JP2005197625A - Compound multiflow heat dispersion device - Google Patents

Compound multiflow heat dispersion device Download PDF

Info

Publication number
JP2005197625A
JP2005197625A JP2004082027A JP2004082027A JP2005197625A JP 2005197625 A JP2005197625 A JP 2005197625A JP 2004082027 A JP2004082027 A JP 2004082027A JP 2004082027 A JP2004082027 A JP 2004082027A JP 2005197625 A JP2005197625 A JP 2005197625A
Authority
JP
Japan
Prior art keywords
heat
heat dissipating
flow
dissipator
fins
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004082027A
Other languages
Japanese (ja)
Inventor
Li-Kuang Tan
理光 譚
Yu-Hung Huang
裕鴻 黄
Chin-Ming Chen
錦明 陳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taida Electronic Industry Co Ltd
Original Assignee
Taida Electronic Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taida Electronic Industry Co Ltd filed Critical Taida Electronic Industry Co Ltd
Publication of JP2005197625A publication Critical patent/JP2005197625A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/467Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing gases, e.g. air
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3672Foil-like cooling fins or heat sinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compound multiflow heat dispersion device which is constituted of a plurality of heat dispersion units with a wide-ranging path. <P>SOLUTION: The compound multiflow heat dispersion device 100 is constituted of a plurality of heat dispersion units 102, 104, 106, 108. Each of the heat dispersion units 102, 104, 106, 108 consists of heat conducting bases 112, 114, and a plurality of heat dispersion fins 122, 124, 126, 128 arranged parallel mutually in the heat conducting bases 112, 114. Adjacent two of the plurality of heat dispersion fins 122, 124, 126, 128 are arranged in different directions, respectively. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は散熱器に関するものであって、特に、多方面経路を有する複数の散熱単体から構成される複合式多流向散熱器である。   The present invention relates to a heat dissipator, and in particular, is a composite multi-flow direction heat dissipator composed of a plurality of heat dissipating elements having multi-directional paths.

電子装置の功能が向上するにつれて、散熱装置、或いは、散熱システムは現行の電子装置中、不可欠なものとなっている。電子装置が生成する熱エネルギーは、適切に散逸されないと、功能の劣化を招き、電子装置を焼滅させる恐れがある。散熱装置は、積層回路等のマイクロ電子装置にとっては、更に重要で、集積度が増加し、パッケージ技術が発展するにつれて、積層回路の面積が縮小すると共に、単位面積ごとに累積した熱エネルギーも相対して、更に高くなり、故に、散熱効果が高い散熱装置は、電子産業において、積極的に研究されている。   As the capabilities of electronic devices improve, heat dissipating devices or heat dissipating systems have become indispensable in current electronic devices. If the heat energy generated by the electronic device is not properly dissipated, it can degrade performance and burn the electronic device. The heat dissipation device is more important for a microelectronic device such as a laminated circuit. As the degree of integration increases and the packaging technology develops, the area of the laminated circuit decreases and the accumulated heat energy per unit area is also relative. Thus, heat dissipation devices that are even higher and therefore have a higher heat dissipation effect are being actively researched in the electronics industry.

一般に、散熱装置は、被散熱装置(例えば、CPU)の表面上に設置されて、熱エネルギーを散逸させる。図1Aは、公知の散熱装置10の構造を示す図である。図1Aで示されるように、散熱装置10は、軸流ファン20と散熱器30とからなる。軸流ファン20は、ファンフレーム22とハブ24とハブ24の周囲に形成された複数のファンブレード26とからなる。散熱器30は導熱台座32と複数の散熱フィン34とから構成される。   Generally, a heat dissipation device is installed on the surface of a heat dissipation device (eg, CPU) to dissipate heat energy. FIG. 1A is a diagram showing the structure of a known heat dissipation device 10. As shown in FIG. 1A, the heat dissipation device 10 includes an axial fan 20 and a heat dissipator 30. The axial fan 20 includes a fan frame 22, a hub 24, and a plurality of fan blades 26 formed around the hub 24. The heat dissipator 30 includes a heat conduction base 32 and a plurality of heat dissipating fins 34.

散熱装置10を組み立てる時、ファン20は散熱器30の散熱フィン34に鎖固され、その後、被散熱装置(図示せず、例えばCPU)を散熱器30の導熱台座32の底部中央に貼接する。ファン20のハブ24は、散熱器30の中央領域に対応し、複数のファンブレード26は、中央領域の外周を環繞する周辺領域に対応する。   When assembling the heat dissipating device 10, the fan 20 is chained to the heat dissipating fins 34 of the heat dissipator 30, and then the heat dissipating device (not shown, for example, CPU) is adhered to the center of the bottom of the heat conducting base 32 of the heat dissipator 30. The hub 24 of the fan 20 corresponds to the central region of the heat dissipator 30, and the plurality of fan blades 26 correspond to the peripheral region surrounding the outer periphery of the central region.

被散熱装置が生成する熱エネルギーが散熱器30に伝導する時、熱エネルギーは、導熱台座32の底部中央から、各散熱フィン34に伝導し、更に、ファン20の吹風により、被散熱装置が生成する熱エネルギーを散逸する。上述から分かるように、被散熱装置が熱エネルギーを生成する時、散熱器30の中央領域は、熱エネルギーが主に集中する領域で、周辺領域に向かって逓減していく。しかし、公知の散熱装置10は、散熱器30がファン20のハブ24に位置し、散熱器30の中央領域の散熱効果は周辺領域より悪い。散熱器30の中央領域の散熱は、ファン20のハブ24に影響されるからである。更に、公知の散熱器30の散熱フィン34は、単一方向(図1AのY軸方向)に配列され、ファン20が運転する時、各ファンブレード26が生成する気流は、ファンブレード26周縁の切線方向に流出し、故に、散熱器30の気体経路は、Y軸方向だけに形成され、つまり、ファン20が生成する冷却気流は、主に、散熱フィン34間の隙間両側から流出する。更に、ファンブレード26がX軸方向に生成する気流は、まず、散熱フィン34に正面から衝突した後、転向して、散熱フィン34間の隙間両側に追いやられて流出し、これにより、ファン20が生じる冷却気流は散熱フィン34間で流れが円滑でなく、流速も阻害を受けて遅延し、故に、散熱器30の中央領域の冷却効果が好ましくない原因となっている。   When the heat energy generated by the heat dissipating device is conducted to the heat dissipator 30, the heat energy is conducted from the center of the bottom of the heat conducting pedestal 32 to each heat dissipating fin 34, and further, the heat dissipating device is generated by the blowing air of the fan 20. To dissipate heat energy. As can be seen from the above, when the heat dissipation device generates heat energy, the central area of the heat dissipator 30 is an area where the heat energy is mainly concentrated and gradually decreases toward the peripheral area. However, in the known heat dissipating device 10, the heat dissipator 30 is located on the hub 24 of the fan 20, and the heat dissipating effect in the central region of the heat dissipator 30 is worse than the peripheral region. This is because the heat dissipation in the central region of the heat dissipator 30 is affected by the hub 24 of the fan 20. Furthermore, the heat dissipating fins 34 of the known heat dissipator 30 are arranged in a single direction (the Y-axis direction in FIG. 1A), and when the fan 20 is operated, the air flow generated by each fan blade 26 is The gas flow of the heat dissipator 30 is formed only in the Y-axis direction, that is, the cooling airflow generated by the fan 20 mainly flows out from both sides of the gap between the heat dissipating fins 34. Further, the airflow generated by the fan blade 26 in the X-axis direction first collides with the heat dissipating fins 34 from the front, then turns, and is driven out to both sides of the gap between the heat dissipating fins 34 and flows out. The cooling airflow that is generated is not smooth between the heat dissipating fins 34, and the flow velocity is also hindered and delayed, and therefore the cooling effect in the central region of the heat dissipator 30 is undesirable.

図1Bは、公知のもう一つの散熱装置50の構造を示す図である。図1Bで示されるように、散熱器30の経路不足の問題を解決するため、散熱器70の散熱フィン74は、図示されるY軸方向に平行に、導熱台座72上に配置され、且つ、所定の間隔を残し、散熱器70がX及びY軸方向に、複数の気体経路を形成している。しかし、散熱器70の設計は、中央領域の経路を増加して、ファン20が生成する冷却気流を、異なる方向(X軸及びY軸方向)で散熱器70の中央領域に流れるようにしているが、この設計は散熱器70の散熱フィン74の面積を約30%減少させ、よって、散熱装置50全体の対流効果を減少させる。この他、ファン20が生成する冷却気流は、散熱器70のX軸及びY軸方向の経路上で互いに衝突し合い、冷却気流の抵抗が増加して、散熱フィン74を流れる冷却気流の流速及び流量を大幅に減少させ、被散熱装置の散熱問題を解決することが出来ない。   FIG. 1B is a view showing the structure of another known heat dissipation device 50. As shown in FIG. 1B, in order to solve the problem of insufficient path of the heat dissipator 30, the heat dissipating fins 74 of the heat dissipator 70 are arranged on the heat conduction base 72 in parallel to the Y-axis direction shown in the figure, and The heat dissipator 70 forms a plurality of gas paths in the X and Y axis directions, leaving a predetermined interval. However, the design of the heat dissipator 70 increases the path of the central region so that the cooling airflow generated by the fan 20 flows to the central region of the heat dissipator 70 in different directions (X-axis and Y-axis directions). However, this design reduces the area of the heat dissipating fins 74 of the heat dissipator 70 by approximately 30%, thus reducing the overall convective effect of the heat dissipating device 50. In addition, the cooling airflow generated by the fan 20 collides with each other on the path in the X-axis and Y-axis directions of the heat dissipator 70, the resistance of the cooling airflow increases, and the flow velocity of the cooling airflow flowing through the heat dissipation fins 74 and The flow rate is greatly reduced and the heat dissipation problem of the heat dissipation device cannot be solved.

本発明は、多方面経路を有する複数の散熱単体からなる複合式多流向散熱器を提供し、効果的に、公知の散熱器中心領域の散熱効果を改善し、散熱器全体の散熱効果を向上させることを目的とする。   The present invention provides a composite multi-flow direction heat dissipator composed of a plurality of single heat dissipators having multi-directional paths, effectively improving the heat dissipating effect in the central area of the known heat dissipator and improving the heat dissipating effect of the entire heat dissipator. The purpose is to let you.

本発明の散熱器は、複数の散熱単体から構成され、各散熱単体は、導熱台座と、互いに平行に前記導熱台座に配置された、複数の散熱フィンと、からなる。複数の散熱フィンは、相隣する二つがそれぞれ、異なる方向に配列される。   The heat dissipator of the present invention is composed of a plurality of heat dissipating elements, and each heat dissipating element is composed of a heat-conducting pedestal and a plurality of heat-dissipating fins arranged on the heat-conducting pedestal in parallel with each other. Two or more adjacent heat dissipation fins are arranged in different directions.

本発明の複合式多流向散熱器によると、散熱単体は異なる形状の多辺形導熱台座、或いは、更に多くの二等辺三角形導熱台座、或いは、扇形導熱台座を組み合わせて、多くの経路を有する散熱器に設計し、散熱器中心領域の経路不足の問題を解決するだけでなく、更に、流体と散熱フィン間の接触面積を増加させて、散熱器全体の散熱効果を向上することが出来る。   According to the composite multi-flow heat sink of the present invention, a single heat dissipating unit is a multi-sided heat conducting pedestal with a different shape, or more isosceles triangular heat conducting pedestals, or a combination of fan-shaped heat conducting pedestals, and has a large number of paths. In addition to solving the problem of insufficient path in the central area of the heat spreader, the contact area between the fluid and the heat dissipation fins can be increased to improve the heat dissipation effect of the entire heat spreader.

本発明の複合式多流向散熱器の特色を詳述するため、以下では、本発明の散熱器の好ましい実施例及び相関図の説明のみを提供する。本発明の複合式多流向散熱器は、散熱ファンと組み合わせて、被散熱装置に対し、好ましい散熱効果を提供するもので、以下では、散熱ファン、及び被散熱装置に対する詳述は省略する。   In order to detail the features of the combined multi-flow heat sink of the present invention, the following provides only a description of a preferred embodiment of the heat sink of the present invention and a correlation diagram. The combined multi-flow heat sink of the present invention provides a preferable heat dissipation effect for the heat-dissipating device in combination with the heat-dissipating fan. Hereinafter, detailed description of the heat-dissipating fan and the heat-dissipating device is omitted.

図2A及び図2Bは、本発明の複合式多流向散熱器100の第一実施例を示す。図2A及び図2Bで示されるように、散熱器100は、四個の散熱単体102、104、106、及び108からなり、各散熱単体102、104、106、及び108はそれぞれ、導熱台座112、114、116、118、及び、対応する導熱台座112、114、116、118に平行に配置された複数の散熱フィン122、124、126、128を備える。散熱単体102と108の導熱台座112、118は三角形の台座で、散熱単体104、106の導熱台座114、116は五角形の台座である。この他、散熱単体104、106の二側は、それぞれ、二個の延長部分130を備える。延長部分130の頂端はフック132で、故に、散熱単体102、104、106、及び108が合わされて散熱器100になった後、四個の延長部分130のフック132は、散熱ファンの係合装置(図示せず)と合わせられ、散熱器100と散熱ファンを散熱装置として組み立てる。   2A and 2B show a first embodiment of the composite multi-flow heat sink 100 of the present invention. As shown in FIGS. 2A and 2B, the heat dissipator 100 is composed of four heat dissipating elements 102, 104, 106, and 108, and each of the heat dissipating elements 102, 104, 106, and 108 is a heat transfer pedestal 112, 114, 116, 118 and a plurality of heat dissipating fins 122, 124, 126, 128 arranged in parallel to the corresponding heat conduction pedestals 112, 114, 116, 118. The heat transfer bases 112 and 118 of the heat dissipating elements 102 and 108 are triangular bases, and the heat transfer bases 114 and 116 of the heat dissipating elements 104 and 106 are pentagonal bases. In addition, each of the two sides of the heat dissipating elements 104 and 106 includes two extending portions 130. The top end of the extension 130 is a hook 132, so after the heat dissipating elements 102, 104, 106, and 108 are combined into the heat dissipator 100, the hooks 132 of the four extensions 130 are connected to the heat dissipating fan engagement device. (Not shown) and the heat dissipator 100 and the heat dissipating fan are assembled as a heat dissipating device.

本実施例において、散熱単体102、104、106、及び108はそれぞれ、導熱台座112、114、116、118により、対応する複数の散熱フィン122、124、126、128と、銅、銅合金、アルミ、或いは、アルミ合金等の金属材質により、一体成形される。この他、各散熱単体102、104、106、及び108はそれぞれ、二面が導熱台座112、114、116、118の周縁に位置する溶接面115を備え、散熱単体102、104、106、及び108の溶接面115により、本発明の複合式多流向散熱器100を形成する。   In the present embodiment, the heat dissipating elements 102, 104, 106, and 108 are respectively connected to a plurality of heat dissipating fins 122, 124, 126, 128, copper, copper alloy, and aluminum by means of heat conducting pedestals 112, 114, 116, 118, respectively. Alternatively, it is integrally formed of a metal material such as an aluminum alloy. In addition, each of the heat dissipating units 102, 104, 106, and 108 includes a welding surface 115 having two surfaces positioned on the periphery of the heat conducting pedestals 112, 114, 116, 118, and each of the heat dissipating units 102, 104, 106, and 108 is provided. The composite multi-flow heat sink 100 of the present invention is formed by the welding surface 115 of the present invention.

散熱器100の流動方向、即ち、経路は、本発明の第一実施例の散熱器100の各散熱単体102、104、106、及び108の散熱フィン122、124、126、128が、それぞれ、異なる方向に配列されている。図2Aで示されるように、散熱フィン122は、+X軸方向に配列され、散熱フィン128は、−X軸方向に配列され、散熱フィン124は、−Y軸方向に配列され、散熱フィン126は、+Y軸方向に配列され、故に、散熱単体102上の散熱フィン122は、それぞれ、相隣する散熱単体104、106上の散熱フィン124、126と相互に接合すると共に、90度の、L状の挟角の組み合わせを呈し、同様に、散熱単体104、106及び108上の散熱フィン124、126、及び128は、相隣する散熱フィンとL状の接合を呈する。   The flow direction, that is, the path of the heat dissipator 100 is different for each heat dissipating fins 122, 124, 126, and 128 of the heat dissipating elements 102, 104, 106, and 108 of the heat dissipator 100 of the first embodiment of the present invention. Arranged in the direction. 2A, the heat dissipation fins 122 are arranged in the + X axis direction, the heat dissipation fins 128 are arranged in the −X axis direction, the heat dissipation fins 124 are arranged in the −Y axis direction, and the heat dissipation fins 126 are , + Y-axis direction, so that the heat dissipating fins 122 on the heat dissipating element 102 are joined to the heat dissipating fins 124, 126 on the adjacent heat dissipating elements 104, 106, respectively, and 90 degrees, L-shaped Similarly, the heat dissipating fins 124, 126, and 128 on the heat dissipating elements 104, 106, and 108 exhibit L-shaped joints with the adjacent heat dissipating fins.

故に、散熱ファンと本発明の散熱器100の組み合わせ後、ファンが生成する冷却気流は、散熱単体102、104、106、及び108により形成される流体経路により、散熱器100中心から外に流出する。ファンが生成する冷却気流は、散熱器100中心部の熱(被散熱装置が生成する熱)を、異なる経路に沿って散逸させる。これにより、流体と散熱フィン122、124、126、128の接触面積が増加するだけでなく、冷却気流は散熱器100の散熱単体102、104、106、及び108が形成する四方向の経路上も相互に衝突せず、散熱フィン122、124、126、及び128の冷却気流の流速及び流量は大幅に増加し、散熱器100全体の散熱効能を向上させる。   Therefore, after the combination of the heat dissipation fan and the heat dissipator 100 of the present invention, the cooling airflow generated by the fan flows out from the center of the heat dissipator 100 by the fluid path formed by the heat dissipating elements 102, 104, 106, and 108. . The cooling airflow generated by the fan dissipates heat at the center of the heat dissipator 100 (heat generated by the heat-dissipated device) along different paths. This not only increases the contact area between the fluid and the heat dissipating fins 122, 124, 126, and 128, but the cooling airflow also travels on the four-way paths formed by the heat dissipating elements 102, 104, 106, and 108 of the heat dissipator 100. Without colliding with each other, the flow velocity and flow rate of the cooling airflow of the heat dissipating fins 122, 124, 126, and 128 are greatly increased, improving the heat dissipating efficiency of the entire heat dissipator 100.

図2Cは、本発明の複合式多流向散熱器150の第二実施例を示す図である。本実施例において、散熱器150と散熱器100の相違は、散熱器150の底部は、更に、導熱基板140を備え、銅、或いは、銅合金からなり、銅の熱伝導性はその他の金属よりよいことから、被散熱装置(例えば、CPU)は導熱基板140の外表面の中央部に貼接され、これにより、導熱基板140により、被散熱装置が生成する熱を迅速に各散熱単体上に伝導できる。この他、本実施例において、導熱基板140は、はんだペースト、或いは、導熱ゲル145等、低耐熱の粘着剤を、散熱器150との接合面に塗布し、各散熱単体の導熱基板と接着し、これにより、散熱器150と被散熱装置間の耐熱を減少させて、本発明の散熱器150に、更に、効果的に、散熱効果を備えさせる。   FIG. 2C is a view showing a second embodiment of the combined multi-flow heat sink 150 of the present invention. In the present embodiment, the difference between the heat dissipator 150 and the heat dissipator 100 is that the bottom of the heat dissipator 150 is further provided with a heat conductive substrate 140 and is made of copper or a copper alloy, and the heat conductivity of copper is higher than that of other metals. For this reason, the heat-dissipating device (for example, CPU) is attached to the central portion of the outer surface of the heat conducting substrate 140, so that heat generated by the heat-dissipating device can be quickly transferred onto each heat dissipating unit by the heat conducting substrate 140. Can conduct. In addition, in this embodiment, the heat conductive substrate 140 is coated with a low heat-resistant adhesive such as solder paste or heat conductive gel 145 on the joint surface with the heat dissipator 150 and bonded to each heat dissipating substrate. Thus, the heat resistance between the heat dissipator 150 and the heat dissipating device is reduced, and the heat dissipator 150 of the present invention is more effectively provided with a heat dissipating effect.

図3Aと図3Bは、本発明の複合式多流向散熱器200の第三実施例を示す図である。図3Aと図3Bで示されるように、散熱器200と第一実施例の散熱器100との相違は、散熱器200は、三個の散熱単体202、204、及び208から構成され、各散熱単体202、204、及び208は、それぞれ、導熱台座212、214、218、及び、対応する導熱台座212、214、218に平行に配置された複数の散熱フィン222、224、228を備える。散熱単体204と208の導熱台座214、218は三角形の台座で、散熱単体202の導熱台座212は、砂時計状である。この他、散熱単体202は、四個の延長部分230を備える。延長部分230の頂端はフック232で、故に、散熱単体202、204、及び208が組み合わされて散熱器200になった後、四個の延長部分230のフック232は、散熱ファンの係合装置(図示せず)と合わせられ、散熱器200と散熱ファンを散熱装置に組み立てる。この他、各散熱単体202、204、及び208は、それぞれ、導熱台座212、214、218により、対応する複数の散熱フィン222、224、及び228と、銅、銅合金、アルミ、或いは、アルミ合金等の金属材質により、一体成形される。更に、各散熱単体202、204、及び208はそれぞれ、導熱台座212、214、218の周縁に位置する溶接面215を備え、散熱単体202、204及び208の溶接面215により、本発明の複合式多流向散熱器200を形成する。   3A and 3B are views showing a third embodiment of the combined multi-flow heat sink 200 of the present invention. As shown in FIG. 3A and FIG. 3B, the difference between the heat dissipator 200 and the heat dissipator 100 of the first embodiment is that the heat dissipator 200 is composed of three heat dissipating elements 202, 204, and 208. The single units 202, 204, and 208 include heat-conducting pedestals 212, 214, 218 and a plurality of heat-dissipating fins 222, 224, 228 arranged in parallel to the corresponding heat-conducting pedestals 212, 214, 218, respectively. The heat-conducting pedestals 214 and 218 of the heat dissipating elements 204 and 208 are triangular pedestals, and the heat-conducting pedestal 212 of the heat dissipating element 202 has an hourglass shape. In addition, the single heat dissipating unit 202 includes four extension portions 230. The top end of the extension 230 is a hook 232, so after the heat dissipating elements 202, 204, and 208 are combined into the heat dissipator 200, the hooks 232 of the four extensions 230 are dissipated in the heat dissipating fan engagement device ( The heat dissipator 200 and the heat dissipating fan are assembled into a heat dissipating device. In addition, each of the heat dissipating elements 202, 204, and 208 is respectively connected to a plurality of heat dissipating fins 222, 224, and 228 and copper, copper alloy, aluminum, or aluminum alloy by heat conduction bases 212, 214, and 218, respectively. It is integrally formed of a metal material such as In addition, each of the heat dissipating elements 202, 204, and 208 includes a welding surface 215 that is located at the periphery of the heat-conducting pedestals 212, 214, and 218, and the welding surface 215 of the heat dissipating elements 202, 204, and 208 provides the composite type of the present invention. A multi-flow heat sink 200 is formed.

流体の散熱器200の流動方向は、第一実施例の散熱器100とほぼ相同で、相違する点は、散熱単体202は、散熱器200中心部の流体経路が相通していることで、よって、公知の散熱器中心部の散逸が好ましくないという問題を解決する。   The flow direction of the fluid heat dissipator 200 is almost the same as that of the heat dissipator 100 of the first embodiment, and the difference is that the single heat dissipator 202 is connected to the fluid path at the center of the heat dissipator 200. This solves the problem of undesired dissipation of the known heat dissipator center.

図3Cは、本発明の複合式多流向散熱器250の第四実施例を示す図である。本実施例において、散熱器250と散熱器200との相違は、第一実施例と第二実施例との相違と同様で、即ち、散熱器250の底部に、導熱基板240を備え、銅、或いは、銅合金からなり、はんだペースト、或いは、導熱ゲル245等、低耐熱の粘着剤を、散熱器250との接合面215に塗布し、各散熱単体の導熱基板と接着したもので、その原理と効果は、上述の実施例で示されるとおりである。   FIG. 3C is a view showing a fourth embodiment of the combined multi-flow heat sink 250 of the present invention. In the present embodiment, the difference between the heat dissipator 250 and the heat dissipator 200 is the same as the difference between the first embodiment and the second embodiment, that is, the bottom of the heat dissipator 250 is provided with a heat conductive substrate 240, copper, Alternatively, it is made of a copper alloy, and a low heat-resistant adhesive such as solder paste or heat conductive gel 245 is applied to the joint surface 215 with the heat dissipator 250 and bonded to the heat conductive substrate of each heat dissipator. The effects are as shown in the above-described embodiment.

図4は、本発明の複合式多流向散熱器300の第五実施例を示す図である。図4で示されるように、散熱器300は、四個の散熱単体302、304、306、及び、308から構成され、各散熱単体302、304、306、及び308は、それぞれ、導熱台座312、314、316、及び318、及び、対応する導熱台座312、314、316、318に平行に配置された複数の散熱フィン322、324、326、328を備える。本実施例において、導熱台座312、314、316、及び318は四角形の台座で、且つ、散熱単体302、304、306、308は、それぞれ、導熱台座312、314、316、318により、対応する複数の散熱フィン322、324、326、及び328と、銅、銅合金、アルミ、或いは、アルミ合金等の金属材質により、一体成形される。この他、各散熱単体302、304、306、及び308はそれぞれ、二面が、導熱台座312、314、316、318の周縁に位置する溶接面(図示せず)を備え、散熱単体302、304、306、及び308の溶接面を溶接することにより、本発明の複合式多流向散熱器300を形成する。   FIG. 4 is a view showing a fifth embodiment of the composite multi-flow heat sink 300 of the present invention. As shown in FIG. 4, the heat dissipator 300 is composed of four heat dissipating elements 302, 304, 306, and 308, and each of the heat dissipating elements 302, 304, 306, and 308 is a heat-conducting pedestal 312, 314, 316 and 318, and a plurality of heat dissipating fins 322, 324, 326, 328 arranged parallel to the corresponding heat-conducting pedestals 312, 314, 316, 318. In this embodiment, the heat-conducting pedestals 312, 314, 316, and 318 are rectangular pedestals, and the single heat-dissipating elements 302, 304, 306, and 308 correspond to the heat-conducting pedestals 312, 314, 316, and 318, respectively. The heat dissipating fins 322, 324, 326, and 328 and a metal material such as copper, copper alloy, aluminum, or aluminum alloy are integrally formed. In addition, each of the heat dissipating elements 302, 304, 306, and 308 includes a welding surface (not shown) located on the periphery of the heat conducting bases 312, 314, 316, and 318, respectively. , 306, and 308 are welded to form the composite multi-flow heat sink 300 of the present invention.

流体の散熱器300の流動方向は、本実施例の散熱器300の各散熱単体302、304、306、及び308上の散熱フィン322、324、326、及び328が、それぞれ、異なる方向に配列され、図4で示されるように、散熱フィン322は、−Y軸方向に配列され、散熱フィン324は、−X軸方向に配列され、散熱フィン326は、+X軸方向に配列され、散熱フィン328は、+Y軸方向に配列される。この他、散熱単体302上の散熱フィン322は、それぞれ、相隣する散熱単体304、306上の散熱フィン324、326と相互に接合すると共に、90度の、L状の挟角の組み合わせを呈し、同様に、散熱単体304、306及び308上の散熱フィン324、326及び328は、相隣する散熱フィンと90度の挟角の組み合わせを呈する。   The flow direction of the fluid heat dissipator 300 is such that the heat dissipating fins 322, 324, 326, and 328 on the heat dissipating elements 302, 304, 306, and 308 of the heat dissipator 300 of this embodiment are arranged in different directions, respectively. As shown in FIG. 4, the heat dissipation fins 322 are arranged in the −Y axis direction, the heat dissipation fins 324 are arranged in the −X axis direction, and the heat dissipation fins 326 are arranged in the + X axis direction. Are arranged in the + Y-axis direction. In addition, the heat dissipating fins 322 on the heat dissipating element 302 are mutually joined with the heat dissipating fins 324 and 326 on the adjacent heat dissipating elements 304 and 306, respectively, and exhibit a 90-degree L-shaped sandwich angle combination. Similarly, the heat dissipating fins 324, 326, and 328 on the heat dissipating elements 304, 306, and 308 present a combination of adjacent heat dissipating fins and a 90-degree included angle.

注意すべきことは、本実施例の散熱器300は、散熱器100、200と同様、散熱器300の底部に、はんだペースト、或いは、導熱ゲル等、低耐熱の粘着剤により、銅、或いは、銅合金からなる導熱基板を接合し、その原理と効果は、上述の実施例で示されるとおりである。   It should be noted that the heat dissipator 300 according to the present embodiment is similar to the heat dissipators 100 and 200, such that the bottom of the heat dissipator 300 is made of copper, or a solder paste or a heat-resistant adhesive such as a heat conductive gel. A heat conductive substrate made of a copper alloy is joined, and the principle and effect thereof are as shown in the above-described embodiment.

図5は、本発明の複合式多流向散熱器400の第六実施例を示す図である。図5で示されるように、散熱器400は、六個の散熱単体402、404、406、408、410、及び、412から構成され、各散熱単体402、404、406、408、410、及び、412は、それぞれ、導熱台座422、424、426、428、430、及び、432、及び、対応する導熱台座422、424、426、428、430、及び、432に平行に配置された複数の散熱フィン442、444、446、448、450、及び452を備える。本実施例において、導熱台座422、424、426、428、430、及び、432は三角形の台座で、且つ、散熱単体402、404、406、408、410、及び、412は、それぞれ、導熱台座422、424、426、428、430、及び、432により、対応する複数の散熱フィン442、444、446、448、450、及び452と、銅、銅合金、アルミ、或いは、アルミ合金等の金属材質により、一体成形される。この他、各散熱単体402、404、406、408、410、及び、412はそれぞれ、二面が、導熱台座422、424、426、428、430、及び、432の周縁に位置する溶接面(図示せず)を備え、散熱単体402、404、406、408、410、及び、412の溶接面を溶接することにより、本発明の複合式多流向散熱器400を形成する。   FIG. 5 is a view showing a sixth embodiment of the composite multi-flow heat sink 400 of the present invention. As shown in FIG. 5, the heat dissipator 400 includes six heat dissipating elements 402, 404, 406, 408, 410, and 412, and each heat dissipating element 402, 404, 406, 408, 410, and Reference numeral 412 denotes a plurality of heat dissipating fins arranged in parallel to the heat transfer bases 422, 424, 426, 428, 430, and 432, and the corresponding heat transfer bases 422, 424, 426, 428, 430, and 432, respectively. 442, 444, 446, 448, 450, and 452. In this embodiment, the heat conduction bases 422, 424, 426, 428, 430, and 432 are triangular bases, and the heat dissipating elements 402, 404, 406, 408, 410, and 412 are the heat conduction bases 422, respectively. 424, 426, 428, 430, and 432, depending on a plurality of corresponding heat dissipation fins 442, 444, 446, 448, 450, and 452, and a metal material such as copper, copper alloy, aluminum, or aluminum alloy , Integrally molded. In addition, each of the heat dissipating elements 402, 404, 406, 408, 410, and 412 has a welded surface in which two surfaces are positioned at the peripheral edges of the heat conducting bases 422, 424, 426, 428, 430, and 432 (see FIG. (Not shown), and welding the welding surfaces of the heat dissipating elements 402, 404, 406, 408, 410, and 412 to form the combined multi-flow heat sink 400 of the present invention.

流体の散熱器400の流動方向は、図5で示されるように、本実施例の散熱器400の各散熱単体402、404、406、408、410、及び、412上の散熱フィン442、444、446、448、450、及び452は、それぞれ、六個の異なる方向に配列され、散熱単体402上の散熱フィン442は、それぞれ、相隣する散熱単体404、412上の散熱フィン444、452と相互に接合すると共に、60度の挟角の組み合わせを呈し、同様に、散熱単体402、404、406、408、410、及び、412上の散熱フィン442、444、446、448、450、及び452は、相隣する散熱フィンと60度の挟角の組み合わせを呈する。   As shown in FIG. 5, the flow direction of the fluid heat dissipator 400 is the heat dissipating fins 442, 444, 444, 444 on each heat dissipating element 402, 404, 406, 408, 410, and 412 of the heat dissipator 400 of this embodiment. 446, 448, 450, and 452 are each arranged in six different directions, and the heat dissipating fins 442 on the heat dissipating unit 402 are mutually opposite to the heat dissipating fins 444, 452 on the adjoining heat dissipating units 404, 412, respectively. And the heat sink fins 442, 444, 446, 448, 450, and 452 on the heat dissipating elements 402, 404, 406, 408, 410, and 412, respectively. , Presents a combination of adjacent heat dissipating fins and an included angle of 60 degrees.

注意すべきことは、本実施例の散熱器400は、散熱器100、200、及び300と同様、散熱器400の底部に、はんだペースト、或いは、導熱ゲル等、低耐熱の粘着剤により、銅、或いは、銅合金からなる導熱基板を接合し、その原理と効果は、上述の実施例で示されるとおりである。   It should be noted that the heat dissipator 400 of the present embodiment is similar to the heat dissipators 100, 200, and 300 in that the bottom of the heat dissipator 400 is made of copper paste with a low heat resistant adhesive such as solder paste or heat conducting gel. Alternatively, a heat conductive substrate made of a copper alloy is bonded, and the principle and effect thereof are as shown in the above-described embodiments.

図6は、本発明の複合式多流向散熱器500の第七実施例を示す図である。図6で示されるように、散熱器500は、三個の散熱単体502、504、506から構成され、各散熱単体502、504、506は、それぞれ、導熱台座512、514、516、及び、対応する導熱台座512、514、516に平行に配置された複数の散熱フィン522、524、526を備える。本実施例において、導熱台座512はほぼ正方形の台座で、導熱台座514、516は長方形の台座で、且つ、散熱単体502、504、506は、それぞれ、導熱台座512、514、516により、対応する複数の散熱フィン522、524、526と、銅、銅合金、アルミ、或いは、アルミ合金等の金属材質により、一体成形される。この他、各散熱単体502、504、506はそれぞれ、導熱台座512、514、516の周縁に位置する溶接面(図示せず)を備え、散熱単体502、504、506の溶接面を溶接することにより、本発明の複合式多流向散熱器500を形成する。   FIG. 6 is a view showing a seventh embodiment of the combined multi-flow heat sink 500 of the present invention. As shown in FIG. 6, the heat dissipator 500 includes three heat dissipating elements 502, 504, and 506, and each of the heat dissipating elements 502, 504, and 506 corresponds to the heat conduction bases 512, 514, and 516, respectively. A plurality of heat dissipating fins 522, 524, 526 arranged in parallel with the heat conducting pedestals 512, 514, 516. In the present embodiment, the heat-conducting pedestal 512 is a substantially square pedestal, the heat-conducting pedestals 514 and 516 are rectangular pedestals, and the heat dissipating elements 502, 504, and 506 correspond to the heat-conducting pedestals 512, 514, and 516, respectively. A plurality of heat dissipation fins 522, 524, and 526 and a metal material such as copper, copper alloy, aluminum, or aluminum alloy are integrally formed. In addition, each of the heat dissipating elements 502, 504, and 506 includes a welding surface (not shown) positioned at the periphery of the heat conducting bases 512, 514, and 516, and welds the welding surfaces of the heat dissipating elements 502, 504, and 506. Thus, the composite multi-flow heat sink 500 of the present invention is formed.

流体の散熱器500の流動方向は、図6で示されるように、本実施例の散熱器500の各散熱単体502上の散熱フィン522は、+Xと−X方向に配列され、且つ、散熱器504及び506は、それぞれ、−Yと+Yの方向に配列される。この他、散熱単体502上の最外両側の散熱フィン522は、それぞれ、散熱単体504、506上の散熱フィン524、526と相互に接合すると共に、90度の挟角の組み合わせを呈する。この他、本実施例の散熱器500は、散熱器100、200、300、及び400と同様に、散熱器500の底部に、はんだペースト、或いは、導熱ゲル等、低耐熱の粘着剤により、銅、或いは、銅合金からなる導熱基板を接合し、その原理と効果は、上述の実施例で示されるとおりである。   As shown in FIG. 6, the flow direction of the fluid heat dissipator 500 is such that the heat dissipating fins 522 on each heat dissipating element 502 of the heat dissipator 500 of this embodiment are arranged in the + X and −X directions, and the heat dissipator. 504 and 506 are arranged in the -Y and + Y directions, respectively. In addition, the outermost heat dissipating fins 522 on the heat dissipating element 502 are joined to the heat dissipating fins 524 and 526 on the heat dissipating elements 504 and 506, respectively, and exhibit a 90 ° included angle combination. In addition, the heat dissipator 500 of the present embodiment is similar to the heat dissipators 100, 200, 300, and 400 in that the bottom of the heat dissipator 500 is made of copper paste with a low heat resistant adhesive such as solder paste or heat conducting gel. Alternatively, a heat conductive substrate made of a copper alloy is bonded, and the principle and effect thereof are as shown in the above-described embodiments.

注意すべきことは、本発明の各実施例の複合式多流向散熱器100、150、200、250、300、400、及び500の各散熱単体の導熱台座と散熱フィンの組み合わせ方式は、一体成形による形成だけではなく、溶接等の加工方式で、導熱台座と散熱フィンを接合するか、或いは、導熱台座上に複数の溝槽を形成し、更に、散熱フィンにより、対応する溝槽に配置してもよい。この他、相隣する両散熱単体上の散熱フィンも、溶接等の加工方式で互いに接合することが出来る。   It should be noted that the combination system of each heat dissipating base and heat dissipating fins of the combined multi-flow heat dissipator 100, 150, 200, 250, 300, 400, and 500 of each embodiment of the present invention is integrally formed. In addition to the formation by the above, the heat conduction pedestal and the heat dissipation fin are joined by a processing method such as welding, or a plurality of groove tanks are formed on the heat conduction pedestal, and further arranged in the corresponding groove tank by the heat dissipation fins. May be. In addition, the heat dissipating fins on both adjacent heat dissipating elements can be joined to each other by a processing method such as welding.

公知の技術と比較すると、本発明の多方面経路を有する複数の散熱単体により構成される複合式多流向散熱器は、公知の散熱器の中心領域の散熱効果が好ましくない状況を改善し、散熱器全体の散熱効果を向上する。本発明の散熱単体も、異なる形状の多辺形導熱台座、或いは、更に多くの二等辺三角形台座、或いは、扇形台座を組み合わせて、更に多くの経路を有する散熱器にすることが出来る。   Compared with the known technology, the composite multi-flow direction heat spreader composed of a plurality of heat spreaders having multi-directional paths of the present invention improves the situation where the heat dissipation effect in the central region of the known heat spreader is not preferable, Improve the heat dissipation effect of the entire vessel The heat dissipating element of the present invention can also be made into a heat dissipator having more paths by combining different-shaped polygonal heat conducting pedestals or more isosceles triangular pedestals or fan pedestals.

本発明では好ましい実施例を前述の通り開示したが、これらは決して本発明に限定するものではなく、当該技術を熟知する者なら誰でも、本発明の精神と領域を脱しない範囲内で各種の変動や潤色を加えることができ、従って本発明明の保護範囲は、特許請求の範囲で指定した内容を基準とする。   In the present invention, preferred embodiments have been disclosed as described above. However, the present invention is not limited to the present invention, and any person who is familiar with the technology can use various methods within the spirit and scope of the present invention. Therefore, the protection scope of the present invention is based on the content specified in the claims.

公知の散熱装置の構造を示す図である。It is a figure which shows the structure of a well-known heat dissipation apparatus. 公知のもう一つの散熱装置の構造を示す図である。It is a figure which shows the structure of another well-known heat dissipation apparatus. 本発明の複合式多流向散熱器100の第一実施例を示す図である。It is a figure which shows the 1st Example of the composite multiflow heat sink 100 of this invention. 本発明の複合式多流向散熱器100の第一実施例を示す図である。It is a figure which shows the 1st Example of the composite multiflow heat sink 100 of this invention. 本発明の複合式多流向散熱器150の第二実施例を示す図である。It is a figure which shows the 2nd Example of the composite type multi-flow heat sink 150 of this invention. 本発明の複合式多流向散熱器200の第三実施例を示す図である。It is a figure which shows the 3rd Example of the composite type multi-flow heat sink 200 of this invention. 本発明の複合式多流向散熱器200の第三実施例を示す図である。It is a figure which shows the 3rd Example of the composite type multi-flow heat sink 200 of this invention. 本発明の複合式多流向散熱器250の第四実施例を示す図である。It is a figure which shows the 4th Example of the composite type multi-flow heat sink 250 of this invention. 本発明の複合式多流向散熱器300の第五実施例を示す図である。It is a figure which shows the 5th Example of the composite type multi-flow heat sink 300 of this invention. 本発明の複合式多流向散熱器400の第六実施例を示す図である。It is a figure which shows the 6th Example of the composite type multi-flow heat sink 400 of this invention. 本発明の複合式多流向散熱器500の第七実施例を示す図である。It is a figure which shows the 7th Example of the composite type multi-flow heat sink 500 of this invention.

符号の説明Explanation of symbols

100、150、200、250、300、400、500 複合式多流向散熱器
102、104、106、108、306、308、402、404、202、204、206、208、406、408、410、412、302、304、502、504、506 散熱単体
112、114、116、118、316、318、422、424、212、214、216、218、426、428、430、432、312、314、512、514、516 導熱台座
122、124、126、128、326、328、442、444、222、224、226、228、446、448、450、452、322、324、522、524、526 散熱フィン
115、215 溶接面
145、245 導熱ゲル
140、240 導熱基板
130、230 延長部分
132、232 フック
100, 150, 200, 250, 300, 400, 500 Composite multi-flow heat sink 102, 104, 106, 108, 306, 308, 402, 404, 202, 204, 206, 208, 406, 408, 410, 412 , 302, 304, 502, 504, 506 Heat dissipation unit 112, 114, 116, 118, 316, 318, 422, 424, 212, 214, 216, 218, 426, 428, 430, 432, 312, 314, 512, 514, 516 Heat transfer bases 122, 124, 126, 128, 326, 328, 442, 444, 222, 224, 226, 228, 446, 448, 450, 452, 322, 324, 522, 524, 526 215 Welding surface 145, 245 Heat conduction gel 140, 240 Heat conduction substrate 1 30, 230 Extension part 132, 232 Hook

Claims (11)

複合式多流向散熱器であって、複数の散熱単体から構成され、
導熱台座と、
前記導熱台座に互いに平行に配列された複数の散熱フィンとからなり、
相隣する二つの散熱単体の複数の散熱フィンは、それぞれ、相違する方向に配列されていることを特徴とする複合式多流向散熱器。
This is a combined multi-flow heat dissipator consisting of a plurality of heat dissipating elements.
A heat conduction pedestal;
A plurality of heat dissipating fins arranged in parallel to each other on the heat conducting pedestal;
A plurality of heat dissipating fins of two adjacent heat dissipating elements are arranged in different directions, respectively.
前記各散熱単体は、前記導熱台座の周縁に位置する少なくとも溶接面を更に備え、前記複合式多流向散熱器は、前記複数の散熱単体を溶接してなることを特徴とする請求項1に記載の複合式多流向散熱器。   2. The heat dissipation pedestal according to claim 1, wherein each of the heat dissipating elements further includes at least a welding surface located at a peripheral edge of the heat-conducting pedestal, and the combined multi-flow heat dissipator is formed by welding the plurality of heat dissipating elements. Combined multi-flow heat sink. 前記散熱単体の前記複数の散熱フィンは、前記導熱台座と一体成形されることを特徴とする請求項1または請求項2に記載の複合式多流向散熱器。   3. The composite multi-flow heat sink according to claim 1, wherein the plurality of heat dissipating fins of the single heat dissipating unit are integrally formed with the heat conducting pedestal. 前記導熱台座及び前記複数の散熱フィンは、銅、銅合金、アルミ、或いは、アルミ合金等の金属材質からなることを特徴とする請求項3に記載の複合式多流向散熱器。   4. The composite multi-flow heat sink according to claim 3, wherein the heat-conducting pedestal and the plurality of heat-dissipating fins are made of a metal material such as copper, copper alloy, aluminum, or aluminum alloy. 前記散熱単体の前記複数の散熱フィンは、溶接等の加工方式により、前記導熱台座と接合されることを特徴とする請求項1または請求項2に記載の複合式多流向散熱器。   3. The composite multi-stream heat spreader according to claim 1, wherein the plurality of heat dissipating fins of the heat dissipating unit are joined to the heat conducting base by a processing method such as welding. 前記導熱台座は、銅、銅合金により形成され、且つ、前記複数の散熱フィンは、銅、銅合金、アルミ、或いは、アルミ合金により形成されることを特徴とする請求項5に記載の複合式多流向散熱器。   6. The composite type according to claim 5, wherein the heat conducting pedestal is formed of copper or a copper alloy, and the plurality of heat dissipation fins are formed of copper, a copper alloy, aluminum, or an aluminum alloy. Multi-flow heat sink. 前記散熱単体は、更に、前記導熱台座上表面に形成された複数の溝槽を備え、前記複数の散熱フィンは、それぞれ、対応する溝槽中に配置されることを特徴とする請求項1または請求項2に記載の複合式多流向散熱器。   The heat dissipating element further includes a plurality of groove tanks formed on the upper surface of the heat conducting pedestal, and the plurality of heat dissipating fins are respectively disposed in the corresponding groove tanks. The composite multi-flow heat sink according to claim 2. 前記散熱単体の前記導熱台座は、多角形台座であることを特徴とする請求項1または請求項2に記載の複合式多流向散熱器。   3. The combined multi-flow heat sink according to claim 1, wherein the heat conduction base of the single heat dissipation unit is a polygonal base. 前記散熱単体の前記導熱台座は、扇形を呈する台座であることを特徴とする請求項1または請求項2に記載の複合式多流向散熱器。   3. The composite multi-flow heat sink according to claim 1, wherein the heat conduction base of the heat dissipation unit is a fan-shaped base. 4. 前記相隣する二つの散熱単体の複数の散熱フィンは、溶接により互いに接合されることを特徴とする請求項1または請求項2に記載の複合式多流向散熱器。   3. The composite multi-flow heat sink according to claim 1, wherein the plurality of heat dissipating fins of the two adjacent heat dissipating elements are joined to each other by welding. 前記複数の散熱単体の導熱台座は、導熱ゲル等の低耐熱の粘着剤により、互いに接合されてなることを特徴とする請求項1に記載の複合式多流向散熱器。   2. The composite multi-flow heat sink according to claim 1, wherein the plurality of heat dissipating bases are joined to each other by a low heat-resistant adhesive such as a heat conducting gel.
JP2004082027A 2004-01-09 2004-03-22 Compound multiflow heat dispersion device Pending JP2005197625A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW093100494A TWI251460B (en) 2004-01-09 2004-01-09 Compound heat sink with multi-directional fins

Publications (1)

Publication Number Publication Date
JP2005197625A true JP2005197625A (en) 2005-07-21

Family

ID=34738166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004082027A Pending JP2005197625A (en) 2004-01-09 2004-03-22 Compound multiflow heat dispersion device

Country Status (4)

Country Link
US (1) US20050150637A1 (en)
JP (1) JP2005197625A (en)
DE (1) DE102004023819A1 (en)
TW (1) TWI251460B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015145809A1 (en) * 2014-03-27 2015-10-01 三菱電機株式会社 Heat sink device and motor with control device
JP2021018999A (en) * 2019-07-17 2021-02-15 富士電機株式会社 Cooling device

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM339033U (en) * 2008-04-16 2008-08-21 Asia Vital Components Co Ltd Heat sink
CN101641001B (en) * 2008-07-28 2011-11-09 富准精密工业(深圳)有限公司 Radiating device
US9051943B2 (en) 2010-11-04 2015-06-09 Hamilton Sundstrand Corporation Gas turbine engine heat exchanger fins with periodic gaps
CN105022461B (en) * 2014-04-21 2019-05-21 昆山新力精密五金有限公司 Structure improved heat sinking mould group
AT515828B1 (en) 2014-05-23 2022-02-15 Fronius Int Gmbh Cooling device and inverter housing with such a cooling device
WO2021148140A1 (en) * 2020-01-24 2021-07-29 Huawei Technologies Co., Ltd. A heatsink with increased air flow
CA3151725A1 (en) 2021-04-01 2022-10-01 Ovh Immersion cooling system with dual dielectric cooling liquid circulation
CA3153037A1 (en) 2021-04-01 2022-10-01 Ovh Hybrid immersion cooling system for rack-mounted electronic assemblies
EP4068925A1 (en) * 2021-04-01 2022-10-05 Ovh Scissor structure for cable/tube management of rack-mounted liquid-cooled electronic assemblies

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2554980B1 (en) * 1983-11-10 1986-01-17 Socapex CONNECTOR WITH ZERO INSERTION FORCE FOR RECTANGULAR CIRCUIT SUPPORT AND CLOSING CLIP FOR SUCH CONNECTOR
US4733293A (en) * 1987-02-13 1988-03-22 Unisys Corporation Heat sink device assembly for encumbered IC package
US5375655A (en) * 1993-03-31 1994-12-27 Lee; Yong N. Heat sink apparatus
US5370178A (en) * 1993-08-25 1994-12-06 International Business Machines Corporation Convertible cooling module for air or water cooling of electronic circuit components
TW265430B (en) * 1994-06-30 1995-12-11 Intel Corp Ducted opposing bonded fin heat sink blower multi-microprocessor cooling system
US5582240A (en) * 1994-09-19 1996-12-10 Motorola, Inc. Pneumatically coupled heat sink assembly
US5927385A (en) * 1998-01-21 1999-07-27 Yeh; Ming Hsin Cooling device for the CPU of computer
JP3552559B2 (en) * 1998-03-11 2004-08-11 株式会社デンソー Heating element cooling device
TW376171U (en) * 1998-11-24 1999-12-01 Foxconn Prec Components Co Ltd Radiating device
US6199624B1 (en) * 1999-04-30 2001-03-13 Molex Incorporated Folded fin heat sink and a heat exchanger employing the heat sink
US20020018338A1 (en) * 2000-01-11 2002-02-14 Mccullough Kevin A. Insert molded heat sink assembly
US20020109970A1 (en) * 2000-12-18 2002-08-15 Samsung Electro-Mechanics Co., Ltd. Heat sink for cooling electronic chip
US6415852B1 (en) * 2001-01-11 2002-07-09 Foxconn Precision Components Co., Ltd. Heat sink assembly
JP3529358B2 (en) * 2001-02-07 2004-05-24 古河電気工業株式会社 Finned heat sink
US6418020B1 (en) * 2001-03-30 2002-07-09 Advanced Thermal Technologies Heat dissipation device with ribbed fin plates
US6972950B1 (en) * 2002-06-06 2005-12-06 Raytheon Company Method and apparatus for cooling a portable computer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015145809A1 (en) * 2014-03-27 2015-10-01 三菱電機株式会社 Heat sink device and motor with control device
JP2021018999A (en) * 2019-07-17 2021-02-15 富士電機株式会社 Cooling device
JP7326953B2 (en) 2019-07-17 2023-08-16 富士電機株式会社 Cooling system

Also Published As

Publication number Publication date
TWI251460B (en) 2006-03-11
US20050150637A1 (en) 2005-07-14
TW200524514A (en) 2005-07-16
DE102004023819A1 (en) 2005-08-04

Similar Documents

Publication Publication Date Title
TWI704656B (en) heat sink
US9255743B2 (en) Finned heat dissipation module
JP2006261555A5 (en)
JP2005197625A (en) Compound multiflow heat dispersion device
JP2007335663A (en) Semiconductor module
JP6062516B1 (en) heatsink
TW201315960A (en) Laminated heat sinks
JP5567076B2 (en) Radiator
JP6003109B2 (en) Power module
JP7157591B2 (en) heatsink
JP3198319U (en) Radiator
JP2007005332A (en) Heat sink and its manufacturing method
TWI566670B (en) Heat dissipation device
JP2016219560A (en) Heat dissipation structure for circuit board
TWI438391B (en) Heat dissipation device
JP2014093338A (en) Cooling fin
WO2016206374A1 (en) Honeycomb metal radiator and processing technology thereof
JP6549721B2 (en) Heat sink, method of manufacturing heat sink and method of using heat sink
TW201433252A (en) Cooling apparatus and heat sink thereof
JP3217881U (en) Metal heat dissipation device
JP2016082088A (en) Heat sink with circuit board, and method of manufacturing the same
JP6674867B2 (en) Power converter
JP2004071636A (en) Heat sink with fan
JP2007042724A (en) Heat sink
JP2013069959A (en) Cooling structure of power module

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070426

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070717