JP2005209552A - Electric field electron emitting element, carbon particle for electric field electron emitting element emitter part, and picture display device - Google Patents

Electric field electron emitting element, carbon particle for electric field electron emitting element emitter part, and picture display device Download PDF

Info

Publication number
JP2005209552A
JP2005209552A JP2004016411A JP2004016411A JP2005209552A JP 2005209552 A JP2005209552 A JP 2005209552A JP 2004016411 A JP2004016411 A JP 2004016411A JP 2004016411 A JP2004016411 A JP 2004016411A JP 2005209552 A JP2005209552 A JP 2005209552A
Authority
JP
Japan
Prior art keywords
field electron
graphite particles
electron emission
particles
emitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004016411A
Other languages
Japanese (ja)
Other versions
JP4525087B2 (en
Inventor
Yoshito Ishii
義人 石井
Atsushi Fujita
藤田  淳
Kishifu Hidaka
貴志夫 日高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2004016411A priority Critical patent/JP4525087B2/en
Publication of JP2005209552A publication Critical patent/JP2005209552A/en
Application granted granted Critical
Publication of JP4525087B2 publication Critical patent/JP4525087B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electric field electron emitting element which is available at a low price, and superior in an electric field electron discharge characteristic. <P>SOLUTION: This is the electric field discharge element having an emitter part and an anode part, graphite particles are contained in the emitter part, and the graphite particles are collected or bonded so that a plurality of oriented faces of the flat particles become non-parallel. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、電界電子放出素子、電界電子放出素子エミッタ部用黒鉛粒子及び画像表示装置に関する。   The present invention relates to a field electron emission device, graphite particles for a field electron emission device emitter, and an image display device.

近年、ディスプレイ装置の薄型化や画像の高輝度化等が要求され、陽極と陰極の間に強電界をかけて電子を放出させる電界放出型電子放出素子が注目されている。この電界電子放出素子は、消費電力の低減のため、駆動電圧の低下、エミッタ部からの放出電子量の増大等が求められている。特に最近では、エミッタ部にカーボンナノチューブなどの炭素材料を使用した電界放出素子が盛んに研究されている。カーボンナノチューブは高いアスペクト比を持つため電界が集中し易く、低電位で電子放出を行わせることができると期待されている。   In recent years, there has been a demand for thinner display devices and higher image brightness, and field emission electron-emitting devices that emit electrons by applying a strong electric field between an anode and a cathode have attracted attention. In order to reduce power consumption, this field electron-emitting device is required to reduce driving voltage, increase the amount of electrons emitted from the emitter section, and the like. In particular, field emission devices using a carbon material such as a carbon nanotube for the emitter have been actively studied recently. Since carbon nanotubes have a high aspect ratio, the electric field tends to concentrate, and it is expected that electrons can be emitted at a low potential.

カーボンナノチューブ等の炭素材料は、デバイスの所望の位置に配置されるが、その方法として樹脂や溶剤とともに混合したペーストを基板に塗布し、熱処理する方法や、触媒金属を基板上に形成し、原料ガスを供給することで触媒微粒子を核としてカーボンナノチューブを成長させる方法がある。   Carbon materials such as carbon nanotubes are placed at the desired position of the device. As the method, a paste mixed with a resin and a solvent is applied to the substrate and heat-treated, or a catalyst metal is formed on the substrate, and the raw material There is a method of growing carbon nanotubes using catalyst fine particles as nuclei by supplying gas.

例えば、特許文献1には、エミッタ部にカーボンナノチューブを用いた電子線素子が開示されている。特許文献2にはカーボンナノチューブをレジスト材料とともに混合して作製した懸濁液を基板に塗布する方法が開示されている。また、特許文献3には、細孔内にカーボンナノチューブを成長した電界電子放出素子が開示されている。   For example, Patent Document 1 discloses an electron beam element using carbon nanotubes in the emitter portion. Patent Document 2 discloses a method in which a suspension prepared by mixing carbon nanotubes with a resist material is applied to a substrate. Patent Document 3 discloses a field electron emission device in which carbon nanotubes are grown in pores.

しかしながら、従来のカーボンナノチューブをエミッタ部に使用した電界電子放出素子の電子放出特性は充分ではなく、より低電圧で電子を放出することが必要である。さらには、従来のカーボンナノチューブはかさ密度が小さいため、高密度のエミッタ部を得ることは困難であり、その結果、作製する電界電子放出素子の輝度やエミッタ部の面内バラツキが大きいという問題があるばかりでなく、コストが高いという問題がある。
特開平9−221309号公報 特開2000−90809号公報 特開平10−12124号公報
However, the electron emission characteristics of a field electron emission device using a conventional carbon nanotube for the emitter are not sufficient, and it is necessary to emit electrons at a lower voltage. Furthermore, since the conventional carbon nanotubes have a low bulk density, it is difficult to obtain a high-density emitter part. As a result, there is a problem that the luminance of the field electron-emitting device to be produced and the in-plane variation of the emitter part are large. Not only is there a problem, but the cost is high.
JP-A-9-221309 JP 2000-90809 A Japanese Patent Laid-Open No. 10-12124

このような事情に鑑み、安価に入手でき、且つ電界電子放出特性に優れた材料が求められている。   In view of such circumstances, there is a demand for materials that can be obtained at low cost and that have excellent field electron emission characteristics.

本発明は、(1)エミッタ部と、アノード部を有する電界電子放出素子であって、エミッタ部に黒鉛粒子を含み、該黒鉛粒子は複数の扁平状の粒子の配向面が非平行となるように集合又は結合してなる電界電子放出素子に関する。   The present invention is (1) a field electron emission device having an emitter portion and an anode portion, and the emitter portion includes graphite particles, and the graphite particles are arranged such that the orientation planes of a plurality of flat particles are non-parallel. The present invention relates to a field electron-emitting device that is assembled or combined with each other.

また、本発明は、(2)黒鉛粒子の広角X線回折で測定される結晶の層間距離d(002)が3.40Å以下、結晶のc軸方向の結晶子サイズLc(002)が300Å以上である前記(1)記載の電界電子放出素子に関する。   The present invention also provides: (2) the crystal interlayer distance d (002) measured by wide-angle X-ray diffraction of the graphite particles is 3.40 mm or less, and the crystallite size Lc (002) in the c-axis direction of the crystal is 300 mm or more. The field electron emission device according to (1), wherein

また、本発明は、(3)黒鉛粒子のアスペクト比が10以下である前記(1)又は(2)記載の電界電子放出素子に関する。   The present invention also relates to (3) the field electron emission device according to (1) or (2), wherein the graphite particles have an aspect ratio of 10 or less.

また、本発明は、(4)レーザー回折式粒度分布計で測定される黒鉛粒子の平均粒径が0.1〜100μmである前記(1)〜(3)いずれかに記載の電界電子放出素子に関する。   Moreover, this invention is (4) The field electron emission element in any one of said (1)-(3) whose average particle diameter of the graphite particle | grains measured with a laser diffraction type particle size distribution analyzer is 0.1-100 micrometers. About.

また、本発明は、(5)前記(1)〜(4)いずれかに記載の電界電子放出素子を使用してなる画像表示装置に関する。   The present invention also relates to (5) an image display device using the field electron-emitting device according to any one of (1) to (4).

また、本発明は、(6)黒鉛粒子を含んでなるエミッタ部とアノード部を有する電界電子放出素子に使用される電界電子放出素子エミッタ部用黒鉛粒子であって、該黒鉛粒子が、複数の扁平状の粒子の配向面が非平行となるように集合又は結合してなる電界電子放出素子エミッタ部用黒鉛粒子に関する。   The present invention also relates to (6) a graphite particle for a field electron emission element emitter portion used for a field electron emission element having an emitter portion and an anode portion each comprising graphite particles, wherein the graphite particles include a plurality of graphite particles. The present invention relates to a graphite particle for an emitter portion of a field electron emission device, which is assembled or bonded so that the orientation planes of flat particles are non-parallel.

また、本発明は、(7)広角X線回折で測定される結晶の層間距離d(002)が3.40Å以下、結晶のc軸方向の結晶子サイズLc(002)が300Å以上、アスペクト比が10以下、レーザー回折粒度分布計で測定される平均粒径が0.1〜100μmである前記(6)記載の電界電子放出素子エミッタ部用黒鉛粒子に関する。   The present invention also provides: (7) Crystal interlayer distance d (002) measured by wide-angle X-ray diffraction is 3.40 mm or less, crystallite size Lc (002) in the c-axis direction of the crystal is 300 mm or more, and aspect ratio Or less, and the average particle diameter measured with a laser diffraction particle size distribution meter is 0.1 to 100 μm.

本発明の請求項1〜4記載の電界電子放出素子は、電子放出特性に優れる。また、請求項5記載の画像表示装置は、低電圧で駆動し、消費電力が小さい。さらに、請求項6及び7記載の黒鉛粒子は、電子放出特性に優れた電界電子放出素子に好適である。   The field emission device according to claims 1 to 4 of the present invention is excellent in electron emission characteristics. The image display device according to claim 5 is driven at a low voltage and has low power consumption. Further, the graphite particles according to claims 6 and 7 are suitable for a field electron emission device having excellent electron emission characteristics.

本発明は、エミッタ部と、アノード部を有する電界電子放出素子であって、エミッタ部に黒鉛粒子を含み、該黒鉛粒子は複数の扁平状の粒子の配向面が非平行となるように集合又は結合してなる電界電子放出素子であることを特徴とする。   The present invention relates to a field electron emission device having an emitter portion and an anode portion, the emitter portion including graphite particles, and the graphite particles are aggregated or arranged so that the orientation planes of a plurality of flat particles are non-parallel. It is a field electron-emitting device formed by coupling.

この黒鉛粒子をエミッタ部に使用することで電界電子放出特性に優れた電界電子放出素子を作製することができる。   By using the graphite particles in the emitter portion, a field electron emission device having excellent field electron emission characteristics can be produced.

本発明において、扁平状の粒子とは、長軸と短軸とを有する形状の粒子のことである。長軸と短軸とを有する形状としては、例えば、鱗状、鱗片状、塊状、疑球状等の形状が挙げられる。黒鉛粒子において、複数の扁平状の粒子の配向面が非平行とは、それぞれの粒子における扁平した面、換言すれば最も平らに近い面を配向面として、複数の扁平状の粒子がそれぞれの配向面を一定の方向にそろうことなく集合又は結合している状態をいう。   In the present invention, the flat particles are particles having a major axis and a minor axis. Examples of the shape having a long axis and a short axis include a scale shape, a scale shape, a block shape, a pseudospherical shape, and the like. In graphite particles, the orientation planes of a plurality of flat particles are non-parallel. The flat surfaces of each particle, in other words, the plane that is closest to the plane is the orientation plane, and the plurality of flat particles are each oriented. A state where surfaces are gathered or joined together without being aligned in a certain direction.

この黒鉛粒子において扁平状の粒子は集合又は結合しているが、結合とは互いの粒子が、例えば、熱硬化性樹脂、熱可塑性樹脂、ピッチ、タール等の炭素化可能なバインダを炭素化した炭素質を介して、化学的に結合している状態をいい、集合とは互いの粒子が化学的に結合してはないが、その形状等に起因して、その集合体としての形状を保っている状態をいう。機械的な強度の面からは、結合しているものが好ましい。また、前記の炭素化可能なバインダを炭素化した炭素質は、黒鉛であることが好ましい。   In the graphite particles, the flat particles are aggregated or bonded, but each particle is carbonized with a carbonizable binder such as thermosetting resin, thermoplastic resin, pitch, tar, etc. The state of being chemically bonded via carbonaceous matter. The term “aggregate” means that the particles are not chemically bound to each other, but due to their shape, the shape of the aggregate is maintained. The state that is. From the viewpoint of mechanical strength, those bonded are preferable. The carbonaceous material obtained by carbonizing the carbonizable binder is preferably graphite.

1つの黒鉛粒子において、扁平状の粒子の集合又は結合する数としては、3個以上であることが好ましい。個々の扁平状の粒子の大きさとしては、粒径で0.1〜100μmであることが好ましく、これらが集合又は結合した黒鉛粒子の平均粒径の2/3以下であることが好ましい。また、個々の扁平状の粒子のアスペクト比は100以下が好ましく、50以下がより好ましく、20以下がさらに好ましい。個々の扁平状の粒子のアスペクト比の好ましい下限としては1.2である。   In one graphite particle, the number of flat particles aggregated or bonded is preferably 3 or more. The size of each flat particle is preferably 0.1 to 100 μm in particle size, and preferably 2/3 or less of the average particle size of the aggregated or bonded graphite particles. The aspect ratio of each flat particle is preferably 100 or less, more preferably 50 or less, and further preferably 20 or less. A preferable lower limit of the aspect ratio of each flat particle is 1.2.

このような黒鉛粒子を電界電子放出素子のエミッタ部に使用すると、基板上に黒鉛結晶が配向し難く、その結果、電子を放出しやすくすると考えられる。なお、図1に本発明の電界電子放出素子に使用する黒鉛粒子の一例の粒子構造の走査型電子顕微鏡写真を示す。図1において、細かな複数の扁平状の粒子が、それらの粒子の配向面を非平行にして結合し、黒鉛粒子を形成している様子が観察できる。   If such graphite particles are used in the emitter part of the field electron emission device, it is considered that the graphite crystal is difficult to be oriented on the substrate, and as a result, electrons are easily emitted. FIG. 1 shows a scanning electron micrograph of the particle structure of an example of graphite particles used in the field electron emission device of the present invention. In FIG. 1, it can be observed that a plurality of fine flat particles are bonded with their orientation planes being non-parallel to form graphite particles.

本発明の電界電子放出素子に使用する黒鉛粒子は、広角X線回折で測定される結晶の層間距離d(002)が3.40Å以下であることが好ましく、3.38Å以下であればより好ましく、3.37Å以下であればさらに好ましく、3.36Å以下であれば特に好ましい。d(002)が3.40Å以下であると電子を放出させることができる電界値を小さくすることができる傾向があり、電子放出特性に優れた電界電子放出素子を作製することが可能となる。黒鉛粒子のd(002)が3.40Åを超えると電子放出特性が低下する傾向がある。c軸方向の結晶子サイズLc(002)は300Å以上が好ましく、500Å以上であればより好ましく、800Å以上であればさらに好ましく、1000Å以上であれば特に好ましい。結晶の層間距離d(002)が小さくなるか、c軸方向の結晶子サイズLc(002)が大きくなると、電子放出に必要な電界値を低くすることができる傾向があり、好ましい。   The graphite particles used in the field electron emission device of the present invention preferably have a crystal interlayer distance d (002) measured by wide-angle X-ray diffraction of 3.40 mm or less, more preferably 3.38 mm or less. If it is 3.37 cm or less, it is more preferable, and if it is 3.36 cm or less, it is especially preferable. If d (002) is 3.40 mm or less, the electric field value capable of emitting electrons tends to be reduced, and a field electron-emitting device having excellent electron emission characteristics can be manufactured. If d (002) of the graphite particles exceeds 3.40%, the electron emission characteristics tend to be lowered. The crystallite size Lc (002) in the c-axis direction is preferably 300 mm or more, more preferably 500 mm or more, further preferably 800 mm or more, and particularly preferably 1000 mm or more. When the crystal interlayer distance d (002) is reduced or the crystallite size Lc (002) in the c-axis direction is increased, the electric field value necessary for electron emission tends to be reduced, which is preferable.

d(002)、Lc(002)の測定は、例えば、炭素粉末を広角X線回折装置を使用し、学振法によって測定できる。   The measurement of d (002) and Lc (002) can be performed by, for example, the Gakushin method using carbon powder using a wide-angle X-ray diffraction apparatus.

本発明の電界電子放出素子に使用する黒鉛粒子は、アスペクト比が10以下であることが好ましく、アスペクト比は5以下であればより好ましく、1.05〜3であればさらに好ましく、1.1〜2であれば特に好ましい。アスペクト比が10を超えると、粒子が基板上に配向しやすくなり、電子が放出し難くなる傾向がある。なお、アスペクト比は、黒鉛粒子の長軸方向の長さをA、短軸方向の長さをBとしたとき、A/Bで表される。本発明におけるアスペクト比は、走査型電子顕微鏡(SEM)で黒鉛粒子を拡大し、任意に10個の黒鉛粒子を選択し、色々な方向から粒子を観察して粒子の三次元的な特徴を考慮した上で黒鉛粒子の長軸方向の長さをA、短軸方向の長さをBとしたときのA/Bを算出し、その平均値をとったものである。例えば、黒鉛粒子が、鱗状、板状、ブロック状等のように薄く平たく、厚さ方向を有する場合には、短軸Bは粒子の厚みとなる。また、棒状、針状等のような粒子の場合、長軸Aは粒子の長さであり、短軸Bは棒状(又は針状等)粒子の太さとなる。また、粒子を機械的な力を加え形状を変化させたような場合は、色々な方向から粒子を観察して粒子の三次元的な特徴を考慮し近似的に粒子の形状を判断した上でA及びBの値を決定する。   The graphite particles used in the field electron emission device of the present invention preferably have an aspect ratio of 10 or less, more preferably an aspect ratio of 5 or less, further preferably 1.05 to 3, and 1.1. If it is -2, it is especially preferable. When the aspect ratio exceeds 10, the particles tend to be oriented on the substrate, and electrons tend not to be emitted. The aspect ratio is represented by A / B, where A is the length in the major axis direction of the graphite particles and B is the length in the minor axis direction. In the present invention, the aspect ratio is determined by enlarging graphite particles with a scanning electron microscope (SEM), arbitrarily selecting 10 graphite particles, and observing the particles from various directions to consider the three-dimensional characteristics of the particles. Then, A / B is calculated by taking A as the length in the major axis direction of the graphite particles and B as the length in the minor axis direction, and taking the average value. For example, when the graphite particles are thin and flat, such as scales, plates, blocks, etc., and have a thickness direction, the minor axis B is the thickness of the particles. In the case of particles such as rods and needles, the major axis A is the length of the particles, and the minor axis B is the thickness of the rod-like (or needle-like) particles. In addition, when the shape of a particle is changed by applying mechanical force, the particle is observed from various directions, and the shape of the particle is roughly determined in consideration of the three-dimensional characteristics of the particle. Determine the values of A and B.

本発明の電界電子放出素子に使用する黒鉛粒子のかさ密度は0.1〜1.5g/ccであることが好ましい。0.1〜1.2g/ccであればより好ましく、0.2〜1.0g/ccであればさらに好ましく、0.3〜0.8g/ccであれば特に好ましい。黒鉛粒子のかさ密度が0.1g/cc未満であると、作製する電界電子放出素子のエミッタ部の密度が低くなり、その結果、輝度が低下したり、耐久寿命が低下する傾向がある。また、この黒鉛粒子は、例えば、接着剤と溶剤を含む塗料を作製し、基板に塗布してエミッタ部を作製することができるが、黒鉛粒子のかさ密度が0.1g/cc未満であると、基板との密着強度が低下する傾向がある。また、黒鉛粒子と基板との密着強度を向上させる方法として作製する塗料に含む接着剤の量を多くすることが可能であるが、接着剤量を多くしすぎると、黒鉛粒子の表面の電子放出部を接着剤が覆う傾向があり、その結果電子放出特性が低下する傾向がある。また、かさ密度が1.5g/ccを超えても電子放出特性が低下する傾向がある。   The bulk density of the graphite particles used in the field electron emission device of the present invention is preferably 0.1 to 1.5 g / cc. It is more preferably 0.1 to 1.2 g / cc, further preferably 0.2 to 1.0 g / cc, and particularly preferably 0.3 to 0.8 g / cc. If the bulk density of the graphite particles is less than 0.1 g / cc, the density of the emitter part of the field electron emission device to be produced tends to be low. As a result, there is a tendency that the luminance is lowered and the durable life is lowered. In addition, the graphite particles can be prepared, for example, by preparing a paint containing an adhesive and a solvent and applying it to a substrate to produce an emitter part. The bulk density of the graphite particles is less than 0.1 g / cc. The adhesion strength with the substrate tends to decrease. In addition, it is possible to increase the amount of adhesive contained in the paint produced as a method for improving the adhesion strength between the graphite particles and the substrate. However, if the amount of the adhesive is too large, electron emission from the surface of the graphite particles There is a tendency that the adhesive covers the part, and as a result, the electron emission characteristic tends to be lowered. Further, even when the bulk density exceeds 1.5 g / cc, the electron emission characteristics tend to be lowered.

かさ密度の測定は、例えば、JIS−K−1469に規定されるように、黒鉛粒子100cmを、質量既知の100cmメスシリンダーを斜めにして、さじで徐々に入れ、その質量を10mgの桁まではかり、メスシリンダーにゴム栓をした後、ゴム板上で約5cmの高さから50回自然落下させ、圧縮された黒鉛粒子の体積を読み、黒鉛粒子の重量から式(1)より算出することができる。

Figure 2005209552
The bulk density is measured, for example, as specified in JIS-K-1469, with graphite particles 100 cm 3, with a 100 cm 3 graduated cylinder with a known mass slanted and gradually put with a spoon, and the mass of 10 mg digit. After measuring the volume, plug the graduated cylinder into a rubber stopper, let it fall 50 times from a height of about 5 cm on a rubber plate, read the volume of the compressed graphite particles, and calculate from the weight of the graphite particles using Equation (1). be able to.
Figure 2005209552

D:かさ密度(g/cm
m:黒鉛粒子の質量(g)
V:50回落下後の黒鉛粒子の体積(cm
本発明の電界電子放出素子に使用する黒鉛粒子の真比重は、2.19以上が好ましく、2.20以上であればより好ましく、2.21以上であればさらに好ましく、2.22以上あれば特に好ましく、2.23以上であれば最も好ましい。黒鉛粒子の真比重が2.19未満であると作製する電界電子放出素子の電子放出特性が低下する傾向がある。真比重の上限としては2.26以下であることが好ましい。真比重の測定は、例えばブタノール置換法により測定することができる。
D: Bulk density (g / cm 3 )
m: mass of graphite particles (g)
V: Volume of graphite particles after 50 drops (cm 3 )
The true specific gravity of the graphite particles used in the field electron emission device of the present invention is preferably 2.19 or more, more preferably 2.20 or more, further preferably 2.21 or more, and 2.22 or more. Particularly preferred is 2.23 or more, most preferred. If the true specific gravity of the graphite particles is less than 2.19, the electron emission characteristics of the field electron emission device to be produced tend to deteriorate. The upper limit of the true specific gravity is preferably 2.26 or less. The true specific gravity can be measured, for example, by a butanol substitution method.

本発明の電界電子放出素子に使用する黒鉛粒子中に含まれる金属不純物量としては、200000ppm以下が好ましく、100000ppm以下がより好ましく、さらには10000ppm以下が好ましく、1000ppm以下であればより好ましく、100ppm以下であればさらに好ましく、10ppm以下であれば特に好ましく、5ppm以下であれば最も好ましい。金属不純物量が200000ppmを超えると電子放出特性が低下する傾向がある。   The amount of metal impurities contained in the graphite particles used in the field electron emission device of the present invention is preferably 200,000 ppm or less, more preferably 100,000 ppm or less, further preferably 10,000 ppm or less, more preferably 1000 ppm or less, more preferably 100 ppm or less. More preferably, it is more preferably 10 ppm or less, and most preferably 5 ppm or less. When the amount of metal impurities exceeds 200,000 ppm, the electron emission characteristics tend to deteriorate.

黒鉛粒子中の金属不純物量は、例えば、黒鉛粒子を酸素を含む電気炉中で500〜1000℃程度で灰化した後の残渣重量から灰分値として算出する方法等によって測定することができる。   The amount of metal impurities in the graphite particles can be measured, for example, by a method of calculating the ash content from the weight of the residue after ashing the graphite particles at about 500 to 1000 ° C. in an electric furnace containing oxygen.

また、本発明の電界電子放出素子に使用する黒鉛粒子の比表面積が1〜100m/gであることが好ましく、1〜50m/gであればより好ましく、2〜40m/gであればさらに好ましく、2〜30m/gであれば特に好ましい。比表面積が1m/g未満であると黒鉛粒子から電子が放出しにくくなり作製する電界電子放出素子の電子放出特性が低下する傾向がある。比表面積が100m/gを超えると、例えば、接着剤と溶剤を含む塗料を作製し、基板に塗布してエミッタ部を作製するとき、基板との密着強度が低下する傾向がある。また、黒鉛粒子と基板との密着強度を向上させる方法として作製する塗料に含む接着剤の量を多くすることが可能であるが、接着剤量を多くしすぎると、黒鉛粒子の表面の電子放出部を接着剤が覆う傾向があり、その結果電子放出特性が低下する傾向がある。 It is preferable that the specific surface area of the graphite particles used in the field emission device of the present invention is 1 to 100 m 2 / g, more preferably if 1 to 50 m 2 / g, there in 2~40m 2 / g More preferably, 2 to 30 m 2 / g is particularly preferable. When the specific surface area is less than 1 m 2 / g, electrons are hardly emitted from the graphite particles, and the electron emission characteristics of the field electron emission device to be manufactured tend to be lowered. When the specific surface area exceeds 100 m 2 / g, for example, when a paint containing an adhesive and a solvent is produced and applied to the substrate to produce an emitter portion, the adhesion strength with the substrate tends to be lowered. In addition, it is possible to increase the amount of adhesive contained in the paint produced as a method for improving the adhesion strength between the graphite particles and the substrate. However, if the amount of the adhesive is too large, electron emission from the surface of the graphite particles There is a tendency that the adhesive covers the part, and as a result, the electron emission characteristic tends to be lowered.

比表面積は、例えば、窒素ガス吸着によるBET法により測定することができる。   The specific surface area can be measured, for example, by the BET method using nitrogen gas adsorption.

また、本発明は、レーザー回折式粒度分布測定で測定される黒鉛粒子の平均粒径が0.1〜100μmであることが好ましい。1〜50μmであればより好ましく、3〜30μmであればさらに好ましく、5〜30μmであれば特に好ましい。   Moreover, it is preferable that the average particle diameter of the graphite particle | grains measured by laser diffraction type particle size distribution measurement is 0.1-100 micrometers in this invention. 1 to 50 μm is more preferable, 3 to 30 μm is more preferable, and 5 to 30 μm is particularly preferable.

また、本発明の電界電子放出素子に使用する黒鉛粒子の累積90%粒径は、150μm以下が好ましく、100μm以下であればより好ましく、80μm以下であればさらに好ましく、30μm以下であれば特に好ましい。黒鉛粒子の平均粒径が100μmを超えるか、累積90%粒径が150μmを超えると、エミッタ部の表面で凹凸ができやすく、その結果、電子放出性能のバラツキが生じやすくなる傾向がある。黒鉛粒子の平均粒径が0.1μm未満であると、接着剤と溶剤を含む塗料を作製し、基板に塗布してエミッタ部を作製するとき、基板との密着強度が低下する傾向がある。   Further, the cumulative 90% particle size of the graphite particles used in the field electron emission device of the present invention is preferably 150 μm or less, more preferably 100 μm or less, further preferably 80 μm or less, and particularly preferably 30 μm or less. . If the average particle size of the graphite particles exceeds 100 μm or the cumulative 90% particle size exceeds 150 μm, the surface of the emitter part is likely to be uneven, and as a result, the electron emission performance tends to vary. When the average particle size of the graphite particles is less than 0.1 μm, when a paint containing an adhesive and a solvent is prepared and applied to the substrate to produce an emitter portion, the adhesion strength with the substrate tends to be reduced.

前記、平均粒径及び累積90%粒径は、例えば、レーザー回折式粒度分布計により測定することができる。   The average particle size and the cumulative 90% particle size can be measured by, for example, a laser diffraction particle size distribution meter.

また、本発明の電界電子放出素子に使用する黒鉛粒子は、粒子内部に細孔を有していることが好ましい。粒子内部の細孔の有無は、例えば、粒子の断面を走査型電子顕微鏡で観察することにより確認することができる。   The graphite particles used in the field electron emission device of the present invention preferably have pores inside the particles. The presence or absence of pores inside the particles can be confirmed, for example, by observing the cross section of the particles with a scanning electron microscope.

また、本発明の電界電子放出素子に使用する黒鉛粒子は、水銀圧入法により測定した10〜10Åの範囲の細孔体積が0.2〜5cc/gであることが好ましく、0.3〜4cc/gであればより好ましく、0.6〜3cc/gであればさらに好ましく、0.8〜2cc/gであれば特に好ましい。 The graphite particles used in the field electron emission device of the present invention preferably have a pore volume in the range of 10 2 to 10 6測定 measured by mercury porosimetry of 0.2 to 5 cc / g. It is more preferably 3 to 4 cc / g, further preferably 0.6 to 3 cc / g, and particularly preferably 0.8 to 2 cc / g.

10〜10Åの範囲の細孔体積が0.2cc/g未満であると作製する電界電子放出素子の電子放出特性が低下する傾向がある。また、5cc/gを超えると、黒鉛粒子と基板との密着強度が低下する傾向があり、その結果作製する電界電子放出素子の寿命が低下する傾向がある。 When the pore volume in the range of 10 2 to 10 6未 満 is less than 0.2 cc / g, the electron emission characteristics of the field electron emission device to be manufactured tend to deteriorate. On the other hand, if it exceeds 5 cc / g, the adhesion strength between the graphite particles and the substrate tends to decrease, and as a result, the lifetime of the field electron emission device produced tends to decrease.

このような構成の黒鉛粒子をエミッタ部に使用することで、電子放出特性に優れた電界電子放出素子を作製することができる。   By using graphite particles having such a configuration for the emitter portion, a field electron emission device having excellent electron emission characteristics can be produced.

また、本発明の黒鉛粒子は、単独で電界電子放出素子エミッタ部に使用することができるが、例えば、カーボンファイバー等の他の炭素材料と複合又は混合しても使用することができる。ここで、他の炭素材料としてカーボンファイバーを使用する場合、黒鉛粒子とカーボンファイバーが複合している状態とは、例えば、黒鉛粒子とカーボンファイバーが化学的に結合している状態、黒鉛粒子の一部としてカーボンファイバーが一体化している状態、黒鉛粒子の形状に起因してカーボンファイバーが物理的に結合している状態等が挙げられる。カーボンファイバーの形状としては繊維状であることが好ましいが、電界を集中しやすい形状をとるものであれば好ましく、例えば、針状、棒状、ウィスカー状、中空状等の形状が挙げられる。   In addition, the graphite particles of the present invention can be used alone in the field electron emitter emitter, but can also be used in combination with or mixed with other carbon materials such as carbon fibers. Here, when carbon fiber is used as the other carbon material, the state in which the graphite particles and the carbon fiber are combined includes, for example, a state in which the graphite particles and the carbon fiber are chemically bonded, and one of the graphite particles. Examples include a state in which carbon fibers are integrated as a part, a state in which carbon fibers are physically bonded due to the shape of graphite particles, and the like. The shape of the carbon fiber is preferably a fiber shape, but is preferably a shape that easily concentrates the electric field, and examples thereof include a needle shape, a rod shape, a whisker shape, and a hollow shape.

本発明の電界電子放出素子のエミッタ部は、アノード部とともに構成されることが必要とされ、エミッタ部とアノード部は互いに対向して配置されていることが好ましい。   The emitter part of the field electron emission device of the present invention is required to be configured together with the anode part, and the emitter part and the anode part are preferably arranged to face each other.

本発明の電界電子放出素子に使用する黒鉛粒子は、基板上に配置することが、均一な電子放出面を形成することができ好ましい。基板上に配置した後の黒鉛粒子は、見かけ密度が0.1〜1.5g/ccであることが好ましい。0.1〜1.2g/ccであればより好ましく、0.2〜1.0g/ccであればさらに好ましく、0.3〜0.8g/ccであれば特に好ましい。基板上の黒鉛粒子の見かけ密度が0.1g/cc未満であると、作製する電界電子放出素子のエミッタ部の密度が低くなり、その結果、輝度が低下したり、耐久寿命が低下する傾向がある。この黒鉛粒子を基板上に配置する方法としては、例えば、スプレイ堆積法、スクリーン印刷法、電気泳動法等によって配置することができる。黒鉛粒子は単独で基板上に配置してもよく、溶剤等とともに塗料状で使用してもよい。また、接着剤とともに基板上に固定してもよい。また、黒鉛粒子と溶剤等と接着剤とを混合して使用してもよい。固定後は、例えば熱処理等により揮発成分を除去することが好ましい。   The graphite particles used in the field electron emission device of the present invention are preferably disposed on a substrate because a uniform electron emission surface can be formed. The graphite particles after being arranged on the substrate preferably have an apparent density of 0.1 to 1.5 g / cc. It is more preferably 0.1 to 1.2 g / cc, further preferably 0.2 to 1.0 g / cc, and particularly preferably 0.3 to 0.8 g / cc. If the apparent density of the graphite particles on the substrate is less than 0.1 g / cc, the density of the emitter part of the field electron emission device to be produced decreases, and as a result, the luminance tends to decrease and the durability life tends to decrease. is there. As a method for arranging the graphite particles on the substrate, for example, a spray deposition method, a screen printing method, an electrophoresis method or the like can be used. The graphite particles may be arranged alone on the substrate, or may be used in the form of a paint with a solvent or the like. Moreover, you may fix on a board | substrate with an adhesive agent. Further, graphite particles, a solvent, etc., and an adhesive may be mixed and used. After fixation, it is preferable to remove volatile components by, for example, heat treatment.

ここで、基板上に配置した黒鉛粒子の見かけ密度は、例えば、基板上に配置した黒鉛粒子の重量及び体積の測定値から算出することができる。   Here, the apparent density of the graphite particles arranged on the substrate can be calculated from, for example, measured values of the weight and volume of the graphite particles arranged on the substrate.

基板上の黒鉛粒子の見かけ密度は、例えば、黒鉛粒子と接着剤と溶剤を混合した塗料の固形分濃度を調整して基板に塗布乾燥することで適宜調整可能である。また、基板表面の黒鉛粒子を圧縮することでも適宜調整することが可能である。使用する接着剤としては、高真空化、高電圧化で使用可能であることが好ましく、例えば、銀ペースト、エポキシ樹脂、フェノール樹脂等の熱硬化性樹脂、ゴム、熱可塑性樹脂などが挙げられる。また、溶剤としては、例えば、水、有機溶剤等、使用する接着剤や使用条件に応じて適宜選択可能である。   The apparent density of the graphite particles on the substrate can be appropriately adjusted by, for example, adjusting the solid content concentration of the paint in which the graphite particles, the adhesive, and the solvent are mixed and applying and drying to the substrate. It can also be adjusted as appropriate by compressing the graphite particles on the substrate surface. The adhesive to be used is preferably usable at high vacuum and high voltage, and examples thereof include thermosetting resins such as silver paste, epoxy resin, and phenol resin, rubber, and thermoplastic resin. Moreover, as a solvent, it can select suitably according to the adhesive agent to be used and use conditions, such as water and an organic solvent, for example.

基板上に黒鉛粒子を配置した後の黒鉛粒子の表面をX線回折で測定したときの(002)面と(110)面の回折強度比(002)/(110)は500以下であることが好ましく、400以下であればより好ましく、300以下であればさらに好ましく、200以下であれば特に好ましい。回折強度比(002)/(110)が500を超えると、作製する電界電子放出素子の電子放出特性が低下する傾向がある。回折強度比(002)/(110)の下限としては10以上であることが好ましい。   The diffraction intensity ratio (002) / (110) between the (002) plane and the (110) plane when the surface of the graphite particles after the graphite particles are arranged on the substrate is measured by X-ray diffraction is 500 or less. It is preferably 400 or less, more preferably 300 or less, and particularly preferably 200 or less. When the diffraction intensity ratio (002) / (110) exceeds 500, the electron emission characteristics of the field electron emission device to be manufactured tend to be lowered. The lower limit of the diffraction intensity ratio (002) / (110) is preferably 10 or more.

黒鉛粒子を配置する基板としては、例えば、ガラスを使用することができる。ガラスを使用する場合は、導電性の点から表面にPt等の導電材料を付していることが好ましい。   As the substrate on which the graphite particles are arranged, for example, glass can be used. In the case of using glass, it is preferable that a conductive material such as Pt is attached to the surface from the viewpoint of conductivity.

上記、本発明の電界電子放出素子は、従来の電界電子放出素子に比べ、耐熱性、耐アーク性に優れる。また、エミッタ部の電子放出の閾値電圧を引き下げることが可能であり、低い電圧で駆動し且つ長寿命の画像表示装置を作製することが可能である。画像表示装置としては、エッミタ部とアノード部を有してなる電界電子放出素子中に蛍光体を存在させ画像を表示させる電界放出ディスプレイ等が挙げられる。   The field electron emission device of the present invention is superior in heat resistance and arc resistance as compared with conventional field electron emission devices. In addition, it is possible to reduce the electron emission threshold voltage of the emitter portion, and it is possible to manufacture an image display device that is driven at a low voltage and has a long lifetime. Examples of the image display device include a field emission display in which a phosphor is present in a field electron emission element having an emitter and an anode to display an image.

以下、本発明の実施例を説明する。   Examples of the present invention will be described below.

(実施例1)
本発明になる電界電子放出素子は、図2に示す構成にてその性能を評価した。ガラス製の基板1の表面にPt製の素子電極2を配置し、その上部にエミッタ部3として黒鉛粒子A(日立化成工業(株)製 黒鉛粒子サンプル)を配置した。配置した黒鉛粒子の厚みは100μm、直径1mmの円形、見かけ密度を0.8g/ccとした。次いで、エミッタ部に対向するようにアノード部4を配置した。エミッタ部表面とアノード部の距離は0.5mmとした。得られた電界電子放出素子を、真空ポンプ8により真空度10−5Paにした真空槽7内で、エミッタ部とアノード部間に電圧を印加するための電源6により0〜10V/μmの電界をかけ電子放出電流をエミッタ部(黒鉛粒子)とアノード部間を流れる電流を測定するための電流計5によって測定した。黒鉛粒子Aの物性値及び電子放出開始電界値を表1に示す。また、図3に電界値と電子放出電流値の関係を示す。
(Example 1)
The performance of the field electron emission device according to the present invention was evaluated using the configuration shown in FIG. An element electrode 2 made of Pt was arranged on the surface of a glass substrate 1, and graphite particles A (graphite particle sample made by Hitachi Chemical Co., Ltd.) were arranged as the emitter part 3 on the upper part. The arranged graphite particles had a thickness of 100 μm, a diameter of 1 mm, and an apparent density of 0.8 g / cc. Next, the anode part 4 was disposed so as to face the emitter part. The distance between the emitter surface and the anode was 0.5 mm. The obtained field electron-emitting device is subjected to an electric field of 0 to 10 V / μm by a power source 6 for applying a voltage between the emitter part and the anode part in a vacuum chamber 7 having a degree of vacuum of 10 −5 Pa by a vacuum pump 8. The electron emission current was measured by an ammeter 5 for measuring the current flowing between the emitter part (graphite particles) and the anode part. Table 1 shows the physical property values and electron emission starting electric field values of the graphite particles A. FIG. 3 shows the relationship between the electric field value and the electron emission current value.

(比較例1)
エミッタ部として、メソフェーズ球状炭素粒子を2800℃で黒鉛化処理をした球状黒鉛粒子を使用した以外は、実施例1と同様の方法で電界電子放出素子を作製し、実施例1と同様の方法で電子放出開始電界値を測定した。表1に黒鉛粒子の物性値及び電子放出開始電界値を示す。また、図3に電界値と電子放出電流値の関係を示す。
(Comparative Example 1)
A field electron-emitting device was produced in the same manner as in Example 1 except that mesophase spherical carbon particles were graphitized at 2800 ° C. as the emitter, and a field electron-emitting device was produced in the same manner as in Example 1. The electron emission starting electric field value was measured. Table 1 shows physical property values and electron emission starting electric field values of the graphite particles. FIG. 3 shows the relationship between the electric field value and the electron emission current value.

(比較例2)
中国産天然黒鉛をジェットミルで粉砕して作製した黒鉛粒子をエミッタ部に使用した以外は、実施例1と同様の方法で電界電子放出素子を作製し、実施例1と同様の方法で電子放出開始電界値を測定した。表1に黒鉛粒子の物性値及び電子放出開始電界値を示す。また、図3に電界値と電子放出電流値の関係を示す。

Figure 2005209552
(Comparative Example 2)
A field electron-emitting device was produced in the same manner as in Example 1 except that graphite particles produced by pulverizing Chinese natural graphite with a jet mill were used in the emitter portion, and electron emission was conducted in the same manner as in Example 1. The starting electric field value was measured. Table 1 shows physical property values and electron emission starting electric field values of the graphite particles. FIG. 3 shows the relationship between the electric field value and the electron emission current value.
Figure 2005209552

表1に示されるように、本発明の黒鉛粒子をエミッタ部に使用した電界電子放出素子は、低い駆動電圧で良好な電子放出特性を示すことが示された。   As shown in Table 1, it was shown that the field electron-emitting device using the graphite particles of the present invention in the emitter portion exhibits good electron emission characteristics at a low driving voltage.

本発明の電界電子放出素子のエミッタ部に使用した黒鉛粒子の走査型電子顕微鏡写真の1例である。It is an example of the scanning electron micrograph of the graphite particle used for the emitter part of the field electron emission element of the present invention. 本発明の実施例で、電子放出特性の測定に用いた電界電子放出素子の概略図である。In the Example of this invention, it is the schematic of the field electron emission element used for the measurement of an electron emission characteristic. 実施例1、比較例1及び2で作製した電界電子放出素子の電界値と電子放出電流値の関係を示すグラフである。It is a graph which shows the relationship between the electric field value and electron emission current value of the field electron emission element produced in Example 1 and Comparative Examples 1 and 2.

符号の説明Explanation of symbols

1 基板
2 素子電極
3 エミッタ部(黒鉛粒子)
4 アノード部
5 エミッタ部(黒鉛粒子)とアノード部間を流れる電流を測定するための電流計
6 エミッタ部(黒鉛粒子)とアノード部間に電圧を印加するための電源
7 真空槽
8 真空ポンプ
1 Substrate 2 Element electrode 3 Emitter (graphite particles)
4 Anode 5 Ammeter for measuring current flowing between emitter (graphite particles) and anode 6 Power supply 7 for applying voltage between emitter (graphite particles) and anode 7 Vacuum chamber 8 Vacuum pump

Claims (7)

エミッタ部と、アノード部を有する電界電子放出素子であって、エミッタ部に黒鉛粒子を含み、該黒鉛粒子は複数の扁平状の粒子の配向面が非平行となるように集合又は結合してなる電界電子放出素子。   A field electron emission device having an emitter and an anode, wherein the emitter includes graphite particles, and the graphite particles are assembled or combined so that the orientation planes of a plurality of flat particles are non-parallel. Field electron emission device. 黒鉛粒子の広角X線回折で測定される結晶の層間距離d(002)が3.40Å以下、結晶のc軸方向の結晶子サイズLc(002)が300Å以上である請求項1記載の電界電子放出素子。   2. The field electron according to claim 1, wherein the interlayer distance d (002) of the crystal measured by wide-angle X-ray diffraction of the graphite particles is 3.40 mm or less, and the crystallite size Lc (002) in the c-axis direction of the crystal is 300 mm or more. Emitting element. 黒鉛粒子のアスペクト比が10以下である請求項1又は2記載の電界電子放出素子。   The field electron-emitting device according to claim 1 or 2, wherein the graphite particles have an aspect ratio of 10 or less. レーザー回折式粒度分布計で測定される黒鉛粒子の平均粒径が0.1〜100μmである請求項1〜3いずれか1項に記載の電界電子放出素子。   The field electron-emitting device according to any one of claims 1 to 3, wherein an average particle diameter of the graphite particles measured with a laser diffraction particle size distribution meter is 0.1 to 100 µm. 請求項1〜4いずれかに1項に記載の電界電子放出素子を使用してなる画像表示装置。   An image display device using the field electron-emitting device according to claim 1. 黒鉛粒子を含んでなるエミッタ部とアノード部を有する電界電子放出素子に使用される電界電子放出素子エミッタ部用黒鉛粒子であって、該黒鉛粒子が、複数の扁平状の粒子の配向面が非平行となるように集合又は結合してなる電界電子放出素子エミッタ部用黒鉛粒子。   A graphite particle for an emitter portion of a field electron emission device used for a field electron emission device having an emitter portion and an anode portion comprising graphite particles, wherein the graphite particle has a non-oriented plane of a plurality of flat particles. Graphite particles for a field electron emission element emitter portion, which are assembled or combined so as to be parallel. 広角X線回折で測定される結晶の層間距離d(002)が3.40Å以下、結晶のc軸方向の結晶子サイズLc(002)が300Å以上、アスペクト比が10以下、レーザー回折粒度分布計で測定される平均粒径が0.1〜100μmである請求項6記載の電界電子放出素子エミッタ部用黒鉛粒子。   Laser diffraction particle size distribution meter having a crystal interlayer distance d (002) of 3.40 mm or less, crystallite size Lc (002) in the c-axis direction of 300 mm or more, aspect ratio of 10 or less, as measured by wide-angle X-ray diffraction The graphite particle for an emitter part of a field electron emission device according to claim 6, wherein the average particle diameter measured by (1) is 0.1 to 100 µm.
JP2004016411A 2004-01-23 2004-01-23 Field electron emission device, graphite particles for field electron emission device emitter, and image display device Expired - Fee Related JP4525087B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004016411A JP4525087B2 (en) 2004-01-23 2004-01-23 Field electron emission device, graphite particles for field electron emission device emitter, and image display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004016411A JP4525087B2 (en) 2004-01-23 2004-01-23 Field electron emission device, graphite particles for field electron emission device emitter, and image display device

Publications (2)

Publication Number Publication Date
JP2005209552A true JP2005209552A (en) 2005-08-04
JP4525087B2 JP4525087B2 (en) 2010-08-18

Family

ID=34901566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004016411A Expired - Fee Related JP4525087B2 (en) 2004-01-23 2004-01-23 Field electron emission device, graphite particles for field electron emission device emitter, and image display device

Country Status (1)

Country Link
JP (1) JP4525087B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100132674A1 (en) * 2007-07-12 2010-06-03 Toyota Jidosha Kabushiki Kaisha Spark-ignited internal combustion engine and method of controlling the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11213866A (en) * 1998-01-22 1999-08-06 Sony Corp Electron-emitting device, its manufacture, and display apparatus using the device
JP2000090813A (en) * 1998-06-18 2000-03-31 Matsushita Electric Ind Co Ltd Electron emission element, electron emission source, their manufacture, image display device using them, and its manufacture
JP2000156148A (en) * 1998-09-16 2000-06-06 Agency Of Ind Science & Technol Emitter and manufacture thereof
JP2000204304A (en) * 1999-01-11 2000-07-25 Matsushita Electronics Industry Corp Carbon ink, electron release element, production of the same element, and image indication device
JP2000306492A (en) * 1999-04-21 2000-11-02 Hitachi Powdered Metals Co Ltd Field emission cathode, electron emission device, and manufacture of electron emission device
JP2002093305A (en) * 2000-07-12 2002-03-29 Akio Hiraki Electron emitting negative electrode
JP2002358873A (en) * 2001-05-30 2002-12-13 Tokyo Cathode Laboratory Co Ltd Surface treatment method of carbon matter material for field electron emission material
JP2004018986A (en) * 2002-06-19 2004-01-22 Mitsubishi Materials Corp Discharge electrode and manufacturing method therefor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11213866A (en) * 1998-01-22 1999-08-06 Sony Corp Electron-emitting device, its manufacture, and display apparatus using the device
JP2000090813A (en) * 1998-06-18 2000-03-31 Matsushita Electric Ind Co Ltd Electron emission element, electron emission source, their manufacture, image display device using them, and its manufacture
JP2000156148A (en) * 1998-09-16 2000-06-06 Agency Of Ind Science & Technol Emitter and manufacture thereof
JP2000204304A (en) * 1999-01-11 2000-07-25 Matsushita Electronics Industry Corp Carbon ink, electron release element, production of the same element, and image indication device
JP2000306492A (en) * 1999-04-21 2000-11-02 Hitachi Powdered Metals Co Ltd Field emission cathode, electron emission device, and manufacture of electron emission device
JP2002093305A (en) * 2000-07-12 2002-03-29 Akio Hiraki Electron emitting negative electrode
JP2002358873A (en) * 2001-05-30 2002-12-13 Tokyo Cathode Laboratory Co Ltd Surface treatment method of carbon matter material for field electron emission material
JP2004018986A (en) * 2002-06-19 2004-01-22 Mitsubishi Materials Corp Discharge electrode and manufacturing method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100132674A1 (en) * 2007-07-12 2010-06-03 Toyota Jidosha Kabushiki Kaisha Spark-ignited internal combustion engine and method of controlling the same
US8555832B2 (en) * 2007-07-12 2013-10-15 Toyota Jidosha Kabushiki Kaisha Spark-ignited internal combustion engine and method of controlling the same

Also Published As

Publication number Publication date
JP4525087B2 (en) 2010-08-18

Similar Documents

Publication Publication Date Title
US7678452B2 (en) Carbon nanotube hybrid system using carbide-derived carbon, a method of making the same, an electron emitter comprising the same, and an electron emission device comprising the electron emitter
Poa et al. Field emission from nonaligned carbon nanotubes embedded in a polystyrene matrix
Chen et al. Field-emission from long Sn O 2 nanobelt arrays
ES2939885T3 (en) Procedure for the fabrication of an electron emitter with a coating containing nanorods
JP4843001B2 (en) ELECTRON EMITTING SOURCE, ELECTRONIC DEVICE USING THE SAME, AND METHOD FOR MANUFACTURING ELECTRON EMITTING SOURCE
Uemura et al. 39.3: Carbon Nanotube FED Elements
US20080169749A1 (en) Carbide derived carbon, emitter for cold cathode including the same and electron emission device including the emitter
Sun et al. High-performance field emission of carbon nanotube paste emitters fabricated using graphite nanopowder filler
Tsai et al. Bias effect on the growth of carbon nanotips using microwave plasma chemical vapor deposition
Egorov et al. Carbon-based field emitters: properties and applications
JP3809182B2 (en) Electron emitting material, method for manufacturing the same, and electron emitting device using the same
US20100072879A1 (en) Field emission device with anode coating
JP4525087B2 (en) Field electron emission device, graphite particles for field electron emission device emitter, and image display device
CN101181990A (en) Method of preparing a carbonaceous material for an emitter of an electron emission device
JP4496787B2 (en) Field electron emission device, image display device, electron beam irradiation device, and field emission transistor
JP2005209553A (en) Electric field electron emitting element, carbon material for electric field electron emitting element emitter part, and picture display device
Zhi-Qin et al. Controlled growth of carbon nanotubes and its field emission properties
Yue et al. Amazing ageing property and in situ comparative study of field emission from tungsten oxide nanowires
CN101663724A (en) Field emission device
Saito et al. Synthesis, structure and field emission of carbon nanotubes
JP4554260B2 (en) Expanded carbon fiber, method for producing the same, field emission device including the same, and field emission display
TWI309428B (en) Emission source having carbon nanotube
JP2005222847A (en) Paste for electron source and flat type image display device using the same
TW200814123A (en) Electron emission material and electron emitter using the same
KR100809526B1 (en) Field emission display device with metal magnetic nano wire made by plasma surface modification and method of fabricating the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100524

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees