JP2005210831A - Power controller - Google Patents

Power controller Download PDF

Info

Publication number
JP2005210831A
JP2005210831A JP2004014597A JP2004014597A JP2005210831A JP 2005210831 A JP2005210831 A JP 2005210831A JP 2004014597 A JP2004014597 A JP 2004014597A JP 2004014597 A JP2004014597 A JP 2004014597A JP 2005210831 A JP2005210831 A JP 2005210831A
Authority
JP
Japan
Prior art keywords
reverse blocking
reverse
voltage
blocking igbt
switch element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004014597A
Other languages
Japanese (ja)
Other versions
JP4396287B2 (en
Inventor
Akihiro Odaka
章弘 小高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2004014597A priority Critical patent/JP4396287B2/en
Publication of JP2005210831A publication Critical patent/JP2005210831A/en
Application granted granted Critical
Publication of JP4396287B2 publication Critical patent/JP4396287B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Power Conversion In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To achieve a power controller for preventing a refrigerating apparatus for inhibiting a temperature rise from being enlarged, simplified in circuit constitution and having a reduced cost. <P>SOLUTION: In the power controller for manipulating power by turning on/off a reverse blocking IGBT 5 for increasing a reverse blocking current in response to the temperature rise, the gate voltage of the reverse blocking IGBT 5 is controlled by gate driving circuits 1, 2 as follows. The gate voltage is a threshold voltage or higher when the reverse blocking IGBT 5 is turned on while the apparatus operates, and lower than 0 V when the reverse blocking IGBT 5 is turned off. The gate voltage is 0 V or higher and lower than the threshold voltage for turning on the reverse blocking IGBT 5 while the apparatus stops. Even if the reverse blocking IGBT 5 is used for increasing the reverse blocking current in response to the temperature rise, a reverse leakage current can be easily reduced, and thermal runaway due to the reverse leakage current can be prevented when the reverse blocking IGBT 5 is turned off. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は電力制御装置に関し、特に温度上昇に応じて逆阻止電流が増加するスイッチ素子をオンオフさせて電力を操作する電力制御装置に関する。   The present invention relates to a power control apparatus, and more particularly to a power control apparatus that operates power by turning on and off a switch element that increases in reverse blocking current in response to a temperature rise.

パワーデバイスの1つとして逆阻止IGBT(Insulated Gate Bipolar Transistor)が知られている。この逆阻止IGBTの特性は、順方向特性がIGBTと同じく電流のオンオフ状態制御が可能であるの対し、逆方向特性はIGBTと異なり阻止状態となる。このため、図3に示されているように、逆阻止IGBT5a、5bを逆並列接続して組合せれば、双方向の電流遮断が可能なスイッチを実現できる。これを電力用半導体素子として用いることにより、一般的なIGBTについて必須である、逆耐圧を担うダイオードが不要となる。   A reverse blocking IGBT (Insulated Gate Bipolar Transistor) is known as one of power devices. The reverse blocking IGBT is in the blocking state, unlike the IGBT, while the reverse blocking IGBT is capable of controlling the on / off state of the current in the same way as the IGBT. For this reason, as shown in FIG. 3, if reverse blocking IGBTs 5a and 5b are connected in antiparallel, a switch capable of bidirectional current interruption can be realized. By using this as a power semiconductor element, a diode having a reverse breakdown voltage, which is essential for a general IGBT, is not required.

図4は、電力用半導体素子として逆阻止IGBTを用いた場合の単相降圧形交流チョッパ回路の構成図である。同図においては、逆阻止IGBT24及び25を逆並列に接続して構成する双方向スイッチSWaと、同様に逆阻止IGBT26及び27を逆並列に接続して構成する双方向スイッチSWbとが用いられている。そして、双方向スイッチSWaが負荷抵抗49及び負荷リアクトル50の直列回路51と直列に接続され、双方向スイッチSWbがその直列回路51と並列に接続されている。   FIG. 4 is a configuration diagram of a single-phase step-down AC chopper circuit when a reverse blocking IGBT is used as a power semiconductor element. In the figure, a bidirectional switch SWa configured by connecting reverse blocking IGBTs 24 and 25 in reverse parallel and a bidirectional switch SWb configured by connecting reverse blocking IGBTs 26 and 27 in reverse parallel are used. Yes. The bidirectional switch SWa is connected in series with the series circuit 51 of the load resistor 49 and the load reactor 50, and the bidirectional switch SWb is connected in parallel with the series circuit 51.

図5(a)及び(b)は、特許文献1に記載されている、単相降圧形交流チョッパ回路の電力用半導体素子のオンオフパルスパターンである。同図(a)及び(b)においては、「H」はゲートオン、「L」はゲートオフを意味している。
また、図6に示されているように、逆耐圧をもつ自己消弧形半導体スイッチの特性として、スイッチに逆電圧が印加された場合、ゲートに電圧を印加しないと逆漏れ電流が大きくなることが報告されている(特許文献1参照)。同図に示されているように、逆阻止IGBTは、ゲートをオフ(0Vもしくはそれ以下の電圧をゲートに印加)した状態で逆阻止IGBTに逆電圧を印加すると、逆漏れ電流が大きくなるが、ゲートをオン(15Vをゲートに印加)すると逆漏れ電流が小さくなるといった特性がある。なお、逆阻止IGBTの逆漏れ電流は、温度の上昇とともに増加するといった特性を持つ。
5A and 5B are ON / OFF pulse patterns of a power semiconductor element of a single-phase step-down AC chopper circuit described in Patent Document 1. FIG. In FIGS. 4A and 4B, “H” means gate on, and “L” means gate off.
Further, as shown in FIG. 6, as a characteristic of a self-extinguishing semiconductor switch having a reverse breakdown voltage, when a reverse voltage is applied to the switch, a reverse leakage current increases unless a voltage is applied to the gate. Has been reported (see Patent Document 1). As shown in the figure, the reverse blocking IGBT has a large reverse leakage current when a reverse voltage is applied to the reverse blocking IGBT while the gate is turned off (a voltage of 0 V or lower is applied to the gate). The reverse leakage current is reduced when the gate is turned on (15 V is applied to the gate). The reverse leakage current of the reverse blocking IGBT has a characteristic that it increases as the temperature rises.

特許文献1では、図4の単相降圧形交流チョッパ回路において、単相交流電源48の電圧極性が同図中の矢印Yと同一の向きの場合は図5(a)のパルスパターンを適用し、矢印Yと反対の向きの場合は図5(b)のパルスパターンを適用している。このように制御することで、逆電圧が印加される逆阻止IGBTのゲートをオンすることが可能となる。これにより、逆漏れ電流による発生損失を低減できるため、冷却フィン等の冷却装置を小型にできる等といった効果が得られる。   In Patent Document 1, in the single-phase step-down AC chopper circuit of FIG. 4, when the voltage polarity of the single-phase AC power supply 48 is in the same direction as the arrow Y in FIG. 4, the pulse pattern of FIG. In the case of the direction opposite to the arrow Y, the pulse pattern of FIG. 5B is applied. By controlling in this way, it becomes possible to turn on the gate of the reverse blocking IGBT to which the reverse voltage is applied. Thereby, since the generation | occurrence | production loss by a reverse leakage current can be reduced, the effect that a cooling device, such as a cooling fin, can be reduced in size is acquired.

なお、このような従来技術は、単相降圧形交流チョッパ回路だけでなく、例えば、図7に示されているようなマトリックスコンバータ等にも応用できる。同図は、電力用半導体素子として逆阻止IGBTを用いたマトリックスコンバータの構成を示す回路図である。同図の回路は、三相交流電源42の三相出力を、フィルタ回路41を介して、マトリックスコンバータ45に与え、電動機43を駆動する構成である。なお、同図中の一点鎖線で囲まれている部分は、電力用半導体素子である逆阻止IGBTに過電圧が印加されるのを抑制するための保護回路44である。この保護回路44は、ダイオード28〜39、エネルギー吸収回路40により構成されている。   Such a conventional technique can be applied not only to a single-phase step-down AC chopper circuit but also to a matrix converter as shown in FIG. This figure is a circuit diagram showing the configuration of a matrix converter using a reverse blocking IGBT as a power semiconductor element. The circuit shown in the figure has a configuration in which the three-phase output of the three-phase AC power supply 42 is supplied to the matrix converter 45 via the filter circuit 41 to drive the motor 43. In addition, the part enclosed with the dashed-dotted line in the same figure is the protection circuit 44 for suppressing that an overvoltage is applied to the reverse blocking IGBT which is a power semiconductor element. The protection circuit 44 includes diodes 28 to 39 and an energy absorption circuit 40.

このようなマトリックスコンバータに代表される直接変換形電力変換回路は、電解コンデンサや直流リアクトルなどで構成される直流平滑回路が不要であり、装置の小型化・低コスト化・長寿命化が可能となる電力制御装置として注目されている。
特開2003−230276号公報(図1、図14)
Direct conversion type power conversion circuits represented by such matrix converters do not require a DC smoothing circuit composed of electrolytic capacitors, DC reactors, etc., enabling downsizing, cost reduction, and long life of equipment. It is attracting attention as a power control device.
Japanese Patent Laid-Open No. 2003-230276 (FIGS. 1 and 14)

マトリックスコンバータを構成する全ての電力用半導体素子をオフさせると、電源や負荷の誘導性エネルギーにより電力用半導体素子に過電圧が発生することにより電力用半導体素子が破壊する。そこで、一般には、図7に示されているように、ダイオード28〜39、及び、エネルギー吸収回路40により構成される保護回路44を、マトリックスコンバータ45に付加し、逆阻止IGBTに過電圧が印加されるのを抑制する。   When all the power semiconductor elements constituting the matrix converter are turned off, the power semiconductor elements are destroyed by generating an overvoltage in the power semiconductor elements due to the inductive energy of the power source or the load. Therefore, in general, as shown in FIG. 7, a protection circuit 44 including diodes 28 to 39 and an energy absorption circuit 40 is added to the matrix converter 45, and an overvoltage is applied to the reverse blocking IGBT. Is suppressed.

エネルギー吸収回路40は、エネルギーを吸収した際、ダイオード28〜39の正負極間の電圧が一定となるように制御される。このため、同図中のエネルギー吸収回路40は、定電圧源として表されている。例えば、電源及び負荷の電流が同図中の破線矢印で示されている経路で流れていた状態で、装置を停止させるために、全ての逆阻止IGBT6〜23をオフさせると、負荷及び電源の誘導性エネルギーは同図中の破線矢印の経路で流れ、エネルギー吸収回路40がエネルギーを吸収する。これにより、逆阻止IGBT6〜23に過電圧が印加されることが防止される。   The energy absorption circuit 40 is controlled so that the voltage between the positive and negative electrodes of the diodes 28 to 39 is constant when the energy is absorbed. For this reason, the energy absorption circuit 40 in the figure is represented as a constant voltage source. For example, when all of the reverse blocking IGBTs 6 to 23 are turned off in order to stop the apparatus in a state where the currents of the power source and the load are flowing along the path indicated by the broken-line arrows in FIG. Inductive energy flows along a path indicated by a broken-line arrow in the figure, and the energy absorption circuit 40 absorbs the energy. This prevents an overvoltage from being applied to the reverse blocking IGBTs 6-23.

同図に示されている例の場合、負荷及び電源のエネルギーが全てエネルギー吸収回路40で吸収されるまで、同図中の破線矢印の経路で電流が流れ続ける。このとき、例えば、逆阻止IGBT7には、同図中の破線の経路で逆電圧が印加され続けることになる。
ここで、従来の技術では、通常の運転時においてのみ、逆電圧が印加された素子のゲートをオンすることが可能であり、先述の例のように、装置を停止させる場合においては、逆電圧が印加された素子のゲートはオフ状態となる。このオフ状態では、0Vもしくはそれ以下の電圧がゲートに印加される。この場合、先述したように逆阻止IGBTの逆漏れ電流は、温度の上昇とともに増加する特性があることから、逆漏れ電流の熱暴走が始まり、最終的には逆阻止IGBTの破壊に至る。したがって、このような従来技術を採用する場合には、逆阻止IGBTの温度上昇を抑制するために冷却フィン等の冷却装置を大型にする必要が生じ、電力制御装置全体の小型化や低価格化の妨げになる。
In the case of the example shown in the figure, until the energy of the load and the power source is all absorbed by the energy absorption circuit 40, the current continues to flow along the path indicated by the broken line arrow in the figure. At this time, for example, the reverse voltage is continuously applied to the reverse blocking IGBT 7 through the path of the broken line in FIG.
Here, in the conventional technique, it is possible to turn on the gate of the element to which the reverse voltage is applied only during the normal operation. When the device is stopped as in the above example, the reverse voltage is applied. The gate of the element to which is applied is turned off. In this off state, a voltage of 0 V or less is applied to the gate. In this case, as described above, the reverse leakage current of the reverse blocking IGBT has a characteristic of increasing as the temperature rises. Therefore, thermal runaway of the reverse leakage current starts, and eventually the reverse blocking IGBT is destroyed. Therefore, when such a conventional technique is adopted, it is necessary to increase the size of the cooling device such as the cooling fin in order to suppress the temperature increase of the reverse blocking IGBT, and the power control device as a whole can be reduced in size and price. It becomes an obstacle.

また、素子に印加される電圧極性を判別し、逆電圧が印加された素子のゲートをオンさせるような回路を素子毎に設け、逆漏れ電流の増加を防止することも考えられる。しかしながら、その場合もやはり低価格化の妨げとなり、また、回路構成が複雑になり装置の小型化の妨げにもなる。
本発明は上述した従来技術の問題を解決するためになされたものであり、その目的は温度上昇を抑制するための冷却装置を大型にする必要がなく、回路構成が複雑でなく低価格化を実現できる電力制御装置を提供することである。
It is also conceivable to provide each circuit with a circuit for determining the polarity of the voltage applied to the element and turning on the gate of the element to which the reverse voltage is applied, thereby preventing an increase in reverse leakage current. However, in that case as well, the cost reduction is hindered, and the circuit configuration becomes complicated and hinders downsizing of the apparatus.
The present invention has been made to solve the above-described problems of the prior art, and the object thereof is not to increase the size of the cooling device for suppressing the temperature rise, and the circuit configuration is not complicated and the cost is reduced. It is to provide a power control apparatus that can be realized.

本発明の請求項1による電力制御装置は、温度上昇に応じて逆阻止電流が増加する逆阻止スイッチ素子をオンオフさせて電力を操作する電力制御装置であって、自装置の停止の際に、前記逆阻止スイッチ素子のゲート電圧を、0V以上かつ該逆阻止スイッチ素子がオンするしきい値電圧未満の電圧とする駆動手段を含むことを特徴とする。このように構成すれば、温度上昇に応じて逆阻止電流が増加する逆阻止スイッチ素子を用いた場合でも、装置を停止させる場合において、そのスイッチ素子をオフさせる際に、逆漏れ電流を容易に低減することができ、逆漏れ電流の熱暴走を防止できる。   A power control device according to claim 1 of the present invention is a power control device that operates power by turning on and off a reverse blocking switch element in which a reverse blocking current increases in response to a temperature rise. Drive means for setting the gate voltage of the reverse blocking switch element to 0 V or higher and lower than a threshold voltage at which the reverse blocking switch element is turned on is included. With this configuration, even when a reverse blocking switch element whose reverse blocking current increases with a rise in temperature is used, when the device is stopped, the reverse leakage current can be easily reduced when the switch element is turned off. This can reduce the thermal runaway of reverse leakage current.

本発明の請求項2による電力制御装置は、請求項1において、自装置の運転状態において、
前記逆阻止スイッチ素子をオンさせるときに該逆阻止スイッチ素子のゲート電圧を、該逆阻止スイッチ素子がオンするしきい値電圧以上の電圧とし、
該逆阻止スイッチ素子をオフさせるときに該逆阻止スイッチ素子のゲート電圧を、0V以下の電圧とする他の駆動手段を更に含むことを特徴とする。このように構成すれば、自装置の通常運転時には、IGBT等の逆阻止スイッチ素子をオンオフ制御できる。
本発明の請求項3による電力制御装置は、請求項1又は2において、前記逆阻止スイッチ素子は、逆阻止IGBTであることを特徴とする。逆阻止スイッチ素子の1つである逆阻止IGBTを用いた電力制御装置について本発明を適用でき、その逆漏れ電流を容易に低減することができ、逆漏れ電流の熱暴走を防止できる。
The power control device according to claim 2 of the present invention is the power control device according to claim 1, in the operation state of the device itself.
When turning on the reverse blocking switch element, the gate voltage of the reverse blocking switch element is set to a voltage equal to or higher than a threshold voltage at which the reverse blocking switch element is turned on,
It further includes other drive means for setting the gate voltage of the reverse blocking switch element to a voltage of 0 V or less when the reverse blocking switch element is turned off. If comprised in this way, reverse blocking switch elements, such as IGBT, can be controlled on-off at the time of the normal driving | operation of an own apparatus.
The power control apparatus according to claim 3 of the present invention is characterized in that, in claim 1 or 2, the reverse blocking switch element is a reverse blocking IGBT. The present invention can be applied to a power control device using a reverse blocking IGBT, which is one of the reverse blocking switch elements, the reverse leakage current can be easily reduced, and thermal runaway of the reverse leakage current can be prevented.

本発明によれば、特に装置停止時等において、逆阻止IGBT等の逆阻止スイッチ素子の逆漏れ電流を容易に低減することができ、逆漏れ電流の熱暴走を防止できることから、冷却フィン等の冷却装置を大型化させる必要がなくなるという効果がある。また、スイッチ素子毎に印加電圧の極性を判別する回路が不要になることから、装置の小型化、低価格化が可能となるという効果がある。   According to the present invention, particularly when the apparatus is stopped, the reverse leakage current of the reverse blocking switch element such as the reverse blocking IGBT can be easily reduced, and the thermal runaway of the reverse leakage current can be prevented. There is an effect that it is not necessary to enlarge the cooling device. In addition, since a circuit for discriminating the polarity of the applied voltage is not required for each switching element, there is an effect that the apparatus can be reduced in size and cost.

以下、本発明の実施の形態を、図面を参照して説明する。なお、以下の説明において参照する各図では、他の図と同等部分は同一符号によって示されている。
図1は、本発明の実施の一形態による電力制御装置の主要部の構成を示すブロック図である。同図は、スイッチ素子として逆阻止IGBT5を用いた場合の駆動回路部分を示したものである。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings referred to in the following description, the same parts as those in the other drawings are denoted by the same reference numerals.
FIG. 1 is a block diagram showing a configuration of a main part of a power control apparatus according to an embodiment of the present invention. This figure shows a drive circuit portion when a reverse blocking IGBT 5 is used as a switching element.

同図において、本実施形態の電力制御装置は、通常の運転時のオンオフ信号を出力する機能と停止信号を出力することを備えた制御回路3と、装置の通常の運転時に逆阻止IGBT5を駆動するためのゲート駆動回路1と、装置の停止の際に逆阻止IGBT5をオフさせるためのゲート駆動回路2と、逆阻止IGBT5を駆動するゲート駆動回路を、通常運転時及び停止時に応じて切り替える切り替えスイッチ4とを含んで構成されている。ゲート駆動回路1及び2、制御回路3、並びに、切り替えスイッチ4は、電力制御装置に用いられる各逆阻止IGBTに対応して設けられ、対応する逆阻止IGBTのゲートを駆動制御する。   In the figure, the power control apparatus according to the present embodiment drives a control circuit 3 having a function of outputting an on / off signal during normal operation and a stop signal, and a reverse blocking IGBT 5 during normal operation of the apparatus. Switching for switching between a gate driving circuit 1 for switching, a gate driving circuit 2 for turning off the reverse blocking IGBT 5 when the apparatus is stopped, and a gate driving circuit for driving the reverse blocking IGBT 5 according to the normal operation and the stop And a switch 4. The gate drive circuits 1 and 2, the control circuit 3, and the changeover switch 4 are provided corresponding to each reverse blocking IGBT used in the power control device, and drive-control the gate of the corresponding reverse blocking IGBT.

装置の通常の運転時に用いられるゲート駆動回路1は、例えば逆阻止IGBT5をオンさせる場合は、逆阻止IGBTのしきい値電圧以上の電圧(例えば、+15V)を出力し、逆阻止IGBT5をオフさせる場合は、0V(もしくはそれ以下の電圧)を出力する機能を備えている。一方、装置の停止の際に用いられるゲート駆動回路2は、0V以上でかつ逆阻止IGBT5がオンするしきい値電圧未満の電圧を出力する機能を備えている。   For example, when the reverse blocking IGBT 5 is turned on, the gate drive circuit 1 used during normal operation of the device outputs a voltage (for example, +15 V) that is equal to or higher than the threshold voltage of the reverse blocking IGBT and turns off the reverse blocking IGBT 5. In this case, a function of outputting 0 V (or a voltage lower than that) is provided. On the other hand, the gate drive circuit 2 used when the apparatus is stopped has a function of outputting a voltage of 0 V or more and less than a threshold voltage at which the reverse blocking IGBT 5 is turned on.

先述したように逆阻止IGBTは、その構造上、逆漏れ電流を低減するには、逆阻止IGBTがオンするしきい値未満の正の電圧をゲートに印加しても、逆漏れ電流の低減には効果がある。図2には、逆阻止IGBTのゲート電圧に応じた漏れ電流の特性例が示されている。同図に示されているように、逆バイアス状態において、ゲート電圧を0V、3V、15Vとした場合、逆漏れ電流は、同図に示されている特性となる。   As described above, the reverse blocking IGBT has a structure in which the reverse leakage current can be reduced by reducing the reverse leakage current even if a positive voltage lower than the threshold value at which the reverse blocking IGBT is turned on is applied to the gate. Is effective. FIG. 2 shows a characteristic example of the leakage current according to the gate voltage of the reverse blocking IGBT. As shown in the figure, when the gate voltage is 0 V, 3 V, and 15 V in the reverse bias state, the reverse leakage current has the characteristics shown in the figure.

以上のような構成において、通常の運転時においては、逆阻止IGBT5をオンさせるときはしきい値以上の電圧(例えば15V)をゲートに印加し、オフさせるときは0V(もしくはそれ以下の電圧)を逆阻止IGBT5のゲートに電圧を印加する。また、停止時においては、逆阻止IGBT5のゲートに0V以上でかつ逆阻止IGBT5のしきい値電圧未満の電圧を印加することで逆阻止IGBT5をオフさせる。
以上のように制御することで、逆阻止IGBT5の逆漏れ電流を容易に低減することができ、逆漏れ電流の熱暴走を防止できる。
なお、以上は、スイッチ素子として逆阻止IGBTを用いた場合について説明したが、それに限らず温度上昇に応じて逆阻止電流が増加する逆阻止スイッチ素子について本発明を適用できることは明白である。
In the above configuration, during normal operation, when turning on the reverse blocking IGBT 5, a voltage higher than a threshold value (for example, 15V) is applied to the gate, and when turning off, the voltage is 0V (or lower voltage). A voltage is applied to the gate of the reverse blocking IGBT 5. At the time of stop, reverse blocking IGBT 5 is turned off by applying a voltage of 0 V or more and less than the threshold voltage of reverse blocking IGBT 5 to the gate of reverse blocking IGBT 5.
By controlling as described above, the reverse leakage current of the reverse blocking IGBT 5 can be easily reduced, and thermal runaway of the reverse leakage current can be prevented.
In the above description, the case where the reverse blocking IGBT is used as the switching element has been described. However, the present invention can be clearly applied to the reverse blocking switch element in which the reverse blocking current increases according to the temperature rise.

本発明によれば、特に装置停止時等において、逆阻止スイッチ素子の逆漏れ電流を容易に低減することができ、逆漏れ電流の熱暴走を防止できることから、冷却フィン等の冷却装置を大型化させる必要がなくなる、あるいは、素子毎に印加電圧の極性を判別する回路が不要になることから、装置の小型化、低価格化が可能となる。   According to the present invention, particularly when the apparatus is stopped, the reverse leakage current of the reverse blocking switch element can be easily reduced, and thermal runaway of the reverse leakage current can be prevented. This eliminates the need for the device or eliminates the need for a circuit for discriminating the polarity of the applied voltage for each element, thereby enabling downsizing and cost reduction of the device.

本発明の実施の一形態による電力制御装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of the power control apparatus by one Embodiment of this invention. 逆阻止IGBTのゲート電圧が漏れ電流に及ぼす影響を示す特性図である。It is a characteristic view which shows the influence which the gate voltage of reverse blocking IGBT has on leakage current. 逆阻止IGBTを用いた双方向スイッチの構成を示す図である。It is a figure which shows the structure of the bidirectional | two-way switch using reverse blocking IGBT. 単相降圧形交流チョッパ回路を示す構成図である。It is a block diagram which shows a single phase step-down AC chopper circuit. 図4の単相降圧形交流チョッパ回路の電力用半導体素子のオンオフパルスパターンを示す図であり、(a)は電圧極性が図4中の矢印Yと同一向きの場合のパルスパターン、(b)は電圧極性が図4中の矢印Yと反対向きの場合のパルスパターンである。It is a figure which shows the on-off pulse pattern of the power semiconductor element of the single phase step-down AC chopper circuit of FIG. 4, (a) is a pulse pattern in case a voltage polarity is the same direction as the arrow Y in FIG. 4, (b). Is a pulse pattern when the voltage polarity is opposite to the arrow Y in FIG. 逆阻止IGBTの漏れ電流を示す特性図である。It is a characteristic view which shows the leakage current of reverse blocking IGBT. 逆阻止IGBTを用いたマトリックスコンバータの構成例を示す回路図である。It is a circuit diagram which shows the structural example of the matrix converter using reverse blocking IGBT.

符号の説明Explanation of symbols

1、2 ゲート駆動回路
3 制御回路
4 切り替えスイッチ
5、5a、5b、6〜27 逆阻止IGBT
28〜39 ダイオード
40 エネルギー吸収回路
44 保護回路
45 マトリックスコンバータ
48 単相交流電源
49 負荷抵抗
50 負荷リアクトル
51 直列回路
SWa、SWb 双方向スイッチ
1, 2 Gate drive circuit 3 Control circuit 4 Changeover switch 5, 5a, 5b, 6-27 Reverse blocking IGBT
28 to 39 Diode 40 Energy absorption circuit 44 Protection circuit 45 Matrix converter 48 Single-phase AC power supply 49 Load resistor 50 Load reactor 51 Series circuit SWa, SWb Bidirectional switch

Claims (3)

温度上昇に応じて逆阻止電流が増加する逆阻止スイッチ素子をオンオフさせて電力を操作する電力制御装置であって、自装置の停止の際に、前記逆阻止スイッチ素子のゲート電圧を、0V以上かつ該逆阻止スイッチ素子がオンするしきい値電圧未満の電圧とする駆動手段を含むことを特徴とする電力制御装置。   A power control device that operates power by turning on and off a reverse blocking switch element that increases in reverse blocking current in response to a temperature rise, and the gate voltage of the reverse blocking switch element is set to 0 V or more when the device stops. And a power control device including drive means for setting the reverse blocking switch element to a voltage lower than a threshold voltage at which the reverse blocking switch element is turned on. 自装置の運転状態において、
前記逆阻止スイッチ素子をオンさせるときに該逆阻止スイッチ素子のゲート電圧を、該逆阻止スイッチ素子がオンするしきい値電圧以上の電圧とし、
該逆阻止スイッチ素子をオフさせるときに該逆阻止スイッチ素子のゲート電圧を、0V以下の電圧とする他の駆動手段を更に含むことを特徴とする請求項1記載の電力制御装置。
In the operation state of its own device,
When turning on the reverse blocking switch element, the gate voltage of the reverse blocking switch element is set to a voltage equal to or higher than a threshold voltage at which the reverse blocking switch element is turned on,
2. The power control apparatus according to claim 1, further comprising other driving means for setting the gate voltage of the reverse blocking switch element to a voltage of 0 V or less when the reverse blocking switch element is turned off.
前記逆阻止スイッチ素子は、逆阻止IGBTであることを特徴とする請求項1又は2記載の電力制御装置。   The power control apparatus according to claim 1, wherein the reverse blocking switch element is a reverse blocking IGBT.
JP2004014597A 2004-01-22 2004-01-22 Power control device Expired - Lifetime JP4396287B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004014597A JP4396287B2 (en) 2004-01-22 2004-01-22 Power control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004014597A JP4396287B2 (en) 2004-01-22 2004-01-22 Power control device

Publications (2)

Publication Number Publication Date
JP2005210831A true JP2005210831A (en) 2005-08-04
JP4396287B2 JP4396287B2 (en) 2010-01-13

Family

ID=34900340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004014597A Expired - Lifetime JP4396287B2 (en) 2004-01-22 2004-01-22 Power control device

Country Status (1)

Country Link
JP (1) JP4396287B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4626722B1 (en) * 2009-08-26 2011-02-09 ダイキン工業株式会社 Power converter and control method thereof
JP2018093620A (en) * 2016-12-02 2018-06-14 富士電機株式会社 Chopper circuit

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4626722B1 (en) * 2009-08-26 2011-02-09 ダイキン工業株式会社 Power converter and control method thereof
WO2011024351A1 (en) * 2009-08-26 2011-03-03 ダイキン工業株式会社 Power conversion device and control method therefor
JP2011072175A (en) * 2009-08-26 2011-04-07 Daikin Industries Ltd Power conversion device and control method therefor
CN102474192A (en) * 2009-08-26 2012-05-23 大金工业株式会社 Power conversion device and control method therefor
KR101343189B1 (en) 2009-08-26 2013-12-19 다이킨 고교 가부시키가이샤 Power conversion device and control method therefor
US8773870B2 (en) 2009-08-26 2014-07-08 Daikin Industries, Ltd. Power converter and method for controlling same
JP2018093620A (en) * 2016-12-02 2018-06-14 富士電機株式会社 Chopper circuit

Also Published As

Publication number Publication date
JP4396287B2 (en) 2010-01-13

Similar Documents

Publication Publication Date Title
JP6170119B2 (en) System and method for driving a power switch
JP5260957B2 (en) Power converter
JP6070853B2 (en) Insulated gate semiconductor device
JP5752234B2 (en) Power converter
JP2007533284A (en) Inverter / bridge short-circuit protection scheme
JP2009253484A (en) Power conversion device
JP2009011013A (en) Power conversion equipment
JP2016225696A (en) Drive device
JP2012196143A (en) Motor control device
JP4204534B2 (en) Power converter
JP5382535B2 (en) Power supply device for gate drive circuit
JP6683950B2 (en) Driving power supply device for voltage-driven semiconductor switching element and control method thereof
JP2016034178A (en) Power conversion apparatus and control method of the same
JP2007116790A (en) Inverter apparatus
JP4396287B2 (en) Power control device
JP2009022060A (en) Controller of ac electric motor
JP2010119253A (en) Motor control apparatus
JP4946103B2 (en) Power converter
JP2007104739A (en) Drive circuit of power semiconductor module
JP5309923B2 (en) Semiconductor device drive circuit
JPH10209832A (en) Semiconductor switch circuit
JP2008067476A (en) Gate drive circuit for voltage-driven power semiconductor device
JP3748876B2 (en) Semiconductor device
JP6965192B2 (en) Buck converter
JP4688021B2 (en) AC-AC direct conversion power converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090814

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091012

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4396287

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131030

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term