JP2005226467A - Gas compressor - Google Patents

Gas compressor Download PDF

Info

Publication number
JP2005226467A
JP2005226467A JP2004033156A JP2004033156A JP2005226467A JP 2005226467 A JP2005226467 A JP 2005226467A JP 2004033156 A JP2004033156 A JP 2004033156A JP 2004033156 A JP2004033156 A JP 2004033156A JP 2005226467 A JP2005226467 A JP 2005226467A
Authority
JP
Japan
Prior art keywords
suction port
refrigerant gas
suction
case
bottom plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004033156A
Other languages
Japanese (ja)
Other versions
JP4354839B2 (en
Inventor
Masahiro Tsuda
昌宏 津田
Kimitoku Yamazoe
公徳 山添
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Corp
Original Assignee
Calsonic Compressor Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Compressor Inc filed Critical Calsonic Compressor Inc
Priority to JP2004033156A priority Critical patent/JP4354839B2/en
Publication of JP2005226467A publication Critical patent/JP2005226467A/en
Application granted granted Critical
Publication of JP4354839B2 publication Critical patent/JP4354839B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent a hindrance to the function of an oil drain hole of a check valve arranged in a suction port in a gas compressor. <P>SOLUTION: The suction port 21 is provided with the check valve 30 for allowing the inflow of refrigerant gas R to a suction chamber 23 from the suction port 21 and checking a backflow of the refrigerant gas R to the suction port 21 from the suction chamber 23. The check valve 30 has a bottom plate 35g forming the oil drain hole 35c for discharging refrigerating machine oil L. A projecting part 35f for securing clearance with a seat surface 21a of the suction port 21, is formed on an under surface 35b of this bottom plate 35g, to prevent the oil drain hole 35c from being blocked up by the seat surface 21a. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、気体圧縮機に関し、詳細には、圧縮室の上流側に形成された吸入室から、冷媒ガスが供給される吸入ポートへの冷媒ガスの逆流を阻止する逆止弁の改良に関する。   The present invention relates to a gas compressor, and more particularly, to an improvement in a check valve that prevents backflow of refrigerant gas from a suction chamber formed upstream of the compression chamber to a suction port to which refrigerant gas is supplied.

従来より、空調装置等における冷凍サイクルは、冷媒ガスを圧縮してシステムに冷媒ガスを循環させるために気体圧縮機が用いられている。   Conventionally, in a refrigeration cycle in an air conditioner or the like, a gas compressor is used to compress the refrigerant gas and circulate the refrigerant gas through the system.

この気体圧縮機は、作動方式として往復動式や回転式などが実用化されているが、いずれの形式によるものであっても、その作動の過程で圧縮室の容積が縮小されることによって、圧縮室内の冷媒ガスを圧縮する構造となっている。   As for this gas compressor, a reciprocating type, a rotary type, etc. are put into practical use as an operation method, but by any type, the volume of the compression chamber is reduced in the process of operation, The refrigerant gas in the compression chamber is compressed.

また、この圧縮室に対して冷媒ガスRの上流側には、図5に示すように、圧縮室Cに連通する冷媒ガスRの吸入室23が形成され、さらに、この吸入室23に連通するとともに、この気体圧縮機100の外部から冷媒ガスRが供給される吸入ポート21が形成されている。   Further, as shown in FIG. 5, a suction chamber 23 for the refrigerant gas R communicating with the compression chamber C is formed on the upstream side of the refrigerant gas R with respect to the compression chamber, and further communicating with the suction chamber 23. In addition, a suction port 21 to which the refrigerant gas R is supplied from the outside of the gas compressor 100 is formed.

吸入ポート21には、逆止弁30が配設されており、この逆止弁30を介して吸入室23と吸入ポート21とは連通する。   The suction port 21 is provided with a check valve 30, and the suction chamber 23 and the suction port 21 communicate with each other through the check valve 30.

逆止弁30は、吸入ポート21から吸入室23への冷媒ガスRの流入を可能とする一方、吸入室23から吸入ポート21への冷媒ガスRの逆流を阻止する機能を有し、詳細には、例えば図6の分解図(部分破断図)に示すように、円筒形状のストッパ31と、ストッパ31の図示下端面31aと密接する環状シール面33bを有する弁本体33と、弁本体33を図示上方に付勢するスプリング34と、弁本体33およびスプリング34を内部に収容するとともに、弁本体33のスカート部33aが内接して図示上下方向に摺動可能の周壁35dおよび底板35gを有し、周壁35dには吸入室23と連通する複数の開口35aが形成されたケース35とを備えている。   The check valve 30 allows the refrigerant gas R to flow from the suction port 21 to the suction chamber 23, while preventing the refrigerant gas R from flowing back from the suction chamber 23 to the suction port 21. For example, as shown in an exploded view (partially cutaway view) in FIG. 6, a cylindrical stopper 31, a valve body 33 having an annular seal surface 33 b in close contact with the illustrated lower end surface 31 a of the stopper 31, and a valve body 33 are provided. A spring 34 urged upward in the figure, a valve body 33 and a spring 34 are accommodated therein, and a skirt portion 33a of the valve body 33 is inscribed therein and has a peripheral wall 35d and a bottom plate 35g slidable in the vertical direction in the figure. The peripheral wall 35d is provided with a case 35 in which a plurality of openings 35a communicating with the suction chamber 23 are formed.

ここで、ケース35の底板35gには、供給された冷媒ガスRに混じった冷凍機油Lがこのケース35の底部に溜まるのを防止する油抜き孔35cが形成されている。また、ケース35の環状上端面35eは、ストッパ31の下部段付き部31bが突き合わされる。   Here, the bottom plate 35 g of the case 35 is formed with an oil drain hole 35 c that prevents the refrigerating machine oil L mixed with the supplied refrigerant gas R from accumulating at the bottom of the case 35. Further, the lower stepped portion 31 b of the stopper 31 is abutted against the annular upper end surface 35 e of the case 35.

なお、ストッパ31の上部外周面には、環状の溝31cが形成されて、この溝31cにシール部材32が嵌挿されている。   An annular groove 31c is formed on the upper outer peripheral surface of the stopper 31, and a seal member 32 is inserted into the groove 31c.

そして、吸入ポート21に組み込まれた逆止弁30は、図7(a)に示すように、冷媒ガスRの供給圧と吸入室23の内部圧力(<冷媒ガスRの供給圧)との差圧がスプリング34の付勢力よりも小さいときや、吸入室23の内部圧力が冷媒ガスRの供給圧より高いときは、弁本体33がスプリング34の付勢力によってストッパ31に突き当てられて、吸入ポート21の上流側と吸入室23とは弁本体33により仕切られ、吸入室23から吸入ポート21の上流側への冷媒ガスRの逆流が阻止されている。   As shown in FIG. 7A, the check valve 30 incorporated in the suction port 21 has a difference between the supply pressure of the refrigerant gas R and the internal pressure of the suction chamber 23 (<supply pressure of the refrigerant gas R). When the pressure is smaller than the urging force of the spring 34 or when the internal pressure of the suction chamber 23 is higher than the supply pressure of the refrigerant gas R, the valve body 33 is abutted against the stopper 31 by the urging force of the spring 34 and sucks The upstream side of the port 21 and the suction chamber 23 are partitioned by the valve body 33, and the reverse flow of the refrigerant gas R from the suction chamber 23 to the upstream side of the suction port 21 is prevented.

一方、冷媒ガスRの供給圧と吸入室23の内部圧力(<冷媒ガスRの供給圧)との差圧がスプリング34の付勢力を超えると、図7(b)に示すように、弁本体33がスプリング34の付勢力に抗して図示下方に変位し、このとき、弁本体33のスカート部33aの図示上端縁がケース35の開口35aの上端よりも下方まで変位することによって、吸入ポート21の上流側と吸入室23とが連通し、吸入ポート21に供給された冷媒ガスRを、吸入室23に流入させることができる(特許文献1)。   On the other hand, if the differential pressure between the supply pressure of the refrigerant gas R and the internal pressure of the suction chamber 23 (<the supply pressure of the refrigerant gas R) exceeds the urging force of the spring 34, as shown in FIG. When the upper end edge of the skirt portion 33a of the valve body 33 is displaced below the upper end of the opening 35a of the case 35, the suction port 33 is displaced downward against the biasing force of the spring 34. The upstream side of 21 communicates with the suction chamber 23, and the refrigerant gas R supplied to the suction port 21 can flow into the suction chamber 23 (Patent Document 1).

ところで、この種の気体圧縮機100は、高圧ガスとしての冷媒ガスRを吐出ポートから冷凍サイクルのコンデンサ等外部に吐出する際に、冷凍機油Lの一部も吐出するため、冷凍サイクルを循環して吸入ポート21に供給される冷媒ガスRにも、冷凍機油Lが混じっている。   By the way, this type of gas compressor 100 circulates in the refrigerating cycle because a part of the refrigerating machine oil L is also discharged when the refrigerant gas R as a high-pressure gas is discharged from the discharge port to the outside such as a condenser of the refrigerating cycle. The refrigerant gas R supplied to the suction port 21 is also mixed with the refrigerating machine oil L.

そして、この冷媒ガスRに混じって吸入ポート21に戻った冷凍機油Lの一部は、ケース35の内部にも付着するが、凝集してケース35の底部に流れ落ち、図7(b)に示すように、底板35gに形成された油抜き孔35cを通って吸入室23に戻される。
特開2002−257046号公報
A part of the refrigeration oil L mixed with the refrigerant gas R and returning to the suction port 21 adheres to the inside of the case 35, but aggregates and flows down to the bottom of the case 35, as shown in FIG. As described above, the oil is returned to the suction chamber 23 through the oil drain hole 35c formed in the bottom plate 35g.
JP 2002-257046 A

ところで、上述した吸入ポート21が円柱状の空間として形成され、逆止弁30のケース35も軸回りに回転対称の円筒形状に形成されている場合、吸入ポート21にケース35を組み付ける際に、ケース35の軸回りの位相に拘わらず組み付けることが可能となるため、例えば図8(a)に示すように、ケース35の底板35gに形成された油抜き孔35cの真正面に、吸入ポート21の座面21aが正対する位相で組み付けられることもある。   By the way, when the suction port 21 described above is formed as a cylindrical space and the case 35 of the check valve 30 is also formed in a cylindrical shape that is rotationally symmetric about the axis, when the case 35 is assembled to the suction port 21, Since it can be assembled regardless of the phase around the axis of the case 35, for example, as shown in FIG. 8 (a), the suction port 21 is disposed in front of the oil drain hole 35c formed in the bottom plate 35g of the case 35. In some cases, the seating surface 21a is assembled at a phase opposite to each other.

そして、このような位相関係で逆止弁30が組み付けられると、油抜き孔35cが吸入ポート21の座面21aによって塞がれてしまい、ケース35の底部に冷凍機油Lが不必要に溜まるだけでなく、弁本体33が大きく押し下げられたとき、スカート部33aの下部に冷凍機油Lが大量に付着し、弁本体35の摺動動作の抵抗(粘性抵抗)となって、逆止弁30の正常な動作を妨げる虞がある。   When the check valve 30 is assembled in such a phase relationship, the oil drain hole 35 c is blocked by the seat surface 21 a of the suction port 21, and the refrigerating machine oil L only accumulates unnecessarily at the bottom of the case 35. In addition, when the valve main body 33 is largely pushed down, a large amount of the refrigerating machine oil L adheres to the lower part of the skirt portion 33a, and the resistance of the sliding operation (viscosity resistance) of the valve main body 35 is caused. There is a risk of hindering normal operation.

また、吸入ポート21が円柱状の空間ではなく、逆止弁30のケース35も軸回りに回転対称でない形状であって、ケース35の底板35gの油抜き孔35cと座面21aとの位相位置関係が常に一定となる場合であっても、気体圧縮機100の機種の仕様によっては、例えば図8(b)に示すように、座面21aが吸入室23側に大きく張り出して、底板35gの下面35bの全面が座面21aに密着して、張出部21cが油抜き孔35cを塞ぐ虞がある。そして、この場合にも、ケース35が軸回りに回転対称の場合と同様に、逆止弁30の正常な動作を妨げる虞がある。   The suction port 21 is not a cylindrical space, and the case 35 of the check valve 30 is not rotationally symmetric about the axis, and the phase position between the oil drain hole 35c of the bottom plate 35g of the case 35 and the seat surface 21a. Even when the relationship is always constant, depending on the specifications of the model of the gas compressor 100, for example, as shown in FIG. 8B, the seat surface 21a protrudes greatly toward the suction chamber 23, and the bottom plate 35g There is a possibility that the entire surface of the lower surface 35b is in close contact with the seat surface 21a, and the overhang portion 21c blocks the oil drain hole 35c. In this case, the normal operation of the check valve 30 may be hindered as in the case where the case 35 is rotationally symmetric about the axis.

本発明は上記事情に鑑みなされたものであり、逆止弁の油抜き孔の機能が妨げられることがない気体圧縮機を提供することを目的とするものである。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a gas compressor in which the function of the oil drain hole of the check valve is not hindered.

本発明に係る気体圧縮機は、吸入ポートに設けられた逆止弁の、油抜き孔が形成されたケース底板部の下面と、この下面が対向する吸入ポートの座面との間に、隙間を確保するように、底板部の下面および座面のうち少なくとも一方に、相手側に突出する凸部を形成して、底板部の下面と座面とが密着するのを防止し、底板部に形成された油抜き孔が座面によって塞がれるのを阻止したものである。   The gas compressor according to the present invention has a gap between the lower surface of the case bottom plate portion in which the oil drain hole is formed and the seat surface of the suction port facing the lower surface of the check valve provided in the suction port. In order to ensure that the bottom plate portion and the seating surface, at least one of the bottom surface and the seating surface is formed with a convex portion projecting to the other side to prevent the bottom plate portion and the seating surface from closely contacting each other. This prevents the formed oil drain hole from being blocked by the seating surface.

すなわち、本発明に係る気体圧縮機は、冷媒ガスを圧縮する圧縮室と、前記圧縮室に対して前記冷媒ガスの上流側に形成された吸入室と、外部から前記冷媒ガスが供給され、前記吸入室に連通する吸入ポートとを備えるとともに、前記吸入ポートには、該吸入ポートから前記吸入室への前記冷媒ガスの流入を可能とする一方、前記吸入室から前記吸入ポートへの前記冷媒ガスの逆流を阻止する逆止弁が設けられ、前記逆止弁は、油抜き孔が形成された底板部を有する筒状のケースを備えてなる気体圧縮機において、前記底板部の下面に、および/または該下面に対向する前記吸入ポートの座面に、該下面と該座面との隙間を確保する凸部が形成されていることを特徴とする。   That is, the gas compressor according to the present invention includes a compression chamber for compressing the refrigerant gas, a suction chamber formed on the upstream side of the refrigerant gas with respect to the compression chamber, and the refrigerant gas supplied from the outside, A suction port that communicates with the suction chamber, and allows the refrigerant gas to flow from the suction port to the suction chamber, while the refrigerant gas from the suction chamber to the suction port. A check valve for preventing the backflow of the gas, and the check valve includes a cylindrical case having a bottom plate portion in which an oil drain hole is formed. In addition, a convex portion that secures a clearance between the lower surface and the seat surface is formed on the seat surface of the suction port facing the lower surface.

ここで、凸部は、対向する相手側に向けて突出したものであり、ケースの底板部の下面に凸部を形成するときは、吸入ポートの座面に向けて突出した凸部となり、吸入ポートの座面に凸部を形成するときは、ケースの底板部の下面に向けて突出した凸部となる。   Here, the convex part protrudes toward the opposite side, and when the convex part is formed on the lower surface of the bottom plate part of the case, the convex part protrudes toward the seating surface of the suction port and When the convex portion is formed on the seat surface of the port, the convex portion protrudes toward the lower surface of the bottom plate portion of the case.

この凸部は、底板部の下面および座面のうちいずれか一方または両方に設けることができ、いずれか一方にのみ設けたものであっても、あるいは両方に設けたものであっても、両者間に油排出流路を確保することができる。   This convex part can be provided on either one or both of the lower surface and the seating surface of the bottom plate part, either provided on either one or both, An oil discharge channel can be secured in between.

本発明に係る気体圧縮機によれば、逆止弁のケース底板部の下面およびこの下面に対向する吸入ポートの座面のうち少なくとも一方に、ケース底板部の下面と吸入ポートの座面との隙間を確保する凸部が形成されているため、ケース底板部に設けられた油抜き孔が吸入ポートの座面によって塞がれることがなく、したがって、ケースの底部に流れ込んだ冷凍機油は、この油抜き孔を通って吸入ポートの座面に流れ落ち、この座面から吸入室やフロントヘッドの軸受け等に排出される。   According to the gas compressor of the present invention, at least one of the lower surface of the case bottom plate portion of the check valve and the seating surface of the suction port facing the lower surface is provided with a lower surface of the case bottom plate portion and a seating surface of the suction port. Since the convex portion that secures the gap is formed, the oil drain hole provided in the case bottom plate portion is not blocked by the seating surface of the suction port, and therefore the refrigerating machine oil that has flowed into the bottom portion of the case The oil flows down to the seating surface of the suction port through the oil drainage hole, and is discharged from the seating surface to the suction chamber and the bearing of the front head.

したがって、逆止弁の油抜き孔の機能が阻害されることがなく、逆止弁のケース底部に冷凍機油が溜まるのを防止することができる。   Therefore, the function of the oil drain hole of the check valve is not hindered, and refrigeration oil can be prevented from accumulating at the case bottom of the check valve.

以下、本発明の気体圧縮機に係る最良の実施形態について、図面を参照して説明する。本実施形態の気体圧縮機は、車両の空調システムに用いられ、冷媒ガスRを圧縮するベーンロータリコンプレッサ100である。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, the best embodiment of the gas compressor of the invention will be described with reference to the drawings. The gas compressor of the present embodiment is a vane rotary compressor 100 that is used in an air conditioning system of a vehicle and compresses a refrigerant gas R.

このロータリコンプレッサ100は、図1の縦断面に示すように、フロントサイドブロック13、リヤサイドブロック14、シリンダ15、ロータ17およびロータ17に備えられたベーン16に囲まれて形成された複数の圧縮室Cの各容積が、ロータ17の回転にしたがって縮小されることにより、圧縮室C内の冷媒ガスRを圧縮する構造となっている。   As shown in the vertical cross section of FIG. 1, the rotary compressor 100 includes a plurality of compression chambers surrounded by a front side block 13, a rear side block 14, a cylinder 15, a rotor 17, and a vane 16 provided in the rotor 17. Each volume of C is reduced according to the rotation of the rotor 17 to compress the refrigerant gas R in the compression chamber C.

ここで、フロントサイドブロック13には、冷媒ガスRの吸入行程に対応する圧縮室Cに通じる吸入口(図示せず)が形成され、シリンダ15には、冷媒ガスRの吐出行程に対応する圧縮室Cに通じる吐出口(図示せず)が形成され、この吐出口には吐出弁(図示せず)が設けられている。   Here, the front side block 13 is formed with a suction port (not shown) leading to the compression chamber C corresponding to the suction stroke of the refrigerant gas R, and the cylinder 15 is compressed corresponding to the discharge stroke of the refrigerant gas R. A discharge port (not shown) communicating with the chamber C is formed, and a discharge valve (not shown) is provided at the discharge port.

また、リヤサイドブロック14には、シリンダ15の吐出弁から吐出された冷媒ガスRの流路となる吐出口が形成され、さらにこのリヤサイドブロック14の外側には、吐出口から吐出した冷媒ガスRに混じった冷凍機油Lを冷媒ガスRから分離するための分離機金網19を有するサイクロンブロック18が取り付けられている。   Further, the rear side block 14 is formed with a discharge port serving as a flow path for the refrigerant gas R discharged from the discharge valve of the cylinder 15. Further, the refrigerant gas R discharged from the discharge port is formed outside the rear side block 14. A cyclone block 18 having a separator wire net 19 for separating the mixed refrigeration oil L from the refrigerant gas R is attached.

そして、フロントサイドブロック13、リヤサイドブロック14、シリンダ15、ロータ17およびロータ17に嵌合したシャフト20は圧縮機本体10を構成し、この圧縮機本体10とサイクロンブロック18は、フロントヘッド11およびケース12によって覆われている。   The front side block 13, the rear side block 14, the cylinder 15, the rotor 17, and the shaft 20 fitted to the rotor 17 constitute the compressor main body 10, and the compressor main body 10 and the cyclone block 18 include the front head 11 and the case. 12 is covered.

また、ロータ17は、図示しない電動機から、動力伝達ベルト130、動力伝達機構90、およびフロントサイドブロック13とリヤサイドブロック14とに軸支されたシャフト20を介して回転力が与えられる。動力伝達機構90は、動力伝達ベルト130が巻き掛けられ、ラジアルベアリング20を介してフロントヘッド11に支持されたプーリ91、およびシャフト20とプーリ91とを連結する連結板92を備えている。   The rotor 17 is given a rotational force from a motor (not shown) through a power transmission belt 130, a power transmission mechanism 90, and a shaft 20 that is pivotally supported by the front side block 13 and the rear side block 14. The power transmission mechanism 90 includes a pulley 91 around which a power transmission belt 130 is wound and supported by the front head 11 via a radial bearing 20, and a connecting plate 92 that connects the shaft 20 and the pulley 91.

一方、フロントヘッド11とフロントサイドブロック13との間には、フロントサイドブロック13の吸入口に通じ、圧縮室Cに対して冷媒ガスRの上流側となる吸入室23が形成され、フロントヘッド11には、このコンプレッサ100の外部すなわち空調システムのエバポレータから吸入管110を介して冷媒ガスRが供給される吸入ポート21が形成され、ケース12にはコンプレッサ100の外部すなわち空調システムのコンデンサに、吐出管120を介して、圧縮されて高温・高圧となった冷媒ガスRを吐出する吐出ポート22が形成されている。   On the other hand, a suction chamber 23 is formed between the front head 11 and the front side block 13, leading to the suction port of the front side block 13 and upstream of the refrigerant gas R with respect to the compression chamber C. Is formed with a suction port 21 to which the refrigerant gas R is supplied from the outside of the compressor 100, that is, from an evaporator of the air conditioning system through the suction pipe 110, and is discharged to the case 12 to the outside of the compressor 100, that is, to the condenser of the air conditioning system. A discharge port 22 for discharging the refrigerant gas R that has been compressed to a high temperature and a high pressure is formed through the pipe 120.

吸入ポート21には、逆止弁30が配設されており、この逆止弁30を介して吸入ポート21は吸入室23と連通している。   A check valve 30 is provided in the suction port 21, and the suction port 21 communicates with the suction chamber 23 via the check valve 30.

逆止弁30は、吸入ポート21から吸入室23への冷媒ガスRの流入を可能とする一方、吸入室23から吸入ポート21への冷媒ガスRの逆流を阻止する機能を有し、詳細には、例えば図2の分解図(部分破断図)に示すように、円筒形状のストッパ31と、ストッパ31の図示下端面31aと密接する環状シール面33bを有する弁本体33と、弁本体33を図示上方に付勢するスプリング34と、弁本体33およびスプリング34を内部に収容するとともに、弁本体33のスカート部33aが内接して図示上下方向に摺動可能の周壁35dおよび底板35gを有し、周壁35dには吸入室23と連通する複数の開口35aが形成されたケース35とを備えている。   The check valve 30 allows the refrigerant gas R to flow from the suction port 21 to the suction chamber 23, while preventing the refrigerant gas R from flowing back from the suction chamber 23 to the suction port 21. For example, as shown in an exploded view (partially broken view) in FIG. 2, a cylindrical stopper 31, a valve main body 33 having an annular seal surface 33 b in close contact with the illustrated lower end surface 31 a of the stopper 31, and a valve main body 33. A spring 34 urged upward in the figure, a valve body 33 and a spring 34 are accommodated therein, and a skirt portion 33a of the valve body 33 is inscribed therein and has a peripheral wall 35d and a bottom plate 35g slidable in the vertical direction in the figure. The peripheral wall 35d is provided with a case 35 in which a plurality of openings 35a communicating with the suction chamber 23 are formed.

このケース35の底板35gは略円板状であり、ケース35は全体として略円筒形状を呈し、図3に示すように、吸入ポート21の周壁面に内接して配設され、円筒形状の周壁35dの一部に、吸入ポート21から吸入室23への冷媒ガスRの流路となる複数の開口35aが形成され、周壁35dに内接して摺動する弁本体33とこれら開口35aとの位置関係に応じて、冷媒ガスRの流入および逆流を規制している。   The bottom plate 35g of the case 35 has a substantially disc shape, and the case 35 has a substantially cylindrical shape as a whole. As shown in FIG. 3, the case 35 is disposed inscribed in the peripheral wall surface of the suction port 21, and has a cylindrical peripheral wall. A plurality of openings 35a serving as a flow path for the refrigerant gas R from the suction port 21 to the suction chamber 23 are formed in a part of 35d, and the positions of the valve main body 33 that slides in contact with the peripheral wall 35d and the openings 35a. Depending on the relationship, the inflow and the backflow of the refrigerant gas R are regulated.

また、ケース35の底板35gには、供給された冷媒ガスRに混じった冷凍機油Lがこのケース35の底部に溜まるのを防止する油抜き孔35cが形成されており、さらにこの底板35gの図示下面35bには、図3に示すように、この下面35bに対向する吸入ポート21の座面21aとの間の隙間を確保する凸部35fが形成されている。   The bottom plate 35g of the case 35 is formed with an oil drain hole 35c for preventing the refrigerating machine oil L mixed with the supplied refrigerant gas R from accumulating at the bottom of the case 35. Further, the bottom plate 35g is illustrated. As shown in FIG. 3, the lower surface 35b is formed with a convex portion 35f that secures a gap between the lower surface 35b and the seat surface 21a of the suction port 21 facing the lower surface 35b.

さらに、ケース35の環状上端面35eは、ストッパ31の下部段付き部31bが突き合わされる。   Further, the lower stepped portion 31 b of the stopper 31 is abutted against the annular upper end surface 35 e of the case 35.

なお、ストッパ31の上部外周面には、環状の溝31cが形成されて、この溝31cには、吸入ポート21の周壁面と気密を確保するためのシール部材32が嵌挿されている。   An annular groove 31 c is formed on the upper outer peripheral surface of the stopper 31, and a seal member 32 is fitted into the groove 31 c for ensuring airtightness with the peripheral wall surface of the suction port 21.

そして、吸入ポート21に組み込まれた逆止弁30は、図3(a)に示すように、冷媒ガスRの供給圧と吸入室23の内部圧力との差圧がスプリング34の付勢力よりも小さいときや、コンプレッサ100が運転されていない状態等吸入室23の内部圧力が冷媒ガスRの供給圧より高いときは、弁本体33がスプリング34の付勢力によってストッパ31に突き当てられて、吸入ポート21の上流側と吸入室23とは弁本体33により仕切られ、吸入室23から吸入ポート21の上流側への冷媒ガスRの逆流が阻止されている。   As shown in FIG. 3A, the check valve 30 incorporated in the suction port 21 has a pressure difference between the supply pressure of the refrigerant gas R and the internal pressure of the suction chamber 23 greater than the biasing force of the spring 34. When the pressure is small, or when the internal pressure of the suction chamber 23 is higher than the supply pressure of the refrigerant gas R, such as when the compressor 100 is not in operation, the valve body 33 is abutted against the stopper 31 by the biasing force of the spring 34 and sucks The upstream side of the port 21 and the suction chamber 23 are partitioned by the valve body 33, and the reverse flow of the refrigerant gas R from the suction chamber 23 to the upstream side of the suction port 21 is prevented.

一方、冷媒ガスRの供給圧と吸入室23の内部圧力(<冷媒ガスRの供給圧)との差圧がスプリング34の付勢力を超えると、図3(b)に示すように、弁本体33がスプリング34の付勢力に抗して図示下方に変位し、このとき、弁本体33のスカート部33aの図示上端縁がケース35の開口35aの上端よりも下方まで変位することによって、吸入ポート21の上流側と吸入室23とが連通し、吸入ポート21に供給された冷媒ガスRが、吸入室23に流入される。   On the other hand, if the differential pressure between the supply pressure of the refrigerant gas R and the internal pressure of the suction chamber 23 (<supply pressure of the refrigerant gas R) exceeds the urging force of the spring 34, as shown in FIG. When the upper end edge of the skirt portion 33a of the valve body 33 is displaced below the upper end of the opening 35a of the case 35, the suction port 33 is displaced downward against the biasing force of the spring 34. The upstream side of 21 and the suction chamber 23 communicate with each other, and the refrigerant gas R supplied to the suction port 21 flows into the suction chamber 23.

ここで、コンプレッサ100は、高圧ガスとしての冷媒ガスRを、吐出ポート22から冷凍サイクルのコンデンサ等外部に吐出する際に、分離機金網19で分離し切れなかった冷凍機油Lの一部も吐出するため、冷凍サイクルを循環して吸入ポート21に供給される冷媒ガスRにも、冷凍機油Lが混じっている。   Here, the compressor 100 also discharges a part of the refrigerating machine oil L that could not be separated by the separator metal mesh 19 when the refrigerant gas R as the high-pressure gas is discharged from the discharge port 22 to the outside such as a condenser of the refrigeration cycle. Therefore, the refrigerating machine oil L is also mixed in the refrigerant gas R that is circulated through the refrigeration cycle and supplied to the suction port 21.

そして、この冷媒ガスRに混じって吸入ポート21に戻った冷凍機油Lの一部は、ケース35の内部にも付着するが、凝集してケース35の底部に流れ落ち、図3(b)に示すように、底板35gに形成された油抜き孔35cを通って吸入室23に戻される。   A part of the refrigeration oil L mixed with the refrigerant gas R and returning to the suction port 21 adheres to the inside of the case 35, but aggregates and flows down to the bottom of the case 35, as shown in FIG. 3 (b). As described above, the oil is returned to the suction chamber 23 through the oil drain hole 35c formed in the bottom plate 35g.

このとき、ケース35の底板35gの下面35bが吸入ポート21の座面21aに密着すると、底板35gに形成された油抜き孔35cが、吸入ポート21の座面21aによって塞がれてしまうが、本実施形態に係るコンプレッサ100は、この下面35bに、吸入ポート21の座面21aとの間の隙間を確保する凸部35fが形成されているため、底板35gの下面35bと吸入ポート21の座面21aとの間には、凸部の突出高さに相当する隙間が確保され、これによって、ケース35cの底部から吸入室23への冷凍機油Lの流路が遮断されることがない。   At this time, when the lower surface 35b of the bottom plate 35g of the case 35 is in close contact with the seating surface 21a of the suction port 21, the oil drain hole 35c formed in the bottom plate 35g is blocked by the seating surface 21a of the suction port 21. In the compressor 100 according to the present embodiment, the lower surface 35b is formed with a convex portion 35f that secures a gap between the lower surface 35b and the seating surface 21a of the suction port 21, so that the lower surface 35b of the bottom plate 35g and the seat of the suction port 21 A gap corresponding to the protruding height of the convex portion is ensured between the surface 21a and the flow path of the refrigerating machine oil L from the bottom of the case 35c to the suction chamber 23 is not blocked.

したがって、ケース35の底部に冷凍機油Lが不必要に溜まることがなく、弁本体33が大きく押し下げられときに、そのスカート部33aの下部に、ケース35の底部に溜まった冷凍機油Lが大量に付着して、弁本体33の摺動動作の抵抗(粘性抵抗)となることも防ぐことができる。よって、逆止弁30の正常な動作を妨げることがない。   Accordingly, the refrigerating machine oil L does not unnecessarily accumulate at the bottom of the case 35, and when the valve main body 33 is largely pushed down, a large amount of refrigerating machine oil L accumulated at the bottom of the case 35 is formed below the skirt 33a. It is also possible to prevent the valve body 33 from adhering to the sliding action resistance (viscous resistance). Therefore, normal operation of the check valve 30 is not hindered.

また、本実施形態におけるケース35は、軸回りに回転対称の円筒形状を呈しているため、吸入ポート21にケース35を組み付ける際に、ケース35の軸回りの位相に拘わらず組み付けることが可能となるため、ケース35の底板35gに形成された油抜き孔35cの真正面に、吸入ポート21の座面21aが正対する位相で組み付けられることもある。   In addition, since the case 35 in the present embodiment has a cylindrical shape that is rotationally symmetric about the axis, the case 35 can be assembled to the suction port 21 regardless of the phase around the axis of the case 35. For this reason, the seating surface 21a of the suction port 21 may be assembled with a phase in front of the oil drain hole 35c formed in the bottom plate 35g of the case 35.

そして、このような位相関係で逆止弁30が組み付けられると、従来の気体圧縮機では、図8(a)に示すように、油抜き孔35cが吸入ポート21の座面21aによって塞がれてしまうが、本実施形態に係るコンプレッサ100では、組付け時の位相に拘わらず、ケース35の底部から吸入室23への冷凍機油Lの流路が確保されるため、逆止弁30を吸入ポート21に組み付ける際に、逆止弁30の軸回りの組付け位相について、格別の注意を払う必要がなく、したがって、組付け作業性を向上させることができる。   When the check valve 30 is assembled in such a phase relationship, in the conventional gas compressor, the oil drain hole 35c is blocked by the seat surface 21a of the suction port 21, as shown in FIG. However, in the compressor 100 according to the present embodiment, the flow of the refrigerating machine oil L from the bottom of the case 35 to the suction chamber 23 is secured regardless of the phase at the time of assembly, and therefore the check valve 30 is sucked. When assembling to the port 21, it is not necessary to pay special attention to the assembling phase around the axis of the check valve 30. Therefore, the assembling workability can be improved.

また、吸入ポート21の座面21aが吸入室23側に大きく張り出す等して、ケース35の底板35gの下面35bの正面全面に、座面21aが正対したコンプレッサ100であっても、ケース35の底部から吸入室23への冷凍機油Lの流路が確保されるため、吸入ポート21の座面21aの大きさについて、設計自由度を向上させることができる。   Further, even if the compressor 100 has the seating surface 21a directly opposed to the entire front surface of the lower surface 35b of the bottom plate 35g of the case 35 because the seating surface 21a of the suction port 21 protrudes greatly toward the suction chamber 23, etc. Since the flow path of the refrigerating machine oil L from the bottom of 35 to the suction chamber 23 is ensured, the degree of freedom in designing the size of the seating surface 21a of the suction port 21 can be improved.

なお、このケース35は、底板35gが円板状であって、全体として円筒形状を呈し、吸入ポート21の周壁に内接して配設され、円筒形状の周壁35dの一部に、吸入ポート21から吸入室23への冷媒ガスRの流路となる開口35aが形成され、周壁35dに内接して摺動する弁本体33と開口35aとの位置関係に応じて、冷媒ガスRの流入および逆流を規制しているため、大部分の冷媒ガスRはケース35の上方から側方に向かう流れとなり、ケース35の底部には冷凍機油Lを吹き飛ばす冷媒ガスRの流入量は比較的少ない構造となっている。   The case 35 has a disc-like bottom plate 35g, and has a cylindrical shape as a whole. The case 35 is inscribed in contact with the peripheral wall of the suction port 21, and the suction port 21 is formed on a part of the cylindrical peripheral wall 35d. An opening 35a serving as a flow path for the refrigerant gas R from the inlet to the suction chamber 23 is formed, and the inflow and the reverse flow of the refrigerant gas R are performed in accordance with the positional relationship between the valve body 33 and the opening 35a that slide in contact with the peripheral wall 35d. Therefore, most of the refrigerant gas R flows from the upper side of the case 35 to the side, and the inflow amount of the refrigerant gas R for blowing the refrigerating machine oil L to the bottom of the case 35 is relatively small. ing.

したがって、ケース35の底部には、冷凍機油Lが比較的溜まり易い構造となるが、このような構造であるにも拘わらず、上述した油抜き孔35cと凸部35fとによって冷凍機油Lが滞留することがなく、本発明による冷凍機油Lの滞留防止効果は、より一層効果的なものとなる。   Therefore, the bottom portion of the case 35 has a structure in which the refrigerating machine oil L is relatively easily collected. However, despite this structure, the refrigerating machine oil L is retained by the oil drain hole 35c and the protrusion 35f described above. Therefore, the retention prevention effect of the refrigerating machine oil L according to the present invention becomes even more effective.

また、本実施形態のコンプレッサ100は、ベーンロータ形式の圧縮機構によって圧縮室Cが形成されるが、この形式の気体圧縮機は、運転を停止することによって、冷凍機油Lによるベーン16の背圧が低下して、ベーン16の先端がシリンダ15の内壁面から離隔し、各圧縮室C間の気密が解除され、吐出ポート22側と吸入ポート21の弁本体33よりも下流側部分とが各圧縮室Cを通じて連通することとなり、吐出側で浮遊している冷凍機油Lが、吸入ポート21の弁本体33よりも下流側部分すなわちケース35の内部側に流れ込み、この点からも、ケース35の底部に冷凍機油Lが溜まり易い構造ということができる。   Further, in the compressor 100 of the present embodiment, the compression chamber C is formed by a vane rotor type compression mechanism. When this type of gas compressor is stopped, the back pressure of the vane 16 by the refrigerating machine oil L is reduced. As a result, the tip of the vane 16 is separated from the inner wall surface of the cylinder 15, the airtightness between the compression chambers C is released, and the discharge port 22 side and the downstream portion of the suction port 21 from the valve body 33 are compressed. The refrigerating machine oil L that is communicated through the chamber C and floats on the discharge side flows into a portion downstream of the valve main body 33 of the suction port 21, that is, the inside of the case 35. It can be said that the refrigerator oil L is easily accumulated.

しかし、本実施形態のコンプレッサ100は、このような構造のベーンロータ形式の気体圧縮機であるにも拘わらず、上述した油抜き孔35cと凸部35fとによって冷凍機油Lが滞留することがなく、本発明による冷凍機油の滞留防止効果は、より一層効果的なものとなる。   However, although the compressor 100 of the present embodiment is a vane rotor type gas compressor having such a structure, the refrigerating machine oil L is not retained by the oil drain hole 35c and the convex portion 35f described above. The stagnation prevention effect of the refrigerating machine oil according to the present invention becomes even more effective.

なお、本実施形態に係るコンプレッサ100は、ケース35の底板35gの下面35bに凸部35fを形成して、ケース35の底部の冷凍機油Lの排出流路を確保したものであるが、本発明に係る気体圧縮機は、この形態に限定されるものではなく、例えば図4に示すように、底板35gの下面35bに凸部35fを形成するのに代えて、この下面35bに対向する吸入ポート21の座面21aに、底板35の下面35bと座面21aとの隙間を確保する凸部21cを形成したものとしてもよいし、または、底板35gの下面35bに凸部35fを形成するとともに吸入ポート21の座面21aにも凸部21cを形成してもよい。   Note that the compressor 100 according to the present embodiment has a protruding portion 35f formed on the lower surface 35b of the bottom plate 35g of the case 35 to ensure a discharge passage for the refrigerating machine oil L at the bottom of the case 35. The gas compressor according to the present invention is not limited to this form. For example, as shown in FIG. 4, instead of forming the convex portion 35f on the lower surface 35b of the bottom plate 35g, the suction port facing the lower surface 35b. 21 may be formed with a convex portion 21c that secures a gap between the lower surface 35b of the bottom plate 35 and the seating surface 21a, or a convex portion 35f is formed on the lower surface 35b of the bottom plate 35g and suction is performed. A convex portion 21 c may also be formed on the seating surface 21 a of the port 21.

このように、座面21aに凸部21cを形成した形態であっても、上述した実施形態と同様の作用、効果を発揮する。   Thus, even if it is the form which formed the convex part 21c in the seat surface 21a, the effect | action and effect similar to embodiment mentioned above are exhibited.

本発明に係る気体圧縮機の一実施形態であるコンプレッサの縦断面を示す断面図である。It is sectional drawing which shows the longitudinal cross-section of the compressor which is one Embodiment of the gas compressor which concerns on this invention. 吸入ポートに配設された逆止弁の詳細構造を示す分解図(部分破断図)である。FIG. 5 is an exploded view (partially cutaway view) showing a detailed structure of a check valve disposed in the suction port. 逆止弁のケースの底部下面に形成された凸部による冷凍機油の滞留防止作用を説明する要部断面図であり、(a)は冷媒ガスの流路が閉じられた状態、(b)は冷媒ガスの流路が開いた状態、をそれぞれ示す。It is principal part sectional drawing explaining the retention | prevention effect | action of the refrigerating machine oil by the convex part formed in the bottom lower surface of the case of a non-return valve, (a) is the state by which the flow path of the refrigerant gas was closed, (b) The state where the flow path of the refrigerant gas is opened is shown. 吸入ポートの座面に形成された凸部による冷凍機油の滞留防止作用を説明する要部断面図であり、(a)は冷媒ガスの流路が閉じられた状態、(b)は冷媒ガスの流路が開いた状態、をそれぞれ示す。It is principal part sectional drawing explaining the retention | prevention effect | action of the refrigerating machine oil by the convex part formed in the seat surface of the suction port, (a) is a state with the flow path of refrigerant gas closed, (b) is refrigerant gas The state where the flow path is opened is shown. 従来の気体圧縮機の要部縦断面を示す断面図である。It is sectional drawing which shows the principal part longitudinal cross-section of the conventional gas compressor. 従来の逆止弁の詳細構造を示す分解図(部分破断図)である。It is an exploded view (partially broken view) which shows the detailed structure of the conventional check valve. 従来の逆止弁による冷凍機油の排出作用を説明する要部断面図であり、(a)は冷媒ガスの流路が閉じられた状態、(b)は冷媒ガスの流路が開いた状態、をそれぞれ示す。It is principal part sectional drawing explaining the discharge | emission effect | action of the refrigeration oil by the conventional check valve, (a) is the state where the flow path of the refrigerant gas was closed, (b) is the state where the flow path of the refrigerant gas was opened, Respectively. 冷凍機油の排出作用が阻害される状態を説明する要部断面図であり、(a)は油抜き孔の位相位置が適切でない場合、(b)は吸入ポートの座面が大きい場合、をそれぞれ示す。It is principal part sectional drawing explaining the state by which the discharge | emission effect | action of refrigerating machine oil is inhibited, (a) is when the phase position of an oil drain hole is not appropriate, (b) is when the seating surface of an inlet port is large, respectively. Show.

符号の説明Explanation of symbols

21 吸入ポート
21a 座面
23 吸入室
30 逆止弁
33 弁本体
35 ケース
35a 開口
35b 下面
35c 油抜き孔
35d 周壁
35f 凸部
35g 底板
R 冷媒ガス
L 冷凍機油
21 Suction port 21a Seat surface 23 Suction chamber 30 Check valve 33 Valve body 35 Case 35a Opening 35b Lower surface 35c Oil drain hole 35d Peripheral wall 35f Protruding portion 35g Bottom plate R Refrigerant gas L Refrigerating machine oil

Claims (3)

冷媒ガスを圧縮する圧縮室と、前記圧縮室に対して前記冷媒ガスの上流側に形成された吸入室と、外部から前記冷媒ガスが供給され、前記吸入室に連通する吸入ポートとを備えるとともに、前記吸入ポートには、該吸入ポートから前記吸入室への前記冷媒ガスの流入を可能とする一方、前記吸入室から前記吸入ポートへの前記冷媒ガスの逆流を阻止する逆止弁が設けられ、該逆止弁は、油抜き孔が形成された底板部を有する筒状のケースを備えてなる気体圧縮機において、
前記底板部の下面に、および/または該下面に対向する前記吸入ポートの座面に、該下面と該座面との隙間を確保する凸部が形成されていることを特徴とする気体圧縮機。
A compression chamber that compresses the refrigerant gas; a suction chamber that is formed upstream of the refrigerant gas with respect to the compression chamber; and a suction port that is supplied with the refrigerant gas from the outside and communicates with the suction chamber. The suction port is provided with a check valve that allows the refrigerant gas to flow from the suction port to the suction chamber, while preventing the refrigerant gas from flowing backward from the suction chamber to the suction port. The check valve is a gas compressor including a cylindrical case having a bottom plate portion in which an oil drain hole is formed.
A gas compressor characterized in that a convex portion is formed on the lower surface of the bottom plate portion and / or on the seat surface of the suction port facing the lower surface to ensure a gap between the lower surface and the seat surface. .
前記ケースは、前記底板部が略円板状であって、全体として略円筒形状を呈し、前記吸入ポートの周壁に内接して配設され、前記円筒形状の周壁の一部に、前記吸入ポートから前記吸入室への前記冷媒ガスの流路となる開口が形成され、前記円筒形状の周壁に内接して摺動する弁本体と前記開口との位置関係に応じて、前記冷媒ガスの流入および逆流を規制することを特徴とする請求項1に記載の気体圧縮機。   In the case, the bottom plate portion has a substantially disc shape, has a substantially cylindrical shape as a whole, is inscribed in the peripheral wall of the suction port, and the suction port is formed on a part of the cylindrical peripheral wall. An opening serving as a flow path for the refrigerant gas from the suction chamber to the suction chamber is formed, and the inflow of the refrigerant gas and the valve body slide in contact with the cylindrical peripheral wall and the opening. The gas compressor according to claim 1, wherein reverse gas is regulated. 前記圧縮室は、ベーンロータ形式の圧縮機構により、前記冷媒ガスを圧縮することを特徴とする請求項1または2に記載の気体圧縮機。   The gas compressor according to claim 1, wherein the compression chamber compresses the refrigerant gas by a vane rotor type compression mechanism.
JP2004033156A 2004-02-10 2004-02-10 Gas compressor Expired - Fee Related JP4354839B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004033156A JP4354839B2 (en) 2004-02-10 2004-02-10 Gas compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004033156A JP4354839B2 (en) 2004-02-10 2004-02-10 Gas compressor

Publications (2)

Publication Number Publication Date
JP2005226467A true JP2005226467A (en) 2005-08-25
JP4354839B2 JP4354839B2 (en) 2009-10-28

Family

ID=35001396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004033156A Expired - Fee Related JP4354839B2 (en) 2004-02-10 2004-02-10 Gas compressor

Country Status (1)

Country Link
JP (1) JP4354839B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105464976A (en) * 2014-09-30 2016-04-06 株式会社丰田自动织机 Compressor
JP2017115983A (en) * 2015-12-24 2017-06-29 株式会社豊田自動織機 Compressor
KR101755453B1 (en) * 2011-07-27 2017-07-07 현대자동차 주식회사 Air-con check valve for vehicle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3923088A1 (en) 2020-06-12 2021-12-15 Comadur S.A. Method for manufacturing a decorative part from hard material provided with a polymer coating

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101755453B1 (en) * 2011-07-27 2017-07-07 현대자동차 주식회사 Air-con check valve for vehicle
CN105464976A (en) * 2014-09-30 2016-04-06 株式会社丰田自动织机 Compressor
KR101730830B1 (en) * 2014-09-30 2017-04-27 가부시키가이샤 도요다 지도숏키 Compressor
JP2017115983A (en) * 2015-12-24 2017-06-29 株式会社豊田自動織機 Compressor

Also Published As

Publication number Publication date
JP4354839B2 (en) 2009-10-28

Similar Documents

Publication Publication Date Title
JP4840363B2 (en) Compressor
US7731486B2 (en) Compressor with dual pathways for returning lubricating oil
US6755632B1 (en) Scroll-type compressor having an oil communication path in the fixed scroll
JP5708570B2 (en) Vane type compressor
JP4354839B2 (en) Gas compressor
CN107401509B (en) Oil supply device for compressor and compressor
JP2007162621A (en) Compressor
US7490541B2 (en) Compressor
JP2005264828A (en) Compressor
WO2021124768A1 (en) Compressor
JP2005083234A (en) Compressor
JP2021080906A (en) Rotary compressor
JP2008111389A (en) Scroll type compressor
JP2008157174A (en) Variable displacement gas compressor
JP2005054745A (en) Compressor
JP2007162587A (en) Gas compressor
JP4429827B2 (en) Check valve and gas compression device equipped with check valve
JP2008175063A (en) Variable displacement gas compressor
JP2005105990A (en) Scroll compressor
JP2008025476A (en) Compressor
KR200178605Y1 (en) Refrigerant outlet of compressor
JP4485882B2 (en) Vane rotary compressor
JP2006152808A (en) Compressor
KR20040023069A (en) Hermetic rotary compressor
JP2006161775A (en) Compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070110

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090728

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090730

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130807

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees