JP2005194328A - Polyamide resin composition - Google Patents

Polyamide resin composition Download PDF

Info

Publication number
JP2005194328A
JP2005194328A JP2003435790A JP2003435790A JP2005194328A JP 2005194328 A JP2005194328 A JP 2005194328A JP 2003435790 A JP2003435790 A JP 2003435790A JP 2003435790 A JP2003435790 A JP 2003435790A JP 2005194328 A JP2005194328 A JP 2005194328A
Authority
JP
Japan
Prior art keywords
polyamide resin
ppm
resin composition
filter
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003435790A
Other languages
Japanese (ja)
Inventor
Takeshi Maruyama
岳 丸山
Makoto Ito
伊藤  誠
Kenta Suzuki
健太 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2003435790A priority Critical patent/JP2005194328A/en
Priority to CN 200480038958 priority patent/CN1898331A/en
Priority to US10/584,268 priority patent/US7687562B2/en
Priority to EP04807411A priority patent/EP1698667A4/en
Priority to PCT/JP2004/019054 priority patent/WO2005063888A1/en
Priority to KR1020067014230A priority patent/KR20070012634A/en
Priority to TW093140176A priority patent/TWI381020B/en
Publication of JP2005194328A publication Critical patent/JP2005194328A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an excellent polyamide resin composition which is suitably used as a material of molded products such as blow molded containers including gasoline tank materials and beverage bottles, films or sheets, exhibits good thermal stability when molded and gives a small increase in a filter back pressure. <P>SOLUTION: The polyamide resin composition comprises a diamine component mainly composed of m-xylylenediamine (MXDA) and a dicarboxylic acid component mainly composed of adipic acid (AA), and has a phosphorus atom content (P) and an alkali metal content (M) satisfying expression (1): 0≤P(ppm)<30 and expression (2): 0.1≤M(ppm)<45. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、ガソリンタンク材、飲料用ボトルをはじめとする中空成形容器、フィルム、シ−トなどの成形体の素材として好適に用いられるポリアミド樹脂組成物に関するものである。また、それらを成形する際の熱安定性に良好で、かつ、フィルター背圧上昇の少なく、生産性に優れたポリアミド樹脂組成物に関する。   The present invention relates to a polyamide resin composition that can be suitably used as a material for molded articles such as gasoline tank materials, beverage bottles, hollow molded containers, films, sheets, and the like. The present invention also relates to a polyamide resin composition that is excellent in thermal stability when molding them, has little increase in filter back pressure, and is excellent in productivity.

ポリアミドは物理的、機械的特性に優れていることから中空成形容器、フィルム、シート包装材料、エンジニアプラスチック、繊維などの用途に幅広く使用されている。ナイロン66などの脂肪族ポリアミドが代表例であるが、これら他の、パラキシリレンジアミン(PXDA)やメタキシリレンジアミン(MXDA)などの芳香族ジアミンを原料として用い、吸水性の低減や弾性率の向上などを実現したポリアミドも多数知られている。   Polyamides are widely used in applications such as hollow molded containers, films, sheet packaging materials, engineer plastics, and fibers because of their excellent physical and mechanical properties. Typical examples are aliphatic polyamides such as nylon 66, but these other aromatic diamines such as paraxylylenediamine (PXDA) and metaxylylenediamine (MXDA) are used as raw materials to reduce water absorption and elastic modulus. A number of polyamides that realize such improvements are also known.

ポリアミドは、熱に対してポリエステル等より比較的不安定であり、熱劣化や熱酸化劣化によりゲル化や黄変等を起こすことがある。   Polyamide is relatively unstable with respect to heat than polyester and the like, and may cause gelation or yellowing due to thermal deterioration or thermal oxidative deterioration.

ポリアミドの熱劣化を抑える方法として、ポリアミド中にホスホン酸化合物もしくは亜リン酸化合物およびアルカリ金属を添加する方法が提案されている(例えば、特許文献1参照)。この方法は、ポリアミド中の三次元化した網状構造のゲル化を防止する方法を開示するものであり、前記添加剤などに起因するフィルター詰りの抑制については何ら記載が無い。   As a method for suppressing the thermal degradation of the polyamide, a method of adding a phosphonic acid compound or a phosphorous acid compound and an alkali metal to the polyamide has been proposed (for example, see Patent Document 1). This method discloses a method of preventing gelation of a three-dimensional network structure in polyamide, and there is no description about suppression of filter clogging caused by the additive and the like.

ポリアミドの熱劣化を抑える方法として、ポリアミド中にホスフィン酸化合物、亜ホスホン酸化合物、ホスホン酸化合物もしくは亜リン酸化合物およびアルカリ金属化合物とフェニレンジアミンおよび/またはその誘導体をポリアミドに対して0.01〜2重量%と配合する方法が提案されている(例えば、特許文献2参照)。この方法についても、ポリアミド中の三次元化した網状構造のゲル化防止の方策であって、それら添加剤等のフィルター詰りの抑制については記載が無い。   As a method for suppressing the thermal deterioration of polyamide, a phosphinic acid compound, phosphonous acid compound, phosphonic acid compound or phosphorous acid compound, an alkali metal compound and phenylenediamine and / or a derivative thereof in the polyamide are 0.01 to A method of blending with 2% by weight has been proposed (for example, see Patent Document 2). This method is also a measure for preventing gelation of a three-dimensional network structure in polyamide, and there is no description about suppression of filter clogging such as additives.

ポリアミドの融点以下でかつ酸素の存在しない系での熱劣化について防止する方法として、ピロ亜燐酸塩、有機ホスフィン酸のアミド化合物、亜リン酸のモノもしくはジエステルのマグネシウム塩もしくはバリウム塩、オルトリン酸のモノもしくはジエステルのバリウム塩などを添加する方法が提案されている(例えば、特許文献3〜6参照)。しかし、これらの文献にも、添加剤等のフィルター詰りについての記載等は無く、生産性について、考慮していない。   Methods for preventing thermal degradation in systems below the melting point of polyamide and in the absence of oxygen include pyrophosphites, organic phosphinic acid amide compounds, phosphorous acid mono- or diester magnesium or barium salts, orthophosphoric acid A method of adding a barium salt of a mono- or diester has been proposed (see, for example, Patent Documents 3 to 6). However, these documents also do not describe the filter clogging of additives and the like, and do not consider productivity.

また、メタキシリレンジアミンとアジピン酸から合成されるポリアミドのゲル化物の防止対策として滑剤、有機リン系安定剤、ヒンダードフェノール類化合物、ヒンダードアミン類化合物から選ばれた少なくとも1種類以上を0.0005〜0.5重量部添加して検討している(例えば、特許文献7参照)。これについても、フィルターの異物詰りの対策等の記載は確認できない。
特開昭49−45960号公報 特開昭49−53945号公報 特公昭45−11836号公報 特公昭45−35667号公報 特公昭45−12986号公報 特公昭46−38351号公報 特開2001−164109
Further, as a measure for preventing gelation of polyamide synthesized from metaxylylenediamine and adipic acid, at least one selected from a lubricant, an organophosphorus stabilizer, a hindered phenol compound, and a hindered amine compound is added to 0.0005. -0.5 parts by weight are being studied (for example, see Patent Document 7). Regarding this, it is not possible to confirm the description of measures against clogging of the filter.
JP 49-45960 A JP-A-49-53945 Japanese Examined Patent Publication No. 45-11836 Japanese Patent Publication No. 45-35667 Japanese Patent Publication No. 45-12986 Japanese Patent Publication No.46-38351 JP 2001-164109 A

本発明者らは前記の従来技術の問題点を解決するために鋭意検討の結果、ジアミン成分として、主にメタキシリレンジアミン(MXDA)を、ジカルボン酸成分として、主にアジピン酸(AA)を含むポリアミド樹脂と、リン化合物及びアルカリ金属化合物の少なくとも1種とを含むポリアミド樹脂組成物であって、この組成物中のリン原子(P)とアルカリ金属(M)の含有量を特定の範囲に規定することにより、フィルターを通過する際に、詰り物が少なく、生産性が高く、かつ成形時の熱劣化や熱酸化劣化が少ないポリアミド樹脂組成物を提供することを目的とする。   As a result of intensive studies to solve the problems of the prior art, the present inventors have mainly used metaxylylenediamine (MXDA) as a diamine component and mainly adipic acid (AA) as a dicarboxylic acid component. A polyamide resin composition comprising a polyamide resin and at least one of a phosphorus compound and an alkali metal compound, wherein the phosphorus atom (P) and alkali metal (M) content in the composition is within a specific range. By prescribing, the object of the present invention is to provide a polyamide resin composition with less clogging, high productivity, and less thermal deterioration and thermal oxidative deterioration during molding when passing through a filter.

上記目的を達成するため、本発明においては、ジアミン成分として、主にメタキシリレンジアミン(MXDA)を、ジカルボン酸成分として、主にアジピン酸(AA)を含むポリアミド樹脂と、リン化合物及びアルカリ金属化合物の少なくとも1種とを含むポリアミド樹脂組成物であって、この組成物中のリン原子(P)とアルカリ金属(M)の含有量について下記式(1)、(2):
0≦P<30ppm…(1)
0.1≦M<45ppm…(2)
(M:Na、Li、Kなどのアルカリ金属種)
を満たすポリアミド樹脂組成物が提供される。
In order to achieve the above object, in the present invention, a polyamide resin mainly containing metaxylylenediamine (MXDA) as a diamine component and mainly adipic acid (AA) as a dicarboxylic acid component, a phosphorus compound and an alkali metal A polyamide resin composition comprising at least one compound, wherein the contents of phosphorus atom (P) and alkali metal (M) in the composition are represented by the following formulas (1) and (2):
0 ≦ P <30 ppm (1)
0.1 ≦ M <45 ppm (2)
(M: alkali metal species such as Na, Li, K)
A polyamide resin composition satisfying the above requirements is provided.

好ましい実施態様において、本発明のポリアミド樹脂組成物は、カラーb値(b)が下記式(3):
3<b<10 …(3)
を満足し得る。
In a preferred embodiment, the polyamide resin composition of the present invention has a color b value (b) of the following formula (3):
3 <b <10 (3)
Can be satisfied.

好ましい実施態様において、本発明のポリアミド樹脂組成物は、背圧上昇係数K*について、下記式(4):
0<K*<5 …(4)
を満たし得、式中、K*は背圧上昇係数
K*=[ΔP(MPa)/T(hr)]/[Q(kg/hr)/S(cm)]
であり、式中、ΔP(MPa)は、ギヤポンプ二次圧のT時間後の圧力−初期圧であり、T(hr)は、ポリアミド樹脂組成物をフィルターで濾過した時間であり、Q(kg/hr)は、ポリアミド樹脂組成物の吐出量であり、そしてS(cm)は、フィルターの濾過面積であり、
フィルター濾過径は20μmである。
In a preferred embodiment, the polyamide resin composition of the present invention has the following formula (4) for the back pressure increase coefficient K *:
0 <K * <5 (4)
Where K * is the back pressure increase coefficient K * = [ΔP (MPa) / T (hr)] / [Q (kg / hr) / S (cm 2 )]
In the formula, ΔP (MPa) is a pressure-initial pressure after T hours of the secondary pressure of the gear pump, T (hr) is a time when the polyamide resin composition is filtered with a filter, and Q (kg / Hr) is the discharge amount of the polyamide resin composition, and S (cm 2 ) is the filtration area of the filter,
The filter filtration diameter is 20 μm.

本発明は、ガソリンタンク材、飲料用ボトルをはじめとする中空成形容器、フィルム、シ−トなどの成形体の素材として好適に用いられるポリアミド樹脂組成物に関するものである。また、それらを成形する際の熱安定性に良好で、かつ、色調に優れ、かつ、フィルター背圧上昇が少なく、生産性に優れたポリアミド樹脂組成物に関する。本発明によれば、特定の量でリン化合物とアルカリ金属化合物とを含有することにより、フィルター詰まりを生じにくいポリアミド樹脂組成物が提供される。特に、本発明において、背圧上昇係数K*が低く抑えられるため、濾過工程の時間を短縮することが可能であり、その結果、ポリアミド樹脂の生産性が著しく上昇し得る。これにより、ポリアミド製造にかかる費用を抑えることが可能となる。   The present invention relates to a polyamide resin composition that can be suitably used as a material for molded articles such as gasoline tank materials, beverage bottles, hollow molded containers, films, sheets, and the like. The present invention also relates to a polyamide resin composition having good thermal stability when molding them, excellent color tone, little increase in filter back pressure, and excellent productivity. ADVANTAGE OF THE INVENTION According to this invention, the polyamide resin composition which is hard to produce filter clogging is provided by containing a phosphorus compound and an alkali metal compound in a specific quantity. In particular, in the present invention, since the back pressure increase coefficient K * is kept low, it is possible to shorten the time of the filtration step, and as a result, the productivity of the polyamide resin can be significantly increased. Thereby, it becomes possible to suppress the expense concerning polyamide manufacture.

以下、本発明のポリアミド樹脂組成物の実施の形態を具体的に説明する。   Hereinafter, embodiments of the polyamide resin composition of the present invention will be specifically described.

本発明に用いられるポリアミド樹脂のジカルボン酸成分として、主にアジピン酸を使用し、その他にセバシン酸、スベリン酸、アゼライン酸、ウンデカンジカルボン酸、ウンデカン二酸、ダイマー酸等の脂肪族ジカルボン酸、1,4−シクロヘキサンジカルボン酸等の脂環族ジカルボン酸、テレフタル酸、イソフタル酸、オルソフタル酸、キシリレンジカルボン酸、ナフタレンジカルボン酸などの芳香族ジカルボン酸等を1種もしくは2種以上を任意の割合で使用できる。   As the dicarboxylic acid component of the polyamide resin used in the present invention, adipic acid is mainly used. In addition, aliphatic dicarboxylic acids such as sebacic acid, suberic acid, azelaic acid, undecanedicarboxylic acid, undecanedioic acid, dimer acid, etc. , 4-cyclohexanedicarboxylic acid and other alicyclic dicarboxylic acids, terephthalic acid, isophthalic acid, orthophthalic acid, xylylene dicarboxylic acid, naphthalenedicarboxylic acid and other aromatic dicarboxylic acids, etc. in any proportion Can be used.

本発明のポリアミド樹脂組成物に含まれるポリアミド樹脂は、ジカルボン酸成分として、主にアジピン酸を含み、好ましくは80モル%以上、より好ましくは90モル%以上、さらに好ましくは95モル%以上含む。   The polyamide resin contained in the polyamide resin composition of the present invention mainly contains adipic acid as the dicarboxylic acid component, preferably 80 mol% or more, more preferably 90 mol% or more, and still more preferably 95 mol% or more.

本発明のポリアミド樹脂組成物に含まれるポリアミド樹脂は、ジアミン成分として、主にメタキシリレンジアミンを使用し、その他にエチレンジアミン、1−メチルエチレンジアミン、1,3−プロピレンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン等の脂肪族ジアミン類、シクロヘキサンジアミン、ビス−(4−アミノシクロへキシル)メタン等の脂環式ジアミン類、パラキシリレンジアミン、パラ−ビス−(2−アミノエチル)ベンゼンのような芳香族ジアミン類が使用できる。     The polyamide resin contained in the polyamide resin composition of the present invention mainly uses metaxylylenediamine as the diamine component, and in addition, ethylenediamine, 1-methylethylenediamine, 1,3-propylenediamine, tetramethylenediamine, pentamethylene. Aliphatic diamines such as diamine, hexamethylenediamine, heptamethylenediamine, octamethylenediamine, nonamethylenediamine, decamethylenediamine, undecamethylenediamine, dodecamethylenediamine, cyclohexanediamine, bis- (4-aminocyclohexyl) Aromatic diamines such as alicyclic diamines such as methane, paraxylylenediamine, and para-bis- (2-aminoethyl) benzene can be used.

これらジアミンは、1種もしくは2種以上を任意の割合で組み合わせても使用できる。   These diamines can be used by combining one kind or two or more kinds in any ratio.

本発明のポリアミド樹脂組成物に含まれるポリアミド樹脂は、ジアミン成分として、主にメタキシリレンジアミンを含み、好ましくは80モル%以上、より好ましくは90モル%以上、さらに好ましくは95モル%以上含む。   The polyamide resin contained in the polyamide resin composition of the present invention mainly contains metaxylylenediamine as a diamine component, preferably 80 mol% or more, more preferably 90 mol% or more, and still more preferably 95 mol% or more. .

前記のジアミン及び、ジカルボン酸以外にも、ε−カプロラクタムやラウロラクタム等のラクタム類、アミノカプロン酸、アミノウンデカン酸等の脂肪族アミノカルボン酸類、パラ−アミノメチル安息香酸のような芳香族アミノカルボン酸等も共重合成分として使用できる。とりわけ、ε−カプロラクタムの使用が望ましい。   In addition to the diamine and dicarboxylic acid, lactams such as ε-caprolactam and laurolactam, aliphatic aminocarboxylic acids such as aminocaproic acid and aminoundecanoic acid, and aromatic aminocarboxylic acids such as para-aminomethylbenzoic acid Etc. can also be used as a copolymerization component. In particular, the use of ε-caprolactam is desirable.

本発明のポリアミド樹脂組成物に含まれ得るポリアミド重合体の例としてはポリメタキシリレンアジパミドのような単独重合体、及びメタキシリレンジアミン/アジピン酸/イソフタル酸共重合体、メタキシリレン/パラキシリレンアジパミド共重合体等が挙げられる。   Examples of polyamide polymers that can be included in the polyamide resin composition of the present invention include homopolymers such as polymetaxylylene adipamide, and metaxylylenediamine / adipic acid / isophthalic acid copolymers, metaxylylene / paraxylylene. Examples include alenadipamide copolymer.

本発明のポリアミド樹脂組成物中のリン原子(P)とアルカリ金属(M)の含有量は、下記式(1)、(2)の範囲を満たすことが好ましい。   The phosphorus atom (P) and alkali metal (M) content in the polyamide resin composition of the present invention preferably satisfies the following formulas (1) and (2).

0≦P<30ppm…(1) (ppmはポリマー1kg当りの量(mg)
0.1≦M<45ppm…(2)
(M:Na、Li、Kなどのアルカリ金属種)
リン原子含有量Pに関して、下限はより好ましくは1ppm、さらに好ましくは3ppm、特に好ましくは5ppmである。上限は好ましくは25ppm、より好ましくは20ppm、さらに好ましくは15ppm、特に好ましくは12ppm、最も好ましくは9ppmである。
0 ≦ P <30 ppm (1) (ppm is the amount per kg of polymer (mg)
0.1 ≦ M <45 ppm (2)
(M: alkali metal species such as Na, Li, K)
Regarding the phosphorus atom content P, the lower limit is more preferably 1 ppm, still more preferably 3 ppm, and particularly preferably 5 ppm. The upper limit is preferably 25 ppm, more preferably 20 ppm, still more preferably 15 ppm, particularly preferably 12 ppm, and most preferably 9 ppm.

また、アルカリ金属含有量Mに関して、下限はより好ましくは1ppm、さらに好ましくは3ppm、特に好ましくは5ppmである。上限は好ましくは40ppm、より好ましくは35ppm、さらに好ましくは30ppm、なおさらに好ましくは25ppm、いっそう好ましくは20ppm、特に好ましくは15ppm、とりわけ好ましくは10ppmである。また、製造工程において、反応缶の洗浄回数を増やしたり、冷却工程における水をイオン交換を充分に行う必要があったり、原料を溶解させる水においてもイオン交換水、蒸留水の使用が必要となり、コストアップが著しい。逆にリン原子またはアルカリ金属の含有量が多すぎる場合には、添加剤にかかる原料費が多くなることによってコストアップの一因となり、そしてまた、フィルター濾過の際にこれらの添加剤に起因するフィルター詰まりの発生頻度が高くなることによって生産性が低下しやすい。   Moreover, regarding the alkali metal content M, the lower limit is more preferably 1 ppm, still more preferably 3 ppm, and particularly preferably 5 ppm. The upper limit is preferably 40 ppm, more preferably 35 ppm, even more preferably 30 ppm, still more preferably 25 ppm, even more preferably 20 ppm, particularly preferably 15 ppm, and particularly preferably 10 ppm. Also, in the manufacturing process, it is necessary to increase the number of times the reactor can be washed, it is necessary to sufficiently perform ion exchange of water in the cooling process, and it is necessary to use ion-exchanged water and distilled water in water for dissolving the raw material, Cost increase is remarkable. Conversely, if the phosphorus atom or alkali metal content is too high, the raw material cost for the additive increases, which contributes to the cost increase, and also due to these additives during filter filtration. Productivity tends to decrease due to the increased frequency of filter clogging.

リン化合物とアルカリ金属化合物の含有量の比は、それぞれの含有量が本発明において規定される範囲内である限り、任意の値であり得る。   The ratio of the content of the phosphorus compound and the alkali metal compound can be any value as long as the respective contents are within the range defined in the present invention.

本発明のポリアミド樹脂組成物に用いられ得るリン原子を含有する化合物としては、下記化学式(C−1)〜(C−4)で表される化合物が挙げられる。   Examples of the compound containing a phosphorus atom that can be used in the polyamide resin composition of the present invention include compounds represented by the following chemical formulas (C-1) to (C-4).

Figure 2005194328
Figure 2005194328

Figure 2005194328
Figure 2005194328

Figure 2005194328
Figure 2005194328

Figure 2005194328
(ただし、R〜Rは水素、アルキル基、アリール基、シクロアルキル基またはアリールアルキル基、X〜Xは水素、アルキル基、アリール基、シクロアルキル基、アリールアルキル基またはアルカリ金属、あるいは各式中のX〜XとR〜Rのうちそれぞれ1個は互いに連結して環構造を形成してもよい)
化学式(C−1)で表されるホスフィン酸化合物としては、ジメチルホスフィン酸、フェニルメチルホスフィン酸、次亜リン酸、次亜リン酸ナトリウム、次亜リン酸カリウム、次亜リン酸リチウム、次亜リン酸エチル、
Figure 2005194328
(However, R 1 to R 7 are hydrogen, alkyl group, aryl group, cycloalkyl group or arylalkyl group, X 1 to X 5 are hydrogen, alkyl group, aryl group, cycloalkyl group, arylalkyl group or alkali metal, Alternatively, each of X 1 to X 5 and R 1 to R 7 in each formula may be linked to each other to form a ring structure)
Examples of the phosphinic acid compound represented by the chemical formula (C-1) include dimethylphosphinic acid, phenylmethylphosphinic acid, hypophosphorous acid, sodium hypophosphite, potassium hypophosphite, lithium hypophosphite, hypochlorous acid. Ethyl phosphate,

Figure 2005194328
または
Figure 2005194328
Or

Figure 2005194328
の化合物およびこれらの加水分解物、ならびに上記ホスフィン酸化合物の縮合物などがある。
Figure 2005194328
And hydrolysates thereof, and condensates of the above phosphinic acid compounds.

化学式(C−2)で表される亜ホスホン酸化合物としては、フェニル亜ホスホン酸、フェニル亜ホスホン酸ナトリウム、フェニル亜ホスホン酸カリウム、フェニル亜ホスホン酸リチウム、フェニル亜ホスホン酸エチルなどがある。   Examples of the phosphonous acid compound represented by the chemical formula (C-2) include phenylphosphonous acid, sodium phenylphosphonite, potassium phenylphosphonite, lithium phenylphosphonite, and ethyl phenylphosphonite.

化学式(C−3)で表されるホスホン酸化合物としてはフェニルホスホン酸、エチルホスホン酸、フェニルホスホン酸ナトリウム、フェニルホスホン酸カリウム、フェニルホスホン酸リチウム、フェニルホスホン酸ジエチル、エチルホスホン酸ナトリウム、エチルホスホン酸カリウムなどがある。   Examples of the phosphonic acid compound represented by the chemical formula (C-3) include phenylphosphonic acid, ethylphosphonic acid, sodium phenylphosphonate, potassium phenylphosphonate, lithium phenylphosphonate, diethyl phenylphosphonate, sodium ethylphosphonate, ethylphosphone. Examples include potassium acid.

化学式(C−4)で表される亜リン酸化合物としては、亜リン酸、亜リン酸水素ナトリウム、亜リン酸ナトリウム、亜リン酸トリエチル、亜リン酸トリフェニル、ピロ亜リン酸などがある。   Examples of the phosphorous acid compound represented by the chemical formula (C-4) include phosphorous acid, sodium hydrogen phosphite, sodium phosphite, triethyl phosphite, triphenyl phosphite, pyrophosphorous acid and the like. .

また、アルカリ金属化合物としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム、水酸化セシウム、酢酸リチウム、酢酸ナトリウム、酢酸カリウム、酢酸ルビジウム、酢酸セシウム、ナトリウムメトキシド、ナトリウムエトキシド、ナトリウムプロポキシド、ナトリウムブトキシド、カリウムメトキシド、リチウムメトキシド、炭酸ナトリウムなどが挙げられるが、いずれもこれらの化合物に限定されるものではない。   Examples of the alkali metal compound include lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, cesium hydroxide, lithium acetate, sodium acetate, potassium acetate, rubidium acetate, cesium acetate, sodium methoxide, sodium ethoxide. Sodium propoxide, sodium butoxide, potassium methoxide, lithium methoxide, sodium carbonate and the like, but they are not limited to these compounds.

本発明で用いられるポリアミド樹脂組成物に前記リン原子含有化合物を配合するには、ポリアミドの重合前の原料、重合中に添加するかあるいは該重合体に溶融混合してもよい。固相重合の際のポリアミドの熱劣化を防止する目的のためには、重合開始前にリン原子含有化合物を添加しておくことが好ましい。   In order to add the phosphorus atom-containing compound to the polyamide resin composition used in the present invention, it may be added during the polymerization of the raw material before the polymerization of the polyamide, or may be melt mixed with the polymer. For the purpose of preventing thermal degradation of the polyamide during solid phase polymerization, it is preferable to add a phosphorus atom-containing compound before the start of polymerization.

また、本発明のポリアミド樹脂組成物をチップに成形した際のカラーb(Co−b)値は、下記式(3)を満たすことが望ましい。   Further, it is desirable that the color b (Co-b) value when the polyamide resin composition of the present invention is molded into a chip satisfies the following formula (3).

3<Co−b<10…(3)
Co−b値の上限は、好ましくは9であり、より好ましくは8であり、さらに好ましくは7である。特に好ましくは、5である。Co−b値を過度に低くしようとすると、リン原子含有化合物等の安定剤の添加量が多くなり過ぎやすく、コスト面で不利に働き、かつ添加剤に起因するフィルター詰まりが起こりやすい。また、Co−b値が高すぎる場合、ボトル、フィルム、繊維等の後工程の加工時に黄色の着色が目立ちやすく、製品としての外観性能が落ちやすい。カラーb値が5以上10未満の場合には、成形品の外観が黄色味がかった色調になるので、黄色味がかった外観が許容されない用途の成形品(例えば、外観が白色〜青色の製品)には使用困難であるが、黄色味がかった外観が好まれるかもしくは許容される用途の成形品(例えば、外観が黄色〜黒色の製品、または、外観性能が要求されない製品)において問題なく使用することが可能であり、産業上重要な意義がある。
3 <Co-b <10 (3)
The upper limit of the Co-b value is preferably 9, more preferably 8, and further preferably 7. Particularly preferred is 5. If an attempt is made to reduce the Co-b value excessively, the amount of stabilizer such as a phosphorus atom-containing compound tends to be excessively increased, which is disadvantageous in terms of cost, and filter clogging due to the additive tends to occur. In addition, when the Co-b value is too high, yellow coloration tends to be conspicuous at the time of subsequent processing of bottles, films, fibers, etc., and the appearance performance as a product tends to deteriorate. When the color b value is 5 or more and less than 10, the appearance of the molded product has a yellowish tone, so that the molded product has a yellowish appearance and does not allow a yellowish appearance (for example, a product with a white to blue appearance). Although it is difficult to use, it is used without problems in molded products for applications where yellowish appearance is preferred or acceptable (for example, products with a yellow to black appearance or products that do not require appearance performance). It is possible and has significant industrial significance.

本発明のポリアミド樹脂組成物は、ジアミンとジカルボン酸から生成するアミノカルボン酸塩の水溶液を加圧下および常圧下に加熱して反応させる方法あるいは常圧下でジアミンとジカルボン酸を加熱して直接反応させる方法により製造することができる。また、これらの溶融重縮合反応により得られた前記ポリアミドのチップを固相重合することによって、さらに高粘度のポリアミド樹脂組成物を得ることができる。   The polyamide resin composition of the present invention is a method in which an aqueous solution of an aminocarboxylate salt formed from a diamine and a dicarboxylic acid is heated and reacted under pressure or normal pressure, or the diamine and dicarboxylic acid are heated and reacted directly under normal pressure. It can be manufactured by a method. Furthermore, a polyamide resin composition having a higher viscosity can be obtained by solid-phase polymerization of the polyamide chips obtained by the melt polycondensation reaction.

前記のポリアミド樹脂組成物の製造における重縮合反応は、回分式反応装置で行っても良いし、また連続式反応装置で行っても良い。   The polycondensation reaction in the production of the polyamide resin composition may be performed in a batch reactor or may be performed in a continuous reactor.

本発明のポリアミド樹脂組成物は、背圧上昇係数K*について、下記式(4)を満たすことが好ましい。   The polyamide resin composition of the present invention preferably satisfies the following formula (4) for the back pressure increase coefficient K *.

0<K*<5 … (4)
K*は背圧上昇係数
K*=[ΔP(MPa)/T(hr)]/[Q(kg/hr)/S(cm)]
であり、フィルター濾過径は20μmである。
0 <K * <5 (4)
K * is a back pressure increase coefficient K * = [ΔP (MPa) / T (hr)] / [Q (kg / hr) / S (cm 2 )]
The filter filtration diameter is 20 μm.

ポリアミド樹脂組成物を、一軸押出機(ヒーター設定温度285℃、平均滞留時間10分)を使用し、溶融させて、ギヤポンプを使用して3〜6g/minで一定量押出した。ポリマー中の異物を濾過径20μmのフィルターで濾過し、ギヤポンプの二次側の圧力を経時的に記録し、4hr流した後のその圧力差を下記式にあてはめ、背圧上昇係数(K*)を求めた。   The polyamide resin composition was melted using a single screw extruder (heater set temperature 285 ° C., average residence time 10 minutes) and extruded at a constant rate of 3 to 6 g / min using a gear pump. Foreign matter in the polymer is filtered through a filter with a filtration diameter of 20 μm, the pressure on the secondary side of the gear pump is recorded over time, the pressure difference after flowing for 4 hours is applied to the following formula, and the back pressure increase coefficient (K *) Asked.

K*=[ΔP(MPa)/T(hr)]/[Q(kg/hr)/S(cm)]
ΔP(MPa):ギヤポンプ二次圧の4hr後の圧力−初期圧
T(hr):ポリアミド樹脂組成物をフィルターで濾過した時間 (4hr)
Q(kg/hr):ポリアミド樹脂組成物の吐出量 (3〜6g/min)
S(cm):フィルターの濾過面積 (1.538cm)。
K * = [ΔP (MPa) / T (hr)] / [Q (kg / hr) / S (cm 2 )]
ΔP (MPa): Pressure after 4 hours of gear pump secondary pressure-initial pressure T (hr): Time when the polyamide resin composition is filtered through a filter (4 hours)
Q (kg / hr): discharge amount of polyamide resin composition (3 to 6 g / min)
S (cm 2 ): Filtration area of the filter (1.538 cm 2 ).

背圧上昇係数K*はより好ましくは4以下、さらに好ましくは3.5以下であり、特に好ましくは3以下である。K*が大きすぎる場合、ボトル成形時、フィルムの製膜時などフィルター濾過を必要とする後工程において、詰りの発生頻度が高くなりやすく、生産性の低下によるコストアップとなる可能性が高い。   The back pressure increase coefficient K * is more preferably 4 or less, still more preferably 3.5 or less, and particularly preferably 3 or less. If K * is too large, clogging is likely to occur more frequently in subsequent processes that require filter filtration, such as when forming a bottle or when forming a film, and there is a high possibility that the cost will increase due to a decrease in productivity.

背圧上昇係数K*の下限については、添加剤の配合なしのときのK*と同じ値にまで下げることが好ましく、添加剤なしの場合のK*の値が現実的には下限の一つの目安となる。特に下限は0を超える限り特に限定されないが、1つの実施態様では1であり、別の実施態様では1.5であり、さらに別の実施態様では2であり、さらなる実施態様では2.2である。   The lower limit of the back pressure increase coefficient K * is preferably lowered to the same value as K * when no additive is added, and the value of K * without additive is practically one of the lower limits. It becomes a standard. In particular, the lower limit is not particularly limited as long as it exceeds 0, but is 1 in one embodiment, 1.5 in another embodiment, 2 in yet another embodiment, and 2.2 in a further embodiment. is there.

以下本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定させるものではない。なお、本明細書中における主な特性値の測定法を以下に説明する。
(1)ポリアミド樹脂組成物の相対粘度(RV)
試料0.25gを96%硫酸25mlに溶解し、この溶液10mlをオストワルド粘度管にて20℃で測定、下式より求めた。
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples. The main characteristic value measuring methods in this specification will be described below.
(1) Relative viscosity (RV) of polyamide resin composition
0.25 g of a sample was dissolved in 25 ml of 96% sulfuric acid, and 10 ml of this solution was measured at 20 ° C. with an Ostwald viscosity tube and obtained from the following formula.

RV=t/t
:溶媒の落下秒数
t :試料溶液の落下秒数
(2)ポリアミド樹脂組成物のカラーb値
カラーメーター(日本電色社製、Model 1001DP)を使用し、重合後に得られたチップ状の樹脂を測定セルに詰めて得られた測定サンプルのカラーb値を測定した。
(3)Pの分析
試料を炭酸ソーダ共存下において乾式灰化分解するか、硫酸・硝酸・過塩素酸系または硫酸・過酸化水素水系において湿式分解し、リンを正リン酸とした。次いで、1mol/L硫酸溶液中においてモリブデン酸塩を反応させて、リンモリブデン酸とし、これを硫酸ヒドラジンで還元して生ずるヘテロポリ青の830nmの吸光度を吸光光度計(島津製作所製、UV−150−02)で測定して比色定量した。
(4)Na、Liの分析
試料を白金ルツボにて、灰化分解し、6mol/L塩酸を加えて蒸発乾固した。1.2mol/L塩酸で溶解し、その溶液を原子吸光(島津製作所製、AA−640−12)で定量した。
(5)背圧上昇試験
ポリアミド樹脂組成物を、一軸押出機(ヒーター設定温度285℃、平均滞留時間10分)を使用し、溶融させて、ギヤポンプを使用して3〜6g/minで一定量押出した。ポリマー中の異物を濾過径20μmのフィルターで濾過し、ギヤポンプの二次側の圧力を経時的に記録した。4hr流した後のその圧力差を下記式にあてはめ、背圧上昇係数(K*)を求めた。
RV = t / t 0
t 0 : number of seconds the solvent falls
t: Sample solution dropping time (2) Color b value of polyamide resin composition Using a color meter (Model 1001DP, manufactured by Nippon Denshoku), chip-shaped resin obtained after polymerization was packed in a measurement cell. The color b value of the obtained measurement sample was measured.
(3) Analysis of P The sample was subjected to dry ashing decomposition in the presence of sodium carbonate, or wet decomposition in sulfuric acid / nitric acid / perchloric acid system or sulfuric acid / hydrogen peroxide system, and phosphorus was converted to normal phosphoric acid. Subsequently, the molybdate is reacted in a 1 mol / L sulfuric acid solution to form phosphomolybdic acid, and this is reduced with hydrazine sulfate. The absorbance at 830 nm of the heteropoly blue produced is a spectrophotometer (Shimadzu Corporation, UV-150- 02) and colorimetrically determined.
(4) Analysis of Na and Li The sample was incinerated and decomposed with a platinum crucible, and 6 mol / L hydrochloric acid was added to evaporate to dryness. The resultant was dissolved in 1.2 mol / L hydrochloric acid, and the solution was quantified by atomic absorption (manufactured by Shimadzu Corporation, AA-640-12).
(5) Back pressure increase test The polyamide resin composition was melted using a single screw extruder (heater set temperature 285 ° C., average residence time 10 minutes), and a constant amount of 3-6 g / min using a gear pump. Extruded. Foreign matter in the polymer was filtered through a filter having a filtration diameter of 20 μm, and the pressure on the secondary side of the gear pump was recorded over time. The pressure difference after flowing for 4 hours was applied to the following formula to determine the back pressure increase coefficient (K *).

K*=[ΔP(MPa)/T(hr)]/[Q(kg/hr)/S(cm)]
ΔP(MPa):ギヤポンプ二次圧の4hr後の圧力−初期圧
T(hr):ポリアミド樹脂組成物をフィルターで濾過した時間 (4hr)
Q(kg/hr):ポリアミド樹脂組成物の吐出量 (3〜6g/min)
S(cm):フィルターの濾過面積 (1.538cm
実施例1
攪拌機、分縮器、温度計、滴下ロートおよび窒素ガス導入管を備えた内容積250リットルの調製缶に、精秤したメタキシリレンジアミン27.66kg、アジピン酸29.65kgを内温85℃にて調合し、透明な溶液とした。添加剤としてNaHPO・HO 0.07g、CHCOONa 0.17gを投入して15分攪拌した。その溶液を内容積270リットルの反応缶に移送し、缶内温度190℃、缶内圧1.0MPaの条件下で攪拌して反応させた。留出する水を系外に除き、缶内温度が235℃になった時点で、缶内圧を60分間かけて常圧に戻した。常圧で攪拌を行い、目標粘度に達した時点で攪拌を停止し、20分間放置した。その後、反応缶下部の取り出し口より溶融樹脂を取り出し、冷却固化させてストランドカッターにて樹脂チップを得た。得られた樹脂の相対粘度(RV)は2.1、Co−b値は5.5であった。その得られた樹脂を100Lのブレンダーで内温120℃にて12hr乾燥させ、さらに内温180℃で固相重合させ、冷却後チップを得た。その時のRVは2.65、Co−b値は6.5、水分率は200ppmであった。また、リン原子およびナトリウム原子の残存量はP=1ppm、Na=1ppmであった。そのポリアミド樹脂組成物を、一軸押出機を使用し、溶融させて、ギヤポンプを使用して3g/minで一定量押出した。ポリマー中の異物を濾過径20μmのフィルターで濾過し、ギヤポンプの二次側の圧力を経時的に記録した。3g/分で4hr流した後の背圧上昇係数(K*)は3.0であった。フィルターを確認したところ、目詰まりは無かった。得られた押出し成形品の熱劣化状態を観察したところ、熱劣化によるゲル化物は観察されなかった。
K * = [ΔP (MPa) / T (hr)] / [Q (kg / hr) / S (cm 2 )]
ΔP (MPa): Pressure after 4 hours of gear pump secondary pressure-initial pressure T (hr): Time when the polyamide resin composition is filtered through a filter (4 hours)
Q (kg / hr): discharge amount of polyamide resin composition (3 to 6 g / min)
S (cm 2 ): Filtration area of the filter (1.538 cm 2 )
Example 1
In a 250-liter preparation can equipped with a stirrer, a condenser, a thermometer, a dropping funnel and a nitrogen gas introduction tube, 27.66 kg of metaxylylenediamine and 29.65 kg of adipic acid were precisely weighed to an internal temperature of 85 ° C. To make a clear solution. As additives, 0.07 g of NaH 2 PO 2 .H 2 O and 0.17 g of CH 3 COONa were added and stirred for 15 minutes. The solution was transferred to a reaction can having an internal volume of 270 liters, and reacted by stirring under conditions of a can internal temperature of 190 ° C. and a can internal pressure of 1.0 MPa. The distilled water was removed from the system, and when the internal temperature of the can reached 235 ° C., the internal pressure of the can was returned to normal pressure over 60 minutes. Stirring was performed at normal pressure, and when the target viscosity was reached, stirring was stopped and left for 20 minutes. Thereafter, the molten resin was taken out from the take-out port at the bottom of the reaction can, cooled and solidified, and a resin chip was obtained with a strand cutter. The obtained resin had a relative viscosity (RV) of 2.1 and a Co-b value of 5.5. The obtained resin was dried with a 100 L blender at an internal temperature of 120 ° C. for 12 hours and further solid-phase polymerized at an internal temperature of 180 ° C. to obtain a chip after cooling. At that time, the RV was 2.65, the Co-b value was 6.5, and the moisture content was 200 ppm. The residual amounts of phosphorus atoms and sodium atoms were P = 1 ppm and Na = 1 ppm. The polyamide resin composition was melted using a single screw extruder and extruded at a constant rate of 3 g / min using a gear pump. Foreign matter in the polymer was filtered through a filter having a filtration diameter of 20 μm, and the pressure on the secondary side of the gear pump was recorded over time. The back pressure increase coefficient (K *) after flowing for 4 hours at 3 g / min was 3.0. When the filter was checked, there was no clogging. When the heat deterioration state of the obtained extrusion-molded product was observed, a gelled product due to heat deterioration was not observed.

実施例2
ポリアミドの重合方法は添加剤以外は実施例1と同様に行った。ただし、冷却工程で使用する水からのナトリウムを意図的に樹脂中に残存させて、そのナトリウムの添加剤としての効果を評価した。得られた樹脂の相対粘度(RV)は2.15、Co−b値は7.8であった。その得られた樹脂を100Lのブレンダーで内温120℃にて12hr乾燥させ、さらに内温180℃で固相重合させ、冷却後チップを得た。その時のRVは2.65、Co−b値は7.8、水分率は200ppmであった。また、リン原子およびナトリウム原子の残存量はP=0ppm、Na=0.1ppmであった。そのポリアミド樹脂組成物を、一軸押出機を使用し、溶融させて、ギヤポンプを使用して3g/minで一定量押出した。ポリマー中の異物を濾過径20μmのフィルターで濾過し、ギヤポンプの二次側の圧力を経時的に記録した。4hr流した後の背圧上昇係数(K*)は2.2であった。フィルターを確認したところ、目詰まりは無かった。得られた押出し成形品の熱劣化状態を観察したところ、熱劣化によるゲル化物は観察されなかった。
Example 2
Polyamide polymerization was carried out in the same manner as in Example 1 except for the additives. However, sodium from water used in the cooling step was intentionally left in the resin, and the effect of the sodium as an additive was evaluated. The obtained resin had a relative viscosity (RV) of 2.15 and a Co-b value of 7.8. The obtained resin was dried with a 100 L blender at an internal temperature of 120 ° C. for 12 hours and further solid-phase polymerized at an internal temperature of 180 ° C. to obtain a chip after cooling. At that time, the RV was 2.65, the Co-b value was 7.8, and the moisture content was 200 ppm. The residual amounts of phosphorus atoms and sodium atoms were P = 0 ppm and Na = 0.1 ppm. The polyamide resin composition was melted using a single screw extruder and extruded at a constant rate of 3 g / min using a gear pump. Foreign matter in the polymer was filtered through a filter having a filtration diameter of 20 μm, and the pressure on the secondary side of the gear pump was recorded over time. The back pressure increase coefficient (K *) after flowing for 4 hours was 2.2. When the filter was checked, there was no clogging. When the heat deterioration state of the obtained extrusion-molded product was observed, a gelled product due to heat deterioration was not observed.

実施例3
ポリアミドの重合方法は添加剤としてNaHPO・HO 0.33g、CHCOONa 0.86gを投入した以外は実施例1と同様に行った。得られた樹脂の相対粘度(RV)は2.15、Co−b値は5.6であった。その得られた樹脂を100Lのブレンダーで内温120℃にて12hr乾燥させ、さらに内温180℃で固相重合させ、冷却後チップを得た。その時のRVは2.65、Co−b値は6.2、水分率は200ppmであった。また、リン原子およびナトリウム原子の残存量はP=5ppm、Na=5ppmであった。そのポリアミド樹脂組成物を、一軸押出機を使用し、溶融させて、ギヤポンプを使用して3g/minで一定量押出した。ポリマー中の異物を濾過径20μmのフィルターで濾過し、ギヤポンプの二次側の圧力を経時的に記録した。4hr流した後の背圧上昇係数(K*)は3.9であった。フィルターを確認したところ、目詰まりは無かった。得られた押出し成形品の熱劣化状態を観察したところ、熱劣化によるゲル化物は観察されなかった。
Example 3
Polyamide polymerization was carried out in the same manner as in Example 1 except that 0.33 g of NaH 2 PO 2 .H 2 O and 0.86 g of CH 3 COONa were added as additives. The obtained resin had a relative viscosity (RV) of 2.15 and a Co-b value of 5.6. The obtained resin was dried with a 100 L blender at an internal temperature of 120 ° C. for 12 hours and further solid-phase polymerized at an internal temperature of 180 ° C. to obtain a chip after cooling. At that time, the RV was 2.65, the Co-b value was 6.2, and the moisture content was 200 ppm. The residual amounts of phosphorus atoms and sodium atoms were P = 5 ppm and Na = 5 ppm. The polyamide resin composition was melted using a single screw extruder and extruded at a constant rate of 3 g / min using a gear pump. Foreign matter in the polymer was filtered through a filter having a filtration diameter of 20 μm, and the pressure on the secondary side of the gear pump was recorded over time. The back pressure increase coefficient (K *) after flowing for 4 hours was 3.9. When the filter was checked, there was no clogging. When the heat deterioration state of the obtained extrusion-molded product was observed, a gelled product due to heat deterioration was not observed.

実施例4
ポリアミドの重合方法は添加剤としてNaHPO・HO 1.54g、CHCOONa 0.59gを投入した以外は実施例1と同様に行った。得られた樹脂の相対粘度(RV)は2.15、Co−b値は5.3であった。また、リン原子およびナトリウム原子の残存量はP=9ppm、Na=9ppmであった。その得られた樹脂を100Lのブレンダーで内温120℃にて12hr乾燥させた。そのポリアミド樹脂組成物を、一軸押出機を使用し、溶融させて、ギヤポンプを使用して6g/minで一定量押出した。ポリマー中の異物を濾過径20μmのフィルターで濾過し、ギヤポンプの二次側の圧力を経時的に記録した。4hr流した後の背圧上昇係数(K*)は4.6であった。フィルターを確認したところ、目詰まりは無かった。得られた押出し成形品の熱劣化状態を観察したところ、熱劣化によるゲル化物は観察されなかった。
Example 4
The polyamide polymerization method was carried out in the same manner as in Example 1 except that 1.54 g of NaH 2 PO 2 .H 2 O and 0.59 g of CH 3 COONa were added as additives. The obtained resin had a relative viscosity (RV) of 2.15 and a Co-b value of 5.3. The residual amounts of phosphorus atoms and sodium atoms were P = 9 ppm and Na = 9 ppm. The obtained resin was dried with a 100 L blender at an internal temperature of 120 ° C. for 12 hours. The polyamide resin composition was melted using a single screw extruder and extruded at a constant rate of 6 g / min using a gear pump. Foreign matter in the polymer was filtered through a filter having a filtration diameter of 20 μm, and the pressure on the secondary side of the gear pump was recorded over time. The back pressure increase coefficient (K *) after flowing for 4 hours was 4.6. When the filter was checked, there was no clogging. When the heat deterioration state of the obtained extrusion-molded product was observed, a gelled product due to heat deterioration was not observed.

実施例5
ポリアミドの重合方法は添加剤としてNaHPO・HO 2.6g、CHCOONaを0.9gを投入した以外は実施例1と同様に行った。得られた樹脂の相対粘度(RV)は2.15、Co−b値は3.5であった。その得られた樹脂を100Lのブレンダーで内温120℃にて12hr乾燥させ、さらに内温180℃で固相重合させ、冷却後チップを得た。その時のRVは2.65、Co−b値は3.6、水分率は200ppmであった。また、リン原子およびナトリウム原子の残存量はP=15ppm、Na=15ppmであった。そのポリアミド樹脂組成物を、一軸押出機を使用し、溶融させ、ギヤポンプを使用して3g/minで一定量押出した。ポリマー中の異物を濾過径20μmのフィルターで濾過し、ギヤポンプの二次側の圧力を経時的に記録した。4hr流した後の背圧上昇係数(K*)は4.5であった。フィルターを確認したところ、目詰まりは無かった。得られた押出し成形品の熱劣化状態を観察したところ、熱劣化によるゲル化物は観察されなかった。
Example 5
Polyamide polymerization was carried out in the same manner as in Example 1 except that 2.6 g of NaH 2 PO 2 .H 2 O and 0.9 g of CH 3 COONa were added as additives. The obtained resin had a relative viscosity (RV) of 2.15 and a Co-b value of 3.5. The obtained resin was dried with a 100 L blender at an internal temperature of 120 ° C. for 12 hours and further solid-phase polymerized at an internal temperature of 180 ° C. to obtain a chip after cooling. At that time, the RV was 2.65, the Co-b value was 3.6, and the moisture content was 200 ppm. The residual amounts of phosphorus atoms and sodium atoms were P = 15 ppm and Na = 15 ppm. The polyamide resin composition was melted using a single screw extruder and extruded at a constant rate of 3 g / min using a gear pump. Foreign matter in the polymer was filtered through a filter having a filtration diameter of 20 μm, and the pressure on the secondary side of the gear pump was recorded over time. The back pressure increase coefficient (K *) after flowing for 4 hours was 4.5. When the filter was checked, there was no clogging. When the heat deterioration state of the obtained extrusion-molded product was observed, a gelled product due to heat deterioration was not observed.

実施例6
攪拌機、分縮器、温度計、滴下ロートおよび窒素ガス導入管を備えた内容積250リットルの調製缶に、精秤したメタキシリレンジアミン27.66kg、アジピン酸26.41kg、テレフタル酸3.34kgを内温100℃にて調合し、透明な溶液とした。添加剤としてNaHPO・HO 1.54g、CHCOONaを0.8gを投入して15分攪拌した。その溶液を内容積270リットルの反応缶に移送し、缶内温度190℃、缶内圧1.0MPaの条件下で攪拌して反応させた。留出する水を系外に除き、缶内温度が235℃になった時点で、缶内圧を60分間かけて常圧に戻した。常圧で攪拌を行い、目標粘度に達した時点で攪拌を停止し、20分間放置した。その後、反応缶下部の取り出し口より溶融樹脂を取り出し、冷却固化させてストランドカッターにて樹脂チップを得た。得られた樹脂の相対粘度(RV)は2.2、Co−b値は7.9であった。また、リン原子およびナトリウム原子の残存量はP=9ppm、Na=10ppmであった。その得られた樹脂を100Lのブレンダーで内温120℃にて12hr乾燥させ、冷却後チップを得た。その時のRVは2.25、Co−b値は9.9、水分率は250ppmであった。そのポリアミド樹脂組成物を、一軸押出機を使用し、溶融させて、ギヤポンプを使用して3g/minで一定量押出した。ポリマー中の異物を濾過径20μmのフィルターで濾過し、ギヤポンプの二次側の圧力を経時的に記録した。4hr流した後の背圧上昇係数(K*)は3.8であった。フィルターを確認したところ、目詰まりは無かった。得られた押出し成形品の熱劣化状態を観察したところ、熱劣化によるゲル化物は観察されなかった。
Example 6
In a 250 liter preparation can equipped with a stirrer, a condenser, a thermometer, a dropping funnel and a nitrogen gas introduction tube, 27.66 kg of metaxylylenediamine precisely weighed, 26.41 kg of adipic acid, 3.34 kg of terephthalic acid Was prepared at an internal temperature of 100 ° C. to obtain a transparent solution. As additives, 1.54 g of NaH 2 PO 2 .H 2 O and 0.8 g of CH 3 COONa were added and stirred for 15 minutes. The solution was transferred to a reaction can having an internal volume of 270 liters, and reacted by stirring under conditions of a can internal temperature of 190 ° C. and a can internal pressure of 1.0 MPa. The distilled water was removed from the system, and when the internal temperature of the can reached 235 ° C., the internal pressure of the can was returned to normal pressure over 60 minutes. Stirring was performed at normal pressure, and when the target viscosity was reached, stirring was stopped and left for 20 minutes. Thereafter, the molten resin was taken out from the take-out port at the bottom of the reaction can, cooled and solidified, and a resin chip was obtained with a strand cutter. The obtained resin had a relative viscosity (RV) of 2.2 and a Co-b value of 7.9. The residual amounts of phosphorus atoms and sodium atoms were P = 9 ppm and Na = 10 ppm. The obtained resin was dried with a 100 L blender at an internal temperature of 120 ° C. for 12 hours, and a chip was obtained after cooling. At that time, the RV was 2.25, the Co-b value was 9.9, and the moisture content was 250 ppm. The polyamide resin composition was melted using a single screw extruder and extruded at a constant rate of 3 g / min using a gear pump. Foreign matter in the polymer was filtered through a filter having a filtration diameter of 20 μm, and the pressure on the secondary side of the gear pump was recorded over time. The back pressure increase coefficient (K *) after flowing for 4 hours was 3.8. When the filter was checked, there was no clogging. When the heat deterioration state of the obtained extrusion-molded product was observed, a gelled product due to heat deterioration was not observed.

実施例7
攪拌機、分縮器、温度計、滴下ロートおよび窒素ガス導入管を備えた内容積250リットルの調製缶に、精秤したメタキシリレンジアミン27.66kg、アジピン酸26.41kg、シクロヘキサンジカルボン酸3.45kgを内温100℃にて調合し、透明な溶液とした。添加剤としてNaHPO・HO 1.54g、CHCOONaを0.8gを投入して15分攪拌した。その溶液を内容積270リットルの反応缶に移送し、缶内温度190℃、缶内圧1.0MPaの条件下で攪拌して反応させた。留出する水を系外に除き、缶内温度が235℃になった時点で、缶内圧を60分間かけて常圧に戻した。常圧で攪拌を行い、目標粘度に達した時点で攪拌を停止し、20分間放置した。その後、反応缶下部の取り出し口より溶融樹脂を取り出し、冷却固化させてストランドカッターにて樹脂チップを得た。得られた樹脂の相対粘度(RV)は2.3、Co−b値は6.6であった。また、リン原子およびナトリウム原子の残存量はP=9ppm、Na=10ppmであった。その得られた樹脂を100Lのブレンダーで内温120℃にて12hr乾燥させ、冷却後チップを得た。その時のRVは2.3、Co−b値は6.9、水分率は250ppmであった。そのポリアミド樹脂組成物を、一軸押出機を使用し、溶融させて、ギヤポンプを使用して6g/minで一定量押出した。ポリマー中の異物を濾過径20μmのフィルターで濾過し、ギヤポンプの二次側の圧力を経時的に記録した。4hr流した後の背圧上昇係数(K*)は2.8であった。フィルターを確認したところ、目詰まりは無かった。得られた押出し成形品の熱劣化状態を観察したところ、熱劣化によるゲル化物は観察されなかった。
Example 7
In a 250-liter preparation can equipped with a stirrer, a condenser, a thermometer, a dropping funnel, and a nitrogen gas introduction pipe, 27.66 kg of metaxylylenediamine, 26.41 kg of adipic acid, cyclohexanedicarboxylic acid 3. 45 kg was prepared at an internal temperature of 100 ° C. to obtain a transparent solution. As additives, 1.54 g of NaH 2 PO 2 .H 2 O and 0.8 g of CH 3 COONa were added and stirred for 15 minutes. The solution was transferred to a reaction can having an internal volume of 270 liters, and reacted by stirring under conditions of a can internal temperature of 190 ° C. and a can internal pressure of 1.0 MPa. The distilled water was removed from the system, and when the internal temperature of the can reached 235 ° C., the internal pressure of the can was returned to normal pressure over 60 minutes. Stirring was performed at normal pressure, and when the target viscosity was reached, stirring was stopped and left for 20 minutes. Thereafter, the molten resin was taken out from the take-out port at the bottom of the reaction can, cooled and solidified, and a resin chip was obtained with a strand cutter. The obtained resin had a relative viscosity (RV) of 2.3 and a Co-b value of 6.6. The residual amounts of phosphorus atoms and sodium atoms were P = 9 ppm and Na = 10 ppm. The obtained resin was dried with a 100 L blender at an internal temperature of 120 ° C. for 12 hours, and a chip was obtained after cooling. At that time, the RV was 2.3, the Co-b value was 6.9, and the moisture content was 250 ppm. The polyamide resin composition was melted using a single screw extruder and extruded at a constant rate of 6 g / min using a gear pump. Foreign matter in the polymer was filtered through a filter having a filtration diameter of 20 μm, and the pressure on the secondary side of the gear pump was recorded over time. The back pressure increase coefficient (K *) after flowing for 4 hours was 2.8. When the filter was checked, there was no clogging. When the heat deterioration state of the obtained extrusion-molded product was observed, a gelled product due to heat deterioration was not observed.

実施例8
ポリアミドの重合方法は添加剤としてHPO 0.53g、LiOH・HO 1.5gを投入した以外は実施例1と同様に行った。得られた樹脂は相対粘度(RV):2.15、Co−b値は9.2であった。その得られた樹脂を100Lのブレンダーで内温120℃にて12hr乾燥させ、さらに内温180℃で固相重合させ、冷却後チップを得た。その時のRVは2.67、Co−b値は9.4、水分率は200ppmであった。また、リン原子およびナトリウム原子の残存量はP=5ppm、Na=0.1、Li=5ppmであった。そのポリアミド樹脂組成物を、一軸押出機を使用し、溶融させて、ギヤポンプを使用して3g/minで一定量押出した。ポリマー中の異物を濾過径20μmのフィルターで濾過し、ギヤポンプの二次側の圧力を経時的に記録した。4hr流した後の背圧上昇係数(K*)は2.2であった。フィルターを確認したところ、目詰まりは無かった。得られた押出し成形品の熱劣化状態を観察したところ、熱劣化によるゲル化物は観察されなかった。
Example 8
Polyamide polymerization was carried out in the same manner as in Example 1 except that 0.53 g of H 3 PO 2 and 1.5 g of LiOH · H 2 O were added as additives. The obtained resin had a relative viscosity (RV) of 2.15 and a Co-b value of 9.2. The obtained resin was dried with a 100 L blender at an internal temperature of 120 ° C. for 12 hours and further solid-phase polymerized at an internal temperature of 180 ° C. to obtain a chip after cooling. At that time, the RV was 2.67, the Co-b value was 9.4, and the moisture content was 200 ppm. The residual amounts of phosphorus atoms and sodium atoms were P = 5 ppm, Na = 0.1, Li = 5 ppm. The polyamide resin composition was melted using a single screw extruder and extruded at a constant rate of 3 g / min using a gear pump. Foreign matter in the polymer was filtered through a filter having a filtration diameter of 20 μm, and the pressure on the secondary side of the gear pump was recorded over time. The back pressure increase coefficient (K *) after flowing for 4 hours was 2.2. When the filter was checked, there was no clogging. When the heat deterioration state of the obtained extrusion-molded product was observed, a gelled product due to heat deterioration was not observed.

実施例9
ポリアミドの重合方法は添加剤としてHPO 0.53g、KOHを0.8gを投入した以外は実施例1と同様に行った。得られた樹脂は相対粘度(RV):2.10、Co−b値は8.9であった。その得られた樹脂を100Lのブレンダーで内温120℃にて12hr乾燥させ、さらに内温180℃で固相重合させ、冷却後チップを得た。その時のRVは2.62、Co−b値=9.2、水分率は200ppmであった。また、リン原子およびアルカリ金属原子の残存量はP=5ppm、Na=0.1、K=5ppmであった。そのポリアミド樹脂組成物を、一軸押出機を使用し、溶融させて、ギヤポンプを使用して3g/minで一定量押出した。ポリマー中の異物を濾過径20μmのフィルターで濾過し、ギヤポンプの二次側の圧力を経時的に記録した。4hr流した後の背圧上昇係数(K*)は3.8であった。フィルターを確認したところ、目詰まりは無かった。得られた押出し成形品の熱劣化状態を観察したところ、熱劣化によるゲル化物は観察されなかった。
Example 9
The polyamide polymerization method was carried out in the same manner as in Example 1 except that 0.53 g of H 3 PO 2 and 0.8 g of KOH were added as additives. The obtained resin had a relative viscosity (RV) of 2.10 and a Co-b value of 8.9. The obtained resin was dried with a 100 L blender at an internal temperature of 120 ° C. for 12 hours and further solid-phase polymerized at an internal temperature of 180 ° C. to obtain a chip after cooling. At that time, the RV was 2.62, the Co-b value = 9.2, and the moisture content was 200 ppm. Further, the residual amounts of phosphorus atoms and alkali metal atoms were P = 5 ppm, Na = 0.1, and K = 5 ppm. The polyamide resin composition was melted using a single screw extruder and extruded at a constant rate of 3 g / min using a gear pump. Foreign matter in the polymer was filtered through a filter having a filtration diameter of 20 μm, and the pressure on the secondary side of the gear pump was recorded over time. The back pressure increase coefficient (K *) after flowing for 4 hours was 3.8. When the filter was checked, there was no clogging. When the heat deterioration state of the obtained extrusion-molded product was observed, a gelled product due to heat deterioration was not observed.

比較例1
ポリアミドの重合方法は添加剤としてNaHPO・HO 5.1g、CHCOONaを4.0gを投入した以外は実施例1と同様に行った。得られた樹脂の相対粘度(RV)は2.15、Co−b値は3.4であった。その得られた樹脂を100Lのブレンダーで内温120℃にて12hr乾燥させ、さらに内温180℃で固相重合させ、冷却後チップを得た。その時のRVは2.65、Co−b値は3.8、水分率は200ppmであった。また、リン原子およびナトリウム原子の残存量はP=30ppm、Na=45ppmであった。そのポリアミド樹脂組成物を、一軸押出機を使用し、溶融させて、ギヤポンプを使用して3g/minで一定量押出した。ポリマー中の異物を濾過径20μmのフィルターで濾過し、ギヤポンプの二次側の圧力を経時的に記録した。4hr流した後の背圧上昇係数(K*)は6.0であった。フィルターを確認したところ、目詰まりがわずかに観察されたが、実用上問題とならないレベルであった。得られた押出し成形品の熱劣化状態を観察したところ、熱劣化によるゲル化物が観察されなかった。
Comparative Example 1
The polyamide polymerization method was carried out in the same manner as in Example 1 except that 5.1 g of NaH 2 PO 2 .H 2 O and 4.0 g of CH 3 COONa were added as additives. The obtained resin had a relative viscosity (RV) of 2.15 and a Co-b value of 3.4. The obtained resin was dried with a 100 L blender at an internal temperature of 120 ° C. for 12 hours and further solid-phase polymerized at an internal temperature of 180 ° C. to obtain a chip after cooling. At that time, the RV was 2.65, the Co-b value was 3.8, and the moisture content was 200 ppm. The residual amounts of phosphorus atoms and sodium atoms were P = 30 ppm and Na = 45 ppm. The polyamide resin composition was melted using a single screw extruder and extruded at a constant rate of 3 g / min using a gear pump. Foreign matter in the polymer was filtered through a filter having a filtration diameter of 20 μm, and the pressure on the secondary side of the gear pump was recorded over time. The back pressure increase coefficient (K *) after flowing for 4 hours was 6.0. When the filter was checked, clogging was slightly observed, but it was at a level that does not cause any practical problems. When the heat deterioration state of the obtained extrusion-molded product was observed, a gelled product due to heat deterioration was not observed.

比較例2
ポリアミドの重合方法は添加剤としてNaHPO・HO 17.1g、CHCOONa 26.5gを投入した以外は実施例1と同様に行った。得られた樹脂の相対粘度(RV)は2.15、Co−b値は−1.0であった。その得られた樹脂を100Lのブレンダーで内温120℃にて12hr乾燥させ、さらに内温180℃で固相重合させ、冷却後チップを得た。その時のRVは2.65、Co−b値は−1.7、水分率は200ppmであった。また、リン原子およびナトリウム原子の残存量はP=100ppm、Na=220ppmであった。そのポリアミド樹脂組成物を、一軸押出機を使用し、溶融させて、ギヤポンプを使用して3g/minで一定量押出した。ポリマー中の異物を濾過径20μmのフィルターで濾過し、ギヤポンプの二次側の圧力を経時的に記録した。4hr流した後の背圧上昇係数(K*)は18であった。フィルターを確認したところ、目詰まりが見られた。得られた押出し成形品の熱劣化状態を観察したところ、熱劣化によるゲル化物が観察された。
Comparative Example 2
The polyamide polymerization method was carried out in the same manner as in Example 1 except that 17.1 g of NaH 2 PO 2 .H 2 O and 26.5 g of CH 3 COONa were added as additives. The obtained resin had a relative viscosity (RV) of 2.15 and a Co-b value of -1.0. The obtained resin was dried with a 100 L blender at an internal temperature of 120 ° C. for 12 hours and further solid-phase polymerized at an internal temperature of 180 ° C. to obtain a chip after cooling. At that time, the RV was 2.65, the Co-b value was -1.7, and the moisture content was 200 ppm. The residual amounts of phosphorus atoms and sodium atoms were P = 100 ppm and Na = 220 ppm. The polyamide resin composition was melted using a single screw extruder and extruded at a constant rate of 3 g / min using a gear pump. Foreign matter in the polymer was filtered through a filter having a filtration diameter of 20 μm, and the pressure on the secondary side of the gear pump was recorded over time. The back pressure increase coefficient (K *) after flowing for 4 hours was 18. When the filter was checked, it was clogged. When the heat deterioration state of the obtained extrusion-molded product was observed, a gelled product due to heat deterioration was observed.

Figure 2005194328
Figure 2005194328

Claims (3)

ジアミン成分として、主にメタキシリレンジアミン(MXDA)を、ジカルボン酸成分として、主にアジピン酸(AA)を含むポリアミド樹脂と、リン化合物及びアルカリ金属化合物の少なくとも1種とを含むポリアミド樹脂組成物であって、該組成物中のリン原子(P)とアルカリ金属原子(M)の含有量(ppm)が下記式(1)及び(2)を満足する、組成物:
0≦P<30 …(1)
0.1≦M<45 …(2)
A polyamide resin composition comprising a polyamide resin mainly containing metaxylylenediamine (MXDA) as a diamine component, and a polyamide resin mainly containing adipic acid (AA) as a dicarboxylic acid component, and at least one of a phosphorus compound and an alkali metal compound. The composition (ppm) of phosphorus atoms (P) and alkali metal atoms (M) in the composition satisfies the following formulas (1) and (2):
0 ≦ P <30 (1)
0.1 ≦ M <45 (2)
請求項1に記載の組成物であって、カラーb値(b)が下記式(3)を満足する、組成物:
3<b<10 …(3)
The composition according to claim 1, wherein the color b value (b) satisfies the following formula (3):
3 <b <10 (3)
請求項1または2のいずれかに記載の組成物であって、背圧上昇係数K*が、下記式(4)を満たす、組成物:
0<K*<5 …(4)
ここで、K*は背圧上昇係数
K*=[ΔP(MPa)/T(hr)]/[Q(kg/hr)/S(cm)]
であり、式中、ΔP(MPa)は、ギヤポンプ二次圧のT時間後の圧力と初期圧との差であり、T(hr)は、ポリアミド樹脂組成物をフィルターで濾過した時間であり、Q(kg/hr)は、ポリアミド樹脂組成物の吐出量であり、そしてS(cm)は、フィルターの濾過面積であり、
フィルター濾過径は20μmである。
The composition according to claim 1, wherein the back pressure increase coefficient K * satisfies the following formula (4):
0 <K * <5 (4)
Here, K * is a back pressure increase coefficient K * = [ΔP (MPa) / T (hr)] / [Q (kg / hr) / S (cm 2 )]
Where ΔP (MPa) is the difference between the initial pressure and the pressure after T hours of the gear pump secondary pressure, and T (hr) is the time when the polyamide resin composition is filtered through a filter, Q (kg / hr) is the discharge amount of the polyamide resin composition, and S (cm 2 ) is the filtration area of the filter,
The filter filtration diameter is 20 μm.
JP2003435790A 2003-12-26 2003-12-26 Polyamide resin composition Withdrawn JP2005194328A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2003435790A JP2005194328A (en) 2003-12-26 2003-12-26 Polyamide resin composition
CN 200480038958 CN1898331A (en) 2003-12-26 2004-12-21 Polyamide resin composition
US10/584,268 US7687562B2 (en) 2003-12-26 2004-12-21 Polyamide resin composition
EP04807411A EP1698667A4 (en) 2003-12-26 2004-12-21 Polyamide resin composition
PCT/JP2004/019054 WO2005063888A1 (en) 2003-12-26 2004-12-21 Polyamide resin composition
KR1020067014230A KR20070012634A (en) 2003-12-26 2004-12-21 Polyamide resin composition
TW093140176A TWI381020B (en) 2003-12-26 2004-12-23 Polyamide resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003435790A JP2005194328A (en) 2003-12-26 2003-12-26 Polyamide resin composition

Publications (1)

Publication Number Publication Date
JP2005194328A true JP2005194328A (en) 2005-07-21

Family

ID=34815750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003435790A Withdrawn JP2005194328A (en) 2003-12-26 2003-12-26 Polyamide resin composition

Country Status (2)

Country Link
JP (1) JP2005194328A (en)
CN (1) CN1898331A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007139200A1 (en) 2006-05-31 2007-12-06 Mitsubishi Gas Chemical Company, Inc. Polyamide resin composition
JP2008208249A (en) * 2007-02-27 2008-09-11 Toyobo Co Ltd Polyamide composition and polyamide molded article comprising the same
JP2009191156A (en) * 2008-02-14 2009-08-27 Mitsubishi Chemicals Corp Polyamide resin and polyamide resin composition
JP2010007055A (en) * 2008-05-29 2010-01-14 Mitsubishi Gas Chemical Co Inc Method for producing polyamide
WO2011145498A1 (en) 2010-05-17 2011-11-24 三菱瓦斯化学株式会社 Polyamide resin composition
WO2012115171A1 (en) 2011-02-24 2012-08-30 三菱瓦斯化学株式会社 Masterbatch, and method of preparing polyamide resin composition using masterbatch
US20130065005A1 (en) * 2010-05-17 2013-03-14 Mitsubishi Gas Chemical Company, Inc. Polyamide resin composition
WO2014126110A1 (en) 2013-02-13 2014-08-21 三菱瓦斯化学株式会社 Multi-layer bottle and method for producing same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011030911A1 (en) * 2009-09-14 2011-03-17 三菱瓦斯化学株式会社 Flame-retardant polyamide resin composition
CN102575099B (en) * 2009-09-14 2014-05-07 三菱瓦斯化学株式会社 Polyamide resin composition
KR101899624B1 (en) * 2014-09-25 2018-09-18 롯데첨단소재(주) Copolymerized polyamide resin, method for preparing the same, and article comprising the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003105095A (en) * 2001-09-27 2003-04-09 Mitsubishi Engineering Plastics Corp Method for manufacturing polyamide resin composition
JP2003291938A (en) * 2002-04-01 2003-10-15 Mitsubishi Gas Chem Co Inc Multi-layer container

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003105095A (en) * 2001-09-27 2003-04-09 Mitsubishi Engineering Plastics Corp Method for manufacturing polyamide resin composition
JP2003291938A (en) * 2002-04-01 2003-10-15 Mitsubishi Gas Chem Co Inc Multi-layer container

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2532712A1 (en) 2006-05-31 2012-12-12 Mitsubishi Gas Chemical Company, Inc. Polyamide resin composition
US8940379B2 (en) 2006-05-31 2015-01-27 Mitsubishi Gas Chemical Company, Inc. Polyamide resin composition
WO2007139200A1 (en) 2006-05-31 2007-12-06 Mitsubishi Gas Chemical Company, Inc. Polyamide resin composition
US8273431B2 (en) 2006-05-31 2012-09-25 Mitsubishi Gas Chemical Company, Inc. Polyamide resin composition
JP2008208249A (en) * 2007-02-27 2008-09-11 Toyobo Co Ltd Polyamide composition and polyamide molded article comprising the same
JP2009191156A (en) * 2008-02-14 2009-08-27 Mitsubishi Chemicals Corp Polyamide resin and polyamide resin composition
JP2010007055A (en) * 2008-05-29 2010-01-14 Mitsubishi Gas Chemical Co Inc Method for producing polyamide
US20130065005A1 (en) * 2010-05-17 2013-03-14 Mitsubishi Gas Chemical Company, Inc. Polyamide resin composition
WO2011145498A1 (en) 2010-05-17 2011-11-24 三菱瓦斯化学株式会社 Polyamide resin composition
US9650474B2 (en) 2010-05-17 2017-05-16 Mitsubishi Gas Chemical Company, Inc. Polyamide resin composition
US9657159B2 (en) 2010-05-17 2017-05-23 Mitsubishi Gas Chemical Company, Inc. Polyamide resin composition
WO2012115171A1 (en) 2011-02-24 2012-08-30 三菱瓦斯化学株式会社 Masterbatch, and method of preparing polyamide resin composition using masterbatch
US8993655B2 (en) 2011-02-24 2015-03-31 Mitsubishi Gas Chemical Company, Inc. Masterbatch, and method of preparing polyamide resin composition using masterbatch
WO2014126110A1 (en) 2013-02-13 2014-08-21 三菱瓦斯化学株式会社 Multi-layer bottle and method for producing same
KR20150117642A (en) 2013-02-13 2015-10-20 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 Multi-layer bottle and method for producing same
US10144548B2 (en) 2013-02-13 2018-12-04 Mitsubishi Gas Chemical Company, Inc. Multi-layer bottle and method for producing same

Also Published As

Publication number Publication date
CN1898331A (en) 2007-01-17

Similar Documents

Publication Publication Date Title
JP4857634B2 (en) Polyamide resin
JP5200335B2 (en) Polyamide resin composition
US9650474B2 (en) Polyamide resin composition
JP5531409B2 (en) Polyamide resin composition
JP5637144B2 (en) Copolymerized polyamide resin, process for producing the same, resin composition, and molded article comprising the same
JP5825255B2 (en) Polyamide resin composition
KR20130050275A (en) Semiaromatic polyamide and method for producing same
US5663284A (en) Copolymerized polyamide and a production process/thereof
JP2005194328A (en) Polyamide resin composition
JP2007092053A (en) Polyamide and composition containing the polyamide
JP5194573B2 (en) Polyamide resin composition
KR20070012634A (en) Polyamide resin composition
US9512314B2 (en) Polyether polyamide composition
JP2005194330A (en) Polyamide resin composition
JP2007092054A (en) Polyamide and polyamide composition comprising the same
JP2008208248A (en) Polyamide composition and polyamide molded article comprising the same
JP2013057003A (en) Polyamide resin composition and molding by molding the same
JP2008056842A (en) Polyamide composition and polyamide molded product composed of the same
JP2005194329A (en) Polyamide resin composition
JP5347227B2 (en) Polyamide composition and polyamide molded body comprising the same
JP6396758B2 (en) polyamide
EP3896113A1 (en) Semi-aromatic polyamide resin and method for manufacturing same
JP2012149238A (en) Method for producing semi-aromatic polyamide raw material, and method for producing semi-aromatic polyamide
AU2014260891A1 (en) Xylylenediamine composition, and method for producing polyamide resin
EP3778710A1 (en) Semi-aromatic polyamide resin and method for manufacturing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100226

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100423