JP2005228984A - Annular insulating board and coil using the same - Google Patents

Annular insulating board and coil using the same Download PDF

Info

Publication number
JP2005228984A
JP2005228984A JP2004037297A JP2004037297A JP2005228984A JP 2005228984 A JP2005228984 A JP 2005228984A JP 2004037297 A JP2004037297 A JP 2004037297A JP 2004037297 A JP2004037297 A JP 2004037297A JP 2005228984 A JP2005228984 A JP 2005228984A
Authority
JP
Japan
Prior art keywords
ring
insulating
plate
electrodeposition
shaped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004037297A
Other languages
Japanese (ja)
Other versions
JP4737938B2 (en
Inventor
Moo Soo Win
モー ソー ウィン
Shintaro Nakajima
慎太郎 中島
Toshiyuki Goshima
敏之 五島
Masanori Fujii
政徳 藤井
Yoshiji Miyashita
芳次 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PI R&D Co Ltd
Mitsubishi Cable Industries Ltd
Original Assignee
PI R&D Co Ltd
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PI R&D Co Ltd, Mitsubishi Cable Industries Ltd filed Critical PI R&D Co Ltd
Priority to JP2004037297A priority Critical patent/JP4737938B2/en
Publication of JP2005228984A publication Critical patent/JP2005228984A/en
Application granted granted Critical
Publication of JP4737938B2 publication Critical patent/JP4737938B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Insulating Of Coils (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an annular insulating board, having superior dielectric strength properties, heat-resistance properties, and processing resistance, and to provide a compact and lightweight coil having superior dielectric strength properties and heat-resisting properties. <P>SOLUTION: The annular insulating board has an insulating coating layer 5 provided at least on the surface of an annular flat board 3 of a conductor board 1, which has a planar cross section and includes the annular flat board 3 having an opening. The insulating layer 5 contains a siloxane bond in a principal chain and comprises an electrodeposited film of a block mixed polyamide having an anionic group in a molecule. The electrodeposited film of block mixed polyamide, which contains siloxane bond in a principal chain and has an anionic group in the molecule, has superior heat-resisting properties and dielectric strength properties, even if the film has a relatively small thickness. Consequently, a coil which is sufficiently reduced in both the size and the weight can be obtained, by stacking a plurality of the annular insulating boards. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明はリング状絶縁板および該絶縁板を積層してなるコイルに関する。   The present invention relates to a ring-shaped insulating plate and a coil formed by stacking the insulating plates.

近年、電子機器の小型化・高性能化に伴い、例えば、駆動モーター、各種のトランス、ソレノイド等に使用されるコイルはより小型・軽量であることが望まれている。   In recent years, with the miniaturization and high performance of electronic devices, for example, coils used for drive motors, various transformers, solenoids, and the like are desired to be smaller and lighter.

本願の出願人は、以前、平角状導線にアクリル系水分散樹脂ワニスの電着によって絶縁被膜を形成してなる平角状薄膜絶縁電線を提案した(特許文献1)。そこで、本発明者等はかかる平角状絶縁電線をエッジワイズコイル巻きしてコイルを作製することを試みた。しかし、このような方法では、導線への絶縁塗装(電着)工程、コイル巻き工程等におけるコストが高くなり、また、製造されるコイルの形態も限定されてしまう。また、アクリル系水分散樹脂ワニスの電着被膜を設けた平角状薄膜絶縁電線は、アクリル系水分散樹脂ワニスを使用することで、平角状導体の平坦部を覆う絶縁被膜の厚みよりもコーナー部を覆う絶縁被膜の厚みを大きくし、それによって耐電圧性が低下しやすいコーナー部の耐電圧性を向上させたものであり、該電線をエッジワイズコイル巻きして得られるコイルは耐電圧性は良好であるが、隣接する巻線の間に比較的大きな隙間が形成されることから、コイルを十分に小型化することができなかった。また、アクリル系水分散樹脂ワニスの電着被膜はある程度の耐熱性を示すが十分とは言い難く、十分に高い耐熱性を有するコイルを得ることは困難であった。   The applicant of the present application has previously proposed a rectangular thin-film insulated wire formed by forming an insulating coating on a rectangular conductive wire by electrodeposition of an acrylic water-dispersed resin varnish (Patent Document 1). Accordingly, the present inventors tried to produce a coil by winding such a rectangular insulated wire with an edgewise coil. However, in such a method, the cost in the process of insulating coating (electrodeposition) on the conducting wire, the coil winding process, etc. is increased, and the form of the coil to be manufactured is also limited. In addition, the rectangular thin-film insulated wire provided with the electrodeposition coating of acrylic water-dispersed resin varnish uses an acrylic water-dispersed resin varnish so that the corner portion is larger than the thickness of the insulating coating covering the flat portion of the rectangular conductor. The insulation film covering the wire is increased in thickness, thereby improving the withstand voltage of the corner portion where the withstand voltage tends to be lowered. Although it was good, a relatively large gap was formed between adjacent windings, so that the coil could not be sufficiently reduced in size. Further, the electrodeposition coating of the acrylic water-dispersed resin varnish shows a certain degree of heat resistance, but it is difficult to obtain a coil having sufficiently high heat resistance.

一方、予め電着により絶縁被膜を形成した鋼板(導電板)を打抜いてリング状絶縁板を得、該絶縁板を積層してコイルを作製することが提案されている(特許文献2)。しかし、予め電着により絶縁被膜を形成した鋼板(導電板)を打抜いて絶縁板を作製すると、打抜きによって絶縁被膜が剥離したり、また、打抜き加工時には剥離しなくとも、絶縁被膜と鋼板(導電板)間の密着力が低下することから、製品の実使用時に絶縁被膜が剥離する等の問題を生じることがある。このような問題を解消するために、導電板から打抜いた導電板に電着によって絶縁被膜を形成してリング状絶縁板を形成し、該絶縁板を積層してコイルを作製することが考えられる。しかし、一般に、電着で板材に対して絶縁被膜を形成した場合、板材のコーナー部の被膜厚みは平坦部のそれよりも薄くなる傾向にあり、リング状絶縁板の電解集中が生じ易いコーナー部の耐電圧性を確保するためには、例えば、特許文献1と同様のアクル系水分散樹脂ワニスの電着によって、導電板のコーナー部を覆う絶縁被膜の厚みを平坦部を覆う絶縁被膜のそれよりも大きくする必要がある。しかし、こうして作製した絶縁板は、導電板のコーナー部を覆う絶縁被膜の厚みが平坦部を覆う絶縁被膜のそれよりも大きくなるめに、絶縁板を複数枚積層してコイルを形成すると、隣接する絶縁板の間に隙間が形成されて、コイルを十分に小型化できなかった。
特公平7−120491号公報 特開平7−2252号公報
On the other hand, it has been proposed to punch a steel plate (conductive plate) on which an insulating film has been previously formed by electrodeposition to obtain a ring-shaped insulating plate, and to laminate the insulating plate to produce a coil (Patent Document 2). However, when an insulating plate is manufactured by punching a steel plate (conductive plate) on which an insulating coating has been formed in advance by electrodeposition, the insulating coating and the steel plate ( Since the adhesive strength between the conductive plates is reduced, problems such as peeling off of the insulating coating may occur during actual use of the product. In order to solve such a problem, it is considered to form a ring-shaped insulating plate by forming an insulating film by electrodeposition on a conductive plate punched out from the conductive plate, and stacking the insulating plates to produce a coil. It is done. However, in general, when an insulating coating is formed on a plate material by electrodeposition, the coating thickness of the corner portion of the plate material tends to be thinner than that of the flat portion, and the corner portion where electrolytic concentration of the ring-shaped insulating plate is likely to occur. In order to ensure the withstand voltage, the thickness of the insulating coating covering the corner portion of the conductive plate is reduced to that of the insulating coating covering the flat portion by, for example, electrodeposition of an aclu-based water-dispersed resin varnish similar to Patent Document 1. Need to be bigger than. However, the insulating plate produced in this way is adjacent to the insulating plate when a coil is formed by stacking a plurality of insulating plates so that the thickness of the insulating coating covering the corner portion of the conductive plate is larger than that of the insulating coating covering the flat portion. A gap was formed between the insulating plates, and the coil could not be sufficiently miniaturized.
Japanese Patent Publication No.7-120491 Japanese Patent Laid-Open No. 7-2252

上記事情に鑑み、本発明は、耐電圧性及び耐熱性に優れたリング状絶縁板及び該絶縁板を用いた耐電圧性及び耐熱性に優れたコイルを提供することを目的とする。また、耐電圧性、耐熱性及び加工耐性に優れたリング状絶縁板及び該絶縁板を用いた耐電圧性及び耐熱性に優れた小型・軽量のコイルを提供することを目的とする。   In view of the above circumstances, an object of the present invention is to provide a ring-shaped insulating plate excellent in voltage resistance and heat resistance and a coil excellent in voltage resistance and heat resistance using the insulating plate. It is another object of the present invention to provide a ring-shaped insulating plate excellent in voltage resistance, heat resistance and processing resistance, and a small and light coil excellent in voltage resistance and heat resistance using the insulating plate.

本発明者等は、上記の目的を達成すべく鋭意研究した結果、ポリイミドの主鎖中にシロキサン結合を含有し、分子中にアニオン性基を有するブロック共重合ポリイミドを主成分とする電着液を電着して得られる絶縁被膜は耐電圧性に優れるとともに、耐熱性が極めて高く、しかも、優れた可撓性を示すことを知見し、該知見に基き本発明を完成させた。   As a result of diligent research to achieve the above object, the present inventors have found that the electrodeposition liquid mainly contains a block copolymerized polyimide containing a siloxane bond in the main chain of the polyimide and an anionic group in the molecule. It was found that the insulating coating obtained by electrodeposition was excellent in voltage resistance, extremely high in heat resistance and excellent in flexibility, and the present invention was completed based on the knowledge.

すなわち、本発明は以下の通りである。
(1)断面形状が平角状の導電板であって、平面形状が開放部を有するリング状の平板部を含む導電板の少なくとも前記リング状の平板部の表面に絶縁被覆層を設けたリング状絶縁板であって、
前記絶縁被覆層が、ポリイミドの主鎖中にシロキサン結合を含有し、かつ、分子中にアニオン性基を有するブロック共重合ポリイミドの電着被膜からなることを特徴とする、リング状絶縁板。
(2)導電板が打ち抜き加工によって作製されたものである、上記(1)記載のリング状絶縁板。
(3)導電板の平面形状が開放部を有するリング状の平板部が複数のコーナー部を有するリング状である、上記(1)又は(2)記載のリング状絶縁板。
(4)導電板へのブロック共重合ポリイミドの電着後、導電板のブロック共重合ポリイミドの電着被膜による絶縁被覆層が形成された部分に折曲げ加工が施されたものである、上記(1)〜(3)のいずれか一項記載のリング状絶縁板。
(5)導電板が、平面形状が開放部を有するリング状の平板部と、該平板部の一部より該平板部と同一平面内に延設された端子用の延長平板部とを有し、該端子用の延長平板部の軸線方向の先端に区画した端子部を除いて、ブロック共重合ポリイミドの電着被膜による絶縁被覆層で該導電板の表面が被覆されており、かつ、ブロック共重合ポリイミドの電着後に導電板の前記端子部の近傍に折曲げ加工が施されて、前記端子部の軸線と前記リング状の平板部の軸線とが異なる平面内に配置されている、上記(1)〜(3)のいずれか一項記載のリング状絶縁板。
(6)上記(1)〜(5)のいずれか一項記載のリング状絶縁板の1枚からなるか、または該リング状絶縁板を複数枚積層してなるコイル。
(7)トランス用である、上記(6)記載のコイル。
That is, the present invention is as follows.
(1) A ring-shaped conductive plate having a flat rectangular cross-section, and having an insulating coating layer on at least the surface of the ring-shaped flat plate portion of the conductive plate including a ring-shaped flat plate portion having an open portion in the planar shape. An insulating plate,
A ring-shaped insulating plate, wherein the insulating coating layer is made of an electrodeposited coating of a block copolymerized polyimide containing a siloxane bond in the main chain of the polyimide and having an anionic group in the molecule.
(2) The ring-shaped insulating plate according to (1) above, wherein the conductive plate is produced by punching.
(3) The ring-shaped insulating plate according to (1) or (2), wherein the planar shape of the conductive plate is a ring shape in which a ring-shaped flat plate portion having an open portion has a plurality of corner portions.
(4) After the electrodeposition of the block copolymerized polyimide on the conductive plate, the portion where the insulating coating layer is formed by the electrodeposited coating of the block copolymerized polyimide on the conductive plate is subjected to bending processing, The ring-shaped insulating plate according to any one of 1) to (3).
(5) The conductive plate has a ring-shaped flat plate portion having an open portion in a planar shape, and an extended flat plate portion for a terminal extending in the same plane as the flat plate portion from a part of the flat plate portion. The surface of the conductive plate is covered with an insulating coating layer of an electrodeposition coating of a block copolymerized polyimide, except for the terminal portion partitioned at the tip in the axial direction of the extension flat plate portion for the terminal. Bending is performed in the vicinity of the terminal portion of the conductive plate after electrodeposition of the polymerized polyimide, and the axis of the terminal portion and the axis of the ring-shaped flat plate portion are arranged in different planes, The ring-shaped insulating plate according to any one of 1) to (3).
(6) A coil formed of one of the ring-shaped insulating plates according to any one of (1) to (5) or a laminate of a plurality of the ring-shaped insulating plates.
(7) The coil according to (6), which is used for a transformer.

本発明のリング状絶縁板によれば、ポリイミドの主鎖中にシロキサン結合を含有し、分子中にアニオン性基を有するブロック共重合ポリイミドの電着被膜による絶縁被覆層が極めて良好な耐熱性と優れた耐電圧性を有することから、十分に高い耐熱性と優れた耐電圧性を兼ね備えた絶縁板を実現できる。
また、ポリイミドの主鎖中にシロキサン結合を含有し、分子中にアニオン性基を有するブロック共重合ポリイミドの電着被膜は、優れた可撓性をも有することから、絶縁板に折曲げ加工を付しても、絶縁被覆層に剥離や割れが生じ難く、従って、十分に高い耐熱性と優れた耐電圧性を有し、しかも、耐折曲げ加工性も良好なリング状絶縁板を実現できる。
さらにまた、ポリイミドの主鎖中にシロキサン結合を含有し、分子中にアニオン性基を有するブロック共重合ポリイミドの電着被膜は、比較的薄い厚みでも良好な耐熱性及び耐電圧性を示すことから、従来のこの種の用途に使用されてきた電着被膜よりも薄膜にして同等の耐熱性及び耐電圧性を得ることができる。従って、本発明の絶縁板1枚をそのまま使用するか、または、複数枚積層することで、小型且つ軽量の高耐熱性及び高耐電圧性のコイルを得ることができる。
さらにまた、ポリイミドの主鎖中にシロキサン結合を含有し、分子中にアニオン性基を有するブロック共重合ポリイミドの電着被膜は、極めて良好な耐熱性を示すことから、本発明の絶縁板によれば、絶縁板の積層枚数を従来よりも少なくして従来と同等機能のコイルを実現でき、コイルのより一層の小型化及び/又は軽量化を図ることができる。
According to the ring-shaped insulating plate of the present invention, the insulating coating layer by the electrodeposition coating of the block copolymer polyimide containing a siloxane bond in the main chain of the polyimide and having an anionic group in the molecule has extremely good heat resistance. Since it has excellent voltage resistance, it is possible to realize an insulating plate having both sufficiently high heat resistance and excellent voltage resistance.
In addition, the electrodeposited coating of block copolymerized polyimide containing a siloxane bond in the main chain of the polyimide and an anionic group in the molecule also has excellent flexibility. Even if it is attached, it is difficult for peeling and cracking to occur in the insulating coating layer. Therefore, it is possible to realize a ring-shaped insulating plate having sufficiently high heat resistance and excellent voltage resistance, and also having good bending resistance. .
Furthermore, the electrodeposition film of block copolymerized polyimide containing a siloxane bond in the main chain of the polyimide and an anionic group in the molecule shows good heat resistance and voltage resistance even at a relatively thin thickness. It is possible to obtain the same heat resistance and voltage resistance by making the electrodeposition film thinner than the conventional electrodeposition coating used for this type of application. Therefore, by using one insulating plate of the present invention as it is or by laminating a plurality of sheets, a small and lightweight high heat resistance and high voltage resistance coil can be obtained.
Furthermore, the electrodeposited film of block copolymerized polyimide containing a siloxane bond in the main chain of the polyimide and having an anionic group in the molecule exhibits extremely good heat resistance. For example, it is possible to realize a coil having the same function as the conventional one by reducing the number of laminated insulating plates as compared with the prior art, and to further reduce the size and / or weight of the coil.

以下、本発明をより詳細に説明する。
本発明のリング状絶縁板は、断面形状が平角状の導電板であって、平面形状が開放部を有するリング状の平板部を含む導電板を使用し、該導電板の少なくとも前記平面形状が開放部を有するリング状の平板部の表面に、ポリイミドの主鎖中にシロキサン結合を含有し、かつ、分子中にアニオン性基を有するブロック共重合ポリイミド(以下、「シロキサン結合含有ブロック共重合ポリイミド」とも略称する。)の電着被膜による絶縁被覆層を形成したものである。
Hereinafter, the present invention will be described in more detail.
The ring-shaped insulating plate of the present invention is a conductive plate having a flat cross-sectional shape, and a conductive plate including a ring-shaped flat plate portion having an open portion in a planar shape, and at least the planar shape of the conductive plate is A block copolymerized polyimide containing a siloxane bond in the main chain of the polyimide and an anionic group in the molecule (hereinafter referred to as “a block copolymerized polyimide containing a siloxane bond” on the surface of the ring-shaped flat plate part having an open part. Is also abbreviated as “.”).

ここで、「ブロック共重合ポリイミド」とは、テトラカルボン酸ジ無水物とジアミンとを加熱してイミドオリゴマーを生成させ(第1段階反応)、次いでこれに前記のテトラカルボン酸ジ無水物と同一若しくは異なるテトラカルボン酸ジ無水物又は/及び前記のジアミンとは異なるジアミンを加えて反応(第2段階反応)することによって、アミック酸間で起る交換反応に起因するランダム共重合化を防止して得られる、共重合ポリイミドのことを意味し、「電着被膜」とは、「ワニス(電着液)を電着して得られる塗膜に加熱処理(焼付け処理)を施して得られる絶縁被膜」のことを意味する。また、導電板の「平面形状が開放部を有するリング状の平板部」とは、その表面が絶縁被覆層で被膜されることによってコイル要素として機能する導電板の主部(機能部)のことである。なお、以下の説明において、「平面形状が開放部を有するリング状の平板部」は「リング状の平板部」と略称することがある。   Here, “block copolymerized polyimide” means that a tetracarboxylic dianhydride and a diamine are heated to form an imide oligomer (first stage reaction), and then the same as the tetracarboxylic dianhydride described above. Alternatively, by reacting with different tetracarboxylic dianhydrides or / and diamines different from the above diamines (second stage reaction), random copolymerization caused by exchange reaction occurring between amic acids can be prevented. The term “electrodeposition coating” means “insulation obtained by subjecting a coating obtained by electrodeposition of a varnish (electrodeposition solution) to heat treatment (baking treatment)” It means “film”. In addition, the “ring-shaped flat plate portion having a planar shape with an open portion” of the conductive plate is a main portion (functional portion) of the conductive plate that functions as a coil element by coating its surface with an insulating coating layer. It is. In the following description, “a ring-shaped flat plate portion having a planar shape having an open portion” may be abbreviated as “a ring-shaped flat plate portion”.

本発明のリング状絶縁板は、絶縁被覆層として設けたシロキサン結合含有ブロック共重合ポリイミドの電着被膜が極めて良好な耐熱性と優れた耐電圧性を有し、しかも、導電板の平角状断面の平坦部(平坦面)だけでなくコーナー部をも良好に被覆するので、十分に高い耐熱性と優れた耐電圧性を兼ね備えた絶縁板となる。また、シロキサン結合含有ブロック共重合ポリイミドの電着被膜は、優れた可撓性をも有するため、電着後の絶縁板(すなわち、導電板に該電着被膜による絶縁被覆層を設けて得られた絶縁板)に折曲げ加工を加えても、該電着被膜による絶縁被覆に剥離や割れが生じ難くなり、従って、十分に高い耐熱性と優れた耐電圧性を有するだけでなく、耐折曲げ加工性も良好な絶縁板となる。   In the ring-shaped insulating plate of the present invention, a siloxane bond-containing block copolymerized polyimide electrodeposition coating provided as an insulating coating layer has extremely good heat resistance and excellent voltage resistance, and the rectangular cross section of the conductive plate Since not only the flat portion (flat surface) but also the corner portion is satisfactorily covered, the insulating plate has both sufficiently high heat resistance and excellent voltage resistance. In addition, since the electrodeposition coating of the block copolymerized polyimide containing a siloxane bond also has excellent flexibility, it can be obtained by providing an insulating coating layer after electrodeposition (that is, by providing an insulating coating layer by the electrodeposition coating on the conductive plate). Even if the insulating plate is bent, it is difficult for the insulating coating by the electrodeposition coating to be peeled off or cracked. Therefore, not only has sufficiently high heat resistance and excellent voltage resistance, It becomes an insulating plate with good bending workability.

また、本発明のリング状絶縁板においては、シロキサン結合含有ブロック共重合ポリイミドの電着被膜が比較的薄い厚みでも優れた耐熱性及び耐電圧性を示すため、従来のこの種の用途に使用されてきた電着液(樹脂ワニス)による電着被膜よりも薄膜にして同等の耐熱性及び耐電圧性を得ることが可能である。従って、本発明のリング状絶縁板一枚でコイルを構成するか、又は、複数枚積層してコイルを構成することで、従来よりもコイルの小型化及び/又は軽量化を図ることができる。また、シロキサン結合含有ブロック共重合ポリイミドの電着被膜は極めて高い耐熱性を示すため、絶縁板の枚数を従来よりも少なくでき、コイルをより一層小型化することができる。   Further, in the ring-shaped insulating plate of the present invention, the electrodeposition coating of the siloxane bond-containing block copolymerized polyimide exhibits excellent heat resistance and voltage resistance even with a relatively thin thickness, and thus is used for this type of conventional application. It is possible to obtain the same heat resistance and voltage resistance by making the film thinner than the electrodeposition coating by the electrodeposition liquid (resin varnish). Therefore, the coil can be formed with one ring-shaped insulating plate of the present invention, or a coil can be formed by stacking a plurality of sheets, so that the coil can be made smaller and / or lighter than before. In addition, since the electrodeposition film of siloxane bond-containing block copolymerized polyimide exhibits extremely high heat resistance, the number of insulating plates can be reduced as compared with the conventional one, and the coil can be further miniaturized.

本発明において、ポリイミドの主鎖中にシロキサン結合を含有し、分子中にアニオン性基を有するブロック共重合ポリイミド(シロキサン結合含有ブロック共重合ポリイミド)は、主鎖中のシロキサン結合がテトラカルボン酸ジ無水物成分由来のシロキサン結合であっても、ジアミン成分由来のシロキサン結合であってもよいが、好ましくはジアミン成分由来のシロキサン結合であり、通常、ジアミン成分の少なくとも一部に、分子骨格中にシロキサン結合(−Si−O−)を有するジアミン化合物(以下、「シロキサン結合含有ジアミン化合物」とも呼ぶことがある。)を用いて得られたブロック共重合ポリイミドである。   In the present invention, a block copolymerized polyimide containing a siloxane bond in the main chain of the polyimide and having an anionic group in the molecule (a siloxane bond-containing block copolymerized polyimide) has a siloxane bond in the main chain of tetracarboxylic acid dicarboxylic acid. Although it may be a siloxane bond derived from an anhydride component or a siloxane bond derived from a diamine component, it is preferably a siloxane bond derived from a diamine component, and usually in at least a part of the diamine component in the molecular skeleton. It is a block copolymerized polyimide obtained by using a diamine compound having a siloxane bond (—Si—O—) (hereinafter also referred to as “siloxane bond-containing diamine compound”).

シロキサン結合含有ジアミン化合物としては、テトラカルボン酸ジ無水物との間でイミド化し得るものであれば特に制限なく使用できるが、例えば、ビス(4−アミノフェノキシ)ジメチルシラン、1,3−ビス(4−アミノフェノキシ)−1,1,3,3−テトラメチルジシロキサン、及び一般式(I):   The siloxane bond-containing diamine compound can be used without particular limitation as long as it can be imidized with a tetracarboxylic dianhydride. For example, bis (4-aminophenoxy) dimethylsilane, 1,3-bis ( 4-aminophenoxy) -1,1,3,3-tetramethyldisiloxane and the general formula (I):

Figure 2005228984
Figure 2005228984

(式中、Rは、それぞれ独立して、アルキル基、シクロアルキル基、フェニル基、又は1個ないし3個のアルキル基若しくはアルコキシル基で置換されたフェニル基を表し、l及びmはそれぞれ独立して1〜4の整数を表し、nは1〜20の整数を表す。)で表される化合物が挙げられる。当該一般式(I)で表される化合物は、式中nが1又は2の単一化合物、及びポリシロキサンジアミンを含む。 (In the formula, each R independently represents an alkyl group, a cycloalkyl group, a phenyl group, or a phenyl group substituted with 1 to 3 alkyl groups or alkoxyl groups, and l and m are each independently And an integer of 1 to 4 and n represents an integer of 1 to 20.). The compound represented by the general formula (I) includes a single compound in which n is 1 or 2, and polysiloxane diamine.

式(I)中のRにおいて、アルキル基、シクロアルキル基の炭素数は1〜6が好ましく、1〜2がより好ましい。また、1個ないし3個のアルキル基若しくはアルコキシル基で置換されたフェニル基における、1個ないし3個のアルキル基若しくはアルコキシル基は、それが2又は3個の場合、互いに同一であっても異なってもよい。また、アルキル基、アルコキシル基は、それぞれ、炭素数が1〜6が好ましく、1〜2がより好ましい。   In R in Formula (I), the alkyl group and the cycloalkyl group preferably have 1 to 6 carbon atoms, and more preferably 1 to 2 carbon atoms. In the phenyl group substituted with 1 to 3 alkyl groups or alkoxyl groups, 1 to 3 alkyl groups or alkoxyl groups may be the same or different when they are 2 or 3 May be. Moreover, as for an alkyl group and an alkoxyl group, C1-C6 is respectively preferable, and 1-2 are more preferable.

一般式(I)で表される化合物は、式中のRがアルキル基(特にメチル基)又はフェニル基であるのが好ましく、また、式中l及びmが2〜3、nが5〜15にあるポリシロキサンジアミンが好ましい。   In the compound represented by the general formula (I), R in the formula is preferably an alkyl group (particularly a methyl group) or a phenyl group, and in the formula, l and m are 2 to 3, and n is 5 to 15 The polysiloxane diamine in

ポリシロキサンジアミンの好ましい例としては、ビス(γ−アミノプロピル)ポリジメチルシロキサン(式(I)中、l及びmが3、Rがメチル基のもの。)、ビス(γ−アミノプロピル)ポリジフェニルシロキサン(式(I)中、l及びmが3、Rがフェニル基のもの。)が挙げられる。   Preferred examples of the polysiloxane diamine include bis (γ-aminopropyl) polydimethylsiloxane (in the formula (I), l and m are 3, and R is a methyl group), bis (γ-aminopropyl) polydiphenyl Siloxane (in the formula (I), 1 and m are 3, and R is a phenyl group).

本発明において、シロキサン結合含有ジアミン化合物はいずれか一種の化合物を単独で使用しても、2種以上を併用して使用してもよく、特に好ましいものは、ビス(4−アミノフェノキシ)ジメチルシラン、1,3−ビス(4−アミノフェノキシ)−1、1、3、3−テトラメチルジシロキサン、及び前記の一般式(I)で表される化合物よりなる群から選ばれる化合物である。   In the present invention, the siloxane bond-containing diamine compound may be used alone or in combination of two or more. A particularly preferred one is bis (4-aminophenoxy) dimethylsilane. 1,3-bis (4-aminophenoxy) -1,1,3,3-tetramethyldisiloxane and a compound selected from the group consisting of the compounds represented by formula (I).

なお、本発明において、シロキサン結合含有ジアミン化合物は、市販品を使用してもよく、信越化学工業社、東レ・ダウコーニング社、チッソ社から販売されているものをそのまま使用できる。具体的には、信越化学工業社製のKF−8010(ビス(γ−アミノプロピル)ポリジメチルシロキサン:アミノ基当量約450)、X−22−161A(ビス(γ−アミノプロピル)ポリジメチルシロキサン:アミノ基当量約840)等が挙げられる。   In the present invention, as the siloxane bond-containing diamine compound, commercially available products may be used, and those sold by Shin-Etsu Chemical Co., Toray Dow Corning, Chisso may be used as they are. Specifically, KF-8010 (bis (γ-aminopropyl) polydimethylsiloxane: amino group equivalent of about 450), X-22-161A (bis (γ-aminopropyl) polydimethylsiloxane: Shin-Etsu Chemical Co., Ltd .: Amino group equivalent of about 840) and the like.

本発明において、シロキサン結合含有ブロック共重合ポリイミドは、例えば、シロキサン結合含有ジアミン化合物を少なくとも含むジアミン化合物と、テトラカルボン酸ジ無水物とを略等量用い、ラクトン及び塩基よりなる触媒の存在下、有機極性溶媒中、加熱、重縮合することで得られる。すなわち、第1段階でテトラカルボン酸ジ無水物とジアミン化合物を加熱してイミドオリゴマーを生成させ、次いで、ジアミン化合物又は/及びテトラカルボン酸ジ無水物をさらに加えて第2段階の反応を行い、ブロック共重合化する。このとき、第1段階又は/及び第2段階で用いるジアミン化合物としてシロキサン結合含有ジアミン化合物をブロックセグメントとして組み込む。なお、反応においては、反応系に無水フタル酸等の酸無水物やアニリン等のアミン化合物を末端停止剤として加えてもよい。上記有機極性溶媒としては、N,N−ジメチルホルムアミド(DMF)、N,N−ジメチルアセトアミド(DMAc)、ジメチルスルホキシド(DMSO)、N−メチル−2−ピロリドン(NMP)、γ−ブチロラクトン(γBL)、アニソール、シクロヘキサノン、テトラメチル尿素、スルホラン等が挙げられ、好ましくはポリイミドとの相溶性の点からNMPである。   In the present invention, the siloxane bond-containing block copolymerized polyimide uses, for example, a substantially equal amount of a diamine compound containing at least a siloxane bond-containing diamine compound and tetracarboxylic dianhydride in the presence of a catalyst consisting of a lactone and a base, It can be obtained by heating and polycondensation in an organic polar solvent. That is, the tetracarboxylic dianhydride and the diamine compound are heated in the first stage to form an imide oligomer, and then the diamine compound or / and the tetracarboxylic dianhydride are further added to perform the second stage reaction, Block copolymerize. At this time, a siloxane bond-containing diamine compound is incorporated as a block segment as the diamine compound used in the first stage and / or the second stage. In the reaction, an acid anhydride such as phthalic anhydride or an amine compound such as aniline may be added to the reaction system as a terminal terminator. Examples of the organic polar solvent include N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAc), dimethyl sulfoxide (DMSO), N-methyl-2-pyrrolidone (NMP), and γ-butyrolactone (γBL). , Anisole, cyclohexanone, tetramethylurea, sulfolane and the like, preferably NMP from the viewpoint of compatibility with polyimide.

本発明において、シロキサン結合含有ジアミン化合物の使用量は、該シロキサン結合含有ジアミン化合物をジアミン成分とするイミド単位が、ポリイミドを構成する全繰り返し単位(イミド単位)中の5〜90モル%となる量が好ましく、10〜70モル%となる量がより好ましく、15〜50モル%となる量がとりわけ好ましい。シロキサン結合含有ジアミン化合物に基づくイミド単位の量が10モル%未満の場合、そのようなポリイミドの電着被膜は、導電板への密着性及び伸び率が劣悪となって、十分な可撓性が得られにくく、剥がれや割れを生じ易くなるため、好ましくない。また、シロキサン結合含有ジアミン化合物に基づくイミド単位の量が90モル%を超えると、耐熱性が低下する傾向となり、好ましくない。   In this invention, the usage-amount of a siloxane bond containing diamine compound is the quantity from which the imide unit which uses this siloxane bond containing diamine compound as a diamine component becomes 5-90 mol% in all the repeating units (imide unit) which comprise a polyimide. Is preferable, the amount of 10 to 70 mol% is more preferable, and the amount of 15 to 50 mol% is particularly preferable. When the amount of imide units based on the siloxane bond-containing diamine compound is less than 10 mol%, such a polyimide electrodeposition coating has poor adhesion and elongation to a conductive plate and is sufficiently flexible. This is not preferable because it is difficult to obtain and easily peels off or cracks. Moreover, when the amount of the imide unit based on the siloxane bond-containing diamine compound exceeds 90 mol%, the heat resistance tends to decrease, which is not preferable.

本発明のリング状絶縁板に使用する断面形状が平角状の導電板は、平面形状が開放部を有するリング状の平板部を少なくとも有し、該リング状の平板部の表面に上記のシロキサン結合含有ブロック共重合ポリイミドの電着被膜による絶縁被覆層が形成されることによって、絶縁板として機能するものである。なお、該断面形状が平角状の導電板には、通常、平面形状が開放部を有するリング状の平板部とともに、その表面を絶縁被覆層で被覆することなく露出状態のままで使用する端子部が設けられる。   The conductive plate having a flat cross-sectional shape used for the ring-shaped insulating plate of the present invention has at least a ring-shaped flat plate portion having a planar shape having an open portion, and the siloxane bond is formed on the surface of the ring-shaped flat plate portion. By forming the insulating coating layer by the electrodeposition coating of the containing block copolymerized polyimide, it functions as an insulating plate. In addition, in the conductive plate having a flat cross-sectional shape, a terminal portion that is normally used in an exposed state without covering the surface with an insulating coating layer together with a ring-shaped flat plate portion having a planar shape with an open portion. Is provided.

本発明のリング状絶縁板において、導電板における平面形状が開放部を有するリング状の平板部のリングの形状は、製造すべきコイル(即ち、本発明のコイル)の用途や他の素子や機器との接続形態等に応じて適宜決定されるが、絶縁板を複数枚積層してコイルを形成した時に、積層する絶縁板間の端子部の位置を相違させることで、様々な方向から端子を接続できる点で、下記の具体例に示すような複数の平面コーナー部を有する形状が好ましい。ここでいう「平面コーナー部」とは、導電板のリング状の平板部における実質的にストレートで互い平行でない隣接する2つの帯状板部の端部同士を繋ぐ連結部のことである。また、端子部は平面形状が開放部を有するリング状の平板部に付設するかたちで設けてもよいが、下記の具体例に示すように、リング状の平板部の一部からリング状の平板部と同一平面内に端子用の延長平板部を設け、該端子用の延長平板部の先端に端子部を区画するかたちで設けるのが好ましい。端子用の延長平板部を設け、その先端に端子部を区画することで、絶縁板を複数枚積層してコイルを形成した時に、コイルの本体部から端子部が離間することから、コイルの布設形態の自由度を高めることができる。   In the ring-shaped insulating plate of the present invention, the shape of the ring of the ring-shaped flat plate portion in which the planar shape of the conductive plate has an open portion is the use of the coil to be manufactured (that is, the coil of the present invention) and other elements and devices. However, when a plurality of insulating plates are stacked to form a coil, the terminals can be connected from various directions by changing the positions of the terminal portions between the stacked insulating plates. The shape which has a some planar corner part as shown in the following specific example at the point which can be connected is preferable. The “planar corner portion” referred to here is a connecting portion that connects the ends of two adjacent strip-shaped plate portions that are substantially straight and not parallel to each other in the ring-shaped flat plate portion of the conductive plate. In addition, the terminal portion may be provided in a form in which the planar shape is attached to a ring-shaped flat plate portion having an open portion, but as shown in the following specific example, a ring-shaped flat plate is formed from a part of the ring-shaped flat plate portion. It is preferable that an extension flat plate portion for a terminal is provided in the same plane as the portion, and the terminal portion is provided at the tip of the extension flat plate portion for the terminal. By providing an extended flat plate for the terminal and partitioning the terminal at the tip, when the coil is formed by stacking a plurality of insulating plates, the terminal is separated from the main body of the coil. The degree of freedom of form can be increased.

図1(a)及び図1(b)は本発明のリング状絶縁板の好適な具体例の平面図であり、図1(a)に示す第1具体例の絶縁板10では、導電板1における平面形状が開放部2を有するリング状の平板部3を、図1に示すように、軸線L1が略長方形若しくは正方形となるリング状とし、リング状平板部3の略長方形若しくは正方形の軸線L1の4つのコーナーのうちの一つのコーナー上にはコーナー部3aを区画せず、ここに開放部2を設け、該開放部2を挟む一方の板終端部1aと他方の板終端部1bからそれぞれリング状の平板部3の外方に向けて端子用の延長平板部4a、4bを該平板部3と同一平面内に延設している。絶縁被覆層5はリング状の平板部3及び端子用の延長平板部4a、4bの端子部6A、6Bを除く全域に形成されており、絶縁被覆層5で被覆されていない端子部6A、6Bの略中心にはビス止めのための貫孔7を穿設している。   FIGS. 1A and 1B are plan views of a preferred specific example of the ring-shaped insulating plate of the present invention. In the insulating plate 10 of the first specific example shown in FIG. As shown in FIG. 1, the ring-shaped flat plate portion 3 having the open portion 2 in a planar shape is a ring shape in which the axis L1 is substantially rectangular or square, and the substantially rectangular or square axis L1 of the ring-shaped flat plate portion 3 is used. The corner portion 3a is not partitioned on one of the four corners, and the opening portion 2 is provided here, and from one plate end portion 1a and the other plate end portion 1b sandwiching the open portion 2, respectively. The extension flat plate portions 4 a and 4 b for terminals extend in the same plane as the flat plate portion 3 toward the outside of the ring-shaped flat plate portion 3. The insulating coating layer 5 is formed over the entire area excluding the terminal portions 6A and 6B of the ring-shaped flat plate portion 3 and the extension flat plate portions 4a and 4b for terminals, and the terminal portions 6A and 6B not covered with the insulating coating layer 5. A through-hole 7 for screwing is formed in the approximate center.

一方、図1(b)に示す第2具体例の絶縁板20は、上記第1具体例の絶縁板10と同様に、導電板1における平面形状が開放部2を有するリング状の平板部3を、軸線L2が略長方形若しくは正方形となるリング状にし(すなわち、4つの平面コーナー部3aを有する略長方形若しくは正方形にし、)、開放部2を、該略長方形若しくは正方形の一辺に充当するリング状の平板部3の帯状板部3bに設け、該開放部2を挟む一方の板終端部1cと他方の板終端部1dからそれぞれリング状の平板部3の外方へ端子用の延長平板部4c、4dを、上記第1の具体例の絶縁板10の端子用の延長平板部4a、4bと同様にリング状の平板部3と同一平面内に延設している。そして、該端子用の延長平板部4c、4dの先端に端子部6C、6Dを区画してビス止めのための貫孔7を穿設する一方、絶縁被覆層5がリング状の平板部3及び端子用の延長平板部4c、4dの端子部6C、6Dを除く全域に形成されている。   On the other hand, the insulating plate 20 of the second specific example shown in FIG. 1B is similar to the insulating plate 10 of the first specific example described above in that the planar shape of the conductive plate 1 is a ring-shaped flat plate portion 3 having an open portion 2. In a ring shape in which the axis L2 is a substantially rectangular or square shape (that is, a substantially rectangular or square shape having four planar corner portions 3a), and the open portion 2 is applied to one side of the substantially rectangular or square shape. An extension flat plate portion 4c for a terminal, which is provided on the belt-like plate portion 3b of the flat plate portion 3 and extends from one plate terminal portion 1c and the other plate terminal portion 1d across the open portion 2 to the outside of the ring-shaped flat plate portion 3 respectively. 4d is extended in the same plane as the ring-shaped flat plate portion 3 similarly to the extended flat plate portions 4a and 4b for terminals of the insulating plate 10 of the first specific example. Then, the terminal portions 6C and 6D are partitioned at the tips of the extension flat plate portions 4c and 4d for the terminals, and through holes 7 for screwing are formed, while the insulating coating layer 5 has the ring-shaped flat plate portion 3 and It is formed in the whole area | region except the terminal parts 6C and 6D of the extension flat plate parts 4c and 4d for terminals.

本発明のリング状絶縁板において、導電板の厚みは、得られるコイルの小型化・軽量化などの観点から、好ましくは50〜1500μm、より好ましくは200〜1000μmである。また、導電板におけるリング状の平板部の大きさ(リング状の平板部の平面の占有面積)は、例えば、図1(a)及び(b)に示す絶縁板10、20を例にした場合、図中の縦長さ(D1)×横長さ(D2)が好ましくは10mm×10mm〜150mm×150mmであり、より好ましくは20mm×20mm〜150mm×150mmである。なお、導電板のリング状の平板部の平面形状が図1(a)及び(b)に示す略長方形若しくは正方形以外の形状の場合も、リング状の平板部の大きさは、図1(a)及び(b)に示す縦長さ(D1)×横長さ(D2)で得られる面積に相当する占有面積とするのが一般的である。図1(a)及び図1(b)の例のように、端子用の延長平板部4a〜4dを設け、その先端に端子部6A〜6Dを区画する場合、端子用の延長平板部の長さ(図1(a)及び図1(b)中のD3)は3〜70mm程度とするのが好ましく、端子部6A〜6Dの大きさは3mm×3mm〜10mm×10mm程度とするのが好ましく、図1(a)及び図1(b)中の一辺の長さD4は3mm〜10mm程度である。   In the ring-shaped insulating plate of the present invention, the thickness of the conductive plate is preferably 50 to 1500 μm, more preferably 200 to 1000 μm, from the viewpoint of reducing the size and weight of the obtained coil. Further, the size of the ring-shaped flat plate portion in the conductive plate (occupied area of the plane of the ring-shaped flat plate portion) is, for example, the case of the insulating plates 10 and 20 shown in FIGS. The vertical length (D1) × horizontal length (D2) in the figure is preferably 10 mm × 10 mm to 150 mm × 150 mm, more preferably 20 mm × 20 mm to 150 mm × 150 mm. Even when the planar shape of the ring-shaped flat plate portion of the conductive plate is a shape other than the substantially rectangular shape or the square shape shown in FIGS. 1A and 1B, the size of the ring-shaped flat plate portion is as shown in FIG. ) And (b), the occupied area corresponding to the area obtained by vertical length (D1) × horizontal length (D2) is generally used. When the extension flat plate portions 4a to 4d for terminals are provided and the terminal portions 6A to 6D are partitioned at the tips thereof as in the examples of FIGS. 1A and 1B, the length of the extension flat plate portion for terminals is long. The length (D3 in FIGS. 1 (a) and 1 (b)) is preferably about 3 to 70 mm, and the size of the terminal portions 6A to 6D is preferably about 3 mm × 3 mm to 10 mm × 10 mm. The length D4 of one side in FIGS. 1 (a) and 1 (b) is about 3 mm to 10 mm.

また、導電板の材質としては、導電性の良好なものであれば特に限定されないが、金属材料が好ましく、特に、銀、銀合金、電気銅、銅、銅合金、銅クラッドアルミニウム、アルミニウム、アルミニウム合金、鉄、鉄合金などが、電気伝導性が高い点で好ましい。また、導電板をリング状に加工する方法は、特に限定されるものではないが、好ましくは打抜き加工である。   Further, the material of the conductive plate is not particularly limited as long as it has good conductivity, but a metal material is preferable, and in particular, silver, silver alloy, electrolytic copper, copper, copper alloy, copper clad aluminum, aluminum, aluminum An alloy, iron, an iron alloy, or the like is preferable in terms of high electrical conductivity. The method for processing the conductive plate into a ring shape is not particularly limited, but is preferably punching.

本発明のリング状絶縁板におけて、導電板の表面に形成される絶縁被覆層(即ち、シロキサン結合含有ブロック共重合ポリイミドの電着被膜)の厚みは、導電板の平角状の断面の平坦部を覆う部分においては、好ましくは1.5〜30μm、より好ましくは5〜20
μmである。該厚みが1.5μm未満であると、充分なAC(交流)耐電圧の効果を得ることが困難となり、30μmを超えても顕著なAC耐電圧の効果の向上は見られなく、さらに得られるコイルのサイズが大型化する。一方、シロキサン結合含有ブロック共重合ポリイミドの電着被膜を断面が平角状の導電板の表面に形成した場合、通常、平角状の断面のコーナー部を覆う部分の厚みは該断面の平坦部を覆う部分の厚みよりも小さくなるが、絶縁被覆層(即ち、シロキサン結合含有ブロック共重合ポリイミドの電着被膜)の導電板の平角状の断面のコーナー部を覆う部分の厚みは、導電板の断面における平坦部を覆う部分の厚みを1としたとき、好ましくは0.8以上、1未満である。該コーナー部を覆う部分の厚みが平坦部を覆う部分の厚み1に対して0.8未満では、充分なAC(交流)耐電圧の効果を得ることが困難となる。すなわち、導電板の断面(平角状断面)のコーナー部において、電界集中により耐電圧性が低下してしまう。本発明で使用するシロキサン結合含有ブロック共重合ポリイミドの電着被膜は優れた耐電圧性を有しており、従来のアクリル系水分散樹脂ワニスの電着被膜のように、断面が平角状の導電板に対して、断面(平角状断面)のコーナー部を覆う部分の厚みを、断面(平角状断面)の平坦部を覆部分の厚みよりも大きくする必要なく、充分なAC(交流)耐電圧の絶縁板を実現し得る。従って、本発明のリング状絶縁板を積層することで、コイルの小型化をはかることができる。
In the ring-shaped insulating plate of the present invention, the thickness of the insulating coating layer formed on the surface of the conductive plate (that is, the electrodeposition coating of the siloxane bond-containing block copolymerized polyimide) is flat in the flat cross section of the conductive plate. In the part covering the part, preferably 1.5 to 30 μm, more preferably 5 to 20
μm. When the thickness is less than 1.5 μm, it is difficult to obtain a sufficient AC (alternating current) withstand voltage effect, and even if the thickness exceeds 30 μm, a significant improvement in the AC withstand voltage effect is not seen and further obtained. The coil size increases. On the other hand, when an electrodeposition coating of a siloxane bond-containing block copolymerized polyimide is formed on the surface of a conductive plate having a flat cross section, the thickness of the portion covering the corner portion of the flat cross section usually covers the flat portion of the cross section. Although the thickness is smaller than the thickness of the portion, the thickness of the portion of the insulating coating layer (that is, the electrodeposited coating of the siloxane bond-containing block copolymerized polyimide) covering the corner portion of the rectangular cross section of the conductive plate is When the thickness of the portion covering the flat portion is 1, it is preferably 0.8 or more and less than 1. When the thickness of the portion covering the corner portion is less than 0.8 relative to the thickness 1 of the portion covering the flat portion, it is difficult to obtain a sufficient AC (alternating current) withstand voltage effect. That is, the withstand voltage is reduced due to electric field concentration at the corner of the cross section (flat rectangular cross section) of the conductive plate. The electrodeposited coating of the siloxane bond-containing block copolymerized polyimide used in the present invention has excellent voltage resistance, and has a rectangular cross section like the conventional electrodeposited coating of acrylic water-dispersed resin varnish. A sufficient AC (alternating current) withstand voltage without the need to make the thickness of the portion covering the corner portion of the cross section (flat rectangular cross section) larger than the thickness of the covering portion of the flat portion of the cross section (flat rectangular cross section). Insulating plate can be realized. Therefore, the coil can be reduced in size by stacking the ring-shaped insulating plates of the present invention.

なお、本発明において、絶縁被覆層5の導電板1の断面の平坦部を覆う部分の厚みとは、平角状断面の長辺の中心点での厚み(図4中、T1)であり、断面のコーナー部を覆う部分の厚みとは、図4中のT2、すなわち、導電板1の平角状断面のコーナー部を成す長辺と短辺に対して45°の角度で走る第1の直線をコーナー部上に描き、さらに該第1の直線と平行で絶縁被覆層5の外郭線に接する第2の直線を引いたときのこれら2本の直線の離間距離である。   In the present invention, the thickness of the portion of the insulating coating layer 5 covering the flat portion of the cross section of the conductive plate 1 is the thickness (T1 in FIG. 4) at the center point of the long side of the flat rectangular cross section. The thickness of the portion covering the corner portion is T2 in FIG. 4, that is, the first straight line running at an angle of 45 ° with respect to the long side and the short side forming the corner portion of the rectangular cross section of the conductive plate 1. The distance between the two straight lines when a second straight line drawn on the corner portion and in parallel with the first straight line and in contact with the outline of the insulating coating layer 5 is drawn.

本発明において、絶縁被覆層は、導電板の表面に、上記のシロキサン結合含有ブロック共重合ポリイミドのワニス(即ち、シロキサン結合含有ブロック共重合ポリイミドを樹脂分とするワニス(電着液))を、電着、焼付けして製造される。なお、ポリイミドのワニス(電着液)の調製及び電着被膜の形成については、例えば、特開昭49−52252号公報、特開昭52−32943号公報、特開昭63−111199号公報等に記載された、ポリイミドの前駆体であるポリアミド酸を溶解した有機極性溶媒に、貧溶媒及び水を添加したワニス(電着液)を用いて電着した後、電着膜を加熱してイミド膜とする方法が知られているが、該方法の場合、ポリアミド酸の電着用ワニス(電着液)は、ポリアミド酸が容易に分解するために保存安定性が悪く、これが電着後の塗膜物性に悪影響を及ぼす場合がある。従って、本発明では、次の方法を用いる。   In the present invention, the insulating coating layer has a varnish of the siloxane bond-containing block copolymerized polyimide (that is, a varnish (electrodeposition liquid) containing the siloxane bond-containing block copolymerized polyimide) as a resin component on the surface of the conductive plate. Manufactured by electrodeposition and baking. Regarding the preparation of the polyimide varnish (electrodeposition liquid) and the formation of the electrodeposition film, for example, JP-A-49-52252, JP-A-52-32943, JP-A-63-1111199, etc. After electrodeposition using a varnish (electrodeposition liquid) in which a poor solvent and water are added to an organic polar solvent in which polyamic acid, which is a polyimide precursor, is dissolved, the electrodeposition film is heated to form an imide. Although a method of forming a film is known, in this method, the polyamic acid electrodeposition varnish (electrodeposition liquid) is poor in storage stability because the polyamic acid is easily decomposed, and this is applied after electrodeposition. May adversely affect film properties. Therefore, in the present invention, the following method is used.

すなわち、アニオン基(カルボン酸基、スルホン酸基等)を導入したシロキサン結合含有ブロック共重合ポリイミドを有機極性溶媒に溶解した溶液を得、該溶液に水とポリイミドに対する貧溶媒とポリイミドを中和塩とするための中和剤(塩基性化合物)とをさらに添加した溶液分散型ワニスを調製し、かかる溶液分散型ワニスを被着体に電着、焼付けして被膜を形成する。この方法によれば、前記の従来方法のような欠点がなく、断面形状が平角状の導電板に対しても、ピンホールを発生することなく、導電板の平坦部だけでなくコーナー部をも良好に被覆した電着被膜を形成することができる。   That is, a solution in which a siloxane bond-containing block copolymerized polyimide having an anion group (carboxylic acid group, sulfonic acid group, etc.) introduced therein is dissolved in an organic polar solvent is obtained, and water and a poor solvent for polyimide and a polyimide are neutralized to the solution. A solution-dispersed varnish to which a neutralizing agent (basic compound) is further added is prepared, and the solution-dispersed varnish is electrodeposited and baked on the adherend to form a film. According to this method, there is no disadvantage as in the conventional method described above, and not only a flat portion of the conductive plate but also a corner portion is generated without generating pinholes even on a conductive plate having a flat cross-sectional shape. A well-coated electrodeposition film can be formed.

本発明において、シロキサン結合含有ブロック共重合ポリイミドは、絶縁被覆(絶縁層)の耐熱性の観点から、通常、ジアミン成分にはシロキサン結合含有ジアミン化合物とともに芳香族ジアミンが使用される。芳香族ジアミンとしては、例えば、m−フェニレンジアミン、p−フェニレンジアミン、2,4−ジアミノトルエン、4,4’−ジアミノ−3,3’−ジメチル−1,1’−ビフェニル、4,4’−ジアミノ−3,3’−ジヒドロキシ−1,1’−ビフェニル、3,3’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルスルフィド、2,2−ビス(4−アミノフェニル)プロパン、2,2−ビス(4−アミノフェニル)ヘキサフルオロプロパン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,4−ビス(4−アミノフェノキシ)ベンゼン、4,4’−ビス(4−アミノフェノキシ)ビフェニル、2,2’−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、2,2’−ビス[4−(4−アミノフェノキシ)フェニル]ヘキサフルオロプロパン、ビス[4−(3−アミノフェノキシ)フェニル]スルホン、ビス[4−(4−アミノフェノキシ)フェニル]スルホン、3,5−ジアミノ安息香酸、3,3’−ジカルボキシ−4,4’−ジアミノフェニルメタン、2,4−ジアミノフェニル酢酸、2,5−ジアミノテレフタル酸、3,5−ジアミノパラトルイル酸、3,5−ジアミノ−2−ナフタレンカルボン酸、1,4−ジアミノ−2−ナフタレンカルボン酸、2,6−ジアミノピリジン、2,6−ジアミノ−4−メチルピリジン、4,4’−(9−フリオレニリデン)ジアニリン、4,4’−ジアミノジフェニルスルホン、α,α−ビス(4−アミノフェニル)−1,3−ジイソプロピルベンゼン等が挙げられる。これらの化合物は、何れか一種を単独で使用しても、2種以上を混合して使用してもよい。   In the present invention, for the siloxane bond-containing block copolymer polyimide, from the viewpoint of heat resistance of the insulating coating (insulating layer), an aromatic diamine is usually used as the diamine component together with the siloxane bond-containing diamine compound. Examples of the aromatic diamine include m-phenylenediamine, p-phenylenediamine, 2,4-diaminotoluene, 4,4′-diamino-3,3′-dimethyl-1,1′-biphenyl, and 4,4 ′. -Diamino-3,3'-dihydroxy-1,1'-biphenyl, 3,3'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl sulfide, 2,2-bis (4-aminophenyl) propane, 2,2-bis (4-aminophenyl) hexafluoropropane, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (4-amino) Phenoxy) benzene, 4,4′-bis (4-aminophenoxy) biphenyl, 2,2′-bis [4- (4-aminophenyl) Noxy) phenyl] propane, 2,2′-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane, bis [4- (3-aminophenoxy) phenyl] sulfone, bis [4- (4-aminophenoxy) ) Phenyl] sulfone, 3,5-diaminobenzoic acid, 3,3′-dicarboxy-4,4′-diaminophenylmethane, 2,4-diaminophenylacetic acid, 2,5-diaminoterephthalic acid, 3,5- Diaminoparatoluic acid, 3,5-diamino-2-naphthalenecarboxylic acid, 1,4-diamino-2-naphthalenecarboxylic acid, 2,6-diaminopyridine, 2,6-diamino-4-methylpyridine, 4,4 '-(9-Fluorenylidene) dianiline, 4,4'-diaminodiphenylsulfone, α, α-bis (4-aminophenyl) -1, - diisopropylbenzene, and the like. These compounds may be used alone or in combination of two or more.

なお、前記したように、本発明において、シロキサン結合含有ブロック共重合ポリイミドは、ワニス中で中和塩とするために、カルボン酸基、スルホン酸基等のアニオン性基を導入したポリイミドとすることが必要であり、そのため、シロキサン結合含有ジアミン化合物以外のジアミン化合物の少なくとも一部には、カルボン酸基、スルホン酸基等のアニオン性基を有するものが使用される。従って、上記例示の芳香族ジアミンのうち、カルボン酸基含有芳香族ジアミン(芳香族ジアミノカルボン酸)又は/及びスルホン酸基含有芳香族ジアミン(芳香族ジアミノスルホン酸)が少なくとも使用される。カルボン酸基含有芳香族ジアミン(芳香族ジアミノカルボン酸)は、上記のうち、3,5−ジアミノ安息香酸、3,3’−ジカルボキシ−4,4’−ジアミノフェニルメタン、2,4−ジアミノフェニル酢酸、2,5−ジアミノテレフタル酸、3,5−ジアミノパラトルイル酸、3,5−ジアミノ−2−ナフタレンカルボン酸、1,4−ジアミノ−2−ナフタレンカルボン酸であり、スルホン酸基含有芳香族ジアミン(芳香族ジアミノスルホン酸)は2,5−ジアミノベンゼンスルホン酸、4,4’−ジアミノ−2,2’−スチルベンジスルホン酸、o−トリジンジスルホン酸である。   In addition, as described above, in the present invention, the siloxane bond-containing block copolymerized polyimide is a polyimide into which an anionic group such as a carboxylic acid group or a sulfonic acid group is introduced in order to obtain a neutralized salt in the varnish. Therefore, what has anionic groups, such as a carboxylic acid group and a sulfonic acid group, is used for at least one part of diamine compounds other than a siloxane bond containing diamine compound. Therefore, among the aromatic diamines exemplified above, at least a carboxylic acid group-containing aromatic diamine (aromatic diaminocarboxylic acid) and / or a sulfonic acid group-containing aromatic diamine (aromatic diaminosulfonic acid) is used. Among the above, carboxylic acid group-containing aromatic diamine (aromatic diaminocarboxylic acid) is 3,5-diaminobenzoic acid, 3,3′-dicarboxy-4,4′-diaminophenylmethane, 2,4-diamino. Phenylacetic acid, 2,5-diaminoterephthalic acid, 3,5-diaminoparatoluic acid, 3,5-diamino-2-naphthalene carboxylic acid, 1,4-diamino-2-naphthalene carboxylic acid, containing sulfonic acid group Aromatic diamine (aromatic diaminosulfonic acid) is 2,5-diaminobenzenesulfonic acid, 4,4′-diamino-2,2′-stilbene disulfonic acid, o-tolidine disulfonic acid.

本発明において、シロキサン結合含有ブロック共重合ポリイミド中のカルボン酸基含有芳香族ジアミン(芳香族ジアミノカルボン酸)又は/及びスルホン酸基含有芳香族ジアミン(芳香族ジアミノスルホン酸)の含有量は、ジアミン成分全体に対して10モル%以上、さらには15モル%以上である。   In the present invention, the content of the carboxylic acid group-containing aromatic diamine (aromatic diaminocarboxylic acid) or / and the sulfonic acid group-containing aromatic diamine (aromatic diaminosulfonic acid) in the siloxane bond-containing block copolymerized polyimide is diamine. It is 10 mol% or more with respect to the whole component, Furthermore, it is 15 mol% or more.

本発明において、シロキサン結合含有ブロック共重合ポリイミド中のテトラカルボン酸ジ無水物成分としては、ポリイミドの耐熱性、長期安定性、電着性能、金属との密着性等の観点から、通常、芳香族テトラカルボン酸ジ無水物が使用される。該芳香族テトラカルボン酸ジ無水物の具体例としては、例えば、ピロメリット酸ジ無水物、3,3’,4,4’−ビフェニルテトラカルボン酸ジ無水物、ビス−(3,4−ジカルボキシフェニル)エーテルジ無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸ジ無水物、2,2−ビス−(3,4−ジカルボキシフェニル)ヘキサフルオロプロパンジ無水物、3,3’,4,4’−ビフェニルスルホンテトラカルボン酸ジ無水物、ビシクロ[2,2,2,]オクト−7−エン−2,3,5,6−テトラカルボン酸ジ無水物等が挙げられる。これらは何れか一種の化合物を単独で使用しても2種以上を混合して使用してもよい。これらの中でも、耐熱性、導電板との密着性、シロキサン結合含有ジアミン化合物との相溶性、ポリイミドの重合速度等の観点から、3,3’,4,4’−ビフェニルテトラカルボン酸ジ無水物、ビス−(3,4−ジカルボキシフェニル)エーテルジ無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸ジ無水物、3,3’,4,4’−ビフェニルスルホンテトラカルボン酸ジ無水物が特に好ましく使用される。   In the present invention, the tetracarboxylic dianhydride component in the siloxane bond-containing block copolymerized polyimide is usually aromatic from the viewpoint of the heat resistance, long-term stability, electrodeposition performance, adhesion to metal, etc. of the polyimide. Tetracarboxylic dianhydride is used. Specific examples of the aromatic tetracarboxylic dianhydride include, for example, pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, bis- (3,4-di Carboxyphenyl) ether dianhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, 2,2-bis- (3,4-dicarboxyphenyl) hexafluoropropane dianhydride, 3,3 Examples include ', 4,4'-biphenylsulfonetetracarboxylic dianhydride, bicyclo [2,2,2,] oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, and the like. These may be used alone or in combination of two or more. Among these, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride from the viewpoints of heat resistance, adhesion to a conductive plate, compatibility with a siloxane bond-containing diamine compound, polyimide polymerization rate, and the like. Bis- (3,4-dicarboxyphenyl) ether dianhydride, 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenylsulfone tetracarboxylic acid dianhydride Anhydrides are particularly preferably used.

本発明において、シロキサン結合含有ブロック共重合ポリイミドは、固有対数粘度(25℃)が20wt%のNMP(N−メチル−2−ピロリドン)溶液時において、5,000〜50,000mPa・sであるのが好ましく、5,000〜15,000mPa・sがより好ましい。固有対数粘度が50,000mPa・sを超える場合、作製される電着被膜の塗膜均一性が損なわれる傾向にある。   In the present invention, the siloxane bond-containing block copolymerized polyimide is 5,000 to 50,000 mPa · s when the intrinsic logarithmic viscosity (25 ° C.) is 20 wt% in an NMP (N-methyl-2-pyrrolidone) solution. Is preferable, and 5,000 to 15,000 mPa · s is more preferable. When the intrinsic log viscosity exceeds 50,000 mPa · s, the coating uniformity of the produced electrodeposition film tends to be impaired.

また、シロキサン結合含有ブロック共重合ポリイミドの重量平均分子量(Mw)は、ポリスチレン換算で、20,000〜150,000が好ましく、45,000〜90,000が特に好ましい。重量平均分子量が20,000未満の場合、電着被膜の耐熱性が劣り、また、被膜表面が荒れて、絶縁板の審美性が低下し、商品価値が低下してしまうおそれがある。また、重量平均分子量が150,000より大きくなると高粘度化や溶液中でゲル化が進行して、電着性能の支障を来たすおそれがある。また、シロキサン結合含有ブロック共重合ポリイミドにおける数平均分子量(Mn)は、ポリスチレン換算で1,000〜70,000が好ましく、より好ましくは20,000〜40,000である。数平均分子量が1,000未満の場合、電着効率が悪く、所望膜厚の電着被膜を得るまでに時間がかかり、絶縁板の生産性が低下する傾向となり、また、絶縁板及びこれを積層した絶縁コイルの耐熱性、耐電圧性において満足できる結果が得られなくなるおそれがある。数平均分子量が70,000を超える場合、固有粘度が高くなり、泡切れ性が低下(塗膜中に取り込まれた気泡が取れなくなる)し、作業性が低下する傾向にある。   The weight average molecular weight (Mw) of the siloxane bond-containing block copolymerized polyimide is preferably 20,000 to 150,000, and particularly preferably 45,000 to 90,000 in terms of polystyrene. When the weight average molecular weight is less than 20,000, the heat resistance of the electrodeposition coating is inferior, the coating surface is roughened, the aesthetics of the insulating plate is lowered, and the commercial value may be lowered. On the other hand, if the weight average molecular weight is larger than 150,000, viscosity increase or gelation may progress in the solution, which may impair electrodeposition performance. Further, the number average molecular weight (Mn) in the siloxane bond-containing block copolymerized polyimide is preferably 1,000 to 70,000, more preferably 20,000 to 40,000 in terms of polystyrene. When the number average molecular weight is less than 1,000, the electrodeposition efficiency is poor, and it takes time to obtain an electrodeposition film having a desired film thickness, and the productivity of the insulating plate tends to decrease. There is a possibility that satisfactory results cannot be obtained in the heat resistance and voltage resistance of the laminated insulating coils. When the number average molecular weight exceeds 70,000, the intrinsic viscosity becomes high, the foaming property is lowered (the bubbles taken into the coating film cannot be removed), and the workability tends to be lowered.

ここでいう、重量平均分子量及び数平均分子量はGPCによるポリスチレン換算値であり、GPC装置として東ソー社製HLC−8220、カラムにTSK−gel Super HM−M(Column No.−D0038)を使用して、測定した値である。   Here, the weight average molecular weight and the number average molecular weight are polystyrene-converted values by GPC, using HLC-8220 manufactured by Tosoh Corporation as a GPC apparatus, and TSK-gel Super HM-M (Column No.-D0038) as a column. The measured value.

本発明において、シロキサン結合含有ブロック共重合ポリイミドを含むワニス(電着液)の調製は、具体的には、次のようにして行う。
先ず、NMP、DMF、DMAc、γ−ブチロラクトン、DMSO、アニソール、シクロヘキサノン、テトラメチル尿素及びスルホラン等から選ばれる少なくとも一種の有機極性溶媒中、酸触媒の存在下、ジアミン化合物とテトラカルボン酸ジ無水物とを160〜180℃で加熱し、生成する水を共沸によって留去しながら反応させて、オリゴマーを生成させる(第1段階反応)。次に、テトラカルボン酸ジ無水物又は/及びジアミン化合物をさらに加えて160〜180℃に加熱して、第2段階反応(加熱)を行う。このとき、第1段階又は/及び第2段階で用いるジアミン化合物として、シロキサン結合含有ジアミン化合物を使用することで、主鎖中にシロキサン結合を含有する、ブロック共重合ポリイミドが得られる。こうして得られる反応溶液の固形分濃度は10〜40重量%が好ましく、より好ましくは20〜30重量%である。次に、極性溶媒中に溶解したブロック共重合ポリイミドを塩基性化合物で中和し、さらに水及びポリイミドの貧溶媒を加えて電着液とする。塩基性化合物には、N,N−ジメチルエタノールアミン、トリエチルアミン、トリエタノールアミン、N−ジメチルベンジルアミン、N−メチルモルホリン等が使用される。塩基性化合物の使用量はポリイミドが水溶液中に安定に溶解または分散する程度であり、通常、理論中和量の30〜200モル%程度である。また、貧溶媒は、フェニル基、フルフリル基またはナフチル基を有するアルコールが好適であり、具体的には、ベンジルアルコール、2−フェニルエチルアルコール、4−メチルベンジルアルコール、4−メトキシベンジルアルコール、4−クロルベンジルアルコール、4−ニトロベンジルアルコール、フェノキシ−2−エタノール、シンナミルアルコール、フルフリルアルコールおよびナフチルカルビノール等が挙げられる。なお、ワニス(電着液)中の極性溶媒の量はポリイミド1重量部当たり1.5〜10重量部が好ましく、より好ましくは2.4〜6重量部であり、水の量はポリイミド1重量部当たり0.1〜5重量部が好ましく、より好ましくは1〜3重量部である。
In the present invention, the preparation of the varnish (electrodeposition liquid) containing the siloxane bond-containing block copolymerized polyimide is specifically performed as follows.
First, a diamine compound and a tetracarboxylic dianhydride in the presence of an acid catalyst in at least one organic polar solvent selected from NMP, DMF, DMAc, γ-butyrolactone, DMSO, anisole, cyclohexanone, tetramethylurea, sulfolane and the like Are reacted at 160-180 ° C. while distilling off the water produced by azeotropic distillation to produce oligomers (first stage reaction). Next, a tetracarboxylic dianhydride or / and a diamine compound are further added and heated to 160 to 180 ° C. to perform a second stage reaction (heating). At this time, the block copolymerization polyimide which contains a siloxane bond in a principal chain is obtained by using a siloxane bond containing diamine compound as a diamine compound used at a 1st step or / and a 2nd step. The solid content concentration of the reaction solution thus obtained is preferably 10 to 40% by weight, more preferably 20 to 30% by weight. Next, the block copolymerized polyimide dissolved in the polar solvent is neutralized with a basic compound, and water and a poor solvent for polyimide are added to obtain an electrodeposition solution. As the basic compound, N, N-dimethylethanolamine, triethylamine, triethanolamine, N-dimethylbenzylamine, N-methylmorpholine and the like are used. The amount of the basic compound used is such that the polyimide is stably dissolved or dispersed in the aqueous solution, and is usually about 30 to 200 mol% of the theoretical neutralization amount. The poor solvent is preferably an alcohol having a phenyl group, a furfuryl group or a naphthyl group. Specifically, benzyl alcohol, 2-phenylethyl alcohol, 4-methylbenzyl alcohol, 4-methoxybenzyl alcohol, 4-methoxybenzyl alcohol, Examples include chlorobenzyl alcohol, 4-nitrobenzyl alcohol, phenoxy-2-ethanol, cinnamyl alcohol, furfuryl alcohol, and naphthyl carbinol. The amount of the polar solvent in the varnish (electrodeposition liquid) is preferably 1.5 to 10 parts by weight, more preferably 2.4 to 6 parts by weight, and more preferably 2.4 to 6 parts by weight of polyimide. 0.1 to 5 parts by weight per part is preferable, and more preferably 1 to 3 parts by weight.

また、導電板の表面にポリイミドワニスを電着する際の電着条件としては、定電流法または定電圧法であればよく、定電流法の場合、例えば、電流値は50mA固定で、直流電圧の上限は50〜250V、好ましくは100〜200Vである。電着電圧の上限が50Vよりも低いと、電着によって塗膜を形成させることが困難となる傾向にあり、250Vよりも高いと、被塗布物からの酸素の発生、および銅イオンの溶出が激しくなり、均一な塗膜形成が困難となる傾向がある。また、定電圧法の場合、電圧値を50〜250V、好ましくは100〜200Vで固定すればよく、50Vよりも低い電圧値に固定すると、電着によって塗膜を形成させることが困難となる傾向にあり、250Vよりも高い電圧値に固定すると、被塗布物からの酸素の発生及び銅イオンの溶出が激しくなり、均一な塗膜形成が困難となる傾向がある。電着時間は、定電流法、定電圧法のいずれにおいても、通常15〜120秒、好ましくは30〜90秒程度であり、電着の際のワニス(電着液)の温度は、定電流法、定電圧法のいずれにおいても、好ましくは20〜70℃、より好ましくは25〜30℃である。   The electrodeposition conditions for electrodepositing the polyimide varnish on the surface of the conductive plate may be a constant current method or a constant voltage method. In the case of the constant current method, for example, the current value is fixed at 50 mA and the DC voltage is applied. The upper limit of 50 to 250V, preferably 100 to 200V. When the upper limit of the electrodeposition voltage is lower than 50V, it tends to be difficult to form a coating film by electrodeposition, and when it is higher than 250V, generation of oxygen from the coating object and elution of copper ions occur. It tends to be intense and difficult to form a uniform coating film. In the case of the constant voltage method, the voltage value may be fixed at 50 to 250 V, preferably 100 to 200 V, and if it is fixed at a voltage value lower than 50 V, it tends to be difficult to form a coating film by electrodeposition. If the voltage value is higher than 250 V, the generation of oxygen from the coating object and the elution of copper ions become intense, and it tends to be difficult to form a uniform coating film. The electrodeposition time is usually 15 to 120 seconds, preferably about 30 to 90 seconds, in either the constant current method or the constant voltage method. The temperature of the varnish (electrodeposition liquid) during electrodeposition is constant current. In any of the method and the constant voltage method, the temperature is preferably 20 to 70 ° C, more preferably 25 to 30 ° C.

電着によって形成した塗膜の焼付けは、70〜110℃で10〜60分の第1段階の焼付け処理を行った後、160〜180℃で10〜60分の第2段階の焼付け処理を行い、さらに200〜220℃で30〜60分の第3段階の焼付け処理を行うのが好ましい。このような3段階の焼付け処理を行うことで、断面が平角状の導電板に対して高い密着力で密着し、かつ、十分に硬化したポリイミドの被膜を形成することができる。   Baking of the coating film formed by electrodeposition is performed by performing the first stage baking process at 70 to 110 ° C. for 10 to 60 minutes, and then performing the second stage baking process at 160 to 180 ° C. for 10 to 60 minutes. Further, it is preferable to perform a third stage baking process at 200 to 220 ° C. for 30 to 60 minutes. By performing such a three-step baking process, it is possible to form a sufficiently hardened polyimide film that adheres to the conductive plate having a flat cross section with high adhesion.

本発明におけるリング状絶縁板は、前記の例で示すように、通常、導電板の端子部を除く全域をシロキサン結合含有ブロック共重合ポリイミドの電着被膜(絶縁被覆層)で被覆した形態である。なお、必要に応じて、導電板の端子とする部分以外の所望の部分を未被覆状態とすることもできる。導電板の全体を被覆するように電着を行ってもよいし、リング状導電板の端子部を除いて電着を行ってもよいが、リング状導電板全体に電着した場合、コイルとして積層する前に、端子等の未被覆とする部分の電着被覆を除去する。   As shown in the above example, the ring-shaped insulating plate in the present invention is usually in a form in which the entire region excluding the terminal portion of the conductive plate is coated with an electrodeposition coating (insulating coating layer) of a siloxane bond-containing block copolymerized polyimide. . In addition, as needed, desired parts other than the part used as the terminal of an electroconductive board can also be made into an uncovered state. Electrodeposition may be performed so as to cover the entire conductive plate, or electrodeposition may be performed except for the terminal portion of the ring-shaped conductive plate. Before laminating, the electrodeposition coating of the uncovered portions such as terminals is removed.

本発明のコイルは、以上説明した本発明のリング状絶縁板1枚よりなるか、または該リング状絶縁板を複数枚積層してなるものであり、複数枚で構成する場合、一種類の絶縁板を複数枚積層してコイルを構成してもよいし、2種類以上の異なる形態の絶縁板を複数枚積層してコイルを構成してもよい。図2は、前記図1(b)に示したリング状絶縁板20に折曲げ加工を加えたものであり、導電板1の端子用の延長平板部4a、4bを端子部6C、6Dの手前付近で90°折曲げ、端子部6C、6Dを、その軸線L3、L4がそれぞれリング状の平板部3の軸線L2を含む平面に対して略直交するように配置して、該絶縁板1をリング状の平板部3を含む平面と平行方向(図中の矢印aの向き)にピン止め固定できるようにしたものである。なお、図2において、図1(b)で付した絶縁被覆層2を示す斜線(ハッチング)は説明の便宜のために省略した。   The coil of the present invention is composed of one ring-shaped insulating plate of the present invention described above, or a laminate of a plurality of the ring-shaped insulating plates. A coil may be formed by stacking a plurality of plates, or a coil may be formed by stacking a plurality of two or more different types of insulating plates. FIG. 2 is obtained by bending the ring-shaped insulating plate 20 shown in FIG. 1B, and extending the flat plate portions 4a and 4b for terminals of the conductive plate 1 before the terminal portions 6C and 6D. The terminal plate 6C, 6D is disposed near the terminal plate 6C, 6D so that the axis lines L3, L4 thereof are substantially perpendicular to the plane including the axis line L2 of the ring-shaped flat plate portion 3, and the insulating plate 1 is Pins can be fixed in a direction parallel to the plane including the ring-shaped flat plate portion 3 (in the direction of arrow a in the figure). In FIG. 2, the hatched lines (hatching) indicating the insulating coating layer 2 attached in FIG. 1B are omitted for convenience of description.

かかる図2のリング状絶縁板に示されるように、本発明のリング状絶縁板においては、導電板1のリング状の平板部3の一部から端子用の延長平板部4a、4bを延設し、端子用の延長平板部の先端に端子部6C、6Dを設ける構成とすることで、作製するコイルの用途やコイルの他部材との接続形態等に応じて、導電板3の端子用の延長平板部6C、6Dに折曲げ加工等を施して、リング状平板部の軸線L2と端子部6C、6Dの軸線L3、L4を異なる平面内に配置することで、端子部6C、6Dの向き(接続方向)を変えることができる。このような電着被膜形成後の後加工は、シロキサン結合含有ブロック共重合ポリイミドの電着被膜が可撓性に優れ、折曲げても割れや剥がれが生じにくいために実施できるものであり、従来のこの種の絶縁板では不可能であった。すなわち、本発明のリング状絶縁板は、十分に高い耐熱性と優れた耐電圧性を有するだけでなく、折曲げ加工性も良好な極めて高機能のリング状絶縁板を実現している。   As shown in the ring-shaped insulating plate of FIG. 2, in the ring-shaped insulating plate of the present invention, extended flat plate portions 4 a and 4 b for terminals are extended from a part of the ring-shaped flat plate portion 3 of the conductive plate 1. In addition, by providing the terminal portions 6C and 6D at the tip of the extension flat plate portion for the terminal, depending on the use of the coil to be produced, the connection form with other members of the coil, etc. The extension flat plate portions 6C and 6D are subjected to bending processing and the like, and the axis L2 of the ring-shaped flat plate portion and the axis L3 and L4 of the terminal portions 6C and 6D are arranged in different planes, so that the orientation of the terminal portions 6C and 6D (Connection direction) can be changed. Such post-processing after electrodeposition film formation can be performed because the electrodeposition film of siloxane bond-containing block copolymerized polyimide is excellent in flexibility and is not easily cracked or peeled off even when bent. This kind of insulation board was impossible. That is, the ring-shaped insulating plate of the present invention realizes an extremely high-performance ring-shaped insulating plate that not only has sufficiently high heat resistance and excellent voltage resistance, but also has good bending workability.

図3は本発明のコイルの一例の斜視図であり、該コイル100は、前記図1(a)及び図1(b)に示した絶縁板10、20の各々について、端子用の延長平板部に折曲げ加工(90°曲げ加工)を加え、該折曲げ加工後の2枚の絶縁板10、20を、一方の端子用の延長平板部4a、4bと他方の端子用の延長平板部4c、4dを180°反対方向に向け、かつ、両方の端子部6A、6B、6C、6Dが同一方向に向くように積層して、コイルを構成したものである。   FIG. 3 is a perspective view of an example of the coil according to the present invention. The coil 100 includes an extended flat plate portion for terminals of each of the insulating plates 10 and 20 shown in FIGS. 1 (a) and 1 (b). A bending process (90 ° bending process) is applied to the two insulating plates 10 and 20 after the bending process, and the extended flat plate portions 4a and 4b for one terminal and the extended flat plate portion 4c for the other terminal. 4d is oriented 180 ° in the opposite direction, and the terminals 6A, 6B, 6C, 6D are laminated so as to face in the same direction to constitute a coil.

本発明のコイルにおいて、絶縁板の枚数は、作製すべきコイルのキャパシタンス、インピーダンス、端子部の数等に応じて適宜決定され、特に限定されない。また、上記図3のコイル100では、2枚の絶縁板を、端子用の延長平板部が180°反対方向に向くように積層したが、本発明のコイルにおいて、コイルを構成する個々の絶縁板の端子用の延長平板部の向きは、コイルの他部材との接続形態等種に応じて種々変更することができる。   In the coil of the present invention, the number of insulating plates is appropriately determined according to the capacitance, impedance, number of terminal portions, and the like of the coil to be manufactured, and is not particularly limited. Further, in the coil 100 of FIG. 3, the two insulating plates are laminated so that the extension flat plate portion for the terminal faces 180 ° in the opposite direction. However, in the coil of the present invention, the individual insulating plates constituting the coil are arranged. The direction of the extended flat plate portion for the terminal can be variously changed according to the type of connection with other members of the coil.

本発明のリング状絶縁板は、上記のように、絶縁板(導電板)に折曲げ加工等の後加工を施しても、その加工部近傍の電着被膜(絶縁被覆層)に割れや剥がれが生じない。従って、本発明のリング状絶縁板を使用すれば、コイルの設置スペース、他の部材との接続形態等に応じて、端子部の向きを変える等のために曲げ加工を加えても、該絶縁板の所期の耐熱性及び耐電圧性等の諸特性は維持されるため、コイルの信頼性や耐久性を低下させることなく、コイルの布設形態の自由度を高めることができる。従って、例えば、3次元的に布設できるコイルを得ることも可能である。   As described above, the ring-shaped insulating plate of the present invention is cracked or peeled off on the electrodeposited coating (insulating coating layer) in the vicinity of the processed portion even if the insulating plate (conductive plate) is subjected to post-processing such as bending. Does not occur. Therefore, if the ring-shaped insulating plate of the present invention is used, even if bending processing is performed to change the orientation of the terminal portion according to the installation space of the coil, the connection form with other members, etc., the insulation Since the desired characteristics such as heat resistance and voltage resistance of the plate are maintained, the degree of freedom of the coil laying configuration can be increased without deteriorating the reliability and durability of the coil. Therefore, for example, it is possible to obtain a coil that can be installed three-dimensionally.

本発明のコイルは、駆動モーター、ソレノイド、各種のトランス等の種々の用途に使用できるが、中でも、トランス用コイルに適しており、特に、50kW以下で使用されるトランス用コイルに適している(すなわち、使用条件が50kWを超える場合、ある程度の厚肉の絶縁被覆層が必要となるため、電着による被膜では対応できなくなる。)。   The coil of the present invention can be used for various applications such as drive motors, solenoids, various transformers, etc., but is particularly suitable for transformer coils, particularly suitable for transformer coils used at 50 kW or less ( In other words, when the usage condition exceeds 50 kW, a thick insulating coating layer is required, and thus a coating by electrodeposition cannot be used.)

以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されない。
(実施例1)
[シロキサン結合含有ブロック共重合ポリイミド溶液の作製]
ガラス製のセパラブル三口フラスコを使用し、これに攪拌機、窒素導入管及び冷却管の下部にストップコックを備えた水分受容器を取付けた。窒素を流通させ、さらに攪拌しながら反応器をシリコーン油浴中に漬けて加熱し反応を行った。まず、フラスコに3,4,3’,4’−ビフェニルテトラカルボン酸二無水物58.84g(0.2モル)、ビス(γ−アミノプロピル)ポリジメチルシロキサン(信越化学工業社製のKF−8010)97.2g(0.1モル)、バレロラクロン4g(0.04モル)、ピリジン6.3g(0.08モル)、NMP(N−メチル−2−ピロリドン)500g及びトルエン80gを入れ、室温で30分間攪拌し、次いで、昇温し、180℃において1時間、200rpmで攪拌しながら反応を行った。反応後、トルエン−水留出分30mlを除いた。残留物を空冷して、3,4,3’,4’−ベンゾフェノンテトラカルボン酸二無水物64.45g(0.2モル)、3,5−ジアミノ安息香酸30.43g(0.2モル)、ビス−[4−(3−アミノフェノキシ)フェニル]スルホン43.25g(0.1モル)、NMP500g及びトルエン100gを添加し、室温で1時間攪拌(200rpm)し、次いで昇温して180℃で1時間、加熱攪拌した。トルエン−水留出分15mlを除き、以降は留出分を系外に除きながら、180℃で3時間、攪拌を行った。次いで、無水フタル酸1.1g及びNMP113gを添加し反応を1時間行い終了した。これにより20%ポリイミドワニスを得た。ブロック共重合ポリイミドの重量平均分子量及び数平均分子量はそれぞれ66,000及び34,000であった。
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited to these Examples.
(Example 1)
[Preparation of block copolymerized polyimide solution containing siloxane bonds]
A glass separable three-necked flask was used, and a water acceptor equipped with a stopcock was attached to the lower part of the stirrer, the nitrogen introduction tube and the cooling tube. Nitrogen was circulated, and the reactor was immersed in a silicone oil bath with further stirring and heated to carry out the reaction. First, 58.84 g (0.2 mol) of 3,4,3 ′, 4′-biphenyltetracarboxylic dianhydride and bis (γ-aminopropyl) polydimethylsiloxane (KF- manufactured by Shin-Etsu Chemical Co., Ltd.) were placed in a flask. 8010) 97.2 g (0.1 mol), valerolaclone 4 g (0.04 mol), pyridine 6.3 g (0.08 mol), NMP (N-methyl-2-pyrrolidone) 500 g and toluene 80 g were added at room temperature. For 30 minutes, and then the temperature was raised and the reaction was carried out at 180 ° C. for 1 hour with stirring at 200 rpm. After the reaction, 30 ml of toluene-water distillate was removed. The residue was air-cooled to give 64.45 g (0.2 mol) of 3,4,3 ′, 4′-benzophenonetetracarboxylic dianhydride, 30.43 g (0.2 mol) of 3,5-diaminobenzoic acid. Bis- [4- (3-aminophenoxy) phenyl] sulfone 43.25 g (0.1 mol), NMP 500 g and toluene 100 g were added, stirred at room temperature for 1 hour (200 rpm), then heated to 180 ° C. And stirred for 1 hour. Stirring was performed at 180 ° C. for 3 hours while removing 15 ml of toluene-water distillate and thereafter removing the distillate from the system. Subsequently, 1.1 g of phthalic anhydride and 113 g of NMP were added and the reaction was carried out for 1 hour to complete the reaction. As a result, a 20% polyimide varnish was obtained. The weight average molecular weight and number average molecular weight of the block copolymerized polyimide were 66,000 and 34,000, respectively.

上記で得られた20%ポリイミド溶液100gにトリエチルアミン3g(中和率100モル%)を加え攪拌した後、NMP62.5gを加え、アセトフェノン55g、シクロヘキサノン56g及び攪拌しながら2−エトキシエタノール72g及びフェノキシエタノール20gを加え、水32gを滴下して、固形分濃度5.0%、pH8.7、電気伝導度9.8ms/mの電着液組成物(電着用ワニス)を調製した。   To 100 g of the 20% polyimide solution obtained above, 3 g of triethylamine (neutralization rate 100 mol%) was added and stirred, then 62.5 g of NMP was added, acetophenone 55 g, cyclohexanone 56 g, 2-ethoxyethanol 72 g and phenoxyethanol 20 g with stirring. Then, 32 g of water was added dropwise to prepare an electrodeposition liquid composition (electrodeposition varnish) having a solid content concentration of 5.0%, pH 8.7, and electrical conductivity of 9.8 ms / m.

次に、下記の電着条件で、打抜きによって作製した図1(a)に示す形状の銅製の導電板(厚さ:500μm、縦長さ(L1):40mm、横長さ(L2):20mm)を陽極にして、下記の電着条件で上記の電着用組成物(ワニス)を電着した。
極間距離:3.0cm
電着電圧:定電圧法(140V)
電着時間:120秒
Next, a copper conductive plate (thickness: 500 μm, vertical length (L1): 40 mm, horizontal length (L2): 20 mm) having a shape shown in FIG. The electrodeposition composition (varnish) was electrodeposited under the following electrodeposition conditions as an anode.
Distance between electrodes: 3.0cm
Electrodeposition voltage: Constant voltage method (140V)
Electrodeposition time: 120 seconds

次に、こうしてポリイミド組成物を電着した導電板(銅板)を電着浴から取り出し、水洗後、90℃×30分間、さらに170℃×30分間、さらに220℃×30分間焼付けることで、シロキサン結合含有ブロック共重合ポリイミドの被膜による絶縁被覆層を有するコイル用絶縁板を得た。
絶縁被覆層の導電板の断面の平坦部を覆う部分の厚み(T1)は25μm、コーナー部を覆う部分の厚み(T2)は22μmであった。なお、これらの厚みは、絶縁板の3箇所の断面観察(マイクロスコープによる断面写真)により得られた厚みの平均値であり、下記の比較例においても同様である。
Next, the conductive plate (copper plate) electrodeposited with the polyimide composition in this manner is taken out of the electrodeposition bath, washed with water, and then baked at 90 ° C. for 30 minutes, further at 170 ° C. for 30 minutes, and further at 220 ° C. for 30 minutes. An insulating plate for a coil having an insulating coating layer made of a siloxane bond-containing block copolymerized polyimide film was obtained.
The thickness (T1) of the portion of the insulating coating layer covering the flat portion of the cross section of the conductive plate was 25 μm, and the thickness (T2) of the portion covering the corner portion was 22 μm. These thicknesses are average values of the thicknesses obtained by cross-sectional observation (cross-sectional photographs using a microscope) at three locations on the insulating plate, and the same applies to the following comparative examples.

(比較例1)
アクリロニトリル5モル、アクリル酸1モル、グリシジルメタクリレート0.3モルをイオン交換水760g、ラウリル硫酸エステルソーダ7.5g、過硫酸ソーダ0.13gと共にフラスコに入れて室温、窒素気流下15〜30分間撹拌したのち、その混合物を50〜60℃の温度で3時間反応させて得た乳化重合液(エポキシ・アクリル系水分散ワニス)を用意した。かかる乳化重合液を電着用組成物として、実施例1と同様の条件で、実施例1で使用したものと同じ銅製の導電板に電着して焼付け、エポキシ変性アクリル樹脂による絶縁被覆層(導電板の断面の平坦部を覆う部分の厚み(T1):24μm、導電板の断面のコーナー部を覆う部分の厚み(T2):40μm)のコイル用絶縁板を得た。
(Comparative Example 1)
Acrylonitrile (5 mol), acrylic acid (1 mol), and glycidyl methacrylate (0.3 mol) are placed in a flask together with ion-exchange water (760 g), lauryl sulfate ester soda (7.5 g) and sodium persulfate (0.13 g), and stirred at room temperature for 15 to 30 minutes under a nitrogen stream. After that, an emulsion polymerization liquid (epoxy / acrylic water dispersion varnish) obtained by reacting the mixture at a temperature of 50 to 60 ° C. for 3 hours was prepared. Using this emulsion polymerization solution as an electrodeposition composition, the same copper electroconductive plate as used in Example 1 was electrodeposited and baked under the same conditions as in Example 1, and an insulating coating layer (conducting with an epoxy-modified acrylic resin) A coil insulating plate having a thickness (T1) of the portion covering the flat portion of the cross section of the plate: 24 μm and a thickness of the portion covering the corner portion of the cross section of the conductive plate (T2): 40 μm was obtained.

(比較例2)
撹拌機、チッ素導入管及び冷却管の下部にストップコックのついた水分受容器を取り付けたガラス製のセパラブル三つ口フラスコを使用し、窒素を流しながら、さらに撹拌しながら反応器をシリコーン油中につけて加熱して下記の反応を行った。すなわち、3,4,3’,4’−ベンゾフェノンテトラカルボン酸ジ無水物64.44g(0.2モル)、ビス−[4−(3−アミノフェノキシ)フェニル]スルホン43.25g(0.1モル)、バレロラクトン3g(0.03モル)、ピリジン4.8g(0.06モル)、NMP(N−メチル−2−ピロリドンの略)400g及びトルエン90gを加えて、室温で30分間撹拌し、ついで昇温し、180℃において1時間、200rpmで撹拌しながら反応を行った。反応後、トルエン−水留出分30mlを除いた。残留物を空冷して、3,4,3’,4’−ベンゾフェノンテトラカルボン酸ジ無水物32.22g(0.1モル)、3,5−ジアミノ安息香酸15.22g(0.1モル)、2,6−ジアミノピリジン11.01g(0.1モル)、NMP222g及びトルエン45gを添加し、室温で1時間撹拌(200rpm)、次いで昇温して180℃で1時間、加熱撹拌した。トルエン−水留出分15mlを除き、以後は留出分を系外に除きながら、180℃、3時間、加熱、撹拌して反応を終了し、20%ポリイミド溶液を得た。こうして得たポリイミド溶液100gにNMP70gを加え、アニソール55g、シクロヘキサンノン45g及びN−メチルモルホリン2.6g(中和率200モル%)を加え、攪拌しながら水30gを滴下して、固形分濃度6.6%、pH7.8の電着用ポリイミドエマルジョン組成物(ワニス)を得た。そして、該組成物を実施例1と同様の条件で、実施例1で使用したものと同じ銅製の導電板に電着して焼付け、ブロック共重合ポリイミドによる絶縁層の厚み(導電板の断面の平坦部を覆う部分の厚み(T1):20μm、導電板の断面のコーナー部を覆う部分の厚み(T2):12μm)のコイル用絶縁板を得た。
(Comparative Example 2)
Use a glass separable three-necked flask equipped with a water acceptor with a stopcock at the bottom of the stirrer, nitrogen inlet tube, and cooling tube. The following reaction was carried out with heating inside. That is, 3,4,3 ′, 4′-benzophenonetetracarboxylic dianhydride 64.44 g (0.2 mol), bis- [4- (3-aminophenoxy) phenyl] sulfone 43.25 g (0.1 Mol), 3 g (0.03 mol) of valerolactone, 4.8 g (0.06 mol) of pyridine, 400 g of NMP (abbreviation of N-methyl-2-pyrrolidone) and 90 g of toluene, and stirred at room temperature for 30 minutes. Then, the temperature was raised, and the reaction was carried out at 180 ° C. for 1 hour with stirring at 200 rpm. After the reaction, 30 ml of toluene-water distillate was removed. The residue was air-cooled, and 3,22,3 ', 4'-benzophenonetetracarboxylic dianhydride (32.22 g, 0.1 mol), 3,5-diaminobenzoic acid (15.22 g, 0.1 mol) Then, 11.01 g (0.1 mol) of 2,6-diaminopyridine, 222 g of NMP and 45 g of toluene were added, and the mixture was stirred at room temperature for 1 hour (200 rpm), then heated to 180 ° C. for 1 hour with stirring. After removing 15 ml of toluene-water distillate and removing the distillate from the system, the reaction was terminated by heating and stirring at 180 ° C. for 3 hours to obtain a 20% polyimide solution. 70 g of NMP was added to 100 g of the polyimide solution thus obtained, 55 g of anisole, 45 g of cyclohexanenone and 2.6 g of N-methylmorpholine (neutralization rate 200 mol%) were added, and 30 g of water was added dropwise with stirring to obtain a solid concentration of 6 An electrodeposition polyimide emulsion composition (varnish) having a pH of 6.8% was obtained. Then, the composition was electrodeposited and baked on the same copper conductive plate as used in Example 1 under the same conditions as in Example 1, and the thickness of the insulating layer made of block copolymerized polyimide (the cross section of the conductive plate). A coil insulating plate having a thickness (T1) of the portion covering the flat portion: 20 μm and a thickness (T2) of the portion covering the corner portion of the cross section of the conductive plate: 12 μm was obtained.

(比較例3)
3,4,3’,4’−ベンゾフェノンテトラカルボン酸ジ無水物128.9g(0.4モル)と1,3−ビス−(4−アミノフェノキシ)ベンゼン116.9g(0.4モル)をN−メチル−2−ピロリドン(NMP)983gに溶かし、室温でイカリ型撹拌機を用いて、200rpmに撹拌しながら10時間反応し、20%ポリアミド酸溶液(ポリアミド酸の固有対数粘度0.78)を得た。この20%ポリアミド酸溶液にNMP、ベンジルアルコールを加え、さらに次いで中和剤を加え、さらに純水を加え、ポリアミド酸の固形分量6.8%、NMP41%、ベンジルアルコール16%、N−メチルモルホリン0.9%、純水35.3%の電着用組成物を調製した。こうして得た電着用組成物を実施例1と同様の条件で、実施例1で使用したものと同じ銅製の導電板に電着して焼付け、ポリイミドによる絶縁層(導電板の平坦部を覆う部分の厚み(T1):20μm、導電板のコーナー部を覆う部分の厚み(T2):12μm)のコイル用絶縁板を得た。
(Comparative Example 3)
128.9 g (0.4 mol) of 3,4,3 ′, 4′-benzophenonetetracarboxylic dianhydride and 116.9 g (0.4 mol) of 1,3-bis- (4-aminophenoxy) benzene Dissolved in 983 g of N-methyl-2-pyrrolidone (NMP) and reacted for 10 hours at room temperature with stirring at 200 rpm using a squid type stirrer, 20% polyamic acid solution (intrinsic logarithmic viscosity of polyamic acid 0.78) Got. NMP and benzyl alcohol are added to this 20% polyamic acid solution, then a neutralizing agent is added, pure water is further added, the solid content of polyamic acid is 6.8%, NMP is 41%, benzyl alcohol is 16%, and N-methylmorpholine. An electrodeposition composition of 0.9% and pure water 35.3% was prepared. The electrodeposition composition thus obtained was electrodeposited and baked on the same copper conductive plate as used in Example 1 under the same conditions as in Example 1, and an insulating layer made of polyimide (part covering the flat portion of the conductive plate) Thickness (T1): 20 μm, a thickness (T2) of the portion covering the corner portion of the conductive plate (T2): 12 μm was obtained.

(比較例4)
ランダム共重合体においてポリシロキサンを含有するポリアミドとして特開2000−178481号公報に準拠して作製したポリイミド電着液を実施例1と同様の条件で、実施例1で使用したものと同じリング状導電板に電着して焼付け、ポリイミドによる絶縁層(平坦部を覆う部分の厚み(T1):18μm、コーナー部を覆う部分の厚み(T2):8μm)のコイル用絶縁板を得た。
上記で得られた各コイル用絶縁板を、以下の項目について評価した。その結果を表1に示す。
(Comparative Example 4)
A polyimide electrodeposition liquid prepared according to JP 2000-178481 A as a polyamide containing polysiloxane in a random copolymer under the same conditions as in Example 1 and the same ring shape as used in Example 1 A conductive insulating plate was electrodeposited and baked to obtain a coil insulating plate having a polyimide insulating layer (thickness of the portion covering the flat portion (T1): 18 μm, thickness of the portion covering the corner portion (T2): 8 μm).
Each of the coil insulating plates obtained above was evaluated for the following items. The results are shown in Table 1.

(ピンホール試験)
JIS C3003に準拠して、n=50の絶縁板に対してピンホールの有無を調査した。ピンホールが確認されなかった絶縁板を〇で示し、ピンホールが確認されたリング状絶縁コイル板を×で示す。
(Pinhole test)
Based on JIS C3003, the presence or absence of a pinhole was investigated with respect to the insulating plate of n = 50. Insulating plates in which no pinholes have been confirmed are indicated by 〇, and ring-shaped insulating coil plates in which pinholes have been confirmed are indicated by ×.

(AC破壊電圧)
JIS C 3003に準拠して、AC破壊電圧を測定した。すなわち、2枚のリング状絶縁コイル板を重ね合わせた状態にする。各板に交流電圧発生器を接続し、電圧を上昇させて、短絡した電圧を破壊電圧とする。
(AC breakdown voltage)
The AC breakdown voltage was measured according to JIS C 3003. That is, the two ring-shaped insulating coil plates are overlapped. An AC voltage generator is connected to each plate, the voltage is raised, and the short-circuited voltage is taken as the breakdown voltage.

(耐熱性(温度指数))
JIS C 3003に準拠した温度指数評価法によって、耐熱性を評価した。
(Heat resistance (temperature index))
The heat resistance was evaluated by a temperature index evaluation method based on JIS C 3003.

(耐曲げ加工性)
JIS K 5600(マンドレル法)に準拠して実施。折曲げ後のサンプル表面を目視観察し、塗膜(被膜)割れが認められなかったものを合格、塗膜の割れが生じたものは不合格と判定した。
(Bending resistance)
Implemented in accordance with JIS K 5600 (mandrel method). The sample surface after bending was visually observed, and those in which no coating film (coating) cracking was observed were accepted, and those in which coating film cracking occurred were judged to be unacceptable.

(高温曲げ加工性)
サンプルを240℃で10分間保持後、JIS K 5600(マンドレル法)に準拠して実施。折曲げ後のサンプル表面を目視観察し、塗膜(被膜)割れが認められなかったものを合格、塗膜の割れが生じたものは不合格と判定した。
(High temperature bending workability)
After holding the sample at 240 ° C. for 10 minutes, it was carried out according to JIS K 5600 (mandrel method). The sample surface after bending was visually observed, and those in which no coating film (coating) cracking was observed were accepted, and those in which coating film cracking occurred were judged to be unacceptable.

Figure 2005228984
Figure 2005228984

図1(a)は本発明の第1の具体例のコイル用絶縁板の平面図、図1(b)は本発明の第2の具体例の例のリング状絶縁板の平面図である。FIG. 1A is a plan view of a coil insulating plate according to a first specific example of the present invention, and FIG. 1B is a plan view of a ring-shaped insulating plate according to a second specific example of the present invention. 図1(b)に示すコイル用絶縁板の端子用の延長平板部に折曲げ加工を加えた状態を示す斜視図である。It is a perspective view which shows the state which added the bending process to the extension flat plate part for terminals of the insulating board for coils shown in FIG.1 (b). 本発明のコイルの一具体例の斜視図である。It is a perspective view of one specific example of the coil of this invention. 本発明のコイル用絶縁板における断面が平角状の導電板の平角状断面のコーナー部を覆う絶縁被覆層の厚みと、平坦部を覆う絶縁被覆層の厚みを説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the thickness of the insulating coating layer which covers the corner | angular part of the flat cross section of the conductive plate with a flat rectangular cross section in the insulating plate for coils of this invention, and the thickness of the insulating coating layer which covers a flat part. .

符号の説明Explanation of symbols

1 導電板
2 開放部
3 リング状の平板部
4 a〜4d 端子用の延長平板部
5 絶縁被覆層
6 A〜6D 端子部
7 端子
10 コイル用絶縁板
100 コイル
DESCRIPTION OF SYMBOLS 1 Conductive plate 2 Open part 3 Ring-shaped flat plate part 4 a-4d Extension flat plate part for terminals 5 Insulation coating layer 6 A-6D Terminal part 7 Terminal 10 Insulating plate for coil 100 Coil

Claims (7)

断面形状が平角状の導電板であって、平面形状が開放部を有するリング状の平板部を含む導電板の少なくとも前記リング状の平板部の表面に絶縁被覆層を設けたリング状絶縁板であって、
前記絶縁被覆層が、ポリイミドの主鎖中にシロキサン結合を含有し、かつ、分子中にアニオン性基を有するブロック共重合ポリイミドの電着被膜からなることを特徴とする、リング状絶縁板。
A ring-shaped insulating plate having a flat rectangular cross-sectional shape and having an insulating coating layer on at least the surface of the ring-shaped flat plate portion of a conductive plate including a ring-shaped flat plate portion having an open portion in a planar shape. There,
A ring-shaped insulating plate, wherein the insulating coating layer is made of an electrodeposited coating of a block copolymerized polyimide containing a siloxane bond in the main chain of the polyimide and having an anionic group in the molecule.
導電板が打ち抜き加工によって作製されたものである、請求項1記載のリング状絶縁板。   The ring-shaped insulating plate according to claim 1, wherein the conductive plate is produced by punching. 導電板の平面形状が開放部を有するリング状の平板部が複数のコーナー部を有するリング状である、請求項1又は2記載のリング状絶縁板。   The ring-shaped insulating plate according to claim 1 or 2, wherein the planar shape of the conductive plate is a ring shape in which the ring-shaped flat plate portion having an open portion has a plurality of corner portions. 導電板へのブロック共重合ポリイミドの電着後、導電板のブロック共重合ポリイミドの電着被膜による絶縁被覆層が形成された部分に折曲げ加工が施されたものである、請求項1〜3のいずれか一項記載のリング状絶縁板。   After electrodeposition of the block copolymerized polyimide on the conductive plate, the portion where the insulating coating layer is formed by the electrodeposition coating of the block copolymerized polyimide on the conductive plate is subjected to bending processing. The ring-shaped insulating plate according to any one of the above. 導電板が、平面形状が開放部を有するリング状の平板部と、該平板部の一部より該平板部と同一平面内に延設された端子用の延長平板部とを有し、該端子用の延長平板部の軸線方向の先端に区画した端子部を除いて、ブロック共重合ポリイミドの電着被膜による絶縁被覆層で該導電板の表面が被覆されており、かつ、ブロック共重合ポリイミドの電着後に導電板の前記端子部の近傍に折曲げ加工が施されて、前記端子部の軸線と前記リング状の平板部の軸線とが異なる平面内に配置されている、請求項1〜3のいずれか一項記載のリング状絶縁板。   The conductive plate has a ring-shaped flat plate portion having a planar shape having an open portion, and an extended flat plate portion for a terminal extending in a same plane as the flat plate portion from a part of the flat plate portion, The surface of the conductive plate is covered with an insulating coating layer made of an electrodeposition coating of block copolymerized polyimide, except for the terminal portion partitioned at the axial end of the extended flat plate portion, and the block copolymerized polyimide Bending is performed in the vicinity of the terminal portion of the conductive plate after electrodeposition, and the axis of the terminal portion and the axis of the ring-shaped flat plate portion are arranged in different planes. The ring-shaped insulating plate according to any one of the above. 請求項1〜5のいずれか一項記載のリング状絶縁板の1枚からなるか、または該リング状絶縁板を複数枚積層してなるコイル。   A coil comprising one of the ring-shaped insulating plates according to any one of claims 1 to 5, or a laminate of a plurality of the ring-shaped insulating plates. トランス用である、請求項6記載のコイル。   The coil according to claim 6, which is used for a transformer.
JP2004037297A 2004-02-13 2004-02-13 Method for manufacturing ring-shaped insulating plate for coil Expired - Lifetime JP4737938B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004037297A JP4737938B2 (en) 2004-02-13 2004-02-13 Method for manufacturing ring-shaped insulating plate for coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004037297A JP4737938B2 (en) 2004-02-13 2004-02-13 Method for manufacturing ring-shaped insulating plate for coil

Publications (2)

Publication Number Publication Date
JP2005228984A true JP2005228984A (en) 2005-08-25
JP4737938B2 JP4737938B2 (en) 2011-08-03

Family

ID=35003440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004037297A Expired - Lifetime JP4737938B2 (en) 2004-02-13 2004-02-13 Method for manufacturing ring-shaped insulating plate for coil

Country Status (1)

Country Link
JP (1) JP4737938B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008085077A (en) * 2006-09-27 2008-04-10 Mitsubishi Cable Ind Ltd Ring-shaped insulating coil board and its manufacturing method
JP2010107420A (en) * 2008-10-31 2010-05-13 Mitsubishi Cable Ind Ltd Probe pin and method for insulating the same
JP2012204257A (en) * 2011-03-28 2012-10-22 Hitachi Cable Ltd Square insulated electric wire
KR101247231B1 (en) 2010-08-04 2013-03-25 가부시키가이샤 무라타 세이사쿠쇼 Laminated coil
KR101450471B1 (en) * 2013-08-27 2014-10-13 주식회사 두산 Preparation method of flexible metal clad laminate using batch curing
JPWO2013187501A1 (en) * 2012-06-15 2016-02-08 武延 本郷 Coiled member and coil device
WO2022202363A1 (en) 2021-03-24 2022-09-29 三菱マテリアル株式会社 Insulation film-provided flat conductive plate and method for manufacturing same

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07157560A (en) * 1993-12-02 1995-06-20 P I Zairyo Kenkyusho:Kk Production of polyimide block copolymer and its solution composition
JPH0940777A (en) * 1995-07-28 1997-02-10 Tomoegawa Paper Co Ltd Polyimide/siloxane block copolymer, varnish containing it and method of using it
JPH09104839A (en) * 1995-10-12 1997-04-22 Dainippon Toryo Co Ltd Polyimide composition for electrodeposition and coating film
JPH10101795A (en) * 1996-07-18 1998-04-21 Reitetsuku Kk Production of polyimide, composition, and product thereof
JP2000103848A (en) * 1998-09-28 2000-04-11 Dainippon Printing Co Ltd Solvent-soluble polyimide having low elastic modulus
WO2001010964A1 (en) * 1999-08-06 2001-02-15 Pi R & D Co., Ltd. Composition for polyimide electrodeposition and method of forming patterned polyimide film with the same
JP2001096754A (en) * 1999-07-23 2001-04-10 Konica Corp Ink-jet head and manufacturing method
JP2002313636A (en) * 2001-04-18 2002-10-25 Matsushita Electric Ind Co Ltd Coil component
JP2003327907A (en) * 2002-05-07 2003-11-19 Pi R & D Co Ltd Heat-resistant block copolymer polyimide composition for electrodeposition and method for forming composition of electrodeposition liquid and coating film by using the same polyimide
JP2005162954A (en) * 2003-12-05 2005-06-23 Pi R & D Co Ltd Electrodeposition coating material composition and electrodepositing method using the same
JP2005174561A (en) * 2003-12-05 2005-06-30 Pi R & D Co Ltd Insulated electric wire and insulated coil

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07157560A (en) * 1993-12-02 1995-06-20 P I Zairyo Kenkyusho:Kk Production of polyimide block copolymer and its solution composition
JPH0940777A (en) * 1995-07-28 1997-02-10 Tomoegawa Paper Co Ltd Polyimide/siloxane block copolymer, varnish containing it and method of using it
JPH09104839A (en) * 1995-10-12 1997-04-22 Dainippon Toryo Co Ltd Polyimide composition for electrodeposition and coating film
JPH10101795A (en) * 1996-07-18 1998-04-21 Reitetsuku Kk Production of polyimide, composition, and product thereof
JP2000103848A (en) * 1998-09-28 2000-04-11 Dainippon Printing Co Ltd Solvent-soluble polyimide having low elastic modulus
JP2001096754A (en) * 1999-07-23 2001-04-10 Konica Corp Ink-jet head and manufacturing method
WO2001010964A1 (en) * 1999-08-06 2001-02-15 Pi R & D Co., Ltd. Composition for polyimide electrodeposition and method of forming patterned polyimide film with the same
JP2002313636A (en) * 2001-04-18 2002-10-25 Matsushita Electric Ind Co Ltd Coil component
JP2003327907A (en) * 2002-05-07 2003-11-19 Pi R & D Co Ltd Heat-resistant block copolymer polyimide composition for electrodeposition and method for forming composition of electrodeposition liquid and coating film by using the same polyimide
JP2005162954A (en) * 2003-12-05 2005-06-23 Pi R & D Co Ltd Electrodeposition coating material composition and electrodepositing method using the same
JP2005174561A (en) * 2003-12-05 2005-06-30 Pi R & D Co Ltd Insulated electric wire and insulated coil

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008085077A (en) * 2006-09-27 2008-04-10 Mitsubishi Cable Ind Ltd Ring-shaped insulating coil board and its manufacturing method
JP2010107420A (en) * 2008-10-31 2010-05-13 Mitsubishi Cable Ind Ltd Probe pin and method for insulating the same
KR101247231B1 (en) 2010-08-04 2013-03-25 가부시키가이샤 무라타 세이사쿠쇼 Laminated coil
JP2012204257A (en) * 2011-03-28 2012-10-22 Hitachi Cable Ltd Square insulated electric wire
JPWO2013187501A1 (en) * 2012-06-15 2016-02-08 武延 本郷 Coiled member and coil device
KR101450471B1 (en) * 2013-08-27 2014-10-13 주식회사 두산 Preparation method of flexible metal clad laminate using batch curing
WO2022202363A1 (en) 2021-03-24 2022-09-29 三菱マテリアル株式会社 Insulation film-provided flat conductive plate and method for manufacturing same

Also Published As

Publication number Publication date
JP4737938B2 (en) 2011-08-03

Similar Documents

Publication Publication Date Title
JP4594615B2 (en) Insulated wire and insulated coil
KR101423806B1 (en) Electrodeposition coating material and electrodeposition method
JP5422381B2 (en) Insulating material
JP5296493B2 (en) Insulating material
WO2012102121A1 (en) Polyimide resin varnish, and insulated electrical wire, electrical coil, and motor using same
TW200300111A (en) Polyimide-metal layered products and polyamideimide-metal layered product
JP5464838B2 (en) Insulating member manufacturing method
JP4737938B2 (en) Method for manufacturing ring-shaped insulating plate for coil
JP6394697B2 (en) Insulated wires and coils
JP2012224697A (en) Polyimide resin varnish, and electric insulated wire, electric appliance coil and motor using the same
JP2013253124A (en) Polyimide resin vanish, and insulated electric wire, electric coil and motor using the same
JP2005162954A (en) Electrodeposition coating material composition and electrodepositing method using the same
WO2012153636A1 (en) Polyimide resin varnish, insulated electric wire using same, electric coil, and motor
JP2013051030A (en) Insulated wire and armature coil using the same, motor
CN1762696A (en) Metallic foil-polyimide laminated flexible plate and its manufacturing process
JP2012234625A (en) Insulation wire, electric machine coil using the same, and motor
JP2021106248A (en) Metal-clad laminated plate and circuit board
JP2013101759A (en) Insulation wire, electric machine coil using the same, and motor
JP2017071193A (en) Metal-clad laminate, printed wiring board and electronic apparatus using the same
JP2013234257A (en) Electrodeposition paint composition and electrodeposition method and insulation member
JP2017095594A (en) Resin varnish and insulation wire
JP5706268B2 (en) Electrodeposition coating composition and insulating member using the same
JP5399685B2 (en) Electronic component with lead wire and insulation coating method for lead wire
JP5876176B2 (en) Electrodeposition coating composition and insulating member using the same
JP5837397B2 (en) Insulated wire and electric coil and motor using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110426

R150 Certificate of patent or registration of utility model

Ref document number: 4737938

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term