JP2006152808A - Compressor - Google Patents

Compressor Download PDF

Info

Publication number
JP2006152808A
JP2006152808A JP2004340228A JP2004340228A JP2006152808A JP 2006152808 A JP2006152808 A JP 2006152808A JP 2004340228 A JP2004340228 A JP 2004340228A JP 2004340228 A JP2004340228 A JP 2004340228A JP 2006152808 A JP2006152808 A JP 2006152808A
Authority
JP
Japan
Prior art keywords
lubricating oil
oil
chamber
compressor
pressure chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004340228A
Other languages
Japanese (ja)
Inventor
Kenji Watanabe
健司 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004340228A priority Critical patent/JP2006152808A/en
Publication of JP2006152808A publication Critical patent/JP2006152808A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve problems in a conventional compressor wherein the sealed amount of necessary lubricating oil must be increased since the lubricating oil is not discharged and accumulated at the lower part of a high-pressure chamber when an inlet hole is disposed at a high position to increase the effect of the separation of the lubricating oil and also the substantial volume of the high-pressure chamber is reduced by the accumulated lubricating oil and muffler effect is reduced by separating the high-pressure chamber from an oil storage chamber to prevent the lubricating oil from reversely flowing to a separation chamber so as to increase the muffler effect. <P>SOLUTION: The lubricating oil separated in the separation chamber is forcibly discharged by a pump to prevent the lubricating oil from reversely flowing to the separation chamber 51. Thus, since the high-pressure chamber 14 and the oil storage chamber 52 can be formed without separating from each other, the lubricating oil can be prevented from being accumulated while effectively utilizing the volume of the high-pressure chamber 14. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、流体の圧縮を行う圧縮機に関するもので、特に自動車用空調装置などに供される圧縮機等の油分離に関するものである。   The present invention relates to a compressor that compresses a fluid, and particularly to oil separation of a compressor or the like used in an air conditioner for an automobile.

このような圧縮機においては、圧縮された流体と共に圧縮機潤滑油の一部を空調装置のエアコンサイクル中へ吐出してしまう。流体と共に吐出される潤滑油が多く吐出されるほど熱交換器内壁面に潤滑油が付着し、熱交換効率の低下や、配管内壁面に潤滑油が付着し圧力損失が増加し、空調装置全体のシステム効率が低下する。   In such a compressor, a part of the compressor lubricating oil is discharged into the air conditioner cycle of the air conditioner together with the compressed fluid. The more lubricating oil that is discharged with the fluid, the more oil is attached to the inner wall surface of the heat exchanger, resulting in lower heat exchange efficiency, and the more oil is attached to the inner wall surface of the pipe, resulting in increased pressure loss. The system efficiency of the system decreases.

このため、従来の圧縮機においては、空調装置のエアコンサイクル中への潤滑油の吐出を抑制するため、圧縮機構の吐出側に、圧縮機構により圧縮された気流体(ミスト状の潤滑油と気体冷媒とが混じったガス状の流体を意味する。)から潤滑油を分離する分離手段を設けることが一般的となっている(例えば、特許文献1参照)。   For this reason, in the conventional compressor, in order to suppress the discharge of the lubricating oil into the air conditioner cycle of the air conditioner, the gas fluid (mist-like lubricating oil and gas) compressed by the compression mechanism is disposed on the discharge side of the compression mechanism. It is common to provide a separating means for separating lubricating oil from a gaseous fluid mixed with a refrigerant (see, for example, Patent Document 1).

図4は、特許文献1に記載された従来の圧縮機の断面図である。圧縮機構110の吐出ポート113から吐出される気流体は、吐出室122aと導入孔122を通じて、潤滑油を分離する分離室121に導入される。一方、吐出室の下側には吐出室とは隔壁で隔てられた貯油室が形成され、分離室で気流体から分離された潤滑油が導かれ貯留される。   FIG. 4 is a cross-sectional view of a conventional compressor described in Patent Document 1. The gas fluid discharged from the discharge port 113 of the compression mechanism 110 is introduced into the separation chamber 121 that separates the lubricating oil through the discharge chamber 122a and the introduction hole 122. On the other hand, an oil storage chamber separated from the discharge chamber by a partition is formed below the discharge chamber, and the lubricating oil separated from the gas fluid is guided and stored in the separation chamber.

分離室121の下部には貯油室130と連通する排出孔123が形成され、排出孔を通じて分離室121で分離された潤滑油が貯油室130に排出されるようになっている。   A discharge hole 123 communicating with the oil storage chamber 130 is formed in the lower part of the separation chamber 121 so that the lubricating oil separated in the separation chamber 121 is discharged to the oil storage chamber 130 through the discharge hole.

ここで、図4に示した圧縮機においては、貯油室130が吐出室とは隔壁で隔てられて形成されている。これは、次の理由による。すなわち、貯油室130と分離室121が連通しているため、貯油室に高圧の気流体が導かれると、高圧が潤滑油面に作用し貯油室から分離室に潤滑油が逆流し、そこから空調システム中(圧縮機外)に持ち出されてしまう。これを防止するため貯油室は吐出室と隔てられているのである。
特開2003−62238号公報
Here, in the compressor shown in FIG. 4, the oil storage chamber 130 is formed separated from the discharge chamber by a partition wall. This is due to the following reason. That is, since the oil storage chamber 130 and the separation chamber 121 communicate with each other, when a high-pressure gas fluid is guided to the oil storage chamber, the high pressure acts on the lubricating oil surface, and the lubricating oil flows backward from the oil storage chamber to the separation chamber. They are taken out of the air conditioning system (outside the compressor). In order to prevent this, the oil storage chamber is separated from the discharge chamber.
JP 2003-62238 A

ところで、高圧室は容積を広く取らなければ圧縮機構から吐出される気流体の圧力変動(脈動)を抑制する効果が期待できず、吐出脈動の低減が図れない。また、貯油室はそこに貯留される潤滑油が溢れることのないよう容積的に余裕(マージン)のある設計となっている。   By the way, unless the volume of the high-pressure chamber is large, an effect of suppressing pressure fluctuation (pulsation) of the gas fluid discharged from the compression mechanism cannot be expected, and discharge pulsation cannot be reduced. In addition, the oil storage chamber is designed with a margin in volume so that the lubricating oil stored in the oil storage chamber does not overflow.

本発明者は、この貯油室の容積的余裕(マージン)に着目し、これを高圧室の容積として活用できれば、圧縮機を大型化することなく高圧室容積を広げることが可能になると考えた。   The inventor paid attention to the volume margin of the oil storage chamber and thought that if this could be utilized as the volume of the high-pressure chamber, the volume of the high-pressure chamber could be increased without increasing the size of the compressor.

また、図4に示した構造の圧縮機においては、高圧室と貯油室が隔壁により隔てられているため、高圧室から高圧の気流体を分離室に導く導入孔を高い位置に配置すると、高圧室内底部に潤滑油が溜まってしまい、高圧室の実質容積が減り脈動抑制効果が低減するという課題や、必要な潤滑油の一部が滞留するため圧縮機の耐久性維持に必要な潤滑油量が不足する可能性があり潤滑油の封入量を必要以上に多くせざるを得ないといった課題が存在した。   In the compressor having the structure shown in FIG. 4, since the high pressure chamber and the oil storage chamber are separated by a partition wall, if the introduction hole for guiding the high pressure gas fluid from the high pressure chamber to the separation chamber is disposed at a high position, the high pressure chamber Lubricating oil accumulates at the bottom of the room, reducing the real volume of the high-pressure chamber and reducing the pulsation suppression effect, and the amount of lubricating oil required to maintain the durability of the compressor because some of the necessary lubricating oil stays There is a problem that there is a possibility that the amount of lubrication oil must be increased more than necessary.

本発明は、これら従来の課題を解決するもので、圧縮機を大型化することなく、高圧室の容積を確保しつつ、潤滑油が滞留しない構成を提供することを目的とする。   The present invention solves these conventional problems, and an object of the present invention is to provide a configuration in which lubricating oil does not stay while securing the volume of the high-pressure chamber without increasing the size of the compressor.

上記従来の課題を解決するために、本発明による圧縮機の最も主要な特徴点は、高圧室内に貯油部を設けると共に、分離室で分離された潤滑油を分離室から貯油部へ導く導油路に逆流防止手段を設けたこと点である。   In order to solve the above-described conventional problems, the main feature of the compressor according to the present invention is that an oil storage section is provided in the high-pressure chamber and that the lubricating oil separated in the separation chamber is guided from the separation chamber to the oil storage section. The backflow prevention means is provided on the road.

これにより、貯油部に貯留される潤滑油面に気流体の高圧が作用することとなるが、貯油部から潤滑油が分離室へ逆流するのを防止できる。したがって、従来のように貯油室を高圧室から独立させておく必要がなくなり、従来の貯油室に設けられていた空間的マージンを高圧室容積として有効に活用することが可能となり、圧縮機を大型化することなく吐出脈動を低減することが可能となる。吐出脈動を更に低減する必要がない場合は、圧縮機を小型化することも可能となる。   Thereby, although the high pressure of the gas fluid acts on the lubricating oil surface stored in the oil storage part, it is possible to prevent the lubricating oil from flowing back from the oil storage part to the separation chamber. Therefore, it is no longer necessary to keep the oil storage chamber independent from the high pressure chamber as in the past, and the spatial margin provided in the conventional oil storage chamber can be used effectively as the high pressure chamber volume, and the compressor can be made large. It becomes possible to reduce the discharge pulsation without becoming. When it is not necessary to further reduce the discharge pulsation, the compressor can be downsized.

また、高圧室から分離室へ気流体を導く導入孔を鉛直方向の高い位置に設けても潤滑油が滞留しない構成が可能となる。従って、導入孔の配置自由度が向上すると共に、潤滑油の封入量を必要以上に増加させる必要がなくなる。   Further, even if an introduction hole for introducing the gas fluid from the high pressure chamber to the separation chamber is provided at a high position in the vertical direction, a configuration in which the lubricating oil does not stay is possible. Therefore, the degree of freedom of arrangement of the introduction holes is improved, and it is not necessary to increase the amount of lubricating oil filled more than necessary.

第1の発明は、潤滑油を含む気流体を圧縮する圧縮機構と、圧縮機構により圧縮された気流体が導かれると共にその下部に潤滑油を貯留する貯油部を有する高圧室と、高圧室から高圧の気流体が導かれ気流体に含まれる潤滑油の少なくとも一部が旋回流により遠心分離される分離室と、分離室にて気流体から分離された潤滑油を高圧室内の貯油部に排出する導油路とを備える圧縮機において、導油路に潤滑油が高圧室から分離室へ逆流するのを防止する逆流防止手段を設けたものである。   According to a first aspect of the present invention, there is provided a compression mechanism for compressing a gas-fluid containing lubricating oil, a high-pressure chamber having an oil storage section for guiding the gas-fluid compressed by the compression mechanism and storing lubricating oil in a lower portion thereof, and a high-pressure chamber. A separation chamber in which at least a part of the lubricating oil contained in the gas fluid is guided by the swirl flow and the lubricating oil separated from the gas fluid in the separation chamber is discharged to an oil storage section in the high-pressure chamber. In the compressor including the oil guide passage, a backflow prevention means for preventing the lubricant from flowing backward from the high pressure chamber to the separation chamber is provided in the oil guide passage.

これにより、貯油部の潤滑油面に高圧の気流体が作用しても潤滑油の分離室への逆流は確実に防止される。従って、高圧室内に貯油部を設けることが可能となった。更に、高圧室内に貯油部を設けた結果、高圧室から気流体を分離室に導く導入孔の配置位置を高い位置としても、潤滑油が滞留することがなく、必要以上の潤滑油を封入する必要が無くなると共に、導入孔の配置自由度が向上する。   Thereby, even if a high-pressure gas fluid acts on the lubricating oil surface of the oil storage section, the backflow of the lubricating oil to the separation chamber is reliably prevented. Therefore, an oil storage part can be provided in the high-pressure chamber. Furthermore, as a result of providing an oil storage section in the high-pressure chamber, even if the position of the introduction hole for introducing the gas fluid from the high-pressure chamber to the separation chamber is set to a high position, the lubricating oil does not stay and enclose more lubricating oil than necessary. This eliminates the necessity and improves the degree of freedom of arrangement of the introduction holes.

第2の発明は、第1の発明における逆流防止手段として、分離室から貯油部へ潤滑油を排出するポンプを用いることとしたものである。   In the second invention, a pump for discharging lubricating oil from the separation chamber to the oil storage part is used as the backflow prevention means in the first invention.

第3の発明は、第2の発明におけるポンプを圧縮機の駆動軸に連結し、圧縮機の回転数に応じてポンプの排出量を増減させるようにしたものである。   In a third aspect of the invention, the pump according to the second aspect of the invention is connected to the drive shaft of the compressor, and the discharge amount of the pump is increased or decreased according to the rotational speed of the compressor.

これにより、圧縮機の回転数変化時の気流体の循環量増減に伴う分離される潤滑油の増減にあわせて、ポンプの排出量を増減できるため、潤滑油の分離効率を向上させることが可能になる。   As a result, the pump discharge amount can be increased or decreased in accordance with the increase or decrease of the separated lubricating oil accompanying the increase or decrease of the circulation amount of the gas fluid when the compressor rotation speed changes, so it is possible to improve the separation efficiency of the lubricating oil become.

第4の発明は、第1の発明における逆流防止手段として、潤滑油が貯油部から分離室へ逆流するのを防止する逆流防止弁を用いることとしたものである。   According to a fourth aspect of the present invention, a backflow prevention valve that prevents backflow of lubricating oil from the oil storage section to the separation chamber is used as the backflow prevention means in the first aspect of the invention.

第5の発明は、第1、第2、第3又は第4の発明において、貯油部に貯まった潤滑油が圧縮機構より導かれた気流体により巻上げられるのを抑制する障壁を高圧室に設けたもの
である。これにより、圧縮機構から吐出される気流体が直接油面に衝突することを防止できるため、高圧室下部の貯油部に貯まった潤滑油が圧縮機構より導かれた気流体により巻上げられるのを抑制し、潤滑油の分離効率を向上させることが可能になる。
According to a fifth invention, in the first, second, third or fourth invention, a barrier is provided in the high-pressure chamber to prevent the lubricating oil stored in the oil storage part from being wound up by the gas fluid introduced from the compression mechanism. It is a thing. As a result, the gas-fluid discharged from the compression mechanism can be prevented from directly colliding with the oil surface, so that the lubricating oil stored in the oil storage section at the lower part of the high-pressure chamber is prevented from being wound up by the gas-fluid introduced from the compression mechanism. Thus, it becomes possible to improve the separation efficiency of the lubricating oil.

第6の発明は、第5の発明において、導油路の貯油部側開口部を前記高圧室の前記障壁より下部に設けたものである。これにより、分離室で分離され導油路より排出される潤滑油が圧縮機構より導かれた気流体により巻上げられるのを抑制し、潤滑油の分離効率を向上させることが可能になる。 第7の発明は、第2、第3または第6の発明において、導油路のポンプよりも貯油部側に、高圧室と導油路の圧力差により開閉する開閉弁を設けたものである。これにより、圧縮機の停止時に高圧室の潤滑油が分離室に逆流するのを防止し、圧縮機の起動時に、潤滑油の分離効率を向上させることが可能になる。   According to a sixth invention, in the fifth invention, the oil storage section side opening of the oil guide passage is provided below the barrier of the high pressure chamber. Thereby, it is possible to suppress the lubricating oil separated in the separation chamber and discharged from the oil guiding passage from being wound up by the gas-fluid introduced from the compression mechanism, and to improve the lubricating oil separation efficiency. According to a seventh invention, in the second, third, or sixth invention, an on-off valve that opens and closes due to a pressure difference between the high pressure chamber and the oil guide passage is provided closer to the oil storage section than the pump of the oil guide passage. . Thereby, it is possible to prevent the lubricating oil in the high pressure chamber from flowing back to the separation chamber when the compressor is stopped, and to improve the separation efficiency of the lubricating oil when the compressor is started.

以下、本発明の形態について、図面を参照しながら説明する。なお、この実施の形態によってこの発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の実施の形態1における圧縮機の断面図、図2は作動室の断面で図1のA−A断面図、図3は圧縮機作動室側から見た高圧ケースで、図1のB矢視図である。
(Embodiment 1)
1 is a cross-sectional view of a compressor according to Embodiment 1 of the present invention, FIG. 2 is a cross-sectional view of a working chamber, and is a cross-sectional view taken along the line AA of FIG. 1, and FIG. It is a B arrow line view of FIG.

図示したように、この圧縮機においては、円筒内壁を有するシリンダ1に略円柱状のロータ2がその外周の一部がシリンダ1の内壁と微少隙間を形成するように回転自在に収容されている。ロータ2には複数のベーンスロット3が等間隔に設けられており、ベーンスロット3内には、摺動自在にベーン4がそれぞれ挿入されている。ロータ2はこれと一体的に形成された駆動軸5が回転駆動されることにより回転する。シリンダ1の両端開口部はそれぞれ前部側板6及び後部側板7により閉塞され、シリンダ1内部に作動室8が形成される。作動室8には吸入口9及び吐出口10が連通し、吐出口10は高圧通路13に接続され、吐出口10と高圧通路13との間には吐出弁11が配設されている。   As shown in the figure, in this compressor, a substantially cylindrical rotor 2 is rotatably accommodated in a cylinder 1 having a cylindrical inner wall so that a part of the outer periphery forms a minute gap with the inner wall of the cylinder 1. . A plurality of vane slots 3 are provided at equal intervals in the rotor 2, and vanes 4 are slidably inserted into the vane slots 3. The rotor 2 rotates when a drive shaft 5 formed integrally therewith is driven to rotate. The opening portions at both ends of the cylinder 1 are respectively closed by the front side plate 6 and the rear side plate 7, and the working chamber 8 is formed inside the cylinder 1. A suction port 9 and a discharge port 10 communicate with the working chamber 8, the discharge port 10 is connected to a high-pressure passage 13, and a discharge valve 11 is disposed between the discharge port 10 and the high-pressure passage 13.

後部側板7には高圧ケース12が取り付けられており、高圧ケース12内には高圧室14、分離室51が形成され、高圧室14内には障壁61が形成され障壁61下部を貯油部52としている。高圧室14の上部には分離室51に連通させるように導入孔53が配されている。   A high pressure case 12 is attached to the rear side plate 7, a high pressure chamber 14 and a separation chamber 51 are formed in the high pressure case 12, a barrier 61 is formed in the high pressure chamber 14, and a lower portion of the barrier 61 is used as an oil storage portion 52. Yes. An introduction hole 53 is disposed above the high pressure chamber 14 so as to communicate with the separation chamber 51.

また、後部側板7には駆動軸5により回転駆動するポンプ60が配設され、導油路50が形成されている、ポンプ60下流の導油路50の高圧室14側開口部には開閉弁62が配されている。図示したように、開閉弁は球状の弁体を貯油室側からポンプ側へコイルスプリングにより付勢して構成されている。   In addition, a pump 60 that is rotationally driven by the drive shaft 5 is disposed on the rear side plate 7, and an oil guide passage 50 is formed. An opening / closing valve is provided on the high pressure chamber 14 side opening of the oil guide passage 50 downstream of the pump 60. 62 is arranged. As shown in the figure, the on-off valve is configured by energizing a spherical valve element from the oil storage chamber side to the pump side by a coil spring.

分離室51は、圧縮された高圧気流体に含まれる潤滑油を遠心分離するために設けられている。分離室51は導油路50と連通している。高圧室14の貯油部52に貯められた潤滑油は給油路18を介して圧縮機構を構成するロータ2、ベーン4、シリンダ1内壁等に供給され、各部を潤滑すると共に、ベーン背圧室17に供給され、その圧力によりベーン4をロータ2の外側へ押し出す働きをする。潤滑油の給油は貯油室52から圧縮機構に潤滑油を供給する給油路18を介して行われ、給油路18の途中には、ベーン背圧調整装置16が設けられている。ベーン背圧調整装置16は圧縮機構へ供給する潤滑油の給油圧力や給油量を圧縮機構周辺の流体(冷媒)圧力に応じて制御する。   The separation chamber 51 is provided for centrifuging the lubricating oil contained in the compressed high-pressure gas fluid. The separation chamber 51 communicates with the oil guide path 50. Lubricating oil stored in the oil storage section 52 of the high-pressure chamber 14 is supplied to the rotor 2, the vane 4, the inner wall of the cylinder 1, and the like constituting the compression mechanism via the oil supply passage 18, and lubricates each section, and the vane back-pressure chamber 17. The vane 4 is pushed out to the outside of the rotor 2 by the pressure. Lubricating oil is supplied from an oil storage chamber 52 through an oil supply passage 18 that supplies the lubricating oil to the compression mechanism, and a vane back pressure adjusting device 16 is provided in the middle of the oil supply passage 18. The vane back pressure adjusting device 16 controls the oil supply pressure and the amount of oil supplied to the compression mechanism according to the fluid (refrigerant) pressure around the compression mechanism.

以上のように構成された圧縮機について、以下その動作、作用を説明する。   About the compressor comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

エンジンなどの駆動源より動力伝達を受けて駆動軸5及びロータ2が、図2において時
計方向に回転すると、これに伴い低圧の気流体(冷媒)が吸入口9より作動室8内に流入する。ロータ2の回転に伴い圧縮された高圧の気流体は吐出口10より吐出弁11を押し上げて高圧通路13に吐出され、高圧室14内に流入する。高圧脈動低減のために高圧室14は十分な容積を確保されており、高圧室14に流入した高圧気流体は、高圧室14内面および障壁61に衝突する。貯油部52は障壁61下部にあるため、高圧流体による巻上げを抑制することができる。高圧室14内面および障壁61に衝突して分離した一部の潤滑油は後部側板7と障壁61の隙間を通して、貯油部52に確保される。高圧室14の高圧気流体は導入孔53から分離室51に流入する。
When the drive shaft 5 and the rotor 2 are rotated clockwise in FIG. 2 in response to power transmission from a drive source such as an engine, a low-pressure gas fluid (refrigerant) flows into the working chamber 8 from the suction port 9. . The high-pressure gas fluid compressed with the rotation of the rotor 2 pushes up the discharge valve 11 from the discharge port 10 and is discharged into the high-pressure passage 13 and flows into the high-pressure chamber 14. The high-pressure chamber 14 has a sufficient volume to reduce high-pressure pulsation, and the high-pressure gas fluid that has flowed into the high-pressure chamber 14 collides with the inner surface of the high-pressure chamber 14 and the barrier 61. Since the oil storage part 52 is located under the barrier 61, it is possible to suppress winding by the high-pressure fluid. A portion of the lubricating oil that collides with and separates from the inner surface of the high-pressure chamber 14 and the barrier 61 is secured in the oil storage portion 52 through the gap between the rear side plate 7 and the barrier 61. The high-pressure gas fluid in the high-pressure chamber 14 flows into the separation chamber 51 from the introduction hole 53.

分離室51では高圧気流体に含まれる潤滑油が遠心分離され、分離室51下端部に連通した導油路50に導かれる。導油路50には駆動軸5により回転駆動されるポンプ60が配されており、分離室51で分離された潤滑油は確実に高圧室14下部の貯油部52に逆流することなく排出される。   In the separation chamber 51, the lubricating oil contained in the high-pressure gas fluid is centrifuged and guided to the oil guide passage 50 communicating with the lower end portion of the separation chamber 51. A pump 60 that is rotationally driven by the drive shaft 5 is disposed in the oil guide path 50, and the lubricating oil separated in the separation chamber 51 is reliably discharged without flowing back to the oil storage portion 52 below the high-pressure chamber 14. .

また、導油路50のポンプ60よりも貯油部側には開閉弁62が配され、更に導油路50は障壁61の下方に開口している。導油路50から排出される潤滑油は、上述した障壁61の存在により、高圧室14に流入する高圧気流体に巻上げられることなく貯油部52に確保される。   In addition, an on-off valve 62 is disposed on the oil reservoir 50 side of the oil guide passage 50 from the pump 60, and the oil guide passage 50 opens below the barrier 61. The lubricating oil discharged from the oil guide passage 50 is secured in the oil storage section 52 without being wound up by the high-pressure gas fluid flowing into the high-pressure chamber 14 due to the presence of the barrier 61 described above.

また、圧縮機が停止すると、ポンプ60による導油路50内の圧力上昇がなくなり、貯油部52と導油路50の圧力差がなくなり開閉弁62は閉となる。このため、貯油部52の潤滑油は圧縮機の停止状態においても分離室51に逆流することがなく、圧縮機の起動時に潤滑油の分離効率を損なうことがない。   When the compressor is stopped, the pressure in the oil guide passage 50 by the pump 60 disappears, the pressure difference between the oil storage section 52 and the oil guide passage 50 disappears, and the on-off valve 62 is closed. For this reason, the lubricating oil in the oil storage section 52 does not flow back into the separation chamber 51 even when the compressor is stopped, and the efficiency of separating the lubricating oil is not impaired when the compressor is started.

さらに、従来のように導入孔53を高い位置に配しても潤滑油が滞留しなくなり、必要以上の潤滑油を封入する必要がなくなる。さらに高圧室14の容積を有効に活用することができ、高圧室の脈動抑制効果により吐出脈動の低減が可能となる。   Further, even if the introduction hole 53 is arranged at a high position as in the prior art, the lubricating oil does not stay and it is not necessary to enclose more lubricating oil than necessary. Furthermore, the volume of the high pressure chamber 14 can be used effectively, and the discharge pulsation can be reduced by the pulsation suppressing effect of the high pressure chamber.

以上のように、構成した圧縮機によれば、ポンプ60を導油路50に配することにより、分離室51で分離された潤滑油は導油路を通して確実に高圧室に排出できるため、高圧室内に貯油部を設けても、圧縮機構により圧縮された気流体の流れによる、分離された潤滑油の逆流が発生しないため、従来のように高圧室と貯油室を分離する必要がなくなり、潤滑油が滞留しなくなり、潤滑油の封入量を必要以上に多くする必要が無くなる、さらに高圧室14の容積を有効に利用する事が可能となりより一層の吐出脈動低減が可能となる。   As described above, according to the compressor configured as described above, the lubricating oil separated in the separation chamber 51 can be reliably discharged to the high pressure chamber through the oil guide passage by disposing the pump 60 in the oil guide passage 50. Even if an oil storage part is provided in the room, since the separated lubricating oil does not flow backward due to the flow of the gas fluid compressed by the compression mechanism, there is no need to separate the high pressure chamber and the oil storage chamber as in the prior art. Oil does not stagnate, it is not necessary to increase the amount of lubricating oil more than necessary, the volume of the high-pressure chamber 14 can be used effectively, and discharge pulsation can be further reduced.

(実施の形態2)
上述の実施の形態1においては、貯油部に貯留されている潤滑油が導油路を逆流して分離室に流入するのを防止する逆流防止手段として、ポンプ60若しくはこれと開閉弁62の組合せを用いた例を示したが、これらの代わりに導油路の水平部分に球状の弁体等を設け、潤滑油が逆流しようとしたときに導油路を閉じる構成とすることも可能である。
(Embodiment 2)
In the first embodiment described above, the pump 60 or the combination of the pump 60 and the on-off valve 62 is used as a backflow prevention means for preventing the lubricating oil stored in the oil storage section from flowing back through the oil guide passage and flowing into the separation chamber. However, instead of these, it is also possible to provide a spherical valve body or the like in the horizontal portion of the oil guide passage, and close the oil guide passage when the lubricating oil tries to flow backward. .

なお、上述の実施形態では、圧縮機として、スライディングベーン型ロータリ圧縮機構を用いたが、本発明はこれに限定されるものではなく、ローリングピストン型、スクロール型等その他の圧縮機構であってもよい。また、本実施の形態では、導入孔の開口部形状を、円又は長円形状で示しているが、これに限定されるものではない。   In the above-described embodiment, the sliding vane type rotary compression mechanism is used as the compressor. However, the present invention is not limited to this, and other compression mechanisms such as a rolling piston type and a scroll type may be used. Good. Moreover, in this Embodiment, although the opening part shape of the introduction hole is shown by the circle or the ellipse shape, it is not limited to this.

以上のように、本発明にかかる圧縮機は、必要以上の潤滑油を封入する必要が無くなる。さらに高圧室の容積を有効に利用することができマフラー効果により吐出脈動低減が可
能となるので、その他の形式の圧縮機構を持った圧縮機にも適用出来る。
As described above, the compressor according to the present invention does not need to enclose more lubricating oil than necessary. Furthermore, since the volume of the high pressure chamber can be used effectively and the discharge pulsation can be reduced by the muffler effect, it can be applied to a compressor having another type of compression mechanism.

本発明の第1の実施形態を示す圧縮機の断面図Sectional drawing of the compressor which shows the 1st Embodiment of this invention 図1に示した圧縮機のA−A断面図AA sectional view of the compressor shown in FIG. 本発明の第1の実施形態の高圧ケースを作動室側から見たB矢視図B arrow view of the high-pressure case of the first embodiment of the present invention viewed from the working chamber side 従来の圧縮機の断面図Cross section of a conventional compressor

符号の説明Explanation of symbols

1 シリンダ
2 ロータ
3 ベーンスロット
4 ベーン
5 駆動軸
6 前部側板
7 後部側板
8 作動室
9 吸入口
10 吐出口
11 吐出弁
12 高圧ケース
13 高圧通路
14 高圧室
16 ベーン背圧付与装置
17 ベーン背圧室
18 給油路
50 導油路
51 分離室
52 貯油部
53 導入孔
58 ガス排出口
60 ポンプ
61 障壁
62 開閉弁
1 cylinder 2 rotor 3 vane slot 4 vane 5 drive shaft 6 front side plate 7 rear side plate 8 working chamber 9 suction port 10 discharge port 11 discharge valve 12 high pressure case 13 high pressure passage 14 high pressure chamber 16 vane back pressure applying device 17 vane back pressure Chamber 18 Oil supply path 50 Oil guide path 51 Separation chamber 52 Oil storage part 53 Introduction hole 58 Gas exhaust port 60 Pump 61 Barrier 62 Open / close valve

Claims (7)

潤滑油を含む気流体を圧縮する圧縮機構と、前記圧縮機構により圧縮された前記気流体が導かれると共にその下部に潤滑油を貯留する貯油部を有する高圧室と、前記高圧室から高圧の気流体が導かれ気流体に含まれる潤滑油の少なくとも一部が旋回流により遠心分離される分離室と、前記分離室にて前記気流体から分離された潤滑油を前記高圧室内の貯油部に排出する導油路とを備える圧縮機において、前記導油路には潤滑油が前記高圧室から前記分離室へ逆流するのを防止する逆流防止手段が設けられていることを特徴とする圧縮機。 A compression mechanism for compressing a gas-fluid containing lubricating oil, a high-pressure chamber having an oil storage part for guiding the gas-fluid compressed by the compression mechanism and storing the lubricating oil in a lower portion thereof, and a high-pressure gas from the high-pressure chamber. A separation chamber in which at least a part of the lubricating oil contained in the gas fluid is guided and centrifugally separated by a swirl flow, and the lubricating oil separated from the gas fluid in the separation chamber is discharged to the oil storage section in the high pressure chamber A compressor comprising: an oil guide passage, wherein the oil guide passage is provided with backflow prevention means for preventing the lubricant from flowing back from the high pressure chamber to the separation chamber. 前記逆流防止手段は、前記分離室で分離された潤滑油を前記分離室から前記高圧室へ排出するポンプであることを特徴とする請求項1に記載の圧縮機。 The compressor according to claim 1, wherein the backflow prevention means is a pump that discharges the lubricating oil separated in the separation chamber from the separation chamber to the high-pressure chamber. 前記ポンプは圧縮機の駆動軸に連結され、圧縮機の回転数に応じて前記ポンプの排出量が増減することを特徴とする請求項2記載の圧縮機。 3. The compressor according to claim 2, wherein the pump is connected to a drive shaft of the compressor, and a discharge amount of the pump increases or decreases according to a rotation speed of the compressor. 前記逆流防止手段は、潤滑油が前記貯油部から前記分離室へ逆流するのを防止する逆流防止弁であることを特徴とする請求項1に記載の圧縮機。 2. The compressor according to claim 1, wherein the backflow prevention means is a backflow prevention valve that prevents backflow of lubricating oil from the oil storage section to the separation chamber. 前記高圧室には貯油部に貯まった潤滑油が圧縮機構より導かれた気流体により巻上げられるのを抑制する障壁が設けられたことを特徴とする請求項1、2、3または4に記載の圧縮機。 5. The barrier according to claim 1, wherein the high-pressure chamber is provided with a barrier that prevents the lubricating oil stored in the oil storage part from being wound up by the gas fluid introduced from the compression mechanism. Compressor. 前記導油路の前記貯油部側開口部は前記障壁より下方に設けたことを特徴とする請求項5に記載の圧縮機。 The compressor according to claim 5, wherein the oil storage portion side opening of the oil guide passage is provided below the barrier. 前記ポンプよりも前記導油路の前記貯油部側には、前記高圧室と前記導油路の圧力差により開閉する開閉弁を設けたことを特徴とする請求項2、3または6に記載の圧縮機。 The on-off valve which opens and closes according to the pressure difference of the said high pressure chamber and the said oil guide path is provided in the said oil storage part side of the said oil guide path rather than the said pump. Compressor.
JP2004340228A 2004-11-25 2004-11-25 Compressor Pending JP2006152808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004340228A JP2006152808A (en) 2004-11-25 2004-11-25 Compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004340228A JP2006152808A (en) 2004-11-25 2004-11-25 Compressor

Publications (1)

Publication Number Publication Date
JP2006152808A true JP2006152808A (en) 2006-06-15

Family

ID=36631411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004340228A Pending JP2006152808A (en) 2004-11-25 2004-11-25 Compressor

Country Status (1)

Country Link
JP (1) JP2006152808A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100122549A1 (en) * 2008-11-14 2010-05-20 Nam-Kyu Cho Hermetic compressor and refrigeration cycle device having the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100122549A1 (en) * 2008-11-14 2010-05-20 Nam-Kyu Cho Hermetic compressor and refrigeration cycle device having the same
US8419394B2 (en) * 2008-11-14 2013-04-16 Lg Electronics Inc. Hermetic compressor including a backflow preventing portion and refrigeration cycle device having the same

Similar Documents

Publication Publication Date Title
JP4788746B2 (en) Compressor
JPH0712072A (en) Vane compressor
WO2007077856A1 (en) Compressor
KR101850785B1 (en) Compressor
JP2003336588A (en) Compressor
JP6181405B2 (en) Compressor
WO2016059772A1 (en) Compressor
JP2009221960A (en) Compressor
WO2015194122A1 (en) Compressor
JP2006152808A (en) Compressor
CN115126696A (en) Compressor rotor, compressor pump body, compressor and temperature regulation system
CN112444012B (en) Liquid storage device, compressor assembly and refrigerating system
JP2004308968A (en) Heat exchanger
JP2005083234A (en) Compressor
JP2003206862A (en) Compressor
JP4354839B2 (en) Gas compressor
JP2021080906A (en) Rotary compressor
WO2018043329A1 (en) Scroll compressor
JP4333238B2 (en) Compressor
JP2005054745A (en) Compressor
JP2006097487A (en) Compressor
JP2008157174A (en) Variable displacement gas compressor
JP4638313B2 (en) Hermetic rotary compressor
JP2008014174A (en) Compressor
JP2006037895A (en) Compressor