JP2006161775A - Compressor - Google Patents

Compressor Download PDF

Info

Publication number
JP2006161775A
JP2006161775A JP2004357855A JP2004357855A JP2006161775A JP 2006161775 A JP2006161775 A JP 2006161775A JP 2004357855 A JP2004357855 A JP 2004357855A JP 2004357855 A JP2004357855 A JP 2004357855A JP 2006161775 A JP2006161775 A JP 2006161775A
Authority
JP
Japan
Prior art keywords
compressor
chamber
lubricating oil
separation
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004357855A
Other languages
Japanese (ja)
Inventor
Kenji Okuzono
賢治 奥園
Koji Hirose
孝司 廣瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004357855A priority Critical patent/JP2006161775A/en
Publication of JP2006161775A publication Critical patent/JP2006161775A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lubrication oil separation device increasing reliability of a compressor at a high speed range by ensuring high lubrication-oil separation efficiency at wide-ranging rotation speeds of the compressor in a centrifugal type oil separation mechanism. <P>SOLUTION: A minute communication passage is formed in a separation wall for providing communication between a high pressure chamber and an oil storage chamber and a communication passage opening and closing plate is provided for opening and closing the communication passage according to rotation speed of the compressor. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、流体の圧縮を行う圧縮機に関するもので、特に自動車用空調装置などに用いられる圧縮機に関するものである。   The present invention relates to a compressor that compresses a fluid, and particularly to a compressor that is used in an air conditioner for automobiles.

従来、この種の圧縮機は、圧縮機構摺動部を潤滑する潤滑油の一部が圧縮された流体と共に圧縮機から吐出され、冷凍・空調サイクル中を循環することとなる。流体と共に吐出される潤滑油の量がサイクル中に多く吐出されるほどシステム効率(熱効率)が低下することは従来からよく知られている。   Conventionally, in this type of compressor, a part of the lubricating oil that lubricates the sliding portion of the compression mechanism is discharged together with the compressed fluid and circulates in the refrigeration / air conditioning cycle. It has been well known that the system efficiency (thermal efficiency) decreases as the amount of lubricating oil discharged together with the fluid increases in the cycle.

かかる事情から、システム効率の向上を図るため、圧縮機構により圧縮された流体から、そこに含まれる潤滑油を極力分離した後、該流体をシステムサイクル中に吐出するようにしている。そのような例として、圧縮機構の吐出側に、圧縮された流体から潤滑油を分離する遠心分離式の分離室を設けた圧縮機が公知となっている(例えば、特許文献1参照)。   For this reason, in order to improve the system efficiency, the lubricating oil contained therein is separated as much as possible from the fluid compressed by the compression mechanism, and then the fluid is discharged during the system cycle. As such an example, a compressor in which a centrifugal separation chamber that separates lubricating oil from a compressed fluid is provided on the discharge side of the compression mechanism is known (for example, see Patent Document 1).

かかる圧縮機では、圧縮機構により圧縮され潤滑油を含む高圧の冷媒ガスを分離室へ導入する通路である高圧室と、分離室にて分離された潤滑油を貯える貯油室は、分離壁にて分離されるようになっている。
特開2003−90286号公報
In such a compressor, a high-pressure chamber that is a passage for introducing a high-pressure refrigerant gas compressed by a compression mechanism and containing lubricating oil into the separation chamber, and an oil storage chamber that stores the lubricating oil separated in the separation chamber are separated by a separation wall. It comes to be separated.
JP 2003-90286 A

一般的に理想とする潤滑油分離効率特性は、圧縮機の回転数が中速以下においては十分な潤滑油分離効率を発揮しシステム効率を向上させることが期待される。さらに圧縮機の回転数が高速の領域においては、潤滑油の分離効率が低くても冷媒循環量が十分であるためシステムの冷房能力としては十分であることが多く、逆に意図的に潤滑油分離効率を低めサイクル中の潤滑油の循環量を高めることで圧縮機の信頼性をさらに高めることが望まれる。   In general, the ideal lubricating oil separation efficiency characteristic is expected to exhibit sufficient lubricating oil separation efficiency and improve system efficiency when the rotational speed of the compressor is not higher than medium speed. Furthermore, in the region where the rotational speed of the compressor is high, the cooling capacity of the system is often sufficient because the refrigerant circulation rate is sufficient even if the separation efficiency of the lubricating oil is low. It is desired to further improve the reliability of the compressor by reducing the separation efficiency and increasing the circulation amount of the lubricating oil during the cycle.

一方、前記従来の構成では、上述の特許文献に開示されているものに限らず、圧縮機構から吐出される流体を前記分離室内に導く通路である高圧室と、分離室で分離された潤滑油を貯える貯油室は、分離壁にて分離され独立した空間となるよう構成されている。このように高圧室と貯油室を分離することにより、高圧室の冷媒の流れによる影響を貯油室に与えることは少なく、貯油室に貯えられた潤滑油は冷媒の流れで乱されること無く、安定して貯油室に留まる事が可能となる。結果的に従来の遠心分離式の分離室を設けた圧縮機では、幅広い領域にて、すなわち幅広い圧縮機回転数にて高い潤滑油分離効率を発揮することとなる。   On the other hand, the conventional configuration is not limited to the one disclosed in the above-mentioned patent document, but a high-pressure chamber that is a passage for guiding fluid discharged from a compression mechanism into the separation chamber, and lubricating oil separated in the separation chamber The oil storage chamber for storing the oil is separated by a separation wall and becomes an independent space. By separating the high pressure chamber and the oil storage chamber in this way, the oil storage chamber is less affected by the flow of the refrigerant in the high pressure chamber, and the lubricating oil stored in the oil storage chamber is not disturbed by the flow of the refrigerant, It becomes possible to stay in the oil storage chamber stably. As a result, a compressor provided with a conventional centrifugal separation chamber exhibits high lubricating oil separation efficiency in a wide range, that is, at a wide range of compressor rotation speeds.

よって、従来の遠心分離式の分離室を設けた圧縮機では、幅広い圧縮機回転数にて高い潤滑油分離効率を発揮し、圧縮機の回転数が高速の領域においては、必要以上に潤滑油を分離してしまい、サイクル中の潤滑油循環率(以下OCRという)は、理想とするOCRに対して低くなりすぎるという課題を有していた。   Therefore, a conventional compressor having a centrifugal separation chamber exhibits high lubricating oil separation efficiency over a wide range of compressor rotation speeds, and in a region where the rotation speed of the compressor is high, more lubricating oil than necessary. As a result, the lubricating oil circulation rate (hereinafter referred to as OCR) during the cycle is too low for the ideal OCR.

本発明は、前記従来の課題を解決するもので、幅広い圧縮機回転数で理想的な潤滑油の分離効率に近づけること可能とした潤滑油分離機構を備えた圧縮機を提供することを目的としている。   SUMMARY OF THE INVENTION The present invention solves the above-described conventional problems, and an object thereof is to provide a compressor having a lubricating oil separation mechanism capable of approaching an ideal lubricating oil separation efficiency at a wide range of compressor rotation speeds. Yes.

前記従来の課題を解決するために、本発明の圧縮機は、冷媒ガスを分離室に導く通路である高圧室と、分離室にて分離された潤滑油を貯える貯油室を分離壁にて分離し、前記分離壁に高圧室と貯油室を連通する微小な連通路が形成されるとともに、圧縮機の回転数により前記連通路を開閉することを可能とする連通路開閉板を備えたことを特徴としている。   In order to solve the above-described conventional problems, the compressor of the present invention separates the high-pressure chamber, which is a passage for introducing the refrigerant gas into the separation chamber, and the oil storage chamber for storing the lubricating oil separated in the separation chamber by the separation wall. And the separation wall is provided with a communication passage opening / closing plate that allows the high-pressure chamber and the oil storage chamber to communicate with each other, and that opens and closes the communication passage according to the number of rotations of the compressor. It is a feature.

これによって、圧縮機回転数が低速から中速の領域においては、高い潤滑油分離効率を発揮し、OCRを低く保てるように前記連通路開閉板を閉じた状態に制御し、貯油室の潤滑油は高圧室を通過する冷媒に影響されることなく、安定して貯油室に留まる事が出来る。また、圧縮機回転数が高速の領域においては、貯油室の潤滑油が高圧室を通過する冷媒に掻き乱されるように、前記連通路開閉板を開いた状態に制御し、意図的に潤滑油分離効率を悪化させ、OCRを高く保てるようにしたものである。   As a result, in the region where the rotational speed of the compressor is low to medium, the lubricating oil in the oil storage chamber is controlled by closing the communication passage opening / closing plate so as to exhibit high lubricating oil separation efficiency and keep OCR low. Can remain stably in the oil storage chamber without being affected by the refrigerant passing through the high pressure chamber. Also, in the region where the rotational speed of the compressor is high, the communication passage opening / closing plate is controlled to be open so that the lubricating oil in the oil storage chamber is disturbed by the refrigerant passing through the high-pressure chamber, and intentionally lubricated. The oil separation efficiency is deteriorated so that the OCR can be kept high.

本発明の圧縮機は、分離壁に高圧室と貯油室を連通する微小な連通路が形成されるとともに、圧縮機の回転数により前記連通路を開閉することを可能とする連通路開閉板を備えることにより、中速以下の圧縮機回転数の領域では潤滑油分離効率を高めシステム効率を向上させ、またシステムの冷房能力は十分に確保されているような高速以上の圧縮機回転数の領域では潤滑油分離効率を意図的に低下させることで、圧縮機の信頼性をさらに向上させることができる。   The compressor according to the present invention includes a communication passage opening / closing plate that allows a high pressure chamber and an oil storage chamber to communicate with each other on the separation wall, and allows the communication passage to be opened and closed depending on the number of rotations of the compressor. By providing, in the range of compressor speeds below the medium speed, the lubricating oil separation efficiency is increased and the system efficiency is improved, and the compressor speeds above the high speed where the cooling capacity of the system is sufficiently secured. Then, the reliability of the compressor can be further improved by intentionally reducing the lubricating oil separation efficiency.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

図1は本出願にかかる発明の一部が適用された圧縮機の縦断面図であり、図2は図1のA−A断面図(作動室断面図)、図3は図1のB部詳細図である。   FIG. 1 is a longitudinal sectional view of a compressor to which a part of the invention according to the present application is applied, FIG. 2 is a sectional view taken along the line A-A (working chamber sectional view) in FIG. 1, and FIG. FIG.

図に示した圧縮機は、いわゆるベーンロータリタイプの圧縮機であり、図示したように、円筒状の内壁を有するシリンダ1内に略円柱状のロータ2が配置されている。ロータ2はその外周の一部がシリンダ1の内壁と微少隙間を形成する位置に配置されている。ロータ2には複数のべ一ンスロット3が設けられ、それぞれのべ一ンスロット3内にはベーン4が摺動自在に挿入されている。ロータ2は回転自在に軸支された駆動軸5と一体的に形成されている。シリンダ1及びロータ2はロータ2の回転軸方向において前部側板6及び後部側板7の間に挟み込まれており、シリンダ1の両端はこれらにより閉塞されシリンダ内に流体圧縮のための作動室8が形成されている。   The compressor shown in the figure is a so-called vane rotary type compressor, and as shown in the drawing, a substantially columnar rotor 2 is arranged in a cylinder 1 having a cylindrical inner wall. The rotor 2 is disposed at a position where a part of the outer periphery forms a minute gap with the inner wall of the cylinder 1. The rotor 2 is provided with a plurality of vane slots 3, and vanes 4 are slidably inserted into the vane slots 3. The rotor 2 is formed integrally with a drive shaft 5 that is rotatably supported. The cylinder 1 and the rotor 2 are sandwiched between the front side plate 6 and the rear side plate 7 in the rotational axis direction of the rotor 2, and both ends of the cylinder 1 are closed by these, and a working chamber 8 for fluid compression is formed in the cylinder. Is formed.

作動室8には吸入孔9及び吐出孔10が連通し、冷媒ガス等の気流体は吸入孔9から作動室8に吸入されて圧縮された後、吐出孔10から吐出される。吐出孔10の出口には、例えばリード弁からなる吐出弁11が配設されている。後部側板7の後部側には高圧ケース12が取り付けられており、高圧ケース12には作動室8にて圧縮された冷媒ガスに含まれるミスト状の潤滑油を分離、収集する分離室51が設けられている。   A suction hole 9 and a discharge hole 10 communicate with the working chamber 8, and a gas fluid such as refrigerant gas is sucked into the working chamber 8 from the suction hole 9 and compressed, and then discharged from the discharge hole 10. A discharge valve 11 made of, for example, a reed valve is disposed at the outlet of the discharge hole 10. A high pressure case 12 is attached to the rear side of the rear side plate 7, and the high pressure case 12 is provided with a separation chamber 51 for separating and collecting mist-like lubricating oil contained in the refrigerant gas compressed in the working chamber 8. It has been.

作動室8にて圧縮され吐出孔10から吐出された気流体はシリンダ1、後部側板7及び高圧ケース12に連続して設けられた案内通路13により案内され、分離室51の側壁に形成された導入孔53を介して分離室51内に導入される。分離室51の上部には分離室にて潤滑油が分離された冷媒ガスを排気するガス排出孔58が開口し、分離室51の下部には分離室にて冷媒ガスから分離、収集された潤滑油の排出される排油孔54が開口して
いる。分離室51からガス排出孔58を介して排出される冷媒ガスは冷凍・空調サイクルを循環し、やがて上述した吸入孔9に帰還し、再び圧縮されてサイクルを循環する。分離室51下部に開口した排油孔54は高圧ケース12及び後部側板7の相互間に形成された貯油室52に連通する。従って、分離室にて冷媒ガスから分離、収集された潤滑油は、排油孔54を通じて貯油室52に貯留される。
The gas fluid compressed in the working chamber 8 and discharged from the discharge hole 10 is guided by the guide passage 13 provided continuously in the cylinder 1, the rear side plate 7 and the high pressure case 12, and formed on the side wall of the separation chamber 51. It is introduced into the separation chamber 51 through the introduction hole 53. A gas discharge hole 58 for exhausting the refrigerant gas from which the lubricating oil has been separated in the separation chamber opens in the upper portion of the separation chamber 51, and the lubrication separated and collected from the refrigerant gas in the separation chamber 51 is formed in the lower portion of the separation chamber 51. An oil drain hole 54 through which oil is discharged is opened. The refrigerant gas discharged from the separation chamber 51 through the gas discharge hole 58 circulates in the refrigeration / air conditioning cycle, eventually returns to the suction hole 9 described above, is compressed again, and circulates in the cycle. The oil drain hole 54 opened at the lower part of the separation chamber 51 communicates with an oil storage chamber 52 formed between the high pressure case 12 and the rear side plate 7. Therefore, the lubricating oil separated and collected from the refrigerant gas in the separation chamber is stored in the oil storage chamber 52 through the oil drain hole 54.

貯油室52に貯留された潤滑油は、給油通路18を介して圧縮機構を構成するロータ2、ベーン4、シリンダ1内壁等に供給され各部を潤滑すると共に、ベーン背圧室17に供給され、その圧力によりベーン4をロータ2の外側へ付勢する働きをする。   The lubricating oil stored in the oil storage chamber 52 is supplied to the rotor 2, the vane 4, the inner wall of the cylinder 1 and the like constituting the compression mechanism via the oil supply passage 18, lubricates each part, and is supplied to the vane back pressure chamber 17. The pressure acts to urge the vane 4 to the outside of the rotor 2.

潤滑油の給油は貯油室52から圧縮機構に潤滑油を供給する給油通路18を介して行われ、給油通路18にはベーン背圧調整装置16を介して貯油室に貯留されている潤滑油が供給される。ベーン背圧調整装置16は圧縮機構へ供給する潤滑油の給油圧力や給油量を圧縮機構周辺の冷媒ガス圧力に応じて制御する。   Lubricating oil is supplied from the oil storage chamber 52 via the oil supply passage 18 that supplies the lubricating oil to the compression mechanism, and the lubricating oil stored in the oil storage chamber via the vane back pressure adjusting device 16 is supplied to the oil supply passage 18. Supplied. The vane back pressure adjusting device 16 controls the oil supply pressure and the amount of oil supplied to the compression mechanism according to the refrigerant gas pressure around the compression mechanism.

ところで、分離壁57には微小な連通路63が形成され、高圧室14と貯油室52を繋いでいる。連通路開閉板60は分離壁57にボルト61にて締結され、連通路開閉板60はバイメタルなどの材料にて作成され、周囲温度が高くなると連通路63を閉じるように構成されている。さらに連通路を連通路開閉板で閉じる際にシ−ル性を高める為に、連通路開閉板60にはシ−ル材62が貼付けされている。   Incidentally, a minute communication path 63 is formed in the separation wall 57 and connects the high pressure chamber 14 and the oil storage chamber 52. The communication path opening / closing plate 60 is fastened to the separation wall 57 with bolts 61. The communication path opening / closing plate 60 is made of a material such as bimetal, and is configured to close the communication path 63 when the ambient temperature increases. Further, a seal material 62 is affixed to the communication path opening / closing plate 60 in order to enhance sealability when the communication path is closed with the communication path opening / closing plate.

以下、上述した実施の形態にかかる圧縮機の動作について説明する。   Hereinafter, the operation of the compressor according to the above-described embodiment will be described.

車載エンジンなどの駆動源から動力伝達を受けて駆動軸5及びロータ2が、図2において時計方向に回転すると、これに伴い低圧の冷媒ガスが吸入孔9より作動室8内に流入する。ロータ2の回転に伴い圧縮された高圧の冷媒ガスは吐出孔10より吐出弁11を押し上げて案内通路13内に流入する。更に、高圧の冷媒ガスは導入孔53を通り分離室51内に導入され、分離室にて冷媒ガスに含まれる潤滑油が分離、収集される。   When power is transmitted from a drive source such as an in-vehicle engine and the drive shaft 5 and the rotor 2 rotate clockwise in FIG. 2, a low-pressure refrigerant gas flows into the working chamber 8 from the suction hole 9 accordingly. The high-pressure refrigerant gas compressed along with the rotation of the rotor 2 pushes up the discharge valve 11 from the discharge hole 10 and flows into the guide passage 13. Further, the high-pressure refrigerant gas is introduced into the separation chamber 51 through the introduction hole 53, and the lubricating oil contained in the refrigerant gas is separated and collected in the separation chamber.

ところで、分離室51はいわゆる遠心分離式のオイルセパレータであり、図1に示したように、互いに結合された円柱状空間部と逆円錐状空間部とから構成される。導入孔53は分離室51の円柱状空間部中心軸から偏心して設けられ、分離室内に導入される冷媒ガスを円柱状空間部の接線方向に導くように、すなわち、冷媒ガスを円柱状空間部の内周面49に沿って分離室51内に導入し得るように設けられている。したがって、分離室51内に導入された冷媒ガスは分離室内で周方向に旋回し、旋回による遠心力の働きにより比重の大きい潤滑油が分離室内壁に接触して冷媒ガスから分離される。   By the way, the separation chamber 51 is a so-called centrifugal oil separator, and is composed of a cylindrical space portion and an inverted conical space portion coupled to each other as shown in FIG. The introduction hole 53 is provided eccentrically from the central axis of the cylindrical space portion of the separation chamber 51 so as to guide the refrigerant gas introduced into the separation chamber in the tangential direction of the cylindrical space portion, that is, the refrigerant gas is introduced into the cylindrical space portion. It is provided so that it can be introduced into the separation chamber 51 along the inner peripheral surface 49. Therefore, the refrigerant gas introduced into the separation chamber 51 swirls in the circumferential direction in the separation chamber, and the lubricating oil having a large specific gravity comes into contact with the separation chamber wall and is separated from the refrigerant gas by the centrifugal force caused by the swirling.

分離された潤滑油は内周面49に沿って下方に移動し、逆円錐状空間部により中央部に凝集される。   The separated lubricating oil moves downward along the inner peripheral surface 49 and is aggregated in the central portion by the inverted conical space portion.

ここで、分離壁57には微小な連通路63が形成され、高圧室14と貯油室52を繋いでおり、連通路開閉板60は分離壁57にボルト61にて締結され、連通路開閉板60はバイメタルなどの材料にて作成され、周囲温度が高くなると連通路63を閉じるように構成されているため、理想とするOCRに近づけるよう制御することが可能となる。   Here, a minute communication passage 63 is formed in the separation wall 57 and connects the high-pressure chamber 14 and the oil storage chamber 52. The communication passage opening / closing plate 60 is fastened to the separation wall 57 with bolts 61, and the communication passage opening / closing plate is connected. 60 is made of a material such as bimetal, and is configured to close the communication path 63 when the ambient temperature rises, so that it can be controlled to be close to an ideal OCR.

圧縮機の回転数が中速以下の場合、サイクル内を循環する冷媒量は少なく、システム効率(熱交換器の効率)を高めるためにOCRを低く保つ事が求められる。また、圧縮機の回転数が中速以下の場合は冷媒循環量は少なく、高圧圧力は高くなりにくいため、吐出温度も高くなることはない。よって圧縮機の信頼性の面からもOCRは低くて良い領域である。この場合、高圧室14を通過する冷媒の温度は相対的に高くなく、連通路63を塞ぐ
ように、高圧室に設置された連通路開閉板60のバイメタルの特性を設定する。この場合には、従来の遠心分離式の分離室を設けた圧縮機と同様の動作を示すこことなり、貯油室の潤滑油は高圧室を通過する冷媒に影響されることなく、安定して貯油室に留まる事が出来るため、高い潤滑油分離効率を発揮し、OCRを低く保つ事ができる。
When the rotation speed of the compressor is not higher than the medium speed, the amount of refrigerant circulating in the cycle is small, and it is required to keep the OCR low in order to increase the system efficiency (heat exchanger efficiency). Further, when the rotation speed of the compressor is equal to or lower than the medium speed, the refrigerant circulation amount is small, and the high pressure is difficult to increase, so that the discharge temperature does not increase. Therefore, the OCR may be low in terms of the reliability of the compressor. In this case, the temperature of the refrigerant passing through the high pressure chamber 14 is not relatively high, and the bimetal characteristics of the communication path opening / closing plate 60 installed in the high pressure chamber are set so as to block the communication path 63. In this case, the operation is similar to that of a compressor provided with a conventional centrifugal separation chamber, and the lubricating oil in the oil storage chamber is stably stored without being affected by the refrigerant passing through the high pressure chamber. Since it can stay in the chamber, it can exhibit high lubricating oil separation efficiency and keep OCR low.

圧縮機の回転数が高速の場合、サイクル内を循環する冷媒量は多く、システム効率(熱交換器の効率)をOCRを低めることでさらに高める必要はない。また、圧縮機の回転数が高速の場合は冷媒循環量は多く、高圧圧力は高くなり易いため、吐出温度も高くなる。よって圧縮機の信頼性の面からもOCRは高くすべき領域である。この場合、高圧室14を通過する冷媒の温度は相対的に高く、連通路63を塞ぐことのないように、高圧室に設置された連通路開閉板60のバイメタルの特性を設定する。この場合には、従来の遠心分離式の分離室を設けた圧縮機とは異なる動作を示すこことなり、従来では貯油室の潤滑油は高圧室を通過する冷媒に影響されることなく、安定して貯油室に留まる事が出来るが、本発明では、バイメタルで形成された連通路開閉板が周囲温度により変形し、連通路を塞がない状態となり、微小な連通路により高圧室と貯油室は繋がることとなる。   When the rotational speed of the compressor is high, the amount of refrigerant circulating in the cycle is large, and there is no need to further increase the system efficiency (efficiency of the heat exchanger) by lowering the OCR. Further, when the rotational speed of the compressor is high, the refrigerant circulation amount is large, and the high pressure is likely to be high, so the discharge temperature is also high. Therefore, OCR should be high from the viewpoint of the reliability of the compressor. In this case, the temperature of the refrigerant passing through the high pressure chamber 14 is relatively high, and the bimetal characteristics of the communication path opening / closing plate 60 installed in the high pressure chamber are set so as not to block the communication path 63. In this case, the operation is different from that of a compressor provided with a conventional centrifugal separation chamber, and conventionally the lubricating oil in the oil storage chamber is stable without being affected by the refrigerant passing through the high pressure chamber. However, in the present invention, the communication passage opening / closing plate formed of bimetal is deformed by the ambient temperature and does not block the communication passage, and the high pressure chamber and the oil storage chamber are separated by the minute communication passage. It will be connected.

また従来では(高圧室の圧力)≧(分離室の圧力)≧(貯油室の圧力)であった関係が、本発明では高圧室と貯油室が連通した場合には(高圧室の圧力)≒(分離室の圧力)≒(貯油室の圧力)となることで、貯油室側油面55は相対的に低くなり、分離室側油面56は相対的に高くなり、さらに、高速で流れる高圧室の冷媒により、貯油室に貯えられた潤滑油は掻き乱されることで、潤滑油分離効率は悪化し、OCRは高くなる。   Conventionally, (high pressure chamber pressure) ≧ (separation chamber pressure) ≧ (oil storage chamber pressure), but in the present invention, when the high pressure chamber communicates with the oil storage chamber (pressure of the high pressure chamber) ≈ (Separation chamber pressure) ≈ (Oil storage chamber pressure), the oil storage chamber side oil surface 55 becomes relatively low, the separation chamber side oil surface 56 becomes relatively high, and the high pressure flowing at high speed. The lubricating oil stored in the oil storage chamber is disturbed by the refrigerant in the chamber, so that the lubricating oil separation efficiency is deteriorated and the OCR is increased.

よって、従来の遠心分離式潤滑油分離装置と、本発明による遠心分離式潤滑油分離装置の、圧縮機回転数とOCRの関係は図4のようになる。   Therefore, the relationship between the compressor rotational speed and the OCR of the conventional centrifugal lubricant separating apparatus and the centrifugal lubricant separating apparatus according to the present invention is as shown in FIG.

なお、上述の実施の形態では、圧縮機としてスライディングベーン型ロータリ圧縮機を例に採り説明したが、本発明はこれに限定されるものではなくローリングピストン型、スクロール型等その他の圧縮機にも適用可能である。   In the above-described embodiment, a sliding vane type rotary compressor has been described as an example of the compressor. However, the present invention is not limited to this, and other compressors such as a rolling piston type and a scroll type are also described. Applicable.

以上のように本発明にかかる圧縮機では、幅広い圧縮機回転数にて高い潤滑油分離効率を発揮でき、さらに高速回転での圧縮機の信頼性を確保可能となるので、家庭用空調装置等の用途にも適用できる。   As described above, in the compressor according to the present invention, high lubricating oil separation efficiency can be exhibited at a wide range of compressor rotation speeds, and further, the reliability of the compressor at high speed rotation can be ensured. It can be applied to other uses.

本出願にかかる発明の一部が適用された実施例を示す圧縮機の縦断面図The longitudinal cross-sectional view of the compressor which shows the Example to which some inventions concerning this application were applied 図1に示した圧縮機のA−A断面図(作動室断面図)AA sectional view (working chamber sectional view) of the compressor shown in FIG. 図1に示した圧縮機のB部詳細図Detailed view of part B of the compressor shown in FIG. 従来の遠心分離式潤滑油分離装置と、本発明による遠心分離式潤滑油分離装置の、圧縮機回転数とOCRの関係を示す特性図The characteristic view which shows the relationship between compressor rotation speed and OCR of the conventional centrifugal-type lubricating oil separator and the centrifugal-type lubricating oil separator by this invention

符号の説明Explanation of symbols

1 シリンダ
2 ロ一夕
3 ベーンスロット
4 ベーン
5 駆動軸
6 前部側板
7 後部側板
8 作動室
9 吸入孔
10 吐出孔
11 吐出弁
12 高圧ケース
13 案内通路
14 高圧室
16 ベーン背圧調整装置
17 ベーン背圧室
18 給油通路
49 内周面
51 分離室
52 貯油室
53 導入孔
54 排油孔
55 貯油室側油面
56 分離室側油面
57 分離壁
58 ガス排出孔
60 連通路開閉板
61 ボルト
62 シ−ル材
63 連通路
1 cylinder 2 row 3 vane slot 4 vane 5 drive shaft 6 front side plate 7 rear side plate 8 working chamber 9 suction hole 10 discharge hole 11 discharge valve 12 high pressure case 13 guide passage 14 high pressure chamber 16 vane back pressure adjusting device 17 vane Back pressure chamber 18 Oil supply passage 49 Inner peripheral surface 51 Separation chamber 52 Oil storage chamber 53 Introduction hole 54 Oil discharge hole 55 Oil storage chamber side oil surface 56 Separation chamber side oil surface 57 Separation wall 58 Gas discharge hole 60 Communication passage opening / closing plate 61 Bolt 62 Seal material 63 Communication passage

Claims (1)

潤滑油を含む気流体を圧縮する圧縮機構と、前記圧縮機構により圧縮された気流体が導かれる高圧室と、高圧室から導入されて旋回し、この旋回による遠心力により前記気流体に含まれる潤滑油の少なくとも一部が分離される分離室と、分離された潤滑油を蓄える貯油室を備え、前記高圧室と貯油室は分離壁により分離されている圧縮機であって、前記分離壁に高圧室と貯油室を連通する微小な連通路が形成されるとともに、圧縮機の回転数により前記連通路を開閉することを可能とする連通路開閉板を備えたことを特徴とする圧縮機。 Compressed mechanism for compressing gas fluid including lubricating oil, high pressure chamber to which the gas fluid compressed by the compression mechanism is guided, swirled by introduction from the high pressure chamber, and included in the gas fluid by centrifugal force due to the swirling A compressor having a separation chamber in which at least a part of the lubricating oil is separated and an oil storage chamber for storing the separated lubricating oil, wherein the high pressure chamber and the oil storage chamber are separated by a separation wall; A compressor comprising a communication passage opening / closing plate that is formed with a small communication passage that communicates a high-pressure chamber and an oil storage chamber and that can open and close the communication passage according to the number of rotations of the compressor.
JP2004357855A 2004-12-10 2004-12-10 Compressor Pending JP2006161775A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004357855A JP2006161775A (en) 2004-12-10 2004-12-10 Compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004357855A JP2006161775A (en) 2004-12-10 2004-12-10 Compressor

Publications (1)

Publication Number Publication Date
JP2006161775A true JP2006161775A (en) 2006-06-22

Family

ID=36664052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004357855A Pending JP2006161775A (en) 2004-12-10 2004-12-10 Compressor

Country Status (1)

Country Link
JP (1) JP2006161775A (en)

Similar Documents

Publication Publication Date Title
KR100740211B1 (en) Hermetic scroll compressor and refrigerating air conditioner
US8109116B2 (en) Dual compressor air conditioning system with oil level regulation
JP4788746B2 (en) Compressor
JP2008057389A (en) Gas compressor
JP2008050963A (en) Gas compressor
EP2236828B1 (en) Scroll compressor
JP2007327340A (en) Gas compressor
JP2008169810A (en) Gas compressor
JP2006161775A (en) Compressor
JP5222420B2 (en) Gas compressor
JP2005083234A (en) Compressor
JP2008014174A (en) Compressor
JP2010001835A (en) Gas compressor
JP2006291732A (en) Compressor
JP2021080906A (en) Rotary compressor
JP4354839B2 (en) Gas compressor
JP2006329102A (en) Compressor
JP2008157174A (en) Variable displacement gas compressor
JP2008075619A (en) Compressor
KR101096971B1 (en) Scroll compressor
JP4253391B2 (en) Scroll type compressor
JP2005307897A (en) Compressor
JP2004068781A (en) Gas compressor
JP2008025349A (en) Compressor
JP2006214335A (en) Scroll compressor