JP2005209726A - Method for manufacturing solar cell - Google Patents

Method for manufacturing solar cell Download PDF

Info

Publication number
JP2005209726A
JP2005209726A JP2004012244A JP2004012244A JP2005209726A JP 2005209726 A JP2005209726 A JP 2005209726A JP 2004012244 A JP2004012244 A JP 2004012244A JP 2004012244 A JP2004012244 A JP 2004012244A JP 2005209726 A JP2005209726 A JP 2005209726A
Authority
JP
Japan
Prior art keywords
solar cell
damage layer
silicon single
single crystal
slicing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004012244A
Other languages
Japanese (ja)
Other versions
JP4378485B2 (en
Inventor
Takenori Watabe
武紀 渡部
Hiroyuki Otsuka
寛之 大塚
Masatoshi Takahashi
正俊 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd, Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2004012244A priority Critical patent/JP4378485B2/en
Publication of JP2005209726A publication Critical patent/JP2005209726A/en
Application granted granted Critical
Publication of JP4378485B2 publication Critical patent/JP4378485B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Weting (AREA)
  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a solar cell that can form a texture structure extremely efficiently and also can improve conversion efficiency. <P>SOLUTION: A primary damaged layer in slicing formed at the first main surface side of a silicon single-crystal substrate 1 obtained by slicing a silicon single crystal ingot is removed mechanically or chemically. Then, new damage based on a mechanical machining history separate from slicing is introduced by shot blast and grinding, thus forming a secondary damaged layer 2 that is 0.5 μm or higher and 5 μm or smaller in thickness. Then, the secondary damaged layer 2 is subjected to anisotropic etching to form the texture structure 3, and an electrode 5 at the side of a light reception surface is formed on the texture structure 3. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、太陽電池の製造方法に関する。   The present invention relates to a method for manufacturing a solar cell.

特開平9−129907号公報JP-A-9-129907 特開平10−7493号公報Japanese Patent Laid-Open No. 10-7493

太陽電池は、光エネルギーを電力に変換する半導体素子であり、シリコン単結晶系太陽電池が変換効率が高く、比較的容易に製造できることから、一般に普及している太陽電池の主力となっている。シリコン単結晶系太陽電池においては、例えば特許文献1及び特許文献2に開示されているごとく、反射損失を防止する目的でテクスチャと呼ばれる微細な突起を形成することが行なわれている。太陽電池の表面が平坦であった場合、入射した光の一部は反射され、電流に変換されなくなってしまう。しかし、このテクスチャ構造により、反射光の一部を複数回にわたって太陽電池に再入射させる機会をもたらす。その結果、太陽電池の受光面の反射率が低下するため、短絡電流は向上し、太陽電池の性能は大きく向上する。   A solar cell is a semiconductor element that converts light energy into electric power, and a silicon single crystal solar cell has high conversion efficiency and can be manufactured relatively easily. In a silicon single crystal solar cell, as disclosed in Patent Document 1 and Patent Document 2, for example, fine protrusions called textures are formed for the purpose of preventing reflection loss. When the surface of the solar cell is flat, a part of the incident light is reflected and cannot be converted into an electric current. However, this texture structure provides an opportunity for some of the reflected light to re-enter the solar cell multiple times. As a result, the reflectance of the light receiving surface of the solar cell is lowered, so that the short-circuit current is improved and the performance of the solar cell is greatly improved.

上記のようなテクスチャ構造は、特許文献1及び特許文献2に開示されているごとく、シリコン単結晶基板への異方性エッチングにより形成される。異方性エッチングとは、シリコンの面方位によるエッチング速度の差を利用するものである。具体的には、スライス時のワイヤーソー等によって生じた深さ10〜20μmのダメージ層をエッチングした後、再度、加熱した水酸化ナトリウム、水酸化カリウム、炭酸カリウム、炭酸ナトリウム、炭酸水素ナトリウムなどのアルカリ水溶液(温度60〜100℃)中に10〜50分浸漬することにより実施される。なお、上記アルカリ溶液中に所定量の2−プロパノールを溶解させて、反応を促進させることも多い。   The texture structure as described above is formed by anisotropic etching on a silicon single crystal substrate as disclosed in Patent Document 1 and Patent Document 2. Anisotropic etching utilizes the difference in etching rate depending on the plane orientation of silicon. Specifically, after etching a damaged layer having a depth of 10 to 20 μm generated by a wire saw at the time of slicing, again heated sodium hydroxide, potassium hydroxide, potassium carbonate, sodium carbonate, sodium bicarbonate, etc. It is carried out by immersing in an alkaline aqueous solution (temperature 60 to 100 ° C.) for 10 to 50 minutes. In many cases, the reaction is promoted by dissolving a predetermined amount of 2-propanol in the alkaline solution.

現在、太陽電池に強く要求されているのは、高効率化及び低コスト化である。上記テクスチャ構造は、太陽電池の高変換効率化には必須であるが、基板面内に均一なテクスチャ構造を形成するためには、比較的低温度のエッチング溶液中に長時間浸漬しておく必要があり、製造コストの上昇する要因のひとつと考えられる。   Currently, there is a strong demand for solar cells for higher efficiency and lower cost. The texture structure is indispensable for improving the conversion efficiency of solar cells, but in order to form a uniform texture structure in the substrate surface, it is necessary to immerse it in a relatively low temperature etching solution for a long time. This is considered to be one of the factors that increase manufacturing costs.

従来、テクスチャ形成の異方性エッチングはスライス時に生ずるダメージ層(以下、一次ダメージ層という)の除去に兼用されることが多く、該一次ダメージ層がほぼ完全に除去されるまで深い異方性エッチングが施される。しかし、スライス時に生ずる加工ダメージ層は10μm以上と非常に厚く、本発明者らの検討によると、このように厚い加工ダメージ層が形成されていると、アルカリ溶液を用いた異方性エッチングの速度が大幅に低下し、施すべき異方性エッチングが深いことも相俟って、テクスチャ形成工程の能率が極度に悪化することが判明した。   Conventionally, anisotropic etching for texture formation is often used to remove a damage layer (hereinafter referred to as a primary damage layer) generated during slicing, and deep anisotropic etching until the primary damage layer is almost completely removed. Is given. However, the processing damage layer generated at the time of slicing is very thick as 10 μm or more. According to the study by the present inventors, when such a thick processing damage layer is formed, the speed of anisotropic etching using an alkaline solution is increased. It has been found that the efficiency of the texture forming process is extremely deteriorated due to the significant decrease in the anisotropic etching and the deep anisotropic etching to be performed.

本発明の課題は、テクスチャ構造をきわめて能率的に形成することができ、しかも変換効率をより向上できる太陽電池の製造方法を提供することにある。   An object of the present invention is to provide a method of manufacturing a solar cell that can form a texture structure very efficiently and can further improve the conversion efficiency.

課題を解決するための手段及び発明の効果Means for Solving the Problems and Effects of the Invention

上記の課題を解決するために、本発明の太陽電池の製造方法は、シリコン単結晶インゴットのスライスにより得られるシリコン単結晶基板の第一主表面側に形成されているスライス時の一次ダメージ層を機械的もしくは化学的に除去する一方、スライスとは別の機械的加工履歴に基づく新たなダメージを導入して、一次ダメージ層よりも薄い二次ダメージ層を形成し、該二次ダメージ層に異方性エッチングを施すことによりテクスチャ構造を形成し、該テクスチャ構造上に受光面側電極を形成することを特徴とする。   In order to solve the above problems, the solar cell manufacturing method of the present invention includes a primary damage layer at the time of slicing formed on the first main surface side of a silicon single crystal substrate obtained by slicing a silicon single crystal ingot. While removing mechanically or chemically, a new damage based on a mechanical processing history different from slicing is introduced to form a secondary damage layer thinner than the primary damage layer. A texture structure is formed by performing isotropic etching, and a light-receiving surface side electrode is formed on the texture structure.

本発明の太陽電池の製造方法によると、テクスチャ形成のための異方性エッチングに先立って、スライス時の一次ダメージ層を機械的もしくは化学的に一旦除去し、これに代えて新たな機械的加工履歴によるダメージを導入することにより、一次ダメージ層よりも薄い二次ダメージ層を形成する。該二次ダメージ層がスライスにより生ずる一時ダメージ層よりも薄く形成されていることにより、異方性エッチングの速度が大幅に向上し、テクスチャ構造形成の能率を大幅に向上することができる。また、テクスチャ構造形成に先立って、シリコン単結晶基板の第一主表面に上記厚さの二次ダメージ層を形成することで、該二次ダメージ層に導入されている結晶欠陥が不純物原子のゲッタリングサイトとして機能するので、テクスチャ構造形成時には、この不純物原子の濃化された二次ダメージ層も異方性エッチングにより除去される。その結果、最終的に得られるテクスチャ構造は、不純物原子が二次ダメージ層に吸い取られて浄化されているため、少数キャリアライフタイム(バルクライフタイム)が長くなり、変換効率の向上にも寄与する。   According to the method for manufacturing a solar cell of the present invention, prior to anisotropic etching for texture formation, the primary damage layer at the time of slicing is temporarily removed either mechanically or chemically, and replaced with new mechanical processing. By introducing damage due to history, a secondary damage layer thinner than the primary damage layer is formed. Since the secondary damage layer is formed thinner than the temporary damage layer generated by slicing, the speed of anisotropic etching is greatly improved, and the efficiency of texture structure formation can be greatly improved. In addition, prior to the formation of the texture structure, the secondary damage layer having the above thickness is formed on the first main surface of the silicon single crystal substrate, so that the crystal defects introduced into the secondary damage layer are getters of impurity atoms. Since it functions as a ring site, the secondary damage layer enriched with impurity atoms is also removed by anisotropic etching when the texture structure is formed. As a result, the finally obtained texture structure has been purified by absorbing the impurity atoms into the secondary damage layer, thus increasing the minority carrier lifetime (bulk lifetime) and contributing to improved conversion efficiency. .

なお、形成される二次ダメージ層の厚さは、0.5μm以上5μm以下の厚さに形成することが望ましい。二次ダメージ層の厚さが0.5μm未満となっても5μmを超えても、いずれもテクスチャ構造形成のための異方性エッチング速度向上効果が十分に期待できなくなる場合がある。また、二次ダメージ層の厚さが0.5μm未満ではゲッタリング効果が不十分となる場合がある。   Note that the thickness of the formed secondary damage layer is desirably 0.5 μm or more and 5 μm or less. Even if the thickness of the secondary damage layer is less than 0.5 μm or more than 5 μm, the effect of improving the anisotropic etching rate for forming the texture structure may not be sufficiently expected. Further, if the thickness of the secondary damage layer is less than 0.5 μm, the gettering effect may be insufficient.

シリコン単結晶基板は主表面が{100}面とすることができる。そして、異方性エッチングをアルカリ溶液を用いて行なうことにより、テクスチャ構造を4つの{111}面に囲まれた正四角錐状の突起の集合体として高能率に形成することができ、また、反射防止効果も良好である。   The main surface of the silicon single crystal substrate can be a {100} plane. Then, by performing anisotropic etching using an alkaline solution, the texture structure can be efficiently formed as an assembly of regular tetragonal pyramidal projections surrounded by four {111} faces, and reflection can be achieved. The prevention effect is also good.

二次ダメージ層を形成する機械的加工履歴は、シリコン単結晶基板の第一主表面への研磨、研削及びショットブラストのいずれか又はそれらの組み合わせに基づく履歴とすることができる。これらの加工は、主たる加工力が基板第一主表面に垂直であり、また、比較的温和な条件で実施されることから、比較的小厚の二次ダメージ層を形成するのに適している。   The mechanical processing history for forming the secondary damage layer can be a history based on any one or a combination of polishing, grinding and shot blasting on the first main surface of the silicon single crystal substrate. These processes are suitable for forming a secondary damage layer having a relatively small thickness because the main processing force is perpendicular to the first main surface of the substrate and is performed under relatively mild conditions. .

他方、二次ダメージ層を形成する機械的加工履歴は、スライス時のダメージ層除去に兼用される溝入れダイシング加工に基づく履歴とすることができる。溝入れダイシング加工では、ダイシング刃の刃先に加工応力が集中するため、多少厚い二次ダメージ層の形成が可能となり、エッチング速度向上効果もゲッタリング効果もいずれもより顕著となる。また、加工速度も大きく、スライス時のダメージ層を除去する加工も兼ねることができるので、より能率的である。5μmを超えない二次ダメージ層を適切に形成するには、溝入れダイシング加工を、各溝の深さが10〜150μmとなるように、複数本の互いに平行な溝をシリコン単結晶基板の第一主表面に形成する形で行なうことが望ましい。特に、シリコン単結晶基板の第一主表面全面がダイシングによる二次ダメージ層領域となるように、溝入れダイシング加工を繰り返し行なうと、基板主表面の全面に渡って、良好で均一なエッチング速度向上効果とゲッタリング効果とを達成することができる。   On the other hand, the mechanical processing history for forming the secondary damage layer can be a history based on grooving dicing that is also used for removing the damaged layer during slicing. In grooving dicing, since processing stress concentrates on the cutting edge of the dicing blade, it is possible to form a somewhat thick secondary damage layer, and both the etching rate improvement effect and the gettering effect become more prominent. Further, since the processing speed is high and the processing can also be performed to remove the damaged layer at the time of slicing, it is more efficient. In order to appropriately form a secondary damage layer not exceeding 5 μm, grooving dicing is performed by forming a plurality of parallel grooves so that each groove has a depth of 10 to 150 μm. It is desirable to carry out in the form formed on one main surface. In particular, repeated grooving dicing so that the entire surface of the first main surface of the silicon single crystal substrate becomes a secondary damage layer region due to dicing improves the good and uniform etching rate over the entire surface of the substrate main surface. An effect and a gettering effect can be achieved.

図1は、本発明の製造方法の対象となる太陽電池の一実施例を模式的に示す断面図である。該太陽電池100は、p型シリコン単結晶基板(以下、単に「基板」ともいう)1の第一主表面側に、n型のエミッタ層42が形成され、基板面内方向にp−n接合部48が形成されている。エミッタ層42の主表面には、受光面側電極5が形成されている。エミッタ層42は太陽電池の受光面を形成するので、p−n接合部48への光の入射効率を高めるために、受光面側電極5は、図2に示すように、AlあるいはAg等により、例えば内部抵抗低減のため適当な間隔で形成された太いバスバー電極と、そのバスバー電極から所定間隔で櫛型に分岐するフィンガー電極とを有するものとして構成できる。そして、エミッタ層42の受光面側電極5の非形成領域が、窒化珪素からなる受光面側絶縁膜43にて覆われている。   FIG. 1 is a cross-sectional view schematically showing one embodiment of a solar cell that is an object of the manufacturing method of the present invention. In the solar cell 100, an n-type emitter layer 42 is formed on a first main surface side of a p-type silicon single crystal substrate (hereinafter also simply referred to as “substrate”) 1, and a pn junction is formed in the in-plane direction of the substrate. A portion 48 is formed. On the main surface of the emitter layer 42, the light receiving surface side electrode 5 is formed. Since the emitter layer 42 forms the light receiving surface of the solar cell, the light receiving surface side electrode 5 is made of Al, Ag, or the like as shown in FIG. 2 in order to increase the light incident efficiency to the pn junction 48. For example, a thick bus bar electrode formed at an appropriate interval for reducing internal resistance and a finger electrode branched from the bus bar electrode into a comb shape at a predetermined interval can be used. The non-formation region of the light receiving surface side electrode 5 of the emitter layer 42 is covered with a light receiving surface side insulating film 43 made of silicon nitride.

他方、基板1の第二主表面(裏面)は、窒化珪素からなる裏面側絶縁膜46にて覆われてなり、当該裏面側絶縁膜46の全面がAl等からなる裏面電極4により覆われている。該裏面電極4は、該裏面側絶縁膜46を貫通する導通部(コンタクトホール)46hを介して基板1の裏面と導通してなる。   On the other hand, the second main surface (back surface) of the substrate 1 is covered with a back-side insulating film 46 made of silicon nitride, and the entire back-side insulating film 46 is covered with the back-side electrode 4 made of Al or the like. Yes. The back electrode 4 is electrically connected to the back surface of the substrate 1 through a conductive portion (contact hole) 46 h that penetrates the back-side insulating film 46.

基板1の構成材料であるシリコン単結晶は、波長400〜1100nmの領域で6.00〜3.50の大きな屈折率を持つため、太陽光線が入射したときの反射損失が問題となる。そこで、基板1の受光面となる第一主表面には、図3に示すように、外面が{111}面の多数の正四角錐状の突起からなるテクスチャ構造が形成されている。このようなテクスチャ構造は、シリコン単結晶の{100}面を、アルカリエッチング液を用いて異方性エッチングすることにより形成される。   Since the silicon single crystal which is a constituent material of the substrate 1 has a large refractive index of 6.00 to 3.50 in a wavelength range of 400 to 1100 nm, reflection loss when sunlight enters is a problem. Therefore, as shown in FIG. 3, the first main surface serving as the light receiving surface of the substrate 1 is formed with a texture structure including a large number of regular tetragonal pyramidal protrusions whose outer surface is a {111} plane. Such a texture structure is formed by anisotropically etching the {100} plane of a silicon single crystal using an alkaline etchant.

以下、テクスチャ構造の形成方法の一例を、図4を用いて説明する(ただし、本発明は、この方法で作製された太陽電池に限られるものではない)。ホウ素あるいはガリウムのようなIII族元素をドープし、比抵抗0.1〜5Ω・cmとしたシリコン単結晶から、主表面が{100}面のp型シリコン単結晶基板1を、ワイヤーソーによるスライスにより切り出す(工程1)。単結晶シリコン基板は、FZ(Floating Zone Melting)法及びCZ(Czochralski)法のいずれを用いて作製してもよいが、機械的強度の面から、CZ法で作製されるのが望ましい。このスライスにより、基板1の両主表面には深さ10μmを超える厚い一次ダメージ層が形成されるので、これを、水酸化ナトリウムあるいは水酸化カリウム等の溶液を用いた化学エッチングにより除去する。   Hereinafter, an example of a texture structure forming method will be described with reference to FIG. 4 (however, the present invention is not limited to a solar cell manufactured by this method). From a silicon single crystal doped with a group III element such as boron or gallium and having a specific resistance of 0.1 to 5 Ω · cm, a p-type silicon single crystal substrate 1 having a main surface of {100} plane is sliced with a wire saw. (Step 1). The single crystal silicon substrate may be manufactured using either FZ (Floating Zone Melting) method or CZ (Czochralski) method, but it is preferable to manufacture the single crystal silicon substrate by CZ method from the viewpoint of mechanical strength. Due to this slicing, a thick primary damage layer having a depth of more than 10 μm is formed on both main surfaces of the substrate 1, and this is removed by chemical etching using a solution such as sodium hydroxide or potassium hydroxide.

一次ダメージ層を除去後の基板1の第一主表面(受光面側)に対し、図5に示すように、セラミック砥粒52を基板1の表面に投射するショットブラストを施して機械的ダメージを与え、二次ダメージ層2を形成する。また、スライス後の基板1の一次ダメージ層を敢えて除去せず、図6に示すように、高速回転刃50を用いて、幅100μm以上900μm以下、高さ20μm以上100μm以下、周期100μm以上900μm以下の、互いに平行な複数の溝1gを形成することもできる。溝1gの部分の一次ダメージ層は除去され、代わって溝底位置には高速回転刃50による二次ダメージ層2が形成される。なお、溝1gが不用の場合は、図7に示すように、溝形成後、高速回転刃50を溝と垂直面内方向に移動させ再度走査することで、受光面を平坦にすることも可能である。   As shown in FIG. 5, the first main surface (light-receiving surface side) of the substrate 1 after removing the primary damage layer is subjected to shot blasting for projecting ceramic abrasive grains 52 onto the surface of the substrate 1 to cause mechanical damage. The secondary damage layer 2 is formed. Moreover, the primary damage layer of the substrate 1 after slicing is not intentionally removed, and as shown in FIG. 6, using a high-speed rotary blade 50, the width is from 100 μm to 900 μm, the height is from 20 μm to 100 μm, and the period is from 100 μm to 900 μm. It is also possible to form a plurality of grooves 1g parallel to each other. The primary damage layer of the portion of the groove 1g is removed, and instead, the secondary damage layer 2 by the high-speed rotary blade 50 is formed at the groove bottom position. When the groove 1g is unnecessary, as shown in FIG. 7, it is possible to flatten the light receiving surface by moving the high-speed rotary blade 50 in the direction perpendicular to the groove and scanning again after forming the groove. It is.

図8に示すように、高速回転刃50は、表面に直径5μm〜10μmのダイヤモンド砥粒が満遍なく電着された回転刃を複数円筒形に集合させたものが使用でき、このような高速回転刃を用いた場合、切削水を噴射しながら1秒間に1cm以上4cm以下の速度で基板1を切削することができる。高速回転刃50は、ダイサーもしくはワイヤーソーでも代用が可能である。   As shown in FIG. 8, a high-speed rotary blade 50 can be used in which a plurality of rotary blades whose diamond abrasive grains having a diameter of 5 μm to 10 μm are uniformly electrodeposited on the surface are assembled into a plurality of cylinders. Is used, the substrate 1 can be cut at a speed of 1 cm or more and 4 cm or less per second while spraying cutting water. The high-speed rotary blade 50 can be replaced with a dicer or a wire saw.

これらの方法によりワイヤーソーによる一次ダメージ層を除去するとともに、受光面に深さ0.5μm以上5μm以下の微細な二次ダメージ層2が形成される(工程2)。これがゲッタリングサイトとして機能し、該ゲッタリングにより二次ダメージ層2に濃化された不純物は、以降のテクスチャ構造形成時にエッチング除去される。これにより、基板1の少数キャリアライフタイム(バルクライフタイム)を向上させることができ、太陽電池の変換効率の向上に寄与する。特に、太陽電池グレードのシリコン基板を用いた場合には、顕著にライフタイムが向上する。   The primary damage layer by the wire saw is removed by these methods, and a fine secondary damage layer 2 having a depth of 0.5 μm or more and 5 μm or less is formed on the light receiving surface (step 2). This functions as a gettering site, and the impurities concentrated in the secondary damage layer 2 due to the gettering are removed by etching during the subsequent texture structure formation. Thereby, the minority carrier lifetime (bulk lifetime) of the board | substrate 1 can be improved, and it contributes to the improvement of the conversion efficiency of a solar cell. In particular, when a solar cell grade silicon substrate is used, the lifetime is remarkably improved.

次に、工程3に進み、テクスチャ構造3の形成を行なう。テクスチャ構造3は、加熱した水酸化ナトリウム、水酸化カリウム、炭酸カリウム、炭酸ナトリウム、炭酸水素ナトリウムなどのアルカリ溶液(濃度0.1%以上20%以下、温度60℃以上100℃以下)中に基板1を10分以上30分以下浸漬して第一主表面を異方性エッチングすることにより形成できる(第二主表面はエッチングが進行しないように、図示しないエッチングレジストで覆っておく)。なお、上記溶液中に適量の2−プロパノールを溶解させると、エッチング反応を促進することができる。均一なテクスチャ構造を形成するためには、60℃以上70℃以下に加熱した濃度約3質量%の水酸化ナトリウムもしくは水酸化カリウム溶液中に、濃度約5質量%の2−プロパノールを混合した溶液を用いるのが好ましい。   Next, it progresses to the process 3 and formation of the texture structure 3 is performed. The texture structure 3 is a substrate in a heated alkaline solution (concentration of 0.1% to 20%, temperature of 60 ° C. to 100 ° C.) such as sodium hydroxide, potassium hydroxide, potassium carbonate, sodium carbonate, sodium bicarbonate. 1 can be formed by immersing 1 for 10 minutes or more and 30 minutes or less and anisotropically etching the first main surface (the second main surface is covered with an etching resist (not shown) so that etching does not proceed). In addition, when an appropriate amount of 2-propanol is dissolved in the solution, the etching reaction can be promoted. In order to form a uniform texture structure, a solution in which 2-propanol having a concentration of about 5% by mass is mixed with sodium hydroxide or potassium hydroxide solution having a concentration of about 3% by mass heated to 60 ° C. or more and 70 ° C. or less. Is preferably used.

テクスチャ構造を形成後の基板1は、塩酸、硫酸、硝酸、ふっ酸もしくはこれらの混合液からなる酸性水溶液中で洗浄する。経済的及び効率的見地から、塩酸中での洗浄が好ましい。清浄度を向上するため、塩酸溶液中に1質量%以上5質量%以下の過酸化水素を混合し、60℃以上90℃以下に加温して洗浄してもよい。この基板1の受光面上に、オキシ塩化リンを用いた気相拡散法によりエミッタ層42(図1)を形成する。第二主表面(以下、裏面と称する)への拡散を防ぐため、裏面同士を重ねあわせ、2枚一組で拡散ボートに並べて気相拡散するのが好ましい。具体的には、オキシ塩化リン雰囲気中で、820〜880℃で数十分熱処理し、受光面にn型層を形成する。形成したエミッタ層深さは0.2μm以上0.5μm以下とし、シート抵抗は40Ω/□以上150Ω/□以下とする。その後、拡散反応により基板1の第一主表面上に形成されたリンガラスを、2質量%以上5質量%以下のふっ酸中に数分浸漬して除去する。   The substrate 1 after the texture structure is formed is washed in an acidic aqueous solution made of hydrochloric acid, sulfuric acid, nitric acid, hydrofluoric acid, or a mixture thereof. From an economic and efficient standpoint, washing in hydrochloric acid is preferred. In order to improve the cleanliness, 1% by mass or more and 5% by mass or less hydrogen peroxide may be mixed in a hydrochloric acid solution, and heated to 60 ° C. or more and 90 ° C. or less for washing. An emitter layer 42 (FIG. 1) is formed on the light-receiving surface of the substrate 1 by vapor phase diffusion using phosphorus oxychloride. In order to prevent diffusion to the second main surface (hereinafter referred to as the back surface), it is preferable to overlap the back surfaces and arrange them in pairs on a diffusion boat for gas phase diffusion. Specifically, heat treatment is performed for several tens of minutes at 820 to 880 ° C. in a phosphorus oxychloride atmosphere to form an n-type layer on the light receiving surface. The depth of the formed emitter layer is 0.2 μm or more and 0.5 μm or less, and the sheet resistance is 40Ω / □ or more and 150Ω / □ or less. Thereafter, the phosphorous glass formed on the first main surface of the substrate 1 by diffusion reaction is removed by immersing in 2% by mass or more and 5% by mass or less of hydrofluoric acid for several minutes.

次に、工程4に示すように、基板1の裏面に裏面側絶縁膜46(図1:図4では図示略)を形成し、コンタクトホール46h(図1:図4では図示略)をエッチングにより形成した後、さらに裏面電極4を0.5μm以上5μm以下の厚さにて形成する。電極材料には銀や銅等の金属が用いられるが、経済性、加工性、シリコンとの接触性の観点からアルミニウムが最も好ましい。金属の堆積は、スパッタ法、真空蒸着法、スクリーン印刷法等いずれの方法でも可能である。   Next, as shown in step 4, a back-side insulating film 46 (not shown in FIG. 1: FIG. 4) is formed on the back surface of the substrate 1, and the contact hole 46h (not shown in FIG. 1: FIG. 4) is etched. After the formation, the back electrode 4 is further formed with a thickness of 0.5 μm or more and 5 μm or less. A metal such as silver or copper is used as the electrode material, but aluminum is most preferable from the viewpoints of economy, workability, and contact with silicon. The metal can be deposited by any method such as sputtering, vacuum evaporation, and screen printing.

この後、工程5に示すように、基板1の第一主表面に受光面側絶縁膜43(図1:図4では図示略)及び受光面側電極5の形成を行なう。受光面側絶縁膜43は反射防止膜の役割を兼ね、酸化シリコン、窒化シリコンをはじめ、酸化セリウム、アルミナ、二酸化錫、二酸化チタン、フッ化マグネシウム、酸化タンタル等で構成できる。また、これらを二種組み合わせた二層を使用してもよい。受光面側絶縁膜43は、PVD(Physical Vapor Deposition:スパッタリングなど)法あるいはCVD(Chemical Vapor Deposition)法のいずれの方法でも形成可能であり、高変換効率の太陽電池を作製するためには、窒化シリコンをリモートプラズマCVD法で形成したものが、小さな表面再結合速度が達成可能であり好ましい。また、受光面側電極5は蒸着法、スパッタ法、メッキ法、印刷法等で作製可能である。いずれの方法を用いても構わないが、低コストで高スループットのためには、印刷法が好ましい。銀粉末とガラスフリットを有機物バインダと混合した銀ペーストを、スクリーン印刷した後、熱処理により窒化シリコン膜に銀粉末を貫通させ(ファイアースルー)、受光面側電極5とエミッタ層42とを導通させる。なお、受光面及び裏面の処理の順序は逆であっても、何ら問題はない。   Thereafter, as shown in Step 5, the light-receiving surface side insulating film 43 (not shown in FIG. 1: FIG. 4) and the light-receiving surface side electrode 5 are formed on the first main surface of the substrate 1. The light-receiving surface side insulating film 43 also serves as an antireflection film, and can be made of silicon oxide, silicon nitride, cerium oxide, alumina, tin dioxide, titanium dioxide, magnesium fluoride, tantalum oxide, or the like. Moreover, you may use the two-layer which combined these 2 types. The light-receiving surface side insulating film 43 can be formed by either PVD (Physical Vapor Deposition) method or CVD (Chemical Vapor Deposition) method. In order to fabricate a high conversion efficiency solar cell, nitriding is required. Silicon formed by remote plasma CVD is preferable because a small surface recombination rate can be achieved. Further, the light receiving surface side electrode 5 can be manufactured by vapor deposition, sputtering, plating, printing, or the like. Either method may be used, but the printing method is preferable for low cost and high throughput. A silver paste in which silver powder and glass frit are mixed with an organic binder is screen-printed, and then the silicon powder is passed through the silicon nitride film by heat treatment (fire through) so that the light-receiving surface side electrode 5 and the emitter layer 42 are electrically connected. There is no problem even if the order of processing of the light receiving surface and the back surface is reversed.

以下、本発明の効果を確認するために行なった実験結果について説明する。
まず、厚さ300μm、比抵抗0.5Ω・cmのホウ素ドープのp型シリコン基板(主表面{100}面、スライス上がり)8枚を用意し、濃水酸化カリウム水溶液により一次ダメージ層を除去した。次に、その8枚中の4枚を用いて受光面にショットブラストを行って二次ダメージ層(推定深さ:0.4μm以上0.7μm以下)を形成した。次に、これらの試料を同時に水酸化カリウム/2−プロパノール混合溶液に浸漬した。10、20、30及び40分後に順次試料を取出し、水洗、乾燥後、分光光度計を用いて、試料の中央部の分光反射率を測定した。AM1.5Gの入射スペクトルを仮定し、波長390〜1080nmの範囲で反射率を加重平均した結果を表1に示す。ショットブラストの有無によらず、40分間テクスチャ処理することで、約13%(シリコンと空気との屈折率差に基づいて理論的に算出される下限値に近い)の反射率が得られており、均一なテクスチャが形成されたものと考えられる。ショットブラストを使用しない場合はテクスチャ形成に30〜40分を要するのに対し、テクスチャ前にショットブラストを使用することで、約20分で良質なテクスチャが得られている。
Hereinafter, experimental results performed to confirm the effects of the present invention will be described.
First, eight boron-doped p-type silicon substrates (main surface {100} plane, rising slice) having a thickness of 300 μm and a specific resistance of 0.5 Ω · cm were prepared, and the primary damage layer was removed with a concentrated potassium hydroxide aqueous solution. . Next, four of the eight were used to perform shot blasting on the light-receiving surface to form a secondary damage layer (estimated depth: 0.4 μm or more and 0.7 μm or less). Next, these samples were simultaneously immersed in a potassium hydroxide / 2-propanol mixed solution. Samples were sequentially taken out after 10, 20, 30 and 40 minutes, washed with water and dried, and then the spectral reflectance at the center of the sample was measured using a spectrophotometer. Table 1 shows the result of weighted averaging of reflectance in the wavelength range of 390 to 1080 nm assuming an AM1.5G incident spectrum. Regardless of the presence or absence of shot blasting, the reflectance of about 13% (close to the lower limit theoretically calculated based on the refractive index difference between silicon and air) is obtained by texture processing for 40 minutes. It is considered that a uniform texture was formed. When shot blasting is not used, it takes 30 to 40 minutes to form a texture, whereas by using shot blasting before texture, a good quality texture is obtained in about 20 minutes.

Figure 2005209726
Figure 2005209726

次に、上記テクスチャ処理時間40分の試料を、80℃に加熱した塩酸/過酸化水素水溶液中で10分間洗浄し、水洗、乾燥後、ショットブラスト処理していない面同士を重ねあわせ、オキシ塩化リン雰囲気下、850℃で熱処理し、エミッタ層を形成した。この後、前記の方法により、反射防止膜、フィンガー電極およびバスバー電極からなる受光面側電極を形成し、裏面電極をアルミ印刷して太陽電池を作製した。ソーラーシミュレータを用い、標準条件下でこれら太陽電池の電流―電圧特性を測定し、変換効率を求めた。結果を表2に示す。テクスチャ前にショットブラスト処理を用いたものは、短絡電流、開放電圧ともに、処理しなかったものに比べ高い値を示している。これはショットブラストにより形成されたにダメージ層によるゲッタリング効果に由来する効果と考えられる。   Next, the sample having a texture treatment time of 40 minutes is washed in an aqueous hydrochloric acid / hydrogen peroxide solution heated to 80 ° C. for 10 minutes, washed with water, dried, and then the surfaces not subjected to shot blasting are overlapped with each other to obtain oxychlorination. Heat treatment was performed at 850 ° C. in a phosphorus atmosphere to form an emitter layer. Thereafter, a light-receiving surface side electrode composed of an antireflection film, finger electrodes, and bus bar electrodes was formed by the above-described method, and the back electrode was printed with aluminum to produce a solar cell. Using a solar simulator, the current-voltage characteristics of these solar cells were measured under standard conditions to determine the conversion efficiency. The results are shown in Table 2. What used the shot blasting before the texture shows a higher value for both the short-circuit current and the open-circuit voltage than those not processed. This is considered to be an effect derived from the gettering effect by the damage layer formed by shot blasting.

Figure 2005209726
Figure 2005209726

本発明の適用対象となる太陽電池の一例を示す断面模式図。The cross-sectional schematic diagram which shows an example of the solar cell used as the application object of this invention. 受光面側電極の形成形態を模式的に示す斜視図。The perspective view which shows typically the formation form of the light-receiving surface side electrode. テクスチャ構造の概念図。Conceptual diagram of texture structure. 本発明の太陽電池の製造方法の一例を示す工程説明図。Process explanatory drawing which shows an example of the manufacturing method of the solar cell of this invention. 二次ダメージ層をショットブラストにより形成する模式図。The schematic diagram which forms a secondary damage layer by shot blasting. 二次ダメージ層を溝入れ加工により形成する模式図。The schematic diagram which forms a secondary damage layer by grooving. 溝入れ加工を基板表面で操作して二次ダメージ層を平坦化する工程の模式図。The schematic diagram of the process of operating a grooving process on the board | substrate surface and planarizing a secondary damage layer. 溝入れ加工に用いる高速回転刃を模式的に示す斜視図。The perspective view which shows typically the high-speed rotary blade used for a grooving process.

符号の説明Explanation of symbols

1 シリコン単結晶基板
2 二次ダメージ層
3 テクスチャ構造
5 受光面側電極
1 Silicon single crystal substrate 2 Secondary damage layer 3 Texture structure 5 Light receiving surface side electrode

Claims (7)

シリコン単結晶インゴットのスライスにより得られるシリコン単結晶基板の第一主表面側に形成されているスライス時の一次ダメージ層を機械的もしくは化学的に除去する一方、前記スライスとは別の機械的加工履歴に基づく新たなダメージを導入することにより、一次ダメージ層よりも薄い二次ダメージ層を形成し、該二次ダメージ層に異方性エッチングを施すことによりテクスチャ構造を形成し、該テクスチャ構造上に受光面側電極を形成することを特徴とする太陽電池の製造方法。 While mechanically or chemically removing the primary damage layer at the time of slicing formed on the first main surface side of the silicon single crystal substrate obtained by slicing the silicon single crystal ingot, mechanical processing separate from the slicing By introducing new damage based on the history, a secondary damage layer that is thinner than the primary damage layer is formed, and a texture structure is formed by applying anisotropic etching to the secondary damage layer. A method for producing a solar cell, comprising: forming a light receiving surface side electrode on the surface. 前記二次ダメージ層を0.5μm以上5μm以下の厚さに形成することを特徴とする請求項1記載の太陽電池の製造方法。 The method for manufacturing a solar cell according to claim 1, wherein the secondary damage layer is formed to a thickness of 0.5 μm to 5 μm. 前記シリコン単結晶基板は主表面が{100}面であり、前記異方性エッチングをアルカリ溶液を用いて行なうことにより、前記テクスチャ構造を4つの{111}面に囲まれた正四角錐状の突起の集合体として形成することを特徴とする請求項1又は請求項2に記載の太陽電池の製造方法。 The silicon single crystal substrate has a {100} plane as a main surface, and by performing the anisotropic etching using an alkaline solution, the texture structure is formed into a square pyramidal projection surrounded by four {111} planes. 3. The method for manufacturing a solar cell according to claim 1, wherein the solar cell is formed as an aggregate of the solar cells. 前記二次ダメージ層を形成する機械的加工履歴は、前記シリコン単結晶基板の第一主表面への研磨、研削及びショットブラストのいずれか又はそれらの組み合わせに基づく履歴であることを特徴とする請求項1ないし請求項3のいずれか1項に記載の太陽電池の製造方法。 The mechanical processing history for forming the secondary damage layer is a history based on any one or a combination of polishing, grinding and shot blasting on the first main surface of the silicon single crystal substrate. The manufacturing method of the solar cell of any one of Claims 1 thru | or 3. 前記二次ダメージ層を形成する機械的加工履歴は、前記スライス時のダメージ層除去に兼用される溝入れダイシング加工に基づく履歴であることを特徴とする請求項1ないし請求項4のいずれか1項に記載の太陽電池の製造方法。 5. The mechanical processing history for forming the secondary damage layer is a history based on grooving dicing that is also used for removing the damaged layer at the time of slicing. The manufacturing method of the solar cell of description. 前記溝入れダイシング加工は、各溝の深さが10μm以上150μm以下となるように複数本の互いに平行な溝を前記シリコン単結晶基板の第一主表面に形成する形で行なわれることを特徴とする請求項5記載の太陽電池の製造方法。 The grooving dicing process is performed by forming a plurality of parallel grooves on the first main surface of the silicon single crystal substrate so that each groove has a depth of 10 μm or more and 150 μm or less. The manufacturing method of the solar cell of Claim 5. 前記シリコン単結晶基板の第一主表面全面がダイシングによる二次ダメージ層領域となるように、前記溝入れダイシング加工を繰り返し行なうことを特徴とする請求項5又は請求項6に記載の太陽電池の製造方法。 The solar cell according to claim 5 or 6, wherein the grooving dicing process is repeatedly performed so that the entire surface of the first main surface of the silicon single crystal substrate becomes a secondary damage layer region by dicing. Production method.
JP2004012244A 2004-01-20 2004-01-20 Manufacturing method of solar cell Expired - Lifetime JP4378485B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004012244A JP4378485B2 (en) 2004-01-20 2004-01-20 Manufacturing method of solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004012244A JP4378485B2 (en) 2004-01-20 2004-01-20 Manufacturing method of solar cell

Publications (2)

Publication Number Publication Date
JP2005209726A true JP2005209726A (en) 2005-08-04
JP4378485B2 JP4378485B2 (en) 2009-12-09

Family

ID=34898682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004012244A Expired - Lifetime JP4378485B2 (en) 2004-01-20 2004-01-20 Manufacturing method of solar cell

Country Status (1)

Country Link
JP (1) JP4378485B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012049424A (en) * 2010-08-30 2012-03-08 Shin Etsu Chem Co Ltd Solar cell and method of manufacturing the same
WO2012036002A1 (en) 2010-09-14 2012-03-22 信越化学工業株式会社 Solar cell and manufacturing method thereof
JP2012119345A (en) * 2010-11-21 2012-06-21 Yukichi Horioka Semiconductor material surface processing method, and semiconductor material
KR20140014112A (en) * 2011-01-31 2014-02-05 가부시끼가이샤 후지세이사쿠쇼 Method for fabricating substrate for solar cell and solar cell
CN111106185A (en) * 2019-12-30 2020-05-05 江苏祺创光电集团有限公司 Environment-friendly solar photovoltaic module
CN114883450A (en) * 2022-05-21 2022-08-09 一道新能源科技(衢州)有限公司 Texturing process of perc battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5510935B2 (en) * 2011-09-27 2014-06-04 Pvクリスタロックスソーラー株式会社 Manufacturing method of semiconductor wafer

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012049424A (en) * 2010-08-30 2012-03-08 Shin Etsu Chem Co Ltd Solar cell and method of manufacturing the same
TWI513021B (en) * 2010-09-14 2015-12-11 Shinetsu Chemical Co Solar cell and its manufacturing method
US9018520B2 (en) 2010-09-14 2015-04-28 Shin-Etsu Chemical Co., Ltd. Solar cell and manufacturing method thereof
CN103201847A (en) * 2010-09-14 2013-07-10 信越化学工业株式会社 Solar cell and manufacturing method thereof
EP2618382A1 (en) * 2010-09-14 2013-07-24 Shin-Etsu Chemical Co., Ltd. Solar cell and manufacturing method thereof
KR20130113454A (en) 2010-09-14 2013-10-15 신에쓰 가가꾸 고교 가부시끼가이샤 Solar cell and manufacturing method thereof
EP2618382A4 (en) * 2010-09-14 2017-04-05 Shin-Etsu Chemical Co., Ltd. Solar cell and manufacturing method thereof
AU2011304166B2 (en) * 2010-09-14 2015-03-05 Shin-Etsu Chemical Co., Ltd. Solar cell and manufacturing method thereof
KR101659451B1 (en) * 2010-09-14 2016-09-23 신에쓰 가가꾸 고교 가부시끼가이샤 Solar cell and manufacturing method thereof
WO2012036002A1 (en) 2010-09-14 2012-03-22 信越化学工業株式会社 Solar cell and manufacturing method thereof
JP2012119345A (en) * 2010-11-21 2012-06-21 Yukichi Horioka Semiconductor material surface processing method, and semiconductor material
KR101662054B1 (en) * 2011-01-31 2016-10-04 가부시끼가이샤 후지세이사쿠쇼 Method for fabricating substrate for solar cell and solar cell
KR20140014112A (en) * 2011-01-31 2014-02-05 가부시끼가이샤 후지세이사쿠쇼 Method for fabricating substrate for solar cell and solar cell
CN111106185A (en) * 2019-12-30 2020-05-05 江苏祺创光电集团有限公司 Environment-friendly solar photovoltaic module
CN114883450A (en) * 2022-05-21 2022-08-09 一道新能源科技(衢州)有限公司 Texturing process of perc battery

Also Published As

Publication number Publication date
JP4378485B2 (en) 2009-12-09

Similar Documents

Publication Publication Date Title
JP5527417B2 (en) Solar cell and manufacturing method thereof
JP5813204B2 (en) Manufacturing method of solar cell
WO2005117138A1 (en) Semiconductor substrate for solar cell, method for manufacturing the same, and solar cell
JP5737204B2 (en) Solar cell and manufacturing method thereof
WO2014054350A1 (en) Solar cell manufacturing method
JP2012049424A (en) Solar cell and method of manufacturing the same
JP5509410B2 (en) Method for manufacturing silicon substrate for solar cell
JP6144778B2 (en) Manufacturing method of solar cell
US20120288990A1 (en) Insitu epitaxial deposition of front and back junctions in single crystal silicon solar cells
JP4378485B2 (en) Manufacturing method of solar cell
JP2011228529A (en) Solar battery cell and manufacturing method thereof
JP2011003654A (en) Crystal silicon-based solar cell
JP3602323B2 (en) Solar cell manufacturing method
JP6114171B2 (en) Manufacturing method of solar cell
JP2012256713A (en) Manufacturing method of solar cell
KR101024322B1 (en) Method of manufacturing wafer for solar cell, a wafer for solar cell manufactured by the method and method of manufacturing solar cell using the wafer
JP5664738B2 (en) Manufacturing method of semiconductor device
JP6092574B2 (en) Method for manufacturing solar cell element
JP5434806B2 (en) Manufacturing method of semiconductor device
JP5434792B2 (en) Solar cell manufacturing method and solar cell
JP2011238846A (en) Solar cell manufacturing method
Kuo et al. Investigation of laser pattern for high efficiency PERC mono silicon solar cells
JP2002305313A (en) Solar battery
JP2006279071A (en) Solar cell and manufacturing method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090821

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4378485

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151002

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250