分子ポンプのような異なるタイプの真空ポンプは、異なる圧力範囲内にその最適真空排気性能を有する。羽根型回転ポンプは、大気圧から約0.005mbarに真空排気する。しかし、この最終圧力を達成するには、非常に長いポンプ排気時間を必要とする。ルーツ・ポンプは非常に種々の目的に使用することができ、1〜0.1mbarの範囲内にその最適真空排気性能を有する。ターボ分子ポンプは、0.1mbar未満でしか接続できないが、このポンプが、有用な真空排気性能を有するのは10−2mbar未満の範囲内だけである。
ポンプ9〜17、または9〜17および23、24は、ポンプが行わなければならないタスクにより選択される。内部への搬送チャンバ2およびバッファ・チャンバ21用のポンプは、両方のチャンバ2、21のポンプによる真空排気時間がほぼ等しくなるように配置することができる。
3つのチャンバを備える設備1の内部への搬送チャンバ2は、羽根型回転ポンプおよびルーツ・ポンプであるポンプ9〜11により真空排気される。ルーツ・ポンプは、延長部材6のところの処理チャンバ3へのゲートが開き始めると、0.05mbarの切替点へのもっと低い圧力範囲内で真空排気性能を増大する。この場合、典型的なサイクル時間は、約30〜60秒のポンプによる真空排気時間で60〜90秒である。
しかし、5つのチャンバを備える設備20の内部への搬送チャンバ2は、すべて羽根型回転ポンプであるポンプ9〜11により真空排気される。バッファ・チャンバ21用のポンプ・ステーション23は、羽根型回転ポンプおよびルーツ・ポンプを含むことができる。従来の5つのチャンバの動作中には、サイクル時間は、15〜20秒のポンプによる真空排気時間の場合、約45秒である。サイクル時間とポンプによる真空排気時間との間の違いは、とりわけ、ガラス・プレートを移動させ、ゲートを開閉するために必要である。
図3は、3つのチャンバを備えるコーティング設備1であるが、この図も平面図である。一方、図4は、5つのチャンバを備えるコーティング設備20の平面図である。
図3は、チャンバ2、3、4および関連するゲート60、61、62、63を含む延長部材5、6、7、8を示す。さらに、図を見れば分かるように、処理チャンバ3内には、搬送チャンバ31、33を形成するスリット・ダイヤフラム18、30または19、29が位置する。参照符号30、29は、シート・メタル部材18、19上に垂直に配置されるスリット・ダイヤフラムを示す。
図4は、5つのチャンバを備える設備の平面図である。この5つのチャンバを備える設備は、それぞれチャンバ21、31および33、22間に位置する2つの追加のゲート64、65を備える。
標準動作中、すなわち、あまり長くない基板をコーティングしている間は、図4の設備20においては、下記のポンプによる真空排気プロセスが行われる。すなわち、内部への搬送チャンバ2に空気が流入し、ゲート60が開き、基板が内部への搬送チャンバ2内に移送される。その場合、ゲート60が再度閉じる。チャンバ2内の圧力が約15mbarの圧力切替点に達すると、ゲート61が再度開き、基板はチャンバ21内に移送される。この場合、ゲート61は再度閉じる。バッファ・チャンバ21内の圧力が約0.05mbarに下がると、内部への搬送チャンバ2内に空気が流入し、その後でゲート60が開く。新しい基板が内部への搬送チャンバ2内に導入され、ゲート60が再度閉じる。並行して、バッファ・チャンバ21内の圧力が約0.05mbarの圧力切替点に達すると、ゲート64が開き、第1の基板が搬送チャンバ31を通して処理チャンバ3内に送られる。一般的に、この動作中、何時でもゲート60、61、64の中の1つだけが開くことになる。弁がチャンバとポンプとの間、およびチャンバと大気環境との間に配置されていることを指摘しておきたい。ポンプによる真空排気をストップするために、チャンバとポンプとの間の弁が閉じられるが、ポンプは連続的に動作する。チャンバに空気が流入している間に、周囲の空気へのチャンバの前の弁が開き、その結果、空気がチャンバ内に流入することができ、このチャンバ内の圧力が大気圧に上昇する。
その後で、図4の5つのチャンバを備える設備の標準動作中、チャンバ2は大気圧から約15mbarにポンプにより真空排気され、ゲート61を開くと、圧力が等化される。何故なら、以前にチャンバ3に向けて開いたチャンバ21内の圧力(約3×10−3mbar)は、0.05mbarより著しく低いからである。それにより、両方の大きさの等しいチャンバ2、21内の全圧力は、約7mbarに低下する。その後で、チャンバ21は約7mbarから約0.05mbarにポンプにより真空排気される。チャンバ21内のルーツ・ポンプは連続的に動作することができる。何故なら、このチャンバ内の圧力は、約7mbarと0.05mbar未満の間でだけ変化するからである。
5つのチャンバを備える設備20の標準動作中、移送システムは、内部への搬送チャンバ2からバッファ・チャンバ21へ基板が搬送されている間同期状態でだけ動作する。残りの移動段階中、両方の移送システムは相互に独立して特定の基板を移送することができる。
図5の左側は、図4の設備20に類似の設備であるが、これも断面図である。この設備は、図4の設備とは異なるので、スリット・ダイヤフラム30の他に、この設備はもう1つのスリット・ダイヤフラム28を有する。この図の場合、内部への搬送チャンバ2内のローラまたはシリンダ34〜37をはっきり見ることができ、バッファ・チャンバ21内のローラまたはシリンダ38〜41も、処理チャンバ3内のローラまたはシリンダ42〜53もはっきり見ることができる。これらのローラまたはシリンダ上には、左から右に移動する基板55が配置されている。
スリット・ダイヤフラム30、28は、金属シート18、27から下方に吊り下げられていて、その下面にはスリット・ダイヤフラムの下を通して基板55を案内できるような大きさのスリットが開いている。処理チャンバ32本体には、スパッタ・カソード56が設置されている。基板55は、このカソードがスパッタする粒子によりコーティングされる。
スリット・ダイヤフラム30、28は、処理チャンバ3の奥行き全体を延びる。これらのスリット・ダイヤフラムのサスペンション18、19も同じである。
チャンバ間のガス分離を改善するために、移送システムを、移送ローラの上部だけが突き出ている、図5には示していない金属シートでさらに覆うことができる。
従って、基板移送装置は、同じ回転数だけ回転し、基板を移送する多くのローラまたはシリンダ34〜53を備える。ゲート61、64、65、62が設置されているこれらの場所に、移送装置はローラ間またはシリンダ間に中断部分またはもっと広い空間を有する。チャンバ2、21、22および4内の移送装置のセクションは、間欠的に動作し、チャンバ3内のセクションは連続的に動作する。
図4および図5を参照しながら、標準動作中の、5つのチャンバを備える設備内の基板の移送動作について以下に説明する。基板55を内部へ搬送するために、チャンバ2内の移送装置がオンになる。基板55がチャンバ2内のその指定の位置に到着すると、移送がストップする。基板55をチャンバ2からチャンバ21に搬送するために、シリンダ34〜37または38〜41を備える両方の移送装置が同時に動作し、基板55がチャンバ21内のその最終位置に到着した場合だけ動作を中止する。基板55をチャンバ3に移送するために、チャンバ21内の移送デバイス38〜41がオンになり、チャンバ3内の移送装置42〜53がいかなる場合でも中断なしで動作する。チャンバ3からチャンバ22(図2)に搬送するために、そこに位置する移送装置が、ゲート65が開くと同時にオンになる。もう1つの外部への搬送プロセスが、内部への搬送プロセスと類似の方法で行われるが、その順序は逆である。
内部への搬送チャンバ2は、羽根型回転ポンプだけを備えるポンプ・ステーションにより真空排気されるが、チャンバ21用のポンプ・ステーションは、羽根型回転ポンプおよびルーツ・ポンプを含む。チャンバに空気が流入している間に、ポンプはオフにならないでチャンバとポンプ間の弁が閉じる。
ここまでは、3つのチャンバを備える設備1および5つのチャンバを備える設備20のそれ自身周知の機能について説明してきた。
図4および図5を参照しながら、5つのチャンバを備える設備の助けを借りて、比較的大きな基板を本発明によりコーティングすることもできる方法について以下に説明する。
設備1または20の両方の場合、最大許容基板寸法は特定のチャンバの寸法の関数である。チャンバ2および21または22および4より大きい基板をコーティングすることはできない。さらに、チャンバは、同じ寸法を有するモジュールとして開発される。
図4を見れば分かるように、ゲート61、63が開いている場合には、より大きな基板を処理することができる。この場合、チャンバ2および21と4および22は、この場合、それぞれの場合一緒に、もっと大きな基板も収容することができるもっと大きな空間を形成する。
インターロック・チャンバ2、21、22、4の場合には、同じサイズの同じモジュールが、3つのチャンバを備える設備1または5つのチャンバを備える設備20に対して独立して使用されるかまたは一緒に使用される。両方の設備1または20は、通常、同じ最大サイズの同じ基板をコーティングするので、これらのチャンバもこれらの寸法を有していなければならない。
内部への搬送チャンバ、バッファ・チャンバおよび外部への搬送チャンバがすべて同じサイズであると仮定した場合、これらのチャンバはモジュールとして開発されているので、ゲート61、62が開いている場合には、2倍の長さの基板を加工することができる。例えば、都合により、長さ6m、幅3.21mより大きい特殊な寸法の基板を加工、特にコーティングしなければならない場合には、標準チャンバ・サイズのコーティング設備内でこのような処理を行うこともできる。
図3および図4を参照しながら、5つのチャンバによるコーティングから3つのチャンバによるコーティングへの、本発明による切替えプロセスについて以下に説明する。
5つのチャンバによる動作から3つのチャンバによる動作に切り替えるためには、内部への搬送チャンバ2とバッファ・チャンバ21または外部への搬送チャンバ4とバッファ・チャンバ22間のゲート61および62だけを開くだけでは十分でない。それ以外に、ポンプによる真空排気のシーケンスおよび駆動制御も新しい条件に適合させなければならない。従って、内部への搬送手順をかなり変更しなければならない。すでに説明したように、3つのチャンバを備えるコーティング設備1内の基板の内部への搬送は、ポンプ9〜11により内部への搬送チャンバ2をポンプにより真空排気することにより、約0.05mbarに減圧することにより行われる。内部への搬送チャンバ2を大気圧から搬送圧力に真空排気するために、どちらかというとポンプによる長い真空排気時間が必要になる。基板が処理チャンバ内に搬送された場合、処理チャンバ3へのゲート61が開いているために、ガスは非常な高圧で処理チャンバ3内に流入することができるので、圧力は3×10−3mbarにしかならない。これを避けるために、処理チャンバ3の入口エリア内にはもっと多い数のポンプ12が配置されているが、図1にはポンプ12は1つしか図示していない。この入口エリアは、スリット・ダイヤフラム18、30により、プロセス・エリア32本体から分離している。ゲートではなくスリット・ダイヤフラム18、30で処理チャンバ3から分離されているだけであるけれども、この入口エリアも搬送チャンバ31と呼ばれる。従って、処理チャンバ3は搬送エリア31、処理エリア32、および外部への搬送チャンバ4の前に位置するもう1つの搬送エリア33からなる。この場合、もう1つのスリット・ダイヤフラム19、29が、搬送エリア33と処理エリアの間に設置されている。
いくつかのターボ・ポンプ12により真空排気される処理チャンバのセクション31は、「搬送セクション」と呼ばれる。処理チャンバ32本体は、同じ大きさの多くの個々のセグメントと結合していて、要件によりその内部で特殊なタスクを行うことができるようにセグメントの数を相互に追加することができる。内部への搬送チャンバ2内の3つのチャンバを備える設備1の場合には、ゲート61が開いている場合、ガスが処理チャンバ32に流入するように圧力が0.05mbarになる。何故なら、この場合、圧力が約3×10−3mbarであるからである。この圧力の急増は、いくつかのターボポンプの優れた真空排気性能により、処理チャンバ3の「搬送セクション」内で吸収される。
過度に長い基板に対する特殊な動作中、すなわち、5つのチャンバを備える設備20が3つのチャンバを備える設備1として動作中、図4の5つのチャンバを備える設備では下記の処理が行われる。チャンバ2および21が空気で満たされる。ゲート60が開く。ゲート61はこの動作状態中常に開いている。何故なら、開いていないと基板が破壊されてしまうからである。基板はチャンバ2および21内に移送され、その後でゲート60が再度閉じられる。約0.05mbarの圧力切替点に達した後で、ゲート64が開き、基板は処理チャンバ3に移送され、ゲート64が再度閉まる。チャンバ2および21を空気で満たした後で、他の基板を搬送するためにゲート60が再度開く。
特定の外部への搬送プロセスが、類似の方法でしかし逆の順序で行われる。すなわち、基板は最初外部への搬送チャンバ22内に位置していて、その後でこのチャンバが空気で満たされ、その後でゲート63が大気圧に向かって開く。
それ故、5つのチャンバを備える設備20の場合には、好適には、過度の長さを有するガラス・プレートであることが好ましい基板を加工できるようにするためには、2つのチャンバ2、21および4、22間のゲート61、62をそれぞれ開くだけでは十分でない。さらに、両方のチャンバ2、21および22、4だけが大気圧から約0.05mbarにポンプにより真空排気されるように、2つのチャンバ2、21および22、3用のポンプによる真空排気プログラムを適合させなければならない。しかし、そうすると、内部への搬送時間が長くなり、その結果、設備の全サイクル時間が長くなるが、この方法により、もっと大きな設備を作らなくても、過度の長さの基板を少なくとも処理することができる。
過度に長い基板に対する特殊な動作により、5つのチャンバを備える設備内のポンプによる真空排気が下記のステップにより行われる。それについて詳細に説明する。チャンバ2および21は一緒に大気圧から約0.05mbarにポンプにより真空排気される。そうするために、チャンバ2用のポンプによる真空排気プログラム中に、圧力切替点を15mbarから7mbarに下げなければならない。この場合には、チャンバ2用のポンプ・セットは、大気圧から7mbarに真空排気するだけで、その後でポンプ・セットとチャンバ2との間の弁が閉じられるが、同時に第2のポンプ・セットとチャンバ21との間の前に閉じられていた弁が開く。それというのも、チャンバ2のポンプ・セットは、大気圧からポンプによる真空排気を行うことができる羽根型回転ポンプから構成されているからである。羽根型回転ポンプとは別に、チャンバ21のポンプ・セットは、また、約7mbarでスタートする場合だけに接続しなければならないルーツ・ポンプも含む。増大した内部への搬送チャンバ2+21を約0.05mbarにポンプにより真空排気できるようにするために、両方のポンプ・セットを連続的に使用することができるが、標準動作の場合のように並列に動作しない。
チャンバ22および4への空気の流入およびポンプによる真空排気も類似の方法で行われる。
さらに、基板用の移送システムをもう1つの内部への搬送シーケンスに適合させなければならない。
5つのチャンバを備える設備20を過度に長い基板をコーティングするために使用する場合には、内部への搬送プロセス中、移送システムを1つのシステムとして同期して作動しなければならない。何故なら、そうしないと、基板上に掻き傷ができるからである。移送システムのあるセクションから、オンになっていない他のセクション上に基板を押し込む場合には、基板の下面の回転中のローラが引きずられるか、またはプレートが回転していないローラ上に押しつけられるかして、いずれの場合も擦り傷ができる。
過度に長い基板55に対する特殊な動作中、図4、図5の5つのチャンバを備える設備内での移送は以下のように行われる。標準動作中、チャンバ2および21内の移送装置34〜37および38〜41は、それぞれ、要件に従って相互に同期してまたは別々に動作する。この場合、両方の装置は1つのコヒーレントな移送装置のように扱われる。チャンバ2内で基板55の終端部が到着しても、無視しなければならない。すなわち、基板はチャンバ21内の終端部に達するまで移動しなければならない。この場合、チャンバ2および21内の移送装置の個々のセクションが相互に別々に動作することはない。他の基板の移送も類似の方法で行われる。
ポンプ、移送ローラ、ゲート等の制御は、好適には、制御コンピュータの形で市販されている内蔵プログラマブル制御装置(SPS)により行うことが好ましい。
このような制御装置により、極度に大きな工業用設備も、柔軟なプログラム(SPSプログラム・シーケンス)により制御することができる。設備の一部であるすべての測定システム、リミット・スイッチ、センサ、モータ、弁および制御装置等を、制御コンピュータの入力および出力に接続することができる。設備の制御装置自身は、これらの入力および出力を論理リンクを通して相互に接続し、必要な行動を正しい時間的シーケンスで行うプログラムにより引き継がれる。上記設備が異なる動作状態で制御できる場合には、ハードウェアを有意に変更する必要はない。固定切替点を有する圧力セルの代わりに、柔軟にプログラムすることができる圧力センサを使用する場合には、変更した圧力切替点を問い合わせる必要な新しい論理リンクのみを別のプログラム・シーケンス内に記憶し、別々にアドレス指定できるようにしなければならない。
基板の内部への搬送の場合には、正確な圧力測定は必要ではない。所望の圧力(例えば、15mbar)に到達しているということを示すセンサの信号だけで十分である。以前はこの目的のために固定圧力切替点を有する圧力セルが使用されていた。他の圧力切替点が必要な場合には、これらの圧力点に設定済みの追加の圧力セルを設置しなければならない。今日では、特定のプログラムの位置で、SPSプログラム内のその測定値が所望する圧力になっているかどうかを尋ねるだけの電子圧力計で十分である。
本発明のコンセプトは、原則として2n+1個のチャンバを含む設備にも適用することができる。ここで、nは整数である。7つのチャンバを有する設備も実際に実行することができる。もっと多くのチャンバを含む設備においては、消費時間は、サイクル時間の可能な短縮、従って生産性の増大にもはや合理的な関係を持っていない。
3つのチャンバを備えるコーティング設備の側面図。 5つのチャンバを備えるコーティング設備の側面図。 3つのチャンバを備えるコーティング設備の平面図。 5つのチャンバを備えるコーティング設備の平面図。 5つのチャンバを備えるコーティング設備の部分側断面図。

Claims (10)

  1. 内部への搬送チャンバ(2)、隣接するバッファ・チャンバ(21)、その上に隣接する処理チャンバ(3)、それに隣接するもう1つのバッファ・チャンバ(22)およびそれに隣接していて、開閉することができる前記チャンバ間に設置されているゲート(61,64,65,62)を含む外部への搬送チャンバ(4)を備えるインライン・コーティング設備を作動するための方法であって、前記内部への搬送チャンバ(2)、前記バッファ・チャンバ(21,22)および前記外部への搬送チャンバ(4)が、同じモジュールとしてまた指定の最大サイズまでの基板を収容するために開発され、前記モジュールより大きい基板(55)をコーティングするために、前記内部への搬送チャンバ(2)と前記バッファ・チャンバ(21)との間の前記ゲート(61)並びに前記バッファ・チャンバ(22)と前記外部への搬送チャンバ(4)との間の前記ゲート(62)が開き、前記バッファ・チャンバ(21,22)の圧力状態および前記内部への搬送チャンバ(2)または前記外部への搬送チャンバ(4)の圧力状態が相互に適合されることを特徴とする方法。
  2. 前記チャンバ(2,21,3,22,4)が、基板(55)用のそれ自身の移送装置(34〜37;38〜41;42〜53)を備え、これらの移送装置(34〜37;38〜41;42〜53)の移送速度を相互に一致させることを特徴とする、請求項1に記載の方法。
  3. 前記処理チャンバ(3)が少なくとも2つのスリット・ダイヤフラム(30,29)を備え、一方のスリット・ダイヤフラム(30)が前記処理チャンバ(33)本体の左の境界を形成し、他方のスリット・ダイヤフラム(29)が前記処理チャンバ(33)本体の右の境界を形成する、請求項1に記載の方法。
  4. 下記のステップ、すなわち、
    前記第1のバッファ・チャンバ(21)への入口のところの前記ゲート(61)、および前記第2のバッファ・チャンバ(22)と前記外部への搬送チャンバ(4)との間の前記ゲート(62)が開くステップと、
    前記内部への搬送チャンバ(2)の入口のところの前記ゲート(60)が開くステップと、
    前記内部への搬送チャンバ(2)または前記バッファ・チャンバ(21)の長さを越える長さの基板を、前記内部への搬送チャンバ(2)および前記バッファ・チャンバ(21)内に移送するステップと、
    前記内部への搬送チャンバ(2)の入口のところの前記ゲート(60)を閉じるステップと、
    前記内部への搬送チャンバ(2)が形成する空間、および前記処理チャンバ(3)への入口のところの前記ゲート(64)が閉じている場合に、前記バッファ・チャンバ(21)が指定の圧力に真空排気されるステップと、
    指定の圧力に達した場合に、前記処理チャンバ(3)の入口のところの前記ゲート(64)が開くステップと、
    前記基板(55)が前記処理チャンバ(3)内に移送され、前記処理チャンバ(3)の入口のところの前記ゲート(64)が再度閉じるステップと、
    前記基板(55)が前記処理チャンバ(3)内で加工されるステップと、
    前記処理チャンバ(3)の出口のところの前記ゲート(65)が開くステップと、
    前記加工された基板(55)が前記バッファ・チャンバ(22)と前記外部への搬送チャンバ(4)が形成する前記空間内に移動するステップと、
    前記処理チャンバ(3)の出口のところの前記ゲート(65)が閉じるステップと、
    前記外部への搬送チャンバ(4)の出口のところの前記ゲート(63)が開くステップと、
    前記加工された基板(55)が外部に移動するステップと、
    前記外部への搬送チャンバの出口のところの前記ゲート(63)が閉じるステップとを含むことを特徴とする、請求項1に記載の方法。
  5. 前記内部への搬送チャンバ(2)および前記バッファ・チャンバ(21)が形成する前記空間内に前記基板を内部に向け搬送した後で、また前記ゲート(60)が閉まった後で、前記内部への搬送チャンバ(2)に関連する前記ポンプ(9〜11)が、最初に大気圧から第1の指定の圧力への真空排気を行い、その後で、前記バッファ・チャンバ(21)に関連する前記ポンプ(23)が、前記処理チャンバ(3)の圧力にほぼ対応する圧力に真空排気を行うことを特徴とする、請求項4に記載の方法。
  6. 前記内部への搬送チャンバ(2)および前記バッファ・チャンバ(21)が形成する前記空間内の圧力が、最初に大気圧から約7mbarに下げられ、その後で同じ空間内の圧力が約0.05mbarに下げられることを特徴とする、請求項5に記載の方法。
  7. 前記内部への搬送チャンバ(2)の前記移送装置(34〜37)、および前記隣接するバッファ・チャンバ(21)の前記移送装置(38〜41)が同期して動作することを特徴とする、請求項1に記載の方法。
  8. 前記処理チャンバ(3)の前記移送装置(42〜53)が、前記内部への搬送チャンバ(2)および前記バッファ・チャンバ(21)の前記移送装置(34〜37;38〜41)と同じ速度で動作することを特徴とする、請求項7に記載の方法。
  9. すべてのチャンバ(2,21,3,22,4)内に、その圧力が制御装置によりチェックされる圧力計が設置され、この制御が指定の圧力に達した場合の切替動作により行われることを特徴とする、請求項1に記載の方法。
  10. 前記切替動作が、ゲートの開閉またはチャンバとポンプとの間に配置される弁の開閉であることを特徴とする、請求項9に記載の方法。
JP2004129265A 2004-02-21 2004-04-26 インライン・コーティング設備の作動方法 Expired - Lifetime JP4054003B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102004008598A DE102004008598B4 (de) 2004-02-21 2004-02-21 Verfahren für den Betrieb einer Inline-Beschichtungsanlage

Publications (2)

Publication Number Publication Date
JP2005232584A true JP2005232584A (ja) 2005-09-02
JP4054003B2 JP4054003B2 (ja) 2008-02-27

Family

ID=34745252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004129265A Expired - Lifetime JP4054003B2 (ja) 2004-02-21 2004-04-26 インライン・コーティング設備の作動方法

Country Status (10)

Country Link
US (1) US7638173B2 (ja)
EP (1) EP1571234B1 (ja)
JP (1) JP4054003B2 (ja)
KR (1) KR100615549B1 (ja)
CN (1) CN100396815C (ja)
AT (1) ATE398687T1 (ja)
DE (2) DE102004008598B4 (ja)
ES (1) ES2308085T3 (ja)
PT (1) PT1571234E (ja)
TW (1) TWI248982B (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012020881A (ja) * 2010-07-12 2012-02-02 Von Ardenne Anlagentechnik Gmbh 基盤処理装置
JP2017506289A (ja) * 2014-01-14 2017-03-02 アイラト ハミトビッチ ヒサモブ, 薄膜コーティング方法およびその実施のための製造ライン
KR20170113661A (ko) * 2015-02-13 2017-10-12 뷔흘러 알제나우 게엠베하 인라인 코팅 시스템을 작동하는 방법 및 인라인 코팅 시스템
JP2021034406A (ja) * 2019-08-15 2021-03-01 株式会社アルバック 真空処理装置

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005016405A1 (de) * 2005-04-08 2006-10-12 Von Ardenne Anlagentechnik Gmbh Vorrichtung zur Vakuumbeschichtung von Substraten unterschiedlicher Größe
CN1970828B (zh) * 2005-11-26 2010-05-26 鸿富锦精密工业(深圳)有限公司 在模具上形成多层镀膜的方法
EP1840936A1 (de) * 2006-03-29 2007-10-03 Applied Materials GmbH & Co. KG Sputterkammer zum Beschichten eines Substrats
KR100806840B1 (ko) * 2006-06-30 2008-02-22 세메스 주식회사 유기발광소자 증착장치 및 장치의 구동모듈 제어방법
DE102007013637B4 (de) 2007-03-19 2018-12-20 Ewald Dörken Ag Verfahren zum Beschichten von metallischen Werkstücken
DE112008000006A5 (de) * 2007-06-22 2009-05-14 Von Ardenne Anlagentechnik Gmbh Verfahren und Vorrichtung zum Schleusen eines Substrats in eine und aus einer Vakuumbeschichtungsanlage
WO2009004048A1 (de) * 2007-07-03 2009-01-08 Von Ardenne Anlagentechnik Gmbh Verfahren und vorrichtung zum schleusen überlanger substrate in einer vakuumbeschichtungsanlage
DE102009020512B4 (de) * 2009-05-08 2017-07-27 Von Ardenne Gmbh Durchlauf-Vakuumbeschichtungsanlage
CN102104088B (zh) * 2009-12-17 2014-03-12 吉林庆达新能源电力股份有限公司 一种太阳能电池生产中非晶硅薄膜的沉积方法
US9324597B2 (en) * 2010-04-30 2016-04-26 Applied Materials, Inc. Vertical inline CVD system
DE102011011279A1 (de) 2011-02-15 2012-08-16 Von Ardenne Anlagentechnik Gmbh Apparatur zur Leitung des Gasstromes beim Belüften innerhalb eines Vakuumgehäuses
DE102015013799A1 (de) 2015-10-26 2017-04-27 Grenzebach Maschinenbau Gmbh Vorrichtung und Verfahren zum Beschichten überlanger flächenhafter Substrate, insbesondere Glasscheiben, in einer Vakuum-Beschichtungsanlage
DE202015007404U1 (de) 2015-10-26 2015-11-11 Grenzebach Maschinenbau Gmbh Vorrichtung zum Beschichten überlanger flächenhafter Substrate, insbesondere Glasscheiben, in einer Vakuum-Beschichtungsanlage
DE102016109510B4 (de) 2016-05-24 2018-07-19 VON ARDENNE Asset GmbH & Co. KG Vakuumprozessieranlage und Verfahren zum schubweisen Einschleusen und Ausschleusen von Substraten
CN108396294B (zh) * 2018-01-26 2021-12-10 中国科学院物理研究所 一种薄膜沉积***及控制方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4274936A (en) * 1979-04-30 1981-06-23 Advanced Coating Technology, Inc. Vacuum deposition system and method
US4405435A (en) * 1980-08-27 1983-09-20 Hitachi, Ltd. Apparatus for performing continuous treatment in vacuum
JPH0791642B2 (ja) 1986-10-15 1995-10-04 石川島播磨重工業株式会社 表面処理装置
JP2948842B2 (ja) * 1989-11-24 1999-09-13 日本真空技術株式会社 インライン型cvd装置
US5489369A (en) * 1993-10-25 1996-02-06 Viratec Thin Films, Inc. Method and apparatus for thin film coating an article
US5753092A (en) * 1996-08-26 1998-05-19 Velocidata, Inc. Cylindrical carriage sputtering system
JP4316767B2 (ja) * 2000-03-22 2009-08-19 株式会社半導体エネルギー研究所 基板処理装置
DE20022564U1 (de) * 2000-06-08 2001-12-06 Von Ardenne Anlagentechnik GmbH, 01324 Dresden Vorrichtung zur defektfreien Beschichtung von Substraten
JP4856308B2 (ja) * 2000-12-27 2012-01-18 キヤノンアネルバ株式会社 基板処理装置及び経由チャンバー
JP2002309372A (ja) * 2001-04-13 2002-10-23 Canon Inc インライン式成膜装置、成膜方法及び液晶素子
JP2003119562A (ja) * 2001-08-14 2003-04-23 Samsung Corning Co Ltd インラインスパッタリング装置及びスパッタリング方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012020881A (ja) * 2010-07-12 2012-02-02 Von Ardenne Anlagentechnik Gmbh 基盤処理装置
US8851274B2 (en) 2010-07-12 2014-10-07 Von Ardenne Anlagentechnik Gmbh Substrate treatment system
JP2017506289A (ja) * 2014-01-14 2017-03-02 アイラト ハミトビッチ ヒサモブ, 薄膜コーティング方法およびその実施のための製造ライン
KR20170113661A (ko) * 2015-02-13 2017-10-12 뷔흘러 알제나우 게엠베하 인라인 코팅 시스템을 작동하는 방법 및 인라인 코팅 시스템
JP2018505563A (ja) * 2015-02-13 2018-02-22 ビューラー アルツェナウ ゲゼルシャフト ミット ベシュレンクテル ハフツングBuehler Alzenau GmbH インライン式コーティング設備を運転する方法およびインライン式コーティング設備
US10150139B2 (en) 2015-02-13 2018-12-11 Bühler Alzenau Gmbh Method for operating an inline coating system and inline coating system
KR102062441B1 (ko) * 2015-02-13 2020-01-03 뷔흘러 알제나우 게엠베하 인라인 코팅 시스템을 작동하는 방법 및 인라인 코팅 시스템
JP2021034406A (ja) * 2019-08-15 2021-03-01 株式会社アルバック 真空処理装置
JP7290509B2 (ja) 2019-08-15 2023-06-13 株式会社アルバック 真空処理装置

Also Published As

Publication number Publication date
JP4054003B2 (ja) 2008-02-27
EP1571234A2 (de) 2005-09-07
TW200528573A (en) 2005-09-01
DE102004008598A1 (de) 2005-09-15
KR20050083126A (ko) 2005-08-25
US20050186346A1 (en) 2005-08-25
PT1571234E (pt) 2008-09-30
ATE398687T1 (de) 2008-07-15
EP1571234A3 (de) 2006-06-21
CN100396815C (zh) 2008-06-25
KR100615549B1 (ko) 2006-08-25
ES2308085T3 (es) 2008-12-01
DE502004007384D1 (de) 2008-07-31
DE102004008598B4 (de) 2006-12-28
TWI248982B (en) 2006-02-11
CN1657647A (zh) 2005-08-24
EP1571234B1 (de) 2008-06-18
US7638173B2 (en) 2009-12-29

Similar Documents

Publication Publication Date Title
JP4054003B2 (ja) インライン・コーティング設備の作動方法
US4274936A (en) Vacuum deposition system and method
JP4916140B2 (ja) 真空処理システム
JPS63277762A (ja) ダイアル蒸着・処理装置
KR20190053293A (ko) 코팅 장치 및 방법
CN102569016A (zh) 真空处理装置
WO2015158384A1 (en) Load lock chamber for a vacuum processing system and vacuum processing system
KR20120096101A (ko) 진공 배기 장치 및 진공 배기 방법, 그리고 기판 처리 장치
JP4472005B2 (ja) 真空処理装置及び真空処理方法
JPS61170568A (ja) 連続真空処理装置
US6843883B2 (en) Vacuum processing apparatus and method for producing an object to be processed
KR20070075935A (ko) 기판처리장치의 진공펌핑 시스템 및 이를 이용한이송챔버의 진공펌핑 방법
JP2012146721A (ja) 真空処理装置
JP6718755B2 (ja) 真空処理装置およびその運転方法
JPH0982594A (ja) 半導体製造装置における室内減圧方法
JP4429748B2 (ja) サークルライン型真空成膜装置
JPH0362944A (ja) 基板処理装置
WO2019052669A1 (en) SYSTEM AND METHOD FOR VACUUM PROCESSING
JP5231903B2 (ja) プラズマ処理装置
JPH0330320A (ja) 気相化学反応生成装置のロードロック機構
JPS6210270A (ja) スパツタ装置
JP2005206854A (ja) インライン型成膜装置及び成膜装置用ユニット
US9096934B1 (en) Load lock with variable conductance valve
JP2014145121A (ja) 真空処理装置
KR20040083623A (ko) 반도체 제조 장치

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20070921

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20070927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4054003

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131214

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term