JP2005194330A - Polyamide resin composition - Google Patents

Polyamide resin composition Download PDF

Info

Publication number
JP2005194330A
JP2005194330A JP2003435792A JP2003435792A JP2005194330A JP 2005194330 A JP2005194330 A JP 2005194330A JP 2003435792 A JP2003435792 A JP 2003435792A JP 2003435792 A JP2003435792 A JP 2003435792A JP 2005194330 A JP2005194330 A JP 2005194330A
Authority
JP
Japan
Prior art keywords
polyamide resin
resin composition
ppm
filter
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003435792A
Other languages
Japanese (ja)
Inventor
Takeshi Maruyama
岳 丸山
Kenta Suzuki
健太 鈴木
Kazuo Katayose
一夫 片寄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2003435792A priority Critical patent/JP2005194330A/en
Priority to US10/584,268 priority patent/US7687562B2/en
Priority to EP04807411A priority patent/EP1698667A4/en
Priority to PCT/JP2004/019054 priority patent/WO2005063888A1/en
Priority to KR1020067014230A priority patent/KR20070012634A/en
Priority to TW093140176A priority patent/TWI381020B/en
Publication of JP2005194330A publication Critical patent/JP2005194330A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an excellent polyamide resin composition which is suitable for use in hollow molded containers such as a material for gasoline tanks and beverage bottles, a material for moldings for films, sheets and the like and exhibits a good heat stability and does not cause a high back pressure build up on the filters in the molding process. <P>SOLUTION: The polyamide resin composition involves a polyamide resin containing mainly m-xylylenediamine (MXDA) as the diamine component and mainly adipic acid (AA) as the dicarboxylic acid component. The contents of a phosphorus atom (P) and a sodium atom (Na) of the polyamide resin composition satisfy formula (1): 30≤P<200 ppm, and formula (2): 3<Na/P mole ratio<7. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、ガソリンタンク材、飲料用ボトルをはじめとする中空成形容器、フィルム、シ−トなどの成形体の素材として好適に用いられるポリアミド樹脂組成物に関するものである。また、それらを重合および成形する際の熱安定性に良好で、かつ、色調に優れ、かつ、フィルター背圧上昇の少なく、生産性に優れたポリアミド樹脂組成物に関する。   The present invention relates to a polyamide resin composition that can be suitably used as a material for molded articles such as gasoline tank materials, beverage bottles, hollow molded containers, films, sheets, and the like. Further, the present invention relates to a polyamide resin composition having excellent thermal stability when polymerizing and molding them, excellent color tone, little increase in filter back pressure, and excellent productivity.

ポリアミドは物理的、機械的特性に優れていることから中空成形容器、フィルム、シート包装材料、エンジニアプラスチック、繊維などの用途に幅広く使用されている。ナイロン66などの脂肪族ポリアミドが代表例であるが、これら他の、パラキシリレンジアミン(PXDA)やメタキシリレンジアミン(MXDA)などの芳香族ジアミンを原料として用い、吸水性の低減や弾性率の向上などを実現したポリアミドも多数知られている。   Polyamides are widely used in applications such as hollow molded containers, films, sheet packaging materials, engineer plastics, and fibers because of their excellent physical and mechanical properties. Typical examples are aliphatic polyamides such as nylon 66, but these other aromatic diamines such as paraxylylenediamine (PXDA) and metaxylylenediamine (MXDA) are used as raw materials to reduce water absorption and elastic modulus. A number of polyamides that realize such improvements are also known.

ポリアミドは、熱に対してポリエステル等より比較的不安定であり、熱劣化や熱酸化劣化によりゲル化や黄変等を起こすことがある。   Polyamide is relatively unstable with respect to heat than polyester and the like, and may cause gelation or yellowing due to thermal deterioration or thermal oxidative deterioration.

ポリアミドの熱劣化を抑える方法として、ポリアミド中にホスホン酸化合物もしくは亜リン酸化合物およびアルカリ金属を添加する方法が提案されている(例えば、特許文献1参照)。これらは、ポリアミド中の三次元化した網状構造のゲル化の防止の方策であって、添加剤等のフィルター詰りに及ぼす影響については記載が無い。   As a method for suppressing the thermal degradation of the polyamide, a method of adding a phosphonic acid compound or a phosphorous acid compound and an alkali metal to the polyamide has been proposed (for example, see Patent Document 1). These are measures for preventing gelation of a three-dimensional network structure in polyamide, and there is no description about the influence of additives and the like on filter clogging.

ポリアミドの熱劣化を抑える方法として、ポリアミド中にホスフィン酸化合物、亜ホスホン酸化合物、ホスホン酸化合物もしくは亜リン酸化合物およびアルカリ金属とフェニレンジアミンおよび/またはその誘導体をポリアミドに対して0.01〜2重量%と配合する方法が提案されている(例えば、特許文献2参照)。これらについても、ポリアミド中の三次元化した網状構造のゲル化防止の方策であって、添加剤等のフィルター詰り等異物に関する記載が無い。   As a method for suppressing thermal degradation of polyamide, 0.01 to 2 of phosphinic acid compound, phosphonous acid compound, phosphonic acid compound or phosphorous acid compound and alkali metal and phenylenediamine and / or a derivative thereof are contained in the polyamide. A method of blending with wt% has been proposed (see, for example, Patent Document 2). These are also measures for preventing gelation of the three-dimensional network structure in polyamide, and there is no description regarding foreign matters such as filter clogging of additives and the like.

ポリアミドの融点以下でかつ酸素の存在しない系での熱劣化について防止する方法として、ピロ亜燐酸塩、有機ホスフィン酸のアミド化合物、亜リン酸のモノもしくはジエステルのマグネシウム塩もしくはバリウム塩、オルトリン酸のモノもしくはジエステルのバリウム塩などを添加する方法が提案されている(例えば、特許文献3〜6参照)。しかし、これらの文献にも、添加剤等のフィルター詰りについての記載等は無く、後工程における生産性について、考慮していない。   Methods for preventing thermal degradation in systems below the melting point of polyamide and in the absence of oxygen include pyrophosphites, organic phosphinic acid amide compounds, phosphorous acid mono- or diester magnesium or barium salts, orthophosphoric acid A method of adding a barium salt of a mono- or diester has been proposed (see, for example, Patent Documents 3 to 6). However, these documents also do not describe the filter clogging of additives and the like, and do not consider the productivity in the subsequent process.

また、メタキシリレンジアミンとアジピン酸からなるポリアミドのゲル化物の防止対策として滑剤、有機リン系安定剤、ヒンダードフェノール類化合物、ヒンダードアミン類化合物から選ばれた少なくとも1種類以上を0.0005〜0.5重量部添加して検討している(例えば、特許文献7参照)。これについても、フィルターに異物詰りの対策等の記載は確認できない。
特開昭49−45960号公報 特開昭49−53945号公報 特公昭45−11836号公報 特公昭45−35667号公報 特公昭45−12986号公報 特公昭46−38351号公報 特開2001−164109
In addition, as a measure for preventing gelation of polyamides composed of metaxylylenediamine and adipic acid, 0.0005-0 at least one selected from a lubricant, an organic phosphorus stabilizer, a hindered phenol compound, and a hindered amine compound is used. .5 parts by weight is being studied (for example, see Patent Document 7). Regarding this, it is not possible to confirm the description of measures against clogging of foreign matters on the filter.
JP 49-45960 A JP-A-49-53945 Japanese Examined Patent Publication No. 45-11836 Japanese Patent Publication No. 45-35667 Japanese Patent Publication No. 45-12986 Japanese Patent Publication No.46-38351 JP 2001-164109 A

本発明者らは前記の従来技術の問題点を解決するために鋭意検討の結果、ジアミン成分として、主にメタキシリレンジアミン(MXDA)を、ジカルボン酸成分として、主にアジピン酸(AA)を含むポリアミド樹脂を含有するポリアミド樹脂組成物であって、この組成物中のリン原子(P)とナトリウム金属(Na)の含有量について特定の範囲に規定することにより、フィルターを通過する際に、詰り物が少なく、色調も良好で生産性が高く、かつ重合時および成形時の熱劣化や熱酸化劣化が少ないポリアミド樹脂組成物を提供することを目的とする。   As a result of intensive studies to solve the problems of the prior art, the present inventors have mainly used metaxylylenediamine (MXDA) as a diamine component, and mainly adipic acid (AA) as a dicarboxylic acid component. A polyamide resin composition containing a polyamide resin, wherein the content of phosphorus atoms (P) and sodium metal (Na) in the composition is specified within a specific range, when passing through a filter, An object of the present invention is to provide a polyamide resin composition with less clogging, good color tone, high productivity, and little thermal degradation or thermal oxidation degradation during polymerization and molding.

上記目的を達成するため、本発明においては、ジアミン成分として、主にメタキシリレンジアミン(MXDA)を、ジカルボン酸成分として、主にアジピン酸(AA)を含むポリアミド樹脂を含有するポリアミド樹脂組成物であって、前記ポリアミド樹脂組成物のリン原子(P)とナトリウム原子(Na)の含有量について下記式(1)および(2):
30≦P<200ppm…(1)
3.0<Na/Pモル比<7.0…(2)
を満たすポリアミド樹脂組成物が提供される。
In order to achieve the above object, in the present invention, a polyamide resin composition containing a polyamide resin mainly containing metaxylylenediamine (MXDA) as a diamine component and mainly containing adipic acid (AA) as a dicarboxylic acid component. And about the content of the phosphorus atom (P) and sodium atom (Na) of the said polyamide resin composition, following formula (1) and (2):
30 ≦ P <200 ppm (1)
3.0 <Na / P molar ratio <7.0 ... (2)
A polyamide resin composition satisfying the above requirements is provided.

好ましい実施形態において、本発明のポリアミド樹脂組成物は、カラーb値(Co−b)が下記式(3):
−3<Co−b<5…(3)
を満たし得る。
In a preferred embodiment, the polyamide resin composition of the present invention has a color b value (Co-b) of the following formula (3):
-3 <Co-b <5 (3)
Can meet.

好ましい実施形態において、本発明のポリアミド樹脂組成物は、背圧上昇係数K*について、下記式(4):
0<K*<15… (4)
を満たし得、
ここで、K*は背圧上昇係数
K*=[ΔP(MPa)/T(hr)]/[Q(kg/hr)/S(cm)]
であり、式中、ΔP(MPa)は、ギヤポンプ二次圧のT時間後の圧力−初期圧であり、T(hr)は、ポリアミド樹脂組成物をフィルターで濾過した時間であり、Q(kg/hr)は、ポリアミド樹脂組成物の吐出量であり、そしてS(cm)は、フィルターの濾過面積であり、
フィルター濾過径は20μmである。
In a preferred embodiment, the polyamide resin composition of the present invention has the following formula (4) for the back pressure increase coefficient K *:
0 <K * <15 ... (4)
Can meet
Here, K * is a back pressure increase coefficient K * = [ΔP (MPa) / T (hr)] / [Q (kg / hr) / S (cm 2 )]
In the formula, ΔP (MPa) is a pressure-initial pressure after T hours of the secondary pressure of the gear pump, T (hr) is a time when the polyamide resin composition is filtered with a filter, and Q (kg / Hr) is the discharge amount of the polyamide resin composition, and S (cm 2 ) is the filtration area of the filter,
The filter filtration diameter is 20 μm.

本発明は、ガソリンタンク材、飲料用ボトルをはじめとする中空成形容器、フィルム、シ−トなどの成形体の素材として好適に用いられるポリアミド樹脂組成物に関するものである。また、重合する際やそれらを成形する際の熱安定性に良好で、かつ、黄変の程度が少なく色調に優れ、かつ、フィルター背圧上昇が少なく、生産性に優れたポリアミド樹脂組成物に関する。本発明によれば、特定の量および比でリン化合物とナトリウム化合物とを含有することにより、フィルター詰まりを低く抑える一方で、重合および成形時の熱劣化に起因する黄変を生じにくいポリアミド樹脂組成物が提供される。   The present invention relates to a polyamide resin composition that can be suitably used as a material for molded articles such as gasoline tank materials, beverage bottles, hollow molded containers, films, sheets, and the like. The present invention also relates to a polyamide resin composition having good thermal stability when polymerizing or molding them, excellent in color tone with little yellowing, and little increase in filter back pressure, and excellent productivity. . According to the present invention, a polyamide resin composition that contains a phosphorus compound and a sodium compound in a specific amount and ratio to keep filter clogging low, and is less likely to cause yellowing due to thermal degradation during polymerization and molding. Things are provided.

以下、本発明のポリアミド樹脂組成物の実施の形態を具体的に説明する。   Hereinafter, embodiments of the polyamide resin composition of the present invention will be specifically described.

本発明に用いられるポリアミド樹脂のジカルボン酸成分として、主にアジピン酸を使用し、その他にセバシン酸、スベリン酸、アゼライン酸、ウンデカンカルボン酸、ウンデカン二酸、ダイマー酸等の脂肪族ジカルボン酸、1,4−シクロヘキサンジカルボン酸等の脂環族ジカルボン酸、テレフタル酸、イソフタル酸、オルソフタル酸、キシリレンジカルボン酸、ナフタレンジカルボン酸などの芳香族ジカルボン酸等を1種もしくは2種以上を任意の割合で使用できる。   As the dicarboxylic acid component of the polyamide resin used in the present invention, adipic acid is mainly used. In addition, aliphatic dicarboxylic acids such as sebacic acid, suberic acid, azelaic acid, undecane carboxylic acid, undecanedioic acid, dimer acid, etc. , 4-cyclohexanedicarboxylic acid and other alicyclic dicarboxylic acids, terephthalic acid, isophthalic acid, orthophthalic acid, xylylene dicarboxylic acid, naphthalenedicarboxylic acid and other aromatic dicarboxylic acids, etc. Can be used.

本発明のポリアミド樹脂組成物に含まれるポリアミド樹脂は、ジカルボン酸成分として、主にアジピン酸を含み、好ましくは80モル%以上、より好ましくは90モル%以上、さらに好ましくは95モル%以上含む。   The polyamide resin contained in the polyamide resin composition of the present invention mainly contains adipic acid as the dicarboxylic acid component, preferably 80 mol% or more, more preferably 90 mol% or more, and still more preferably 95 mol% or more.

前記のポリアミド樹脂組成物中のポリアミド樹脂のジアミン成分として、主にメタキシリレンジアミンを使用し、その他にエチレンジアミン、1−メチルエチレンジアミン、1,3−プロピレンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン等の脂肪族ジアミン類、シクロヘキサンジアミン、ビス−(4−アミノシクロへキシル)メタン等の脂環式ジアミン類、パラキシリレンジアミン、パラ−ビス−(2−アミノエチル)ベンゼンのような芳香族ジアミン類が使用できる。     As the diamine component of the polyamide resin in the polyamide resin composition, metaxylylenediamine is mainly used. Besides, ethylenediamine, 1-methylethylenediamine, 1,3-propylenediamine, tetramethylenediamine, pentamethylenediamine, hexa Aliphatic diamines such as methylene diamine, heptamethylene diamine, octamethylene diamine, nonamethylene diamine, decamethylene diamine, undecamethylene diamine, dodecamethylene diamine, cyclohexane diamine, bis- (4-aminocyclohexyl) methane, etc. Aromatic diamines such as alicyclic diamines, paraxylylenediamine, para-bis- (2-aminoethyl) benzene can be used.

これらジアミンは、1種もしくは2種以上を任意の割合で組み合わせても使用できる。   These diamines can be used by combining one kind or two or more kinds in any ratio.

本発明のポリアミド樹脂組成物に含まれるポリアミド樹脂は、ジアミン成分として、主にメタキシリレンジアミンを含み、好ましくは80モル%以上、より好ましくは90モル%以上、さらに好ましくは95モル%以上含む。   The polyamide resin contained in the polyamide resin composition of the present invention mainly contains metaxylylenediamine as a diamine component, preferably 80 mol% or more, more preferably 90 mol% or more, and still more preferably 95 mol% or more. .

前記のジアミン及び、ジカルボン酸以外にも、ε−カプロラクタムやラウロラクタム等のラクタム類、アミノカプロン酸、アミノウンデカン酸等の脂肪族アミノカルボン酸類、パラ−アミノメチル安息香酸のような芳香族アミノカルボン酸等も共重合成分として使用できる。とりわけ、ε−カプロラクタムの使用が望ましい。   In addition to the diamine and dicarboxylic acid, lactams such as ε-caprolactam and laurolactam, aliphatic aminocarboxylic acids such as aminocaproic acid and aminoundecanoic acid, and aromatic aminocarboxylic acids such as para-aminomethylbenzoic acid Etc. can also be used as a copolymerization component. In particular, the use of ε-caprolactam is desirable.

本発明のポリアミド樹脂組成物に含まれ得る重合体の例としてはポリメタキシリレンアジパミドのような単独重合体、及びメタキシリレンジアミン/アジピン酸/イソフタル酸共重合体、メタキシリレン/パラキシリレンアジパミド共重合体等が挙げられる。   Examples of polymers that can be included in the polyamide resin composition of the present invention include homopolymers such as polymetaxylylene adipamide, and metaxylylenediamine / adipic acid / isophthalic acid copolymers, metaxylylene / paraxylylene. Examples include adipamide copolymers.

本発明のポリアミド樹脂組成物中のリン原子およびナトリウム原子の含有量としては、リン原子(P)とナトリウム原子(Na)が下記式(1)、(2)の範囲を満たすことが好ましい。   As content of the phosphorus atom and sodium atom in the polyamide resin composition of this invention, it is preferable that a phosphorus atom (P) and a sodium atom (Na) satisfy | fill the range of following formula (1), (2).

30≦P<200ppm…(1) ppmはポリマー1kg当りの量(mg)
3.0<Na/Pモル比<7.0…(2)
リン原子の含有量Pに関して、下限はより好ましくは40ppm、さらに好ましくは50ppm、特に好ましくは90ppmである。上限としては好ましくは170ppm、より好ましくは160ppm、さらに好ましくは150ppm、特に好ましくは130ppmである。リン原子含有量が少なすぎる場合には、熱安定性が低下しやすく、ポリマーの色調を悪化させやすい。また、逆にリン原子の含有量多すぎる場合には、添加剤にかかる原料費が多くなり、コストアップの一因となったり、フィルターの異物詰りが多くくなり、後工程での生産性の低下が懸念される。
30 ≦ P <200 ppm (1) ppm is the amount per kg of polymer (mg)
3.0 <Na / P molar ratio <7.0 ... (2)
Regarding the phosphorus atom content P, the lower limit is more preferably 40 ppm, still more preferably 50 ppm, and particularly preferably 90 ppm. The upper limit is preferably 170 ppm, more preferably 160 ppm, still more preferably 150 ppm, and particularly preferably 130 ppm. When the phosphorus atom content is too small, the thermal stability tends to be lowered, and the color tone of the polymer tends to be deteriorated. On the other hand, if the phosphorus atom content is too high, the raw material costs for the additive will increase, leading to an increase in cost, and increasing the number of foreign substances clogged in the filter. There is concern about the decline.

また、Na/Pモル比に関して、下限はより好ましくは3.5、さらに好ましくは4.0、さらに好ましくは4.5である。上限はより好ましくは6.5、さらに好ましくは6.0、いっそう好ましくは5.5である。Na/Pモル比が小さすぎる場合、粘度上昇が激しく、成形時のゲル化物の混入が多くなる危険性があり、溶融濾過時の背圧上昇を生じやすい。また、逆にNa/Pモル比が大きすぎる場合、重合反応速度が非常に遅くなりやすく、生産性が低下しやすい。   In addition, regarding the Na / P molar ratio, the lower limit is more preferably 3.5, still more preferably 4.0, and still more preferably 4.5. The upper limit is more preferably 6.5, still more preferably 6.0, and still more preferably 5.5. When the Na / P molar ratio is too small, the viscosity rises drastically, and there is a risk that the gelled product will be mixed during molding, and the back pressure during melt filtration tends to increase. Conversely, when the Na / P molar ratio is too large, the polymerization reaction rate tends to be very slow, and the productivity tends to decrease.

ナトリウム原子含有量の下限は、好ましくは80ppm、より好ましくは120ppm、さらに好ましくは150ppm、特に好ましくは200ppmである。上限としては好ましくは900ppm、より好ましくは600ppmである。   The lower limit of the sodium atom content is preferably 80 ppm, more preferably 120 ppm, still more preferably 150 ppm, and particularly preferably 200 ppm. The upper limit is preferably 900 ppm, more preferably 600 ppm.

本発明に用いられるポリアミド樹脂組成物中のリン原子を含有する化合物としては、下記化学式(C−1)〜(C−4)で表される化合物が挙げられる。   Examples of the compound containing a phosphorus atom in the polyamide resin composition used in the present invention include compounds represented by the following chemical formulas (C-1) to (C-4).

Figure 2005194330
Figure 2005194330

Figure 2005194330
Figure 2005194330

Figure 2005194330
Figure 2005194330

Figure 2005194330
(ただし、R〜Rは水素、アルキル基、アリール基、シクロアルキル基またはアリールアルキル基、X〜Xは水素、アルキル基、アリール基、シクロアルキル基、アリールアルキル基またはアルカリ金属、あるいは各式中のX〜XとR〜Rのうちそれぞれ1個は互いに連結して環構造を形成してもよい)
化学式(C−1)で表されるホスフィン酸化合物としては、ジメチルホスフィン酸、フェニルメチルホスフィン酸、次亜リン酸、次亜リン酸ナトリウム、次亜リン酸エチル、
Figure 2005194330
(However, R 1 to R 7 are hydrogen, alkyl group, aryl group, cycloalkyl group or arylalkyl group, X 1 to X 5 are hydrogen, alkyl group, aryl group, cycloalkyl group, arylalkyl group or alkali metal, Alternatively, each of X 1 to X 5 and R 1 to R 7 in each formula may be linked to each other to form a ring structure)
As the phosphinic acid compound represented by the chemical formula (C-1), dimethylphosphinic acid, phenylmethylphosphinic acid, hypophosphorous acid, sodium hypophosphite, ethyl hypophosphite,

Figure 2005194330
または
Figure 2005194330
Or

Figure 2005194330
の化合物およびこれらの加水分解物、ならびに上記ホスフィン酸化合物の縮合物などがある。
Figure 2005194330
And hydrolysates thereof, and condensates of the above phosphinic acid compounds.

化学式(C−2)で表される亜ホスホン酸化合物としては、フェニル亜ホスホン酸、フェニル亜ホスホン酸ナトリウム、フェニル亜ホスホン酸エチルなどがある。   Examples of the phosphonous acid compound represented by the chemical formula (C-2) include phenylphosphonous acid, sodium phenylphosphonite, and ethyl phenylphosphonite.

化学式(C−3)で表されるホスホン酸化合物としてはフェニルホスホン酸、エチルホスホン酸、フェニルホスホン酸ナトリウム、フェニルホスホン酸ジエチル、エチルホスホン酸ナトリウムなどがある。
化学式(C−4)で表される亜リン酸化合物としては、亜リン酸、亜リン酸水素ナトリウム、亜リン酸ナトリウム、亜リン酸トリエチル、亜リン酸トリフェニル、ピロ亜リン酸などがある。 また、本発明のポリアミド樹脂組成物において使用され得るナトリウム金属化合物としては、水酸化ナトリウム、酢酸ナトリウム、ナトリウムメトキシド、ナトリウムエトキシド、ナトリウムプロポキシド、ナトリウムブトキシド、炭酸ナトリウムなどが挙げられるが、とりわけ、水酸化ナトリウム、酢酸ナトリウムを使用するのが好ましい。但し、いずれもこれらの化合物に限定されるものではない。
Examples of the phosphonic acid compound represented by the chemical formula (C-3) include phenylphosphonic acid, ethylphosphonic acid, sodium phenylphosphonate, diethyl phenylphosphonate, and sodium ethylphosphonate.
Examples of the phosphorous acid compound represented by the chemical formula (C-4) include phosphorous acid, sodium hydrogen phosphite, sodium phosphite, triethyl phosphite, triphenyl phosphite, pyrophosphorous acid and the like. . Examples of the sodium metal compound that can be used in the polyamide resin composition of the present invention include sodium hydroxide, sodium acetate, sodium methoxide, sodium ethoxide, sodium propoxide, sodium butoxide, sodium carbonate, etc. Sodium hydroxide and sodium acetate are preferably used. However, any of them is not limited to these compounds.

本発明で用いられるポリアミド樹脂組成物に前記リン原子含有化合物を配合するには、ポリアミドの重合前の原料、重合中に添加するかあるいは該重合体に溶融混合してもよい。固相重合の際のポリアミドの熱劣化を防止する目的のためには、重合開始前にリン原子含有化合物を添加しておくことが好ましい。   In order to add the phosphorus atom-containing compound to the polyamide resin composition used in the present invention, it may be added during the polymerization of the raw material before the polymerization of the polyamide, or may be melt mixed with the polymer. For the purpose of preventing thermal degradation of the polyamide during solid phase polymerization, it is preferable to add a phosphorus atom-containing compound before the start of polymerization.

また、本発明のポリアミド樹脂組成物は、チップに成形した際のCo−b値が下記式(3)を満たすことが望ましい。   Moreover, as for the polyamide resin composition of this invention, it is desirable for the Co-b value at the time of shape | molding to a chip | tip to satisfy | fill following formula (3).

−3<Co−b<5…(3)
Co−b値の上限は、好ましくは4であり、より好ましくは3であり、さらに好ましくは2である。Co−b値が高すぎる場合、ボトル、フィルム、繊維等の後工程の加工時に黄色の着色が目立ち製品としての品位が落ちやすい。また、Co−b値を過度に低くしようとすると、リン原子含有化合物等の安定剤の添加量が多くなり過ぎやすく、コスト面で不利に働き、かつ添加剤に起因するフィルター詰まりが起こりやすい。
-3 <Co-b <5 (3)
The upper limit of the Co-b value is preferably 4, more preferably 3, and even more preferably 2. When the Co-b value is too high, yellow coloration is conspicuous during post-processing of bottles, films, fibers, and the like, and the quality of the product tends to deteriorate. On the other hand, if the Co-b value is attempted to be excessively low, the amount of stabilizer such as a phosphorus atom-containing compound added tends to be excessive, which is disadvantageous in terms of cost, and filter clogging due to the additive tends to occur.

本発明ポリアミド樹脂組成物は、ジアミンとジカルボン酸から生成するアミノカルボン酸塩の水溶液を加圧下および常圧下に加熱して反応させる方法あるいは常圧下でジアミンとジカルボン酸を加熱して直接反応させる方法により製造することができる。また、これらの溶融重縮合反応により得られた前記ポリアミドのチップを固相重合することによって、さらに高粘度のポリアミド樹脂組成物を得ることができる。   The polyamide resin composition of the present invention is a method in which an aqueous solution of an aminocarboxylate salt formed from a diamine and a dicarboxylic acid is heated and reacted under pressure and normal pressure, or a method in which a diamine and dicarboxylic acid are heated and reacted directly under normal pressure Can be manufactured. Furthermore, a polyamide resin composition having a higher viscosity can be obtained by solid-phase polymerization of the polyamide chips obtained by the melt polycondensation reaction.

前記のポリアミド樹脂組成物の製造における重縮合反応は、回分式反応装置で行っても良いしまた連続式反応装置で行っても良い。   The polycondensation reaction in the production of the polyamide resin composition may be performed in a batch reactor or a continuous reactor.

本発明のポリアミド樹脂組成物は、背圧上昇係数K*について、下記式(4)を満たすことが好ましい。   The polyamide resin composition of the present invention preferably satisfies the following formula (4) for the back pressure increase coefficient K *.

0<K*<15 … (4)
K*は背圧上昇係数
K*=[ΔP(MPa)/T(hr)]/[Q(kg/hr)/S(cm)]
であり、フィルター濾過径は20μmである。
ポリアミド樹脂組成物を一軸押出機(ヒーター設定温度285℃、平均滞留時間10分)を使用し、溶解させ、ギヤポンプを使用し、3〜6g/minで一定量押出した。ポリマー中の異物を濾過径20μmのフィルターで濾過し、ギヤポンプの二次側の圧力を経時的に記録し、4hr流した後のその圧力差を下記式にあてはめ、背圧上昇係数(K*)を求めた。
0 <K * <15 (4)
K * is a back pressure increase coefficient K * = [ΔP (MPa) / T (hr)] / [Q (kg / hr) / S (cm 2 )]
The filter filtration diameter is 20 μm.
The polyamide resin composition was dissolved using a single screw extruder (heater set temperature 285 ° C., average residence time 10 minutes) and extruded at a constant rate of 3 to 6 g / min using a gear pump. Foreign matter in the polymer is filtered through a filter with a filtration diameter of 20 μm, the pressure on the secondary side of the gear pump is recorded over time, the pressure difference after flowing for 4 hours is applied to the following formula, and the back pressure increase coefficient (K *) Asked.

K*=[ΔP(MPa)/T(hr)]/[Q(kg/hr)/S(cm)]
ΔP(MPa):ギヤポンプ二次圧の4hr後の圧力−初期圧
T(hr):ポリアミド樹脂組成物をフィルターで濾過した時間 (4hr)
Q(kg/hr):ポリアミド樹脂組成物の吐出量 (3〜6g/min)
S(cm):フィルターの濾過面積 (1.538cm
背圧上昇係数K*はより好ましくは10以下、さらに好ましくは8以下、ひときわ好ましくは7以下、いっそう好ましくは6以下、特に好ましくは5未満である。
K * = [ΔP (MPa) / T (hr)] / [Q (kg / hr) / S (cm 2 )]
ΔP (MPa): Pressure after 4 hours of gear pump secondary pressure-initial pressure T (hr): Time when the polyamide resin composition is filtered through a filter (4 hours)
Q (kg / hr): discharge amount of polyamide resin composition (3 to 6 g / min)
S (cm 2 ): Filtration area of the filter (1.538 cm 2 )
The back pressure increase coefficient K * is more preferably 10 or less, further preferably 8 or less, particularly preferably 7 or less, still more preferably 6 or less, and particularly preferably less than 5.

背圧上昇係数K*の下限については、添加剤の配合なしのときのK*と同じ値にまで下げることが好ましく、添加剤なしの場合のK*の値が現実的には下限の一つの目安となる。K*の下限は、特に限定されないが、1つの実施態様では1であり、別の実施態様では1.5であり、さらに別の実施態様では2であり、さらなる実施態様では2.5である。   The lower limit of the back pressure increase coefficient K * is preferably lowered to the same value as K * when no additive is added, and the value of K * without additive is practically one of the lower limits. It becomes a standard. The lower limit of K * is not particularly limited, but is 1 in one embodiment, 1.5 in another embodiment, 2 in yet another embodiment, and 2.5 in a further embodiment. .

また、背圧上昇係数K*が高すぎる場合には、ボトル成形時、フィルムの製膜時などフィルター濾過を必要とする後工程において、詰りの発生頻度が高くなりやすく、生産性の低下によるコストアップとなる可能性が高い。K*が5以上15未満の場合には、わずかにフィルターの目詰まりが観察されるが、実用上問題となるレベルではなく、十分に本発明の目的を達成することができる。ただし、極めて長時間の連続生産を行う場合には、目詰まりが増大する可能性があり得るので、極めて長時間の連続生産を行う場合には、K*が5未満であることが好ましい。   In addition, if the back pressure increase coefficient K * is too high, clogging is likely to occur more frequently in subsequent processes that require filter filtration, such as when forming a bottle or when forming a film. There is a high possibility of being up. When K * is 5 or more and less than 15, clogging of the filter is slightly observed, but it is not at a practically problematic level, and the object of the present invention can be sufficiently achieved. However, there is a possibility that clogging may increase when continuous production is performed for an extremely long time. Therefore, it is preferable that K * is less than 5 when continuous production is performed for an extremely long time.

以下本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定させるものではない。なお、本明細書中における主な特性値の測定法を以下に説明する。
(1)ポリアミド樹脂組成物の相対粘度(RV)
試料0.25gを96%硫酸25mlに溶解し、この溶液10mlをオストワルド粘度管にて20℃で測定、下式より求めた。
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples. The main characteristic value measuring methods in this specification will be described below.
(1) Relative viscosity (RV) of polyamide resin composition
0.25 g of a sample was dissolved in 25 ml of 96% sulfuric acid, and 10 ml of this solution was measured at 20 ° C. with an Ostwald viscosity tube and obtained from the following formula.

RV=t/t
:溶媒の落下秒数
t:試料溶液の落下秒数
(2)ポリアミド樹脂組成物のカラーb値
カラーメーター(日本電色社製、Model 1001DP)を使用し、重合後に得られたチップ状の樹脂を測定セルに詰めて得られた測定サンプルのカラーb値を測定した。
(3)Pの分析
試料を炭酸ソーダ共存下において乾式灰化分解するか、硫酸・硝酸・過塩素酸系または硫酸・過酸化水素水系において湿式分解し、リンを正リン酸とした。次いで、1mol/L硫酸溶液中においてモリブデン酸塩を反応させて、リンモリブデン酸とし、これを硫酸ヒドラジンで還元して生ずるヘテロポリ青の830nmの吸光度を吸光光度計(島津製作所製、UV−150−02)で測定して比色定量した。
(4)Na、Liの分析
試料を白金ルツボにて、灰化分解し、6mol/L塩酸を加えて蒸発乾固した。1.2mol/L塩酸で溶解し、その溶液を原子吸光(島津製作所製、AA−640−12)で定量した。
(5)背圧上昇試験
ポリアミド樹脂組成物を一軸押出機(ヒーター設定温度285℃、平均滞留時間10分)を使用し、溶解させ、ギヤポンプを使用し、3〜6g/minで一定量押出した。ポリマー中の異物を濾過径20μmのフィルターで濾過し、ギヤポンプの二次側の圧力を経時的に記録した。4hr流した後のその圧力差を下記式にあてはめ、背圧上昇係数(K*)を求めた。
RV = t / t 0
t 0 : number of seconds the solvent falls
t: Number of seconds for dropping the sample solution (2) Color b value of the polyamide resin composition Using a color meter (Model 1001DP, manufactured by Nippon Denshoku), the chip-shaped resin obtained after polymerization was packed in a measurement cell. The color b value of the obtained measurement sample was measured.
(3) Analysis of P The sample was subjected to dry ashing decomposition in the presence of sodium carbonate, or wet decomposition in sulfuric acid / nitric acid / perchloric acid system or sulfuric acid / hydrogen peroxide system, and phosphorus was converted to normal phosphoric acid. Subsequently, the molybdate is reacted in a 1 mol / L sulfuric acid solution to form phosphomolybdic acid, and this is reduced with hydrazine sulfate. The absorbance at 830 nm of the heteropoly blue produced is a spectrophotometer (Shimadzu Corporation, UV-150- 02) and colorimetrically determined.
(4) Analysis of Na and Li The sample was incinerated and decomposed with a platinum crucible, and 6 mol / L hydrochloric acid was added to evaporate to dryness. The resultant was dissolved in 1.2 mol / L hydrochloric acid, and the solution was quantified by atomic absorption (manufactured by Shimadzu Corporation, AA-640-12).
(5) Back pressure increase test The polyamide resin composition was dissolved using a single screw extruder (heater set temperature 285 ° C., average residence time 10 minutes), and a certain amount was extruded at 3 to 6 g / min using a gear pump. . Foreign matter in the polymer was filtered through a filter having a filtration diameter of 20 μm, and the pressure on the secondary side of the gear pump was recorded over time. The pressure difference after flowing for 4 hours was applied to the following formula to determine the back pressure increase coefficient (K *).

K*=[ΔP(MPa)/T(hr)]/[Q(kg/hr)/S(cm)]
ΔP(MPa):ギヤポンプ二次圧の4hr後の圧力−初期圧
T(hr):ポリアミド樹脂組成物をフィルターで濾過した時間 (4hr)
Q(kg/hr):ポリアミド樹脂組成物の吐出量 (3〜6g/min)
S(cm):フィルターの濾過面積 (1.538cm
実施例1
攪拌機、分縮器、温度計、滴下ロートおよび窒素ガス導入管を備えた内容積250リットルの調製缶に、精秤したメタキシリレンジアミン27.66kg、アジピン酸29.65kgを内温85℃にて調合し、透明な溶液とした。添加剤としてNaHPO・HO 1.37g、CHCOONa 3.71gを投入して15分攪拌した。その溶液を内容積270リットルの反応缶に移送し、缶内温度190℃、缶内圧1.0MPaの条件下で攪拌して反応させた。留出する水を系外に除き、缶内温度が235℃になった時点で、缶内圧を60分間かけて常圧に戻した。常圧で攪拌を行い、目標粘度に達した時点で攪拌を停止し、20分間放置した。その後、反応缶下部の取り出し口より溶融樹脂を取り出し、冷却固化させてストランドカッターにて樹脂チップを得た。得られた樹脂の相対粘度(RV)は2.10、Co−b値は3.3であった。その得られた樹脂を100Lのブレンダーで内温120℃にて12hr乾燥させ、冷却後チップを得た。水分率は200ppmであった。また、リン原子、ナトリウム原子およびリチウム原子の残存量はP=40ppm、Na=134ppm、Li=0ppmであった。そのポリアミド樹脂組成物を、一軸押出機を使用し、溶融させ、ギヤポンプを使用して6g/minで一定量押出した。ポリマー中の異物を濾過径20μmのフィルターで濾過し、ギヤポンプの二次側の圧力を経時的に記録した。4hr流した後の背圧上昇係数(K*)は2.5であった。フィルターを確認したところ、目詰まりは無かった。得られた押出し成形品の熱劣化状態を観察したところ、熱劣化によるゲル化物は観察されなかった。
K * = [ΔP (MPa) / T (hr)] / [Q (kg / hr) / S (cm 2 )]
ΔP (MPa): Pressure after 4 hours of gear pump secondary pressure-initial pressure T (hr): Time when the polyamide resin composition is filtered through a filter (4 hours)
Q (kg / hr): discharge amount of polyamide resin composition (3 to 6 g / min)
S (cm 2 ): Filtration area of the filter (1.538 cm 2 )
Example 1
In a 250-liter preparation can equipped with a stirrer, a condenser, a thermometer, a dropping funnel and a nitrogen gas introduction tube, 27.66 kg of metaxylylenediamine and 29.65 kg of adipic acid were precisely weighed to an internal temperature of 85 ° C. To make a clear solution. As additives, 1.37 g of NaH 2 PO 2 .H 2 O and 3.71 g of CH 3 COONa were added and stirred for 15 minutes. The solution was transferred to a reaction can having an internal volume of 270 liters, and reacted by stirring under conditions of a can internal temperature of 190 ° C. and a can internal pressure of 1.0 MPa. The distilled water was removed from the system, and when the internal temperature of the can reached 235 ° C., the internal pressure of the can was returned to normal pressure over 60 minutes. Stirring was performed at normal pressure, and when the target viscosity was reached, stirring was stopped and left for 20 minutes. Thereafter, the molten resin was taken out from the take-out port at the bottom of the reaction can, cooled and solidified, and a resin chip was obtained with a strand cutter. The obtained resin had a relative viscosity (RV) of 2.10 and a Co-b value of 3.3. The obtained resin was dried with a 100 L blender at an internal temperature of 120 ° C. for 12 hours, and a chip was obtained after cooling. The moisture content was 200 ppm. Further, the residual amounts of phosphorus atoms, sodium atoms and lithium atoms were P = 40 ppm, Na = 134 ppm and Li = 0 ppm. The polyamide resin composition was melted using a single screw extruder and extruded at a constant rate of 6 g / min using a gear pump. Foreign matter in the polymer was filtered through a filter having a filtration diameter of 20 μm, and the pressure on the secondary side of the gear pump was recorded over time. The back pressure increase coefficient (K *) after flowing for 4 hours was 2.5. When the filter was checked, there was no clogging. When the heat deterioration state of the obtained extrusion-molded product was observed, a gelled product due to heat deterioration was not observed.

実施例2
ポリアミドの重合方法は添加剤としてNaHPO・HO 1.71g、CHCOONa 3.97gを投入した以外は実施例1と同様に行った。得られた樹脂の相対粘度(RV)は2.23、Co−b値は3.1であった。その得られた樹脂を100Lのブレンダーで内温120℃にて12hr乾燥させ、冷却後チップを得た。その時の水分率は250ppmであった。また、リン原子、ナトリウム原子およびリチウム原子の残存量はP=50ppm、Na=148ppm、Li=0ppmであった。そのポリアミド樹脂組成物を、一軸押出機を使用し、溶融させて、ギヤポンプを使用して6g/minで一定量押出した。ポリマー中の異物を濾過径20μmのフィルターで濾過し、ギヤポンプの二次側の圧力を経時的に記録した。4hr流した後の背圧上昇係数(K*)は3.5であった。フィルターを確認したところ、目詰まりは無かった。得られた押出し成形品の熱劣化状態を観察したところ、熱劣化によるゲル化物は観察されなかった。
Example 2
The polyamide polymerization method was carried out in the same manner as in Example 1 except that 1.71 g of NaH 2 PO 2 .H 2 O and 3.97 g of CH 3 COONa were added as additives. The obtained resin had a relative viscosity (RV) of 2.23 and a Co-b value of 3.1. The obtained resin was dried with a 100 L blender at an internal temperature of 120 ° C. for 12 hours, and a chip was obtained after cooling. The moisture content at that time was 250 ppm. Further, the residual amounts of phosphorus atoms, sodium atoms and lithium atoms were P = 50 ppm, Na = 148 ppm and Li = 0 ppm. The polyamide resin composition was melted using a single screw extruder and extruded at a constant rate of 6 g / min using a gear pump. Foreign matter in the polymer was filtered through a filter having a filtration diameter of 20 μm, and the pressure on the secondary side of the gear pump was recorded over time. The back pressure increase coefficient (K *) after flowing for 4 hours was 3.5. When the filter was checked, there was no clogging. When the heat deterioration state of the obtained extrusion-molded product was observed, a gelled product due to heat deterioration was not observed.

実施例3
ポリアミドの重合方法は添加剤としてNaHPO・HO 3.42g、CHCOONa 6.62gを投入した以外は実施例1と同様に行った。得られた樹脂の相対粘度(RV)は2.15、Co−b値は−0.8であった。その得られた樹脂を100Lのブレンダーで内温120℃にて12hr乾燥させ、さらに内温180℃で固相重合させ、冷却後チップを得た。その時のRVは2.65、Co−b値は−1.1、水分率は200ppmであった。また、リン原子、ナトリウム原子およびリチウム原子の残存量はP=100ppm、Na=260ppm、Li=0ppmであった。そのポリアミド樹脂組成物を、一軸押出機を使用し、溶融させ、ギヤポンプを使用して3g/minで一定量押出した。ポリマー中の異物を濾過径20μmのフィルターで濾過し、ギヤポンプの二次側の圧力を経時的に記録した。4hr流した後の背圧上昇係数(K*)は14であった。フィルターを確認したところ、目詰まりがわずかに観察されたが、実用上問題とならないレベルであった。得られた押出し成形品の熱劣化状態を観察したところ、熱劣化によるゲル化物は観察されなかった。
Example 3
The polyamide polymerization method was carried out in the same manner as in Example 1 except that 3.42 g of NaH 2 PO 2 .H 2 O and 6.62 g of CH 3 COONa were added as additives. The obtained resin had a relative viscosity (RV) of 2.15 and a Co-b value of -0.8. The obtained resin was dried with a 100 L blender at an internal temperature of 120 ° C. for 12 hours and further solid-phase polymerized at an internal temperature of 180 ° C. to obtain a chip after cooling. At that time, the RV was 2.65, the Co-b value was -1.1, and the moisture content was 200 ppm. Further, the residual amounts of phosphorus atom, sodium atom and lithium atom were P = 100 ppm, Na = 260 ppm and Li = 0 ppm. The polyamide resin composition was melted using a single screw extruder and extruded at a constant rate of 3 g / min using a gear pump. Foreign matter in the polymer was filtered through a filter having a filtration diameter of 20 μm, and the pressure on the secondary side of the gear pump was recorded over time. The back pressure increase coefficient (K *) after flowing for 4 hours was 14. When the filter was checked, clogging was slightly observed, but it was at a level that does not cause any practical problems. When the heat deterioration state of the obtained extrusion-molded product was observed, a gelled product due to heat deterioration was not observed.

実施例4
ポリアミドの溶融重合方法は添加剤としてNaHPO・HO 3.42g、CHCOONa 7.95gを投入した以外は実施例1と同様に行った。得られた樹脂の相対粘度(RV)は2.10、Co−b値は−0.9であった。その得られた樹脂を100Lのブレンダーで内温120℃、12hrで乾燥させ、さらに内温180℃で固相重合させ、冷却後チップを得た。その時のRVは2.65、Co−b値は−1.3、水分率は200ppmであった。また、リン原子、ナトリウム原子およびリチウム原子の残存量はP=100ppm、Na=297ppm、Li=0ppmであった。そのポリアミド樹脂組成物を、一軸押出機を使用し、溶融させて、ギヤポンプを使用して3g/minで一定量押出した。ポリマー中の異物を濾過径20μmのフィルターで濾過し、ギヤポンプの二次側の圧力を経時的に記録した。4hr流した後の背圧上昇係数(K*)は7.8であった。フィルターを確認したところ、目詰まりがわずかに観察されたが、実用上問題とならないレベルであった。得られた押出し成形品の熱劣化状態を観察したところ、熱劣化によるゲル化物は観察されなかった。
Example 4
The polyamide melt polymerization method was carried out in the same manner as in Example 1 except that 3.42 g of NaH 2 PO 2 .H 2 O and 7.95 g of CH 3 COONa were added as additives. The obtained resin had a relative viscosity (RV) of 2.10 and a Co-b value of -0.9. The obtained resin was dried with a 100 L blender at an internal temperature of 120 ° C. for 12 hours, and further solid phase polymerized at an internal temperature of 180 ° C. to obtain a chip after cooling. At that time, the RV was 2.65, the Co-b value was -1.3, and the moisture content was 200 ppm. Further, the residual amounts of phosphorus atom, sodium atom and lithium atom were P = 100 ppm, Na = 297 ppm, and Li = 0 ppm. The polyamide resin composition was melted using a single screw extruder and extruded at a constant rate of 3 g / min using a gear pump. Foreign matter in the polymer was filtered through a filter having a filtration diameter of 20 μm, and the pressure on the secondary side of the gear pump was recorded over time. The back pressure increase coefficient (K *) after flowing for 4 hours was 7.8. When the filter was checked, clogging was slightly observed, but it was at a level that does not cause any practical problems. When the heat deterioration state of the obtained extrusion-molded product was observed, a gelled product due to heat deterioration was not observed.

実施例5
ポリアミドの溶融重合方法は添加剤としてNaHPO・HO 3.42g、CHCOONa 10.59gを投入した以外は実施例1と同様に行った。得られた樹脂の相対粘度(RV)は2.12、Co−b値は1.0であった。その得られた樹脂を100Lのブレンダーで内温120℃にて12hr乾燥させた。その時のリン原子、ナトリウム原子およびリチウム原子の残存量はP=100ppm、Na=371ppm、Li=0ppmであった。そのポリアミド樹脂組成物を、一軸押出機を使用し、溶融させて、ギヤポンプを使用して6g/minで一定量押出した。ポリマー中の異物を濾過径20μmのフィルターで濾過し、ギヤポンプの二次側の圧力を経時的に記録した。4hr流した後の背圧上昇係数(K*)は3.7であった。フィルターを確認したところ、目詰まりは無かった。得られた押出し成形品の熱劣化状態を観察したところ、熱劣化によるゲル化物は観察されなかった。
Example 5
Polyamide melt polymerization was carried out in the same manner as in Example 1 except that 3.42 g of NaH 2 PO 2 .H 2 O and 10.59 g of CH 3 COONa were added as additives. The obtained resin had a relative viscosity (RV) of 2.12 and a Co-b value of 1.0. The obtained resin was dried with a 100 L blender at an internal temperature of 120 ° C. for 12 hours. The residual amounts of phosphorus atoms, sodium atoms, and lithium atoms at that time were P = 100 ppm, Na = 371 ppm, and Li = 0 ppm. The polyamide resin composition was melted using a single screw extruder and extruded at a constant rate of 6 g / min using a gear pump. Foreign matter in the polymer was filtered through a filter having a filtration diameter of 20 μm, and the pressure on the secondary side of the gear pump was recorded over time. The coefficient of increase in back pressure (K *) after flowing for 4 hours was 3.7. When the filter was checked, there was no clogging. When the heat deterioration state of the obtained extrusion-molded product was observed, a gelled product due to heat deterioration was not observed.

実施例6
ポリアミドの溶融重合方法は添加剤としてNaHPO・HO 3.42g、CHCOONa 10.59gを投入した以外は実施例1と同様に行った。得られた樹脂の相対粘度(RV)は2.12、Co−b値は1.0であった。その得られた樹脂を100Lのブレンダーで内温120℃にて12hr乾燥させ、さらに内温180℃で固相重合させ、冷却後チップを得た。その時のRVは2.65、Co−b値は2.0、水分率は200ppmであった。また、リン原子、ナトリウム原子およびリチウム原子の残存量はP=100ppm、Na=371ppm、Li=0ppmであった。そのポリアミド樹脂組成物を、一軸押出機を使用し、溶融させて、ギヤポンプを使用して3g/minで一定量押出した。ポリマー中の異物を濾過径20μmのフィルターで濾過し、ギヤポンプの二次側の圧力を経時的に記録した。4hr流した後の背圧上昇係数(K*)は4.5であった。フィルターを確認したところ、目詰まりは無かった。得られた押出し成形品の熱劣化状態を観察したところ、熱劣化によるゲル化物は観察されなかった。
Example 6
Polyamide melt polymerization was carried out in the same manner as in Example 1 except that 3.42 g of NaH 2 PO 2 .H 2 O and 10.59 g of CH 3 COONa were added as additives. The obtained resin had a relative viscosity (RV) of 2.12 and a Co-b value of 1.0. The obtained resin was dried with a 100 L blender at an internal temperature of 120 ° C. for 12 hours and further solid-phase polymerized at an internal temperature of 180 ° C. to obtain a chip after cooling. At that time, the RV was 2.65, the Co-b value was 2.0, and the moisture content was 200 ppm. Further, the residual amounts of phosphorus atoms, sodium atoms and lithium atoms were P = 100 ppm, Na = 371 ppm and Li = 0 ppm. The polyamide resin composition was melted using a single screw extruder and extruded at a constant rate of 3 g / min using a gear pump. Foreign matter in the polymer was filtered through a filter having a filtration diameter of 20 μm, and the pressure on the secondary side of the gear pump was recorded over time. The back pressure increase coefficient (K *) after flowing for 4 hours was 4.5. When the filter was checked, there was no clogging. When the heat deterioration state of the obtained extrusion-molded product was observed, a gelled product due to heat deterioration was not observed.

実施例7
ポリアミドの溶融重合方法は添加剤としてNaHPO・HO 5.13g、CHCOONaを15.89gを投入した以外は実施例1と同様に行った。得られた樹脂の相対粘度(RV)は2.15、Co−b値は−0.8であった。その得られた樹脂を100Lのブレンダーで内温120℃にて12hr乾燥させ、さらに内温180℃で固相重合させ、冷却後チップを得た。その時のRVは2.50、Co−b値は1.5、水分率は200ppmであった。また、リン原子、ナトリウム原子およびリチウム原子の残存量はP=150ppm、Na=557ppm、Li=0ppmであった。そのポリアミド樹脂組成物を、一軸押出機を使用し、溶融させ、ギヤポンプを使用して3g/minで一定量押出した。ポリマー中の異物を濾過径20μmのフィルターで濾過し、ギヤポンプの二次側の圧力を経時的に記録した。4hr流した後の背圧上昇係数(K*)は5.2であった。フィルターを確認したところ、目詰まりがわずかに観察されたが、実用上問題とならないレベルであった。得られた押出し成形品の熱劣化状態を観察したところ、熱劣化によるゲル化物は観察されなかった。
Example 7
Polyamide melt polymerization was carried out in the same manner as in Example 1 except that 5.13 g of NaH 2 PO 2 .H 2 O and 15.89 g of CH 3 COONa were added as additives. The obtained resin had a relative viscosity (RV) of 2.15 and a Co-b value of -0.8. The obtained resin was dried with a 100 L blender at an internal temperature of 120 ° C. for 12 hours and further solid-phase polymerized at an internal temperature of 180 ° C. to obtain a chip after cooling. At that time, the RV was 2.50, the Co-b value was 1.5, and the moisture content was 200 ppm. Further, the residual amounts of phosphorus atom, sodium atom and lithium atom were P = 150 ppm, Na = 557 ppm and Li = 0 ppm. The polyamide resin composition was melted using a single screw extruder and extruded at a constant rate of 3 g / min using a gear pump. Foreign matter in the polymer was filtered through a filter having a filtration diameter of 20 μm, and the pressure on the secondary side of the gear pump was recorded over time. The back pressure increase coefficient (K *) after flowing for 4 hours was 5.2. When the filter was checked, clogging was slightly observed, but it was at a level that does not cause any practical problems. When the heat deterioration state of the obtained extrusion-molded product was observed, a gelled product due to heat deterioration was not observed.

実施例8
ポリアミドの溶融重合方法は添加剤としてNaHPO・HO 6.50g、CH3COONaを25.16gを投入した以外は実施例1と同様に行った。得られた樹脂の相対粘度(RV)は2.15、Co−b値は3.5であった。その得られた樹脂を100Lのブレンダーで内温120℃にて12hr乾燥させ、さらに内温180℃で固相重合させ、冷却後チップを得た。その時のRVは2.10、Co−b値は2.5、水分率は250ppmであった。また、リン原子、ナトリウム原子およびリチウム原子の残存量はP=190ppm、Na=846ppm、Li=0ppmであった。そのポリアミド樹脂組成物を、一軸押出機を使用し、溶融させ、ギヤポンプを使用して6g/minで一定量押出した。ポリマー中の異物を濾過径20μmのフィルターで濾過し、ギヤポンプの二次側の圧力を経時的に記録した。4hr流した後の背圧上昇係数(K*)は4.0であった。フィルターを確認したところ、目詰まりは無かった。得られた押出し成形品の熱劣化状態を観察したところ、熱劣化によるゲル化物は観察されなかった。
Example 8
The polyamide melt polymerization method was carried out in the same manner as in Example 1 except that 6.50 g of NaH 2 PO 2 .H 2 O and 25.16 g of CH 3 COONa were added as additives. The obtained resin had a relative viscosity (RV) of 2.15 and a Co-b value of 3.5. The obtained resin was dried with a 100 L blender at an internal temperature of 120 ° C. for 12 hours and further solid-phase polymerized at an internal temperature of 180 ° C. to obtain a chip after cooling. At that time, the RV was 2.10, the Co-b value was 2.5, and the moisture content was 250 ppm. Moreover, the residual amounts of phosphorus atoms, sodium atoms and lithium atoms were P = 190 ppm, Na = 846 ppm and Li = 0 ppm. The polyamide resin composition was melted using a single screw extruder and extruded at a constant rate of 6 g / min using a gear pump. Foreign matter in the polymer was filtered through a filter having a filtration diameter of 20 μm, and the pressure on the secondary side of the gear pump was recorded over time. The back pressure increase coefficient (K *) after flowing for 4 hours was 4.0. When the filter was checked, there was no clogging. When the heat deterioration state of the obtained extrusion-molded product was observed, a gelled product due to heat deterioration was not observed.

実施例9
攪拌機、分縮器、温度計、滴下ロートおよび窒素ガス導入管を備えた内容積250リットルの調製缶に、精秤したメタキシリレンジアミン27.66kg、アジピン酸26.41kg、テレフタル酸3.34kgを内温100℃にて調合し、透明な溶液とした。添加剤としてNaHPO・HO 5.13g、CHCOONaを13.91gを投入して15分攪拌した。その溶液を内容積270リットルの反応缶に移送し、缶内温度190℃、缶内圧1.0MPaの条件下で攪拌して反応させた。留出する水を系外に除き、缶内温度が235℃になった時点で、缶内圧を60分間かけて常圧に戻した。常圧で攪拌を行い、目標粘度に達した時点で攪拌を停止し、20分間放置した。その後、反応缶下部の取り出し口より溶融樹脂を取り出し、冷却固化させてストランドカッターにて樹脂チップを得た。得られた樹脂の相対粘度(RV)は2.35、Co−b値は4.9であった。また、リン原子、ナトリウム原子およびリチウム原子の残存量はP=150ppm、Na=501ppm、Li=0ppmであった。その得られた樹脂を100Lのブレンダーで内温120℃にて12hr乾燥させ、冷却後チップを得た。その時のRVは2.35、Co−b値は4.9、水分率は250ppmであった。そのポリアミド樹脂組成物を、一軸押出機を使用し、溶融させ、ギヤポンプを使用して3g/minで一定量押出した。ポリマー中の異物を濾過径20μmのフィルターで濾過し、ギヤポンプの二次側の圧力を経時的に記録した。4hr流した後の背圧上昇係数(K*)は14であった。フィルターを確認したところ、目詰まりがわずかに観察されたが、実用上問題とならないレベルであった。得られた押出し成形品の熱劣化状態を観察したところ、熱劣化によるゲル化物は観察されなかった。
Example 9
In a 250 liter preparation can equipped with a stirrer, a condenser, a thermometer, a dropping funnel and a nitrogen gas introduction tube, 27.66 kg of metaxylylenediamine precisely weighed, 26.41 kg of adipic acid, 3.34 kg of terephthalic acid Was prepared at an internal temperature of 100 ° C. to obtain a transparent solution. As additives, 5.13 g of NaH 2 PO 2 .H 2 O and 13.91 g of CH 3 COONa were added and stirred for 15 minutes. The solution was transferred to a reaction can having an internal volume of 270 liters, and reacted by stirring under conditions of a can internal temperature of 190 ° C. and a can internal pressure of 1.0 MPa. The distilled water was removed from the system, and when the internal temperature of the can reached 235 ° C., the internal pressure of the can was returned to normal pressure over 60 minutes. Stirring was performed at normal pressure, and when the target viscosity was reached, stirring was stopped and left for 20 minutes. Thereafter, the molten resin was taken out from the take-out port at the bottom of the reaction can, cooled and solidified, and a resin chip was obtained with a strand cutter. The obtained resin had a relative viscosity (RV) of 2.35 and a Co-b value of 4.9. Further, the residual amounts of phosphorus atoms, sodium atoms and lithium atoms were P = 150 ppm, Na = 501 ppm and Li = 0 ppm. The obtained resin was dried with a 100 L blender at an internal temperature of 120 ° C. for 12 hours, and a chip was obtained after cooling. At that time, the RV was 2.35, the Co-b value was 4.9, and the moisture content was 250 ppm. The polyamide resin composition was melted using a single screw extruder and extruded at a constant rate of 3 g / min using a gear pump. Foreign matter in the polymer was filtered through a filter having a filtration diameter of 20 μm, and the pressure on the secondary side of the gear pump was recorded over time. The back pressure increase coefficient (K *) after flowing for 4 hours was 14. When the filter was checked, clogging was slightly observed, but it was at a level that does not cause any practical problems. When the heat deterioration state of the obtained extrusion-molded product was observed, a gelled product due to heat deterioration was not observed.

実施例10
攪拌機、分縮器、温度計、滴下ロートおよび窒素ガス導入管を備えた内容積250リットルの調製缶に、精秤したメタキシリレンジアミン27.66kg、アジピン酸26.41kg、シクロヘキサンジカルボン酸3.45kgを内温100℃にて調合し、透明な溶液とした。添加剤としてNaHPO・HO 5.13g、CHCOONaを13.91gを投入して15分攪拌した。その溶液を内容積270リットルの反応缶に移送し、缶内温度190℃、缶内圧1.0MPaの条件下で攪拌して反応させた。留出する水を系外に除き、缶内温度が235℃になった時点で、缶内圧を60分間かけて常圧に戻した。常圧で攪拌を行い、目標粘度に達した時点で攪拌を停止し、20分間放置した。その後、反応缶下部の取り出し口より溶融樹脂を取り出し、冷却固化させてストランドカッターにて樹脂チップを得た。得られた樹脂の相対粘度(RV)は2.3、Co−b値は6.6であった。また、リン原子、ナトリウム原子およびリチウム原子の残存量はP=150ppm、Na=501ppm、Li=0ppmであった。その得られた樹脂を100Lのブレンダーで内温120℃にて12hr乾燥させ、冷却後チップを得た。その時のRVは2.30、Co−b値は−2.3、水分率は250ppmであった。そのポリアミド樹脂組成物を、一軸押出機を使用し、溶融させ、ギヤポンプを使用して6g/minで一定量押出した。ポリマー中の異物を濾過径20μmのフィルターで濾過し、ギヤポンプの二次側の圧力を経時的に記録した。4hr流した後の背圧上昇係数(K*)は12であった。フィルターを確認したところ、目詰まりがわずかに観察されたが、実用上問題とならないレベルであった。得られた押出し成形品の熱劣化状態を観察したところ、熱劣化によるゲル化物は観察されなかった。
Example 10
In a 250-liter preparation can equipped with a stirrer, a condenser, a thermometer, a dropping funnel, and a nitrogen gas introduction pipe, 27.66 kg of metaxylylenediamine, 26.41 kg of adipic acid, cyclohexanedicarboxylic acid 3. 45 kg was prepared at an internal temperature of 100 ° C. to obtain a transparent solution. As additives, 5.13 g of NaH 2 PO 2 .H 2 O and 13.91 g of CH 3 COONa were added and stirred for 15 minutes. The solution was transferred to a reaction can having an internal volume of 270 liters, and reacted by stirring under conditions of a can internal temperature of 190 ° C. and a can internal pressure of 1.0 MPa. The distilled water was removed from the system, and when the internal temperature of the can reached 235 ° C., the internal pressure of the can was returned to normal pressure over 60 minutes. Stirring was performed at normal pressure, and when the target viscosity was reached, stirring was stopped and left for 20 minutes. Thereafter, the molten resin was taken out from the take-out port at the bottom of the reaction can, cooled and solidified, and a resin chip was obtained with a strand cutter. The obtained resin had a relative viscosity (RV) of 2.3 and a Co-b value of 6.6. Further, the residual amounts of phosphorus atoms, sodium atoms and lithium atoms were P = 150 ppm, Na = 501 ppm and Li = 0 ppm. The obtained resin was dried with a 100 L blender at an internal temperature of 120 ° C. for 12 hours, and a chip was obtained after cooling. At that time, the RV was 2.30, the Co-b value was -2.3, and the moisture content was 250 ppm. The polyamide resin composition was melted using a single screw extruder and extruded at a constant rate of 6 g / min using a gear pump. Foreign matter in the polymer was filtered through a filter having a filtration diameter of 20 μm, and the pressure on the secondary side of the gear pump was recorded over time. The back pressure increase coefficient (K *) after flowing for 4 hours was 12. When the filter was checked, clogging was slightly observed, but it was at a level that does not cause any practical problems. When the heat deterioration state of the obtained extrusion-molded product was observed, a gelled product due to heat deterioration was not observed.

比較例1
ポリアミドの重合方法は添加剤としてNaHPO・HO 6.84g、CHCOONaを10.59gを投入した以外は実施例1と同様に行った。得られた樹脂の相対粘度(RV)は2.15、Co−b値は−2.2であった。その得られた樹脂を100Lのブレンダーで内温120℃にて12hr乾燥させ、さらに内温180℃で固相重合させ、冷却後チップを得た。その時のRVは2.65、Co−b値は−2.9、水分率は200ppmであった。また、リン原子、ナトリウム原子およびリチウム原子の残存量はP=200ppm、Na=440ppm、Li=0ppmであった。そのポリアミド樹脂組成物を、一軸押出機を使用し、溶融させて、ギヤポンプを使用して3g/minで一定量押出した。ポリマー中の異物を濾過径20μmのフィルターで濾過し、ギヤポンプの二次側の圧力を経時的に記録した。4hr流した後の背圧上昇係数(K*)は20であった。フィルターを確認したところ、目詰まりが観察された。得られた押出し成形品の熱劣化状態を観察したところ、熱劣化によるゲル化物は観察されなかった。
Comparative Example 1
Polyamide polymerization was performed in the same manner as in Example 1 except that 6.84 g of NaH 2 PO 2 .H 2 O and 10.59 g of CH 3 COONa were added as additives. The obtained resin had a relative viscosity (RV) of 2.15 and a Co-b value of -2.2. The obtained resin was dried with a 100 L blender at an internal temperature of 120 ° C. for 12 hours and further solid-phase polymerized at an internal temperature of 180 ° C. to obtain a chip after cooling. At that time, the RV was 2.65, the Co-b value was -2.9, and the moisture content was 200 ppm. The residual amounts of phosphorus atoms, sodium atoms and lithium atoms were P = 200 ppm, Na = 440 ppm, and Li = 0 ppm. The polyamide resin composition was melted using a single screw extruder and extruded at a constant rate of 3 g / min using a gear pump. Foreign matter in the polymer was filtered through a filter having a filtration diameter of 20 μm, and the pressure on the secondary side of the gear pump was recorded over time. The back pressure increase coefficient (K *) after flowing for 4 hours was 20. When the filter was checked, clogging was observed. When the heat deterioration state of the obtained extrusion-molded product was observed, a gelled product due to heat deterioration was not observed.

比較例2
ポリアミドの重合方法は添加剤としてNaHPO・HO 4.55g、CHCOONa 3.52gを投入した以外は実施例1と同様に行った。得られた樹脂の相対粘度(RV)は2.15、Co−b値は−1.0であった。その得られた樹脂を100Lのブレンダーで内温120℃にて12hr乾燥させ、さらに内温180℃で固相重合させ、冷却後チップを得た。その時のRVは2.65、Co−b値は−1.7、水分率は200ppmであった。また、リン原子、ナトリウム原子およびリチウム原子の残存量はP=133ppm、Na=190ppm、Li=0ppmであった。そのポリアミド樹脂組成物を、一軸押出機を使用し、溶融させ、ギヤポンプを使用して3g/minで一定量押出した。ポリマー中の異物を濾過径20μmのフィルターで濾過し、ギヤポンプの二次側の圧力を経時的に記録した。4hr流した後の背圧上昇係数(K*)は29であった。フィルターを確認したところ、目詰まりが観察された。得られた押出し成形品の熱劣化状態を観察したところ、熱劣化によるゲル化物が観察された。
Comparative Example 2
Polyamide polymerization was carried out in the same manner as in Example 1 except that 4.55 g of NaH 2 PO 2 .H 2 O and 3.52 g of CH 3 COONa were added as additives. The obtained resin had a relative viscosity (RV) of 2.15 and a Co-b value of -1.0. The obtained resin was dried with a 100 L blender at an internal temperature of 120 ° C. for 12 hours and further solid-phase polymerized at an internal temperature of 180 ° C. to obtain a chip after cooling. At that time, the RV was 2.65, the Co-b value was -1.7, and the moisture content was 200 ppm. Further, the residual amounts of phosphorus atoms, sodium atoms and lithium atoms were P = 133 ppm, Na = 190 ppm and Li = 0 ppm. The polyamide resin composition was melted using a single screw extruder and extruded at a constant rate of 3 g / min using a gear pump. Foreign matter in the polymer was filtered through a filter having a filtration diameter of 20 μm, and the pressure on the secondary side of the gear pump was recorded over time. The back pressure increase coefficient (K *) after flowing for 4 hours was 29. When the filter was checked, clogging was observed. When the heat deterioration state of the obtained extrusion-molded product was observed, a gelled product due to heat deterioration was observed.

比較例3
ポリアミドの重合方法は添加剤としてNaHPO・HO 0.86g、CHCOONa 2.65gを投入した以外は実施例1と同様に行った。得られた樹脂の相対粘度(RV)は2.11、Co−b値は5.0であった。その得られた樹脂を100Lのブレンダーで内温120℃にて12hr乾燥させ、冷却後チップを得た。その時の水分率は250ppmであった。また、リン原子、ナトリウム原子およびリチウム原子の残存量はP=25ppm、Na=93ppm、Li=0ppmであった。そのポリアミド樹脂組成物を、一軸押出機を使用し、溶融させ、ギヤポンプを使用して6g/minで一定量押出した。ポリマー中の異物を濾過径20μmのフィルターで濾過し、ギヤポンプの二次側の圧力を経時的に記録した。4hr流した後の背圧上昇係数(K*)は4.5であった。フィルターを確認したところ、目詰まりは無かった。得られた押出し成形品の熱劣化状態を観察したところ、熱劣化によるゲル化物は観察されなかった。
Comparative Example 3
The polyamide polymerization method was carried out in the same manner as in Example 1 except that 0.86 g of NaH 2 PO 2 .H 2 O and 2.65 g of CH 3 COONa were added as additives. The obtained resin had a relative viscosity (RV) of 2.11 and a Co-b value of 5.0. The obtained resin was dried with a 100 L blender at an internal temperature of 120 ° C. for 12 hours, and a chip was obtained after cooling. The moisture content at that time was 250 ppm. Further, the residual amounts of phosphorus atoms, sodium atoms and lithium atoms were P = 25 ppm, Na = 93 ppm and Li = 0 ppm. The polyamide resin composition was melted using a single screw extruder and extruded at a constant rate of 6 g / min using a gear pump. Foreign matter in the polymer was filtered through a filter having a filtration diameter of 20 μm, and the pressure on the secondary side of the gear pump was recorded over time. The back pressure increase coefficient (K *) after flowing for 4 hours was 4.5. When the filter was checked, there was no clogging. When the heat deterioration state of the obtained extrusion-molded product was observed, a gelled product due to heat deterioration was not observed.

比較例4
ポリアミドの重合方法は添加剤としてNaHPO・HO 5.13g、CHCOONa 3.42gを投入した以外は実施例1と同様に行った。得られた樹脂の相対粘度(RV)は2.15、Co−b値は−1.0であった。その得られた樹脂を100Lのブレンダーで内温120℃にて12hr乾燥させ、さらに内温180℃で固相重合させ、冷却後チップを得た。その時のRVは2.65、Co−b値は−1.5、水分率は200ppmであった。また、リン原子、ナトリウム原子およびリチウム原子の残存量はP=100ppm、Na=220ppm、Li=0ppmであった。そのポリアミド樹脂組成物を、一軸押出機を使用し、溶融させて、ギヤポンプを使用して3g/minで一定量押出した。ポリマー中の異物を濾過径20μmのフィルターで濾過し、ギヤポンプの二次側の圧力を経時的に記録した。4hr流した後の背圧上昇係数(K*)は17であった。フィルターを確認したところ、目詰まりが観察された。得られた押出し成形品の熱劣化状態を観察したところ、熱劣化によるゲル化物が観察された。
Comparative Example 4
The polyamide polymerization method was carried out in the same manner as in Example 1 except that 5.13 g of NaH 2 PO 2 .H 2 O and 3.42 g of CH 3 COONa were added as additives. The obtained resin had a relative viscosity (RV) of 2.15 and a Co-b value of -1.0. The obtained resin was dried with a 100 L blender at an internal temperature of 120 ° C. for 12 hours and further solid-phase polymerized at an internal temperature of 180 ° C. to obtain a chip after cooling. At that time, the RV was 2.65, the Co-b value was -1.5, and the moisture content was 200 ppm. The residual amounts of phosphorus atoms, sodium atoms and lithium atoms were P = 100 ppm, Na = 220 ppm, and Li = 0 ppm. The polyamide resin composition was melted using a single screw extruder and extruded at a constant rate of 3 g / min using a gear pump. Foreign matter in the polymer was filtered through a filter having a filtration diameter of 20 μm, and the pressure on the secondary side of the gear pump was recorded over time. The back pressure increase coefficient (K *) after flowing for 4 hours was 17. When the filter was checked, clogging was observed. When the heat deterioration state of the obtained extrusion-molded product was observed, a gelled product due to heat deterioration was observed.

Figure 2005194330
Figure 2005194330

Claims (3)

ジアミン成分として、主にメタキシリレンジアミン(MXDA)を、ジカルボン酸成分として、主にアジピン酸(AA)を含むポリアミド樹脂を含むポリアミド樹脂組成物であって、該組成物中のリン原子(P)とナトリウム原子(Na)の含有量が、下記式(1)および(2)を満たす、組成物:
30≦P<200ppm…(1)
3.0<Na/Pモル比<7.0…(2)
A polyamide resin composition comprising a polyamide resin mainly containing metaxylylenediamine (MXDA) as a diamine component and mainly containing adipic acid (AA) as a dicarboxylic acid component, wherein a phosphorus atom (P ) And sodium atom (Na) content satisfy the following formulas (1) and (2):
30 ≦ P <200 ppm (1)
3.0 <Na / P molar ratio <7.0 ... (2)
請求項1に記載の組成物であって、カラーb値(Co−b)が下記式(3)を満たす、ポリアミド樹脂組成物:
−3<Co−b<5…(3)
The polyamide resin composition according to claim 1, wherein the color b value (Co-b) satisfies the following formula (3):
-3 <Co-b <5 (3)
請求項1または2のいずれかに記載のポリアミド樹脂組成物であって、背圧上昇係数K*が、下記式(4)を満たすポリアミド樹脂組成物:
0<K*<15… (4)
ここで、K*は背圧上昇係数
K*=[ΔP(MPa)/T(hr)]/[Q(kg/hr)/S(cm)]
であり、式中、ΔP(MPa)は、ギヤポンプ二次圧のT時間後の圧力と初期圧との差であり、T(hr)は、ポリアミド樹脂組成物をフィルターで濾過した時間であり、Q(kg/hr)は、ポリアミド樹脂組成物の吐出量であり、そしてS(cm)は、フィルターの濾過面積であり、
フィルター濾過径は20μmである。
The polyamide resin composition according to claim 1 or 2, wherein the back pressure increase coefficient K * satisfies the following formula (4):
0 <K * <15 ... (4)
Here, K * is a back pressure increase coefficient K * = [ΔP (MPa) / T (hr)] / [Q (kg / hr) / S (cm 2 )]
Where ΔP (MPa) is the difference between the initial pressure and the pressure after T hours of the gear pump secondary pressure, and T (hr) is the time when the polyamide resin composition is filtered through a filter, Q (kg / hr) is the discharge amount of the polyamide resin composition, and S (cm 2 ) is the filtration area of the filter,
The filter filtration diameter is 20 μm.
JP2003435792A 2003-12-26 2003-12-26 Polyamide resin composition Withdrawn JP2005194330A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2003435792A JP2005194330A (en) 2003-12-26 2003-12-26 Polyamide resin composition
US10/584,268 US7687562B2 (en) 2003-12-26 2004-12-21 Polyamide resin composition
EP04807411A EP1698667A4 (en) 2003-12-26 2004-12-21 Polyamide resin composition
PCT/JP2004/019054 WO2005063888A1 (en) 2003-12-26 2004-12-21 Polyamide resin composition
KR1020067014230A KR20070012634A (en) 2003-12-26 2004-12-21 Polyamide resin composition
TW093140176A TWI381020B (en) 2003-12-26 2004-12-23 Polyamide resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003435792A JP2005194330A (en) 2003-12-26 2003-12-26 Polyamide resin composition

Publications (1)

Publication Number Publication Date
JP2005194330A true JP2005194330A (en) 2005-07-21

Family

ID=34815752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003435792A Withdrawn JP2005194330A (en) 2003-12-26 2003-12-26 Polyamide resin composition

Country Status (1)

Country Link
JP (1) JP2005194330A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007031475A (en) * 2005-07-22 2007-02-08 Mitsubishi Gas Chem Co Inc Polyamide resin
WO2007139200A1 (en) * 2006-05-31 2007-12-06 Mitsubishi Gas Chemical Company, Inc. Polyamide resin composition
JP2010007055A (en) * 2008-05-29 2010-01-14 Mitsubishi Gas Chemical Co Inc Method for producing polyamide
WO2011145498A1 (en) 2010-05-17 2011-11-24 三菱瓦斯化学株式会社 Polyamide resin composition
WO2012115171A1 (en) 2011-02-24 2012-08-30 三菱瓦斯化学株式会社 Masterbatch, and method of preparing polyamide resin composition using masterbatch
JPWO2011145497A1 (en) * 2010-05-17 2013-07-22 三菱瓦斯化学株式会社 Polyamide resin composition
WO2014126110A1 (en) 2013-02-13 2014-08-21 三菱瓦斯化学株式会社 Multi-layer bottle and method for producing same
JP2017516913A (en) * 2014-05-30 2017-06-22 アセンド・パフォーマンス・マテリアルズ・オペレーションズ・リミテッド・ライアビリティ・カンパニーAscend Performance Materials Operations Llc Low phosphorus low color polyamide

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4945960A (en) * 1972-09-07 1974-05-02
JPS4953945A (en) * 1972-09-27 1974-05-25
JP2003012907A (en) * 2001-04-24 2003-01-15 Toyobo Co Ltd Polyester composition and mold made of the same
JP2003105095A (en) * 2001-09-27 2003-04-09 Mitsubishi Engineering Plastics Corp Method for manufacturing polyamide resin composition
JP2003252986A (en) * 2001-12-27 2003-09-10 Toyobo Co Ltd Method for continuously manufacturing polyamide resin composition
JP2003342455A (en) * 2002-03-19 2003-12-03 Toyobo Co Ltd Polyester composition and molding made from the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4945960A (en) * 1972-09-07 1974-05-02
JPS4953945A (en) * 1972-09-27 1974-05-25
JP2003012907A (en) * 2001-04-24 2003-01-15 Toyobo Co Ltd Polyester composition and mold made of the same
JP2003105095A (en) * 2001-09-27 2003-04-09 Mitsubishi Engineering Plastics Corp Method for manufacturing polyamide resin composition
JP2003252986A (en) * 2001-12-27 2003-09-10 Toyobo Co Ltd Method for continuously manufacturing polyamide resin composition
JP2003342455A (en) * 2002-03-19 2003-12-03 Toyobo Co Ltd Polyester composition and molding made from the same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007031475A (en) * 2005-07-22 2007-02-08 Mitsubishi Gas Chem Co Inc Polyamide resin
WO2007139200A1 (en) * 2006-05-31 2007-12-06 Mitsubishi Gas Chemical Company, Inc. Polyamide resin composition
JP2010007055A (en) * 2008-05-29 2010-01-14 Mitsubishi Gas Chemical Co Inc Method for producing polyamide
US9650474B2 (en) 2010-05-17 2017-05-16 Mitsubishi Gas Chemical Company, Inc. Polyamide resin composition
WO2011145498A1 (en) 2010-05-17 2011-11-24 三菱瓦斯化学株式会社 Polyamide resin composition
JPWO2011145497A1 (en) * 2010-05-17 2013-07-22 三菱瓦斯化学株式会社 Polyamide resin composition
US9657159B2 (en) 2010-05-17 2017-05-23 Mitsubishi Gas Chemical Company, Inc. Polyamide resin composition
JP5949546B2 (en) * 2010-05-17 2016-07-06 三菱瓦斯化学株式会社 Polyamide resin composition
WO2012115171A1 (en) 2011-02-24 2012-08-30 三菱瓦斯化学株式会社 Masterbatch, and method of preparing polyamide resin composition using masterbatch
US8993655B2 (en) 2011-02-24 2015-03-31 Mitsubishi Gas Chemical Company, Inc. Masterbatch, and method of preparing polyamide resin composition using masterbatch
KR20150117642A (en) 2013-02-13 2015-10-20 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 Multi-layer bottle and method for producing same
WO2014126110A1 (en) 2013-02-13 2014-08-21 三菱瓦斯化学株式会社 Multi-layer bottle and method for producing same
US10144548B2 (en) 2013-02-13 2018-12-04 Mitsubishi Gas Chemical Company, Inc. Multi-layer bottle and method for producing same
JP2017516913A (en) * 2014-05-30 2017-06-22 アセンド・パフォーマンス・マテリアルズ・オペレーションズ・リミテッド・ライアビリティ・カンパニーAscend Performance Materials Operations Llc Low phosphorus low color polyamide
JP2020002362A (en) * 2014-05-30 2020-01-09 アセンド・パフォーマンス・マテリアルズ・オペレーションズ・リミテッド・ライアビリティ・カンパニーAscend Performance Materials Operations Llc Low-phosphorus, low-color polyamides
US10865288B2 (en) 2014-05-30 2020-12-15 Ascend Performance Materials Operations Llc Low phosphorus low color polyamides

Similar Documents

Publication Publication Date Title
JP4857634B2 (en) Polyamide resin
JP5200335B2 (en) Polyamide resin composition
CN108291023B (en) Polyamide resin, molded article, and method for producing polyamide resin
JP5637144B2 (en) Copolymerized polyamide resin, process for producing the same, resin composition, and molded article comprising the same
JP5531409B2 (en) Polyamide resin composition
US5663284A (en) Copolymerized polyamide and a production process/thereof
JP2005194328A (en) Polyamide resin composition
JP5481776B2 (en) Method for producing polyamide
US9260563B2 (en) Process for production of polyamide
JP2009114429A (en) Continuous production method of polyamide
JP5194573B2 (en) Polyamide resin composition
JP2007092053A (en) Polyamide and composition containing the polyamide
JP2005194330A (en) Polyamide resin composition
US7687562B2 (en) Polyamide resin composition
JP2007092054A (en) Polyamide and polyamide composition comprising the same
JP2008208248A (en) Polyamide composition and polyamide molded article comprising the same
JP2013057003A (en) Polyamide resin composition and molding by molding the same
JP2005194329A (en) Polyamide resin composition
JP2008056842A (en) Polyamide composition and polyamide molded product composed of the same
JP2009203422A (en) Continuously production method for polyamide
JP2012149238A (en) Method for producing semi-aromatic polyamide raw material, and method for producing semi-aromatic polyamide
EP3896113A1 (en) Semi-aromatic polyamide resin and method for manufacturing same
JP5347227B2 (en) Polyamide composition and polyamide molded body comprising the same
US20210032406A1 (en) Semi-aromatic polyamide resin and method for producing same
CN112236463B (en) Polyamide resin, molded article, and method for producing polyamide resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061121

A131 Notification of reasons for refusal

Effective date: 20100226

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20100426

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111227

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20120209