JP2005187320A - Method for producing carbon material and tablet-like dried gel - Google Patents

Method for producing carbon material and tablet-like dried gel Download PDF

Info

Publication number
JP2005187320A
JP2005187320A JP2004345721A JP2004345721A JP2005187320A JP 2005187320 A JP2005187320 A JP 2005187320A JP 2004345721 A JP2004345721 A JP 2004345721A JP 2004345721 A JP2004345721 A JP 2004345721A JP 2005187320 A JP2005187320 A JP 2005187320A
Authority
JP
Japan
Prior art keywords
tablet
producing
carbon material
gel
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004345721A
Other languages
Japanese (ja)
Other versions
JP4754813B2 (en
Inventor
Hajime Tamon
肇 田門
Shin Mukai
紳 向井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2004345721A priority Critical patent/JP4754813B2/en
Publication of JP2005187320A publication Critical patent/JP2005187320A/en
Application granted granted Critical
Publication of JP4754813B2 publication Critical patent/JP4754813B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method by which a carbon material capable of being molded without using a binder is produced at a low cost. <P>SOLUTION: The method for producing the tablet-like carbon material comprises obtaining tablet-like wet gel by reacting a phenol compound and an aldehyde compound in a disk-like vessel in the presence of water and a catalyst, substituting water in the wet gel with a hydrophilic organic solvent, freeze drying, and firing the tablet-like dried gel in an inert atmosphere, and further activating it as occasion demands. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、例えば、電気二重層キャパシタ、電池用電極材料等のエネルギー貯蔵用デバイスや、触媒を担持するための担体、クロマトグラフ用材料又は吸着剤等として有用なカーボン材料の製造方法、及び該カーボン材料の原料となるタブレット状乾燥ゲル等に関するものである。   The present invention includes, for example, a method for producing a carbon material useful as an energy storage device such as an electric double layer capacitor and a battery electrode material, a carrier for supporting a catalyst, a chromatographic material or an adsorbent, and the like. The present invention relates to a tablet-like dry gel that is a raw material for carbon materials.

例えば、リチウムイオンを可逆的に吸蔵・放出し得る物質として、黒鉛やハードカーボン等の担体に担持されたSn、Al、Si等の元素が非水電解液二次電池用負極活物質として有用であることが公知である。
また、前記黒鉛やハードカーボン等の代わりに、レゾルシンとアルデヒドから得られる樹脂の多孔質ゲルをアルゴン等の不活性ガスや還元性ガス雰囲気下で加熱処理することによって得たカーボン材料にSn、Al、Si等の元素を担持した複合体が、非水電解液二次電池用負極活物質として好適に使用できることが公知である(特許文献1を参照)。
更に、上記の黒鉛やハードカーボン等の担体に担持されたSn、Al、Si等の元素を担持した複合体などの炭素材料を所望の形状に加工して負極が製造される場合は、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、テフロン(E.I.DuPont社の登録商標)等のバインダーを用いられる。その際、バインダーを溶解させる為に、N−メチルピロリドン等の溶媒と一緒に混練してペーストを製造し、集電体に該ペーストを塗布、充填又は含浸させ、溶媒を乾燥、除去した後、加圧、切断等が行われることが公知である(以上、特許文献1及び非特許文献1を参照)。
For example, as a material capable of reversibly occluding and releasing lithium ions, elements such as Sn, Al, and Si supported on a support such as graphite or hard carbon are useful as a negative electrode active material for a non-aqueous electrolyte secondary battery. It is known that there is.
In addition, instead of graphite or hard carbon, a carbon material obtained by heat-treating a porous gel of a resin obtained from resorcin and aldehyde in an inert gas or reducing gas atmosphere such as argon is added to Sn, Al. It is known that a composite carrying an element such as Si can be suitably used as a negative electrode active material for a non-aqueous electrolyte secondary battery (see Patent Document 1).
Further, when a negative electrode is manufactured by processing a carbon material such as a composite supporting elements such as Sn, Al, Si, etc., supported on a carrier such as graphite or hard carbon, into a desired shape, Binders such as fluoroethylene, polyvinylidene fluoride, and Teflon (registered trademark of EIDuPont) are used. At that time, in order to dissolve the binder, a paste is prepared by kneading together with a solvent such as N-methylpyrrolidone, and the paste is applied, filled or impregnated into a current collector, and the solvent is dried and removed. It is known that pressurization, cutting, and the like are performed (see Patent Document 1 and Non-Patent Document 1 above).

前述したエネルギー貯蔵用デバイス等における貯蔵容量は、多孔体材料の微細構造によって大きく変化するので、微細構造の制御に関する製造技術が求められている。
そして、上記多孔体材料として、ポリヒドロキシベンゼンとホルムアルデヒドを塩基性触媒の存在下に水性媒体中で加熱して得た安定なゲルを有機溶媒で洗浄して、水性媒体を上記有機溶媒に置換した後、上記のゲルを超臨界乾燥して、低密度の有機エアロゲルを製造する方法が公知である(以上、特許文献2を参照)。
Since the storage capacity in the above-described energy storage device or the like greatly varies depending on the microstructure of the porous material, a manufacturing technique relating to the control of the microstructure is required.
As the porous material, a stable gel obtained by heating polyhydroxybenzene and formaldehyde in an aqueous medium in the presence of a basic catalyst was washed with an organic solvent, and the aqueous medium was replaced with the organic solvent. Thereafter, a method for producing a low-density organic aerogel by supercritically drying the gel is known (see Patent Document 2 above).

特開2002−117850号公報[段落番号0013、0019、0025、0026、0039や0040等を参照]JP 2002-117850 A [see paragraph numbers 0013, 0019, 0025, 0026, 0039, 0040, etc.]

米国特許第4873218号明細書[カラム4、34-68行を参照]U.S. Pat. No. 4,873,218 [see column 4, lines 34-68]

Journal of Power Sources 74(1998年)[100-101頁の2.3項を参照]Journal of Power Sources 74 (1998) [See section 2.3 on pages 100-101]

しかしながら、特許文献1及び非特許文献1の方法では、負極を製造する際にバインダー(ポリテトラフルオロエチレンやポリフッ化ビニリデン)を用いる必要があり、バインダーを用いる際にはN−メチルピロリドン等の溶媒と一緒に混練して製造したペーストを集電体に塗布、充填又は含浸させた後、上記の溶媒を乾燥、除去する必要があった。
また、超臨界乾燥により有機エアロゲルを得る特許文献2の方法では、高価な乾燥用装置が必要であり、カーボン材料の製造コストが高くなるという問題があった。
However, in the methods of Patent Document 1 and Non-Patent Document 1, it is necessary to use a binder (polytetrafluoroethylene or polyvinylidene fluoride) when producing a negative electrode, and a solvent such as N-methylpyrrolidone is used when using a binder. After applying the paste produced by kneading together to the current collector, filling or impregnating the current collector, it was necessary to dry and remove the solvent.
In addition, the method of Patent Document 2 that obtains an organic airgel by supercritical drying has a problem that an expensive drying apparatus is required and the manufacturing cost of the carbon material is increased.

したがって、本発明の目的は、バインダーなしで成型可能なカーボン材料を安価に製造する方法等を提供することである。
本発明者は、上記課題を解決すべく鋭意検討した結果、水及び触媒の存在下にフェノール化合物とアルデヒド化合物を反応させて得られる樹脂のゲルを脱水し、得られた乾燥ゲルを不活性ガス雰囲気中で焼成すると、上記バインダーを用いなくても、所望の形状にカーボン材料を成型できることを見出して、本発明を完成するに至った。
Accordingly, an object of the present invention is to provide a method for producing a carbon material that can be molded without a binder at a low cost.
As a result of intensive studies to solve the above problems, the present inventor dehydrated a resin gel obtained by reacting a phenol compound and an aldehyde compound in the presence of water and a catalyst, and the obtained dry gel was converted into an inert gas. It has been found that, when fired in an atmosphere, the carbon material can be molded into a desired shape without using the binder, and the present invention has been completed.

すなわち、本発明は、次の(イ)〜(ホ)を提供するものである。   That is, the present invention provides the following (A) to (E).

(イ)水及び触媒の存在下にフェノール化合物とアルデヒド化合物を反応させて得られる樹脂のゲルを脱水し、得られた乾燥ゲルを不活性ガス雰囲気中で焼成することを特徴とするカーボン材料の製造方法、 (A) A carbon material characterized by dehydrating a resin gel obtained by reacting a phenol compound and an aldehyde compound in the presence of water and a catalyst, and firing the obtained dry gel in an inert gas atmosphere. Production method,

(ロ)水及び触媒の存在下にフェノール化合物とアルデヒド化合物を反応させて得られる樹脂のゲルを脱水し、得られた乾燥ゲルを不活性ガス雰囲気中で焼成して得たカーボン材料を、上記の不活性ガスとは異なる酸化性ガス雰囲気下でさらに賦活することを特徴とするカーボン材料の製造方法、 (B) A carbon material obtained by dehydrating a resin gel obtained by reacting a phenol compound and an aldehyde compound in the presence of water and a catalyst, and calcining the obtained dry gel in an inert gas atmosphere, A method for producing a carbon material characterized by further activating under an oxidizing gas atmosphere different from the inert gas of

(ハ)水及び触媒の存在下にフェノール化合物とアルデヒド化合物をディスク状の容器中で反応させることを特徴とするタブレット状湿潤ゲルの製造方法、 (C) A method for producing a tablet-like wet gel, which comprises reacting a phenol compound and an aldehyde compound in a disk-like container in the presence of water and a catalyst,

(ニ)水及び触媒の存在下にフェノール化合物とアルデヒド化合物をディスク状の容器中で反応させてタブレット状湿潤ゲルを得、該湿潤ゲル中の水を親水性有機溶媒で置換後、凍結乾燥することを特徴とするタブレット状乾燥ゲルの製造方法、 (D) A phenolic compound and an aldehyde compound are reacted in a disc-shaped container in the presence of water and a catalyst to obtain a tablet-like wet gel, and the water in the wet gel is replaced with a hydrophilic organic solvent, followed by freeze-drying. A method for producing a tablet-like dry gel,

(ホ)水及び触媒の存在下にフェノール化合物とアルデヒド化合物をディスク状の容器中で反応させてタブレット状湿潤ゲルを得、該湿潤ゲル中の水を親水性有機溶媒で置換後、凍結乾燥してタブレット状乾燥ゲルを得、該タブレット状乾燥ゲルを不活性雰囲気中で焼成することを特徴とするタブレット状カーボン材料の製造方法。 (E) A phenolic compound and an aldehyde compound are reacted in a disc-shaped container in the presence of water and a catalyst to obtain a tablet-like wet gel, and the water in the wet gel is replaced with a hydrophilic organic solvent, followed by freeze-drying. A tablet-like dry gel is obtained, and the tablet-like dry gel is baked in an inert atmosphere.

本発明の(イ)によれば、フェノール化合物とアルデヒド化合物を反応させて得られる樹脂のゲルを脱水し、得られた乾燥ゲルを不活性ガス雰囲気中で焼成するので、カーボン材料を効率良く製造することができる。
また、本発明の(ロ)によれば、電極材料等のエネルギー貯蔵用デバイスを効率良く製造することができる。
さらに、本発明の(ハ)によれば、フェノール化合物とアルデヒド化合物をディスク状の容器中で反応させるので、カーボン材料をバインダーなしで所望の形状に成型することが可能な、前記カーボン材料の前駆物質であるタブレット状湿潤ゲルを効率良く製造することができる。
本発明の(ニ)によれば、フェノール化合物とアルデヒド化合物をディスク状の容器中で反応させて得たタブレット状湿潤ゲル中の水を親水性有機溶媒で置換後、凍結乾燥するので、効率良く安価にタブレット状乾燥ゲルを製造することができる。
本発明の(ホ)によれば、フェノール化合物とアルデヒド化合物をディスク状の容器中で反応させてタブレット状湿潤ゲルを得、該湿潤ゲル中の水を親水性有機溶媒で置換後、凍結乾燥し、次いで乾燥ゲルを不活性雰囲気中で焼成するので、エネルギー貯蔵容量の大きい電極材料等のデバイスを効率よく安価に製造することができる。
According to (a) of the present invention, a resin gel obtained by reacting a phenol compound and an aldehyde compound is dehydrated, and the resulting dried gel is baked in an inert gas atmosphere, so that a carbon material is efficiently produced. can do.
In addition, according to (b) of the present invention, an energy storage device such as an electrode material can be efficiently manufactured.
Furthermore, according to (c) of the present invention, since the phenol compound and the aldehyde compound are reacted in a disk-shaped container, the precursor of the carbon material that can be molded into a desired shape without a binder. It is possible to efficiently produce a tablet-like wet gel as a substance.
According to (d) of the present invention, the water in the tablet-like wet gel obtained by reacting the phenolic compound and the aldehyde compound in a disc-shaped container is replaced with a hydrophilic organic solvent, and then freeze-dried. A tablet-like dry gel can be produced at low cost.
According to (e) of the present invention, a phenolic compound and an aldehyde compound are reacted in a disc-shaped container to obtain a tablet-like wet gel, and water in the wet gel is replaced with a hydrophilic organic solvent, followed by freeze-drying. Then, since the dried gel is fired in an inert atmosphere, a device such as an electrode material having a large energy storage capacity can be produced efficiently and inexpensively.

以下、本発明を詳細に説明する。
本発明の(イ)において、フェノール化合物とアルデヒド化合物の反応は、水及び触媒の存在下に行われる。
フェノール化合物としては、例えば、下式(1)
Hereinafter, the present invention will be described in detail.
In (i) of the present invention, the reaction between the phenol compound and the aldehyde compound is carried out in the presence of water and a catalyst.
As a phenol compound, for example, the following formula (1)

Figure 2005187320
Figure 2005187320

(式中、R1は水素原子、又はハロゲン原子若しくは置換基で置換されていてもよいアルキル基を表す。nは2〜5の整数を表し、mは0〜3の整数を表すが、n及びmの和が6以上であることはない。)
で示される化合物が挙げられる。
(In the formula, R 1 represents a hydrogen atom, a halogen atom or an alkyl group which may be substituted with a substituent. N represents an integer of 2 to 5, m represents an integer of 0 to 3, And the sum of m is not 6 or more.)
The compound shown by these is mentioned.

本発明の(イ)において、上式(1)中のR1は、水素又は置換されていてもよいアルキル基を表す。上記のアルキル基における置換基としては、例えばヒドロキシ、シアノ、アルコキシ、カルバモイル、カルボキシ、アルコキシカルボニル、アルキルカルボニルオキシ、スルホ及びスルファモイル等を挙げることができる。
上記アルキル基や、該アルキル基の置換基であるアルコキシ、アルコキシカルボニル及びアルキルカルボニルオキシは、直鎖状でもよく、分岐状でもよい。
In (i) of the present invention, R 1 in the above formula (1) represents hydrogen or an optionally substituted alkyl group. Examples of the substituent in the alkyl group include hydroxy, cyano, alkoxy, carbamoyl, carboxy, alkoxycarbonyl, alkylcarbonyloxy, sulfo and sulfamoyl.
The alkyl group and alkoxy, alkoxycarbonyl and alkylcarbonyloxy which are substituents of the alkyl group may be linear or branched.

上記R1において、ハロゲン原子若しくは置換基で置換されていてもよいアルキル基としては、例えば、メチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、i−ブチル基、s−ブチル基、n−オクチル基、ノニル基、p−t−ブチル基、2−ヒドロキシエチル基、2−ヒドロキシプロピル基、3−ヒドロキシプロピル基、2−ヒドロキシブチル基、3−ヒドロキシブチル基、4−ヒドロキシブチル基、2,3−ジヒドロキシプロピル基、3,4−ジヒドロキシブチル基、シアノメチル基、2−シアノエチル基、3−シアノプロピル基、メトキシメチル基、エトキシメチル基、2−メトキシエチル基、2−エトキシエチル基、3−メトキシプロピル基、3−エトキシプロピル基、2−ヒドロキシ−3−メトキシプロピル基、クロロメチル基、ブロモメチル基、2−クロロエチル基、2−ブロモエチル基、3−クロロプロピル基、3−ブロモプロピル基、4−クロロブチル基、4−ブロモブチル基、カルボキシメチル基、2−カルボキシエチル基、3−カルボキシプロピル基、4−カルボキシブチル基、1,2−ジカルボキシエチル基、カルバモイルメチル基、2−カルバモイルエチル基、3−カルバモイルプロピル基、4−カルバモイルブチル基、メトキシカルボニルメチル基、エトキシカルボニルメチル基、2−メトキシカルボニルエチル基、2−エトキシカルボニルエチル基、3−メトキシカルボニルプロピル基、3−エトキシカルボニルプロピル基、4−メトキシカルボニルブチル基、4−エトキシカルボニルブチル基、メチルカルボニルオキシメチル基、エチルカルボニルオキシメチル基、2−メチルカルボニルオキシエチル基、2−エチルカルボニルオキシエチル基、3−メチルカルボニルオキシプロピル基、3−エチルカルボニルオキシプロピル基、4−メチルカルボニルオキシブチル基、4−エチルカルボニルオキシブチル基、スルホメチル基、2−スルホエチル基、3−スルホプロピル基、4−スルホブチル基、スルファモイルメチル基、2−スルファモイルエチル基、3−スルファモイルプロピル基及び4−スルファモイルブチル基等を挙げることができる。
1としては、水素原子又は無置換のアルキル基がより好ましく、水素、メチル基、エチル基、n−オクチル基が特に好ましい。
In R 1 , examples of the alkyl group which may be substituted with a halogen atom or a substituent include, for example, a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, an i-butyl group, s-butyl group, n-octyl group, nonyl group, pt-butyl group, 2-hydroxyethyl group, 2-hydroxypropyl group, 3-hydroxypropyl group, 2-hydroxybutyl group, 3-hydroxybutyl group, 4-hydroxybutyl group, 2,3-dihydroxypropyl group, 3,4-dihydroxybutyl group, cyanomethyl group, 2-cyanoethyl group, 3-cyanopropyl group, methoxymethyl group, ethoxymethyl group, 2-methoxyethyl group, 2-ethoxyethyl group, 3-methoxypropyl group, 3-ethoxypropyl group, 2-hydroxy-3-methoxypropyl group, Lolomethyl group, bromomethyl group, 2-chloroethyl group, 2-bromoethyl group, 3-chloropropyl group, 3-bromopropyl group, 4-chlorobutyl group, 4-bromobutyl group, carboxymethyl group, 2-carboxyethyl group, 3- Carboxypropyl group, 4-carboxybutyl group, 1,2-dicarboxyethyl group, carbamoylmethyl group, 2-carbamoylethyl group, 3-carbamoylpropyl group, 4-carbamoylbutyl group, methoxycarbonylmethyl group, ethoxycarbonylmethyl group 2-methoxycarbonylethyl group, 2-ethoxycarbonylethyl group, 3-methoxycarbonylpropyl group, 3-ethoxycarbonylpropyl group, 4-methoxycarbonylbutyl group, 4-ethoxycarbonylbutyl group, methylcarbonyloxymethyl group, ethyl Rucarbonyloxymethyl group, 2-methylcarbonyloxyethyl group, 2-ethylcarbonyloxyethyl group, 3-methylcarbonyloxypropyl group, 3-ethylcarbonyloxypropyl group, 4-methylcarbonyloxybutyl group, 4-ethylcarbonyl Oxybutyl group, sulfomethyl group, 2-sulfoethyl group, 3-sulfopropyl group, 4-sulfobutyl group, sulfamoylmethyl group, 2-sulfamoylethyl group, 3-sulfamoylpropyl group and 4-sulfamoyl group A butyl group etc. can be mentioned.
R 1 is more preferably a hydrogen atom or an unsubstituted alkyl group, particularly preferably hydrogen, a methyl group, an ethyl group, or an n-octyl group.

式(1)において、nとしては、3又は4が好ましく、4が特に好ましい。
mとしては、1又は2が好ましく、1が特に好ましい。
In the formula (1), n is preferably 3 or 4, and 4 is particularly preferable.
As m, 1 or 2 is preferable and 1 is particularly preferable.

式(1)で表される化合物の具体例としては、o−クレゾール、m−クレゾール、p−クレゾール、2,3−キシレノール、2,4−キシレノール、2,5−キシレノール、2,6−キシレノール、3,4−キシレノール、3,5−キシレノール、o−エチルフェノール、i−プロピルフェノール、ブチルフェノール、p−t−ブチルフェノール、p−オクチルフェノール、p−ノニルフェノール、2−クロロフェノール、4−メトキシフェノール、2,4−ジクロロフェノール、3,5−ジクロロフェノール、4−クロロ−3−メチルフェノール、カテコール、3−メチルカテコール、4−t−ブチルカテコール、レゾルシノール、2−メチルレゾルシノール、4−エチルレゾルシノール、4−クロロレゾルシノール、5−メチルレゾルシノール、2,5−ジメチルレゾルシノール、5−メトキシレゾルシノール、5−ペンチルレゾルシノールやピロガロール等を挙げることができる。
本発明の(イ)において、上記フェノール化合物は、単独で用いてもよいし、2種以上の混合物を用いてもよい。
Specific examples of the compound represented by the formula (1) include o-cresol, m-cresol, p-cresol, 2,3-xylenol, 2,4-xylenol, 2,5-xylenol, and 2,6-xylenol. 3,4-xylenol, 3,5-xylenol, o-ethylphenol, i-propylphenol, butylphenol, pt-butylphenol, p-octylphenol, p-nonylphenol, 2-chlorophenol, 4-methoxyphenol, 2 , 4-dichlorophenol, 3,5-dichlorophenol, 4-chloro-3-methylphenol, catechol, 3-methylcatechol, 4-t-butylcatechol, resorcinol, 2-methylresorcinol, 4-ethylresorcinol, 4- Chlororesorcinol, 5-methylresorcin Lumpur, 2,5-dimethyl resorcinol, 5-methoxy resorcinol, may be mentioned 5-pentyl Relais sol maytansinol and pyrogallol.
In the (a) of the present invention, the above phenol compounds may be used alone or in a mixture of two or more.

本発明におけるアルデヒド化合物としては、例えば、ホルムアルデヒド、パラホルムアルデヒド、アセトアルデヒド、ブチルアルデヒド、サリチルアルデヒド、ベンズアルデヒド等が挙げられる。
アルデヒド化合物としては、ホルムアルデヒドが好ましい。
Examples of the aldehyde compound in the present invention include formaldehyde, paraformaldehyde, acetaldehyde, butyraldehyde, salicylaldehyde, benzaldehyde and the like.
As the aldehyde compound, formaldehyde is preferable.

本発明の(イ)において、フェノール化合物とアルデヒド化合物の使用割合は特に限定されない。
本発明の(イ)において、フェノール化合物に対するアルデヒド化合物のモル比は、通常は1〜3の範囲であり、好ましくは1.2〜2.5の範囲である。
In (I) of the present invention, the ratio of the phenol compound and the aldehyde compound used is not particularly limited.
In (i) of the present invention, the molar ratio of the aldehyde compound to the phenol compound is usually in the range of 1 to 3, and preferably in the range of 1.2 to 2.5.

本発明(イ)における反応は、フェノール化合物とアルデヒド化合物を含有する水の存在下に行われる。そして、本発明(イ)の製造方法は、コロイド状の大きさの粒子を含む流動性のある液体中においてコロイド粒子が活発なブラウン運動をしているゾル状態を経て、上記コロイド粒子由来の三次元網目状構造を有するゲル状化合物を得る反応である。本発明におけるゲル状化合物は、三次元の網目構造中に水等の液体又は空気等の気体が含まれていてもよい。
本発明(イ)において、ゾル−ゲル反応における水の使用量は、上記フェノール化合物とアルデヒド化合物の合計量100重量部当り、通常は50〜6000重量部の範囲であり、好ましくは50〜2000重量部の範囲であり、より好ましくは、50〜1000重量部の範囲である。なお、例えば、原料化合物として、例えばホルマリンのような水溶液を用いる場合は、該水溶液に含まれる水も、上記使用量に含まれる。
The reaction in the present invention (I) is carried out in the presence of water containing a phenol compound and an aldehyde compound. Then, the production method of the present invention (a) includes a tertiary solution derived from the colloidal particles through a sol state in which the colloidal particles are in active Brownian motion in a fluid liquid containing particles of colloidal size. This is a reaction for obtaining a gel-like compound having an original network structure. The gel compound in the present invention may contain a liquid such as water or a gas such as air in a three-dimensional network structure.
In the present invention (a), the amount of water used in the sol-gel reaction is usually in the range of 50 to 6000 parts by weight, preferably 50 to 2000 parts by weight, per 100 parts by weight of the total amount of the phenol compound and aldehyde compound. Parts by weight, and more preferably in the range of 50 to 1000 parts by weight. For example, when an aqueous solution such as formalin is used as the raw material compound, water contained in the aqueous solution is also included in the amount used.

本発明におけるゾル−ゲル反応において、触媒としては塩基性触媒が好ましい。かかる塩基性触媒としては、例えば、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、炭酸バリウム、リン酸ナトリウム、リン酸リチウムやリン酸カリウム等が挙げられる。
塩基触媒としては、炭酸ナトリウムが好ましい。塩基性触媒の使用量は、フェノール化合物1モル当り、通常は0.00001〜5モルの範囲であり、好ましくは0.00001〜2モルの範囲であり、さらに好ましくは0.00001〜0.1モルの範囲である。
In the sol-gel reaction in the present invention, the catalyst is preferably a basic catalyst. Examples of the basic catalyst include sodium carbonate, potassium carbonate, lithium carbonate, sodium hydroxide, potassium hydroxide, lithium hydroxide, barium carbonate, sodium phosphate, lithium phosphate, and potassium phosphate.
As the base catalyst, sodium carbonate is preferred. The amount of the basic catalyst used is usually in the range of 0.00001 to 5 mol, preferably in the range of 0.00001 to 2 mol, more preferably 0.00001 to 0.1 mol per mol of the phenol compound. The range of moles.

本発明のゾル−ゲル反応において、反応温度は、通常は0〜100℃の範囲であり、好ましくは30〜90℃の範囲である。   In the sol-gel reaction of the present invention, the reaction temperature is usually in the range of 0 to 100 ° C, preferably in the range of 30 to 90 ° C.

本発明のゾル−ゲル反応により得られる樹脂は湿潤ゲルであり、乾燥ゲルは上記湿潤ゲルを脱水することにより製造される。
湿潤ゲルの脱水は、例えば、前記湿潤ゲル中の水を親水性有機溶媒で置換することにより行われる。
上記の親水性有機溶媒としては、例えば、メチルアルコール、エチルアルコール、n−プロピルアルコール及びt−ブチルアルコール等のアルコール類;アセトニトリル等の脂肪族ニトリル類;アセトン等の脂肪族ケトン類;ジメチルスルホキシド等の脂肪族スルホキシド類;酢酸等の脂肪族カルボン酸類が挙げられる。
これらの親水性有機溶媒のうち、t−ブチルアルコール、ジメチルスルホキシド又は酢酸が好ましく用いられ、t−ブチルアルコールが特に好ましく用いられる。
このようにして得られた親水性有機溶媒で湿潤されたゲルは、好ましくは凍結乾燥され、乾燥ゲルが得られる。
凍結乾燥によって得られた乾燥ゲルは、ゾル−ゲル反応により作られた湿潤ゲルを構成する粒子の三次元の網目状構造を保持することができる。すなわち、形態及び機能的に三次元の網目状構造が有する性状を維持しつつ、湿潤ゲル中の親水性有機溶媒等の液体を除去することができる。
The resin obtained by the sol-gel reaction of the present invention is a wet gel, and the dry gel is produced by dehydrating the wet gel.
The dehydration of the wet gel is performed, for example, by replacing water in the wet gel with a hydrophilic organic solvent.
Examples of the hydrophilic organic solvent include alcohols such as methyl alcohol, ethyl alcohol, n-propyl alcohol and t-butyl alcohol; aliphatic nitriles such as acetonitrile; aliphatic ketones such as acetone; dimethyl sulfoxide and the like. Aliphatic sulfoxides; and aliphatic carboxylic acids such as acetic acid.
Of these hydrophilic organic solvents, t-butyl alcohol, dimethyl sulfoxide or acetic acid is preferably used, and t-butyl alcohol is particularly preferably used.
The gel wetted with the hydrophilic organic solvent thus obtained is preferably lyophilized to obtain a dried gel.
The dried gel obtained by freeze-drying can retain the three-dimensional network structure of the particles constituting the wet gel made by the sol-gel reaction. That is, it is possible to remove a liquid such as a hydrophilic organic solvent in the wet gel while maintaining the properties of the three-dimensional network structure in terms of form and function.

本発明において、凍結乾燥を用いる場合は、湿潤ゲルの三次元網目状構造における親水性有機溶媒等の液体を除去することが可能であり、不均一な乾燥や泡立ち、変質等を防ぎつつ、三次元の網目状構造を維持できるので、上記湿潤ゲルの形状を保った乾燥ゲルが得られる。
さらに、凍結乾燥装置を用いることにより、湿潤ゲルを短時間で乾燥することができると共に、乾燥ゲルの製造コストを低減化することができる。
凍結乾燥における凍結温度は、通常は−70〜−5℃の範囲であり、好ましくは−30〜−10℃の範囲である。
In the present invention, when freeze-drying is used, it is possible to remove a liquid such as a hydrophilic organic solvent in a three-dimensional network structure of a wet gel, while preventing uneven drying, foaming, alteration, etc. Since the original network structure can be maintained, a dry gel maintaining the shape of the wet gel can be obtained.
Furthermore, by using a freeze-drying apparatus, the wet gel can be dried in a short time, and the production cost of the dry gel can be reduced.
The freezing temperature in lyophilization is usually in the range of -70 to -5 ° C, preferably in the range of -30 to -10 ° C.

本発明において、凍結乾燥後に得られたカーボン乾燥ゲルは、不活性ガス雰囲気中で焼成(炭化)することにより、カーボン材料を得ることができる。焼成(炭化)時の不活性ガスとしては、窒素、アルゴン、ヘリウム、水素等が好ましい。焼成(炭化)温度は、通常は200〜3000℃の範囲であり、好ましくは600〜1100℃の範囲である。焼成時間は、通常は数分間〜数時間の範囲である。   In the present invention, the carbon dry gel obtained after freeze-drying can be baked (carbonized) in an inert gas atmosphere to obtain a carbon material. As the inert gas during firing (carbonization), nitrogen, argon, helium, hydrogen and the like are preferable. The firing (carbonization) temperature is usually in the range of 200 to 3000 ° C, and preferably in the range of 600 to 1100 ° C. The firing time is usually in the range of several minutes to several hours.

本発明(ロ)におけるカーボン材料は、上記(イ)記載の製造方法により得られたカーボン材料を更にH2O、CO2又はO2を含む酸化性ガス雰囲気において賦活処理してもよい。賦活温度は、通常は700〜1500℃の範囲、好ましくは800〜1300℃の範囲で行われる。賦活時間は、通常は数分間〜数時間の範囲である。
上記の賦活により、微細構造の割合が多くなり、単位重量当りの表面積の大きなカーボン材料を得ることができる。
また、上記の酸化性ガス雰囲気における賦活処理では、薬品を併用してもよい。即ち、上記(イ)記載の製造方法により得られたカーボン材料に塩化亜鉛、リン酸、硫化カリウムや水酸化カリウム等の化学薬品を添加した後、H2O、CO2又はO2を含む酸化性ガス雰囲気において賦活処理を行うことができる。
In the carbon material in the present invention (b), the carbon material obtained by the production method described in the above (a) may be further activated in an oxidizing gas atmosphere containing H 2 O, CO 2 or O 2 . The activation temperature is usually in the range of 700 to 1500 ° C, preferably in the range of 800 to 1300 ° C. The activation time is usually in the range of several minutes to several hours.
By the above activation, the proportion of the fine structure is increased, and a carbon material having a large surface area per unit weight can be obtained.
In the activation treatment in the oxidizing gas atmosphere, a chemical may be used in combination. That is, after adding chemicals such as zinc chloride, phosphoric acid, potassium sulfide and potassium hydroxide to the carbon material obtained by the production method described in (a) above, oxidation containing H 2 O, CO 2 or O 2 is performed. The activation treatment can be performed in a reactive gas atmosphere.

本発明(ハ)において、タブレット状湿潤ゲルは、上記フェノール化合物とアルデヒド化合物をディスク状の容器中で反応させることにより製造される。
上記フェノール化合物とアルデヒド化合物の反応は、本発明(イ)における反応と同じ条件で行われる。好ましい反応容器はディスク状の鉢型容器である。ディスク状の鉢型容器の厚みは、通常は0.5〜5mmの範囲であり、好ましくは1〜3mmの範囲である。
容器の材質は、鋳型の作製に通常使用される金属や樹脂が好ましい。
本発明(ハ)の方法により製造されるタブレット状湿潤ゲルとしては、本発明(ニ)並びに(ホ)の工程を経た後も、タブレット状湿潤ゲルが、反ったりひび割れたりせずに、形状が保てる厚みが好ましい。タブレット状湿潤ゲルの厚みとしては、3mm以下のものが好ましく、0.5〜2.8mm以下のものが特に好ましい。
In the present invention (c), the tablet-shaped wet gel is produced by reacting the phenol compound and the aldehyde compound in a disk-shaped container.
The reaction between the phenol compound and the aldehyde compound is carried out under the same conditions as in the reaction (a) of the present invention. A preferred reaction vessel is a disc-shaped pot type vessel. The thickness of the disc-shaped bowl-shaped container is usually in the range of 0.5 to 5 mm, preferably in the range of 1 to 3 mm.
The material of the container is preferably a metal or a resin that is usually used for producing a mold.
As the tablet-like wet gel produced by the method of the present invention (c), the tablet-like wet gel does not warp or crack even after the steps of the present invention (d) and (e), A thickness that can be maintained is preferable. The tablet wet gel has a thickness of preferably 3 mm or less, particularly preferably 0.5 to 2.8 mm or less.

本発明(ホ)の方法により製造されたタブレット状カーボン材料は、ミクロ孔(直径が20オングストローム未満の微細孔)やメソ孔(直径が20〜50オングストロームの細孔)のような微細構造を有するものである。
そして、上記タブレット状カーボン材料は、例えば上記の微細構造を利用したエネルギー貯蔵用デバイスとして用いることができる。本発明(ホ)の方法によれば、タブレットの形状を維持したままカーボン材料を製造することができる。そして、上記タブレットの厚みを調節することが可能であり、エネルギー貯蔵量を容易に制御することができる。また、本発明(ホ)の方法により製造されたタブレット状カーボン材料は、上記のバインダーを用いなくてもタブレット状に成型でき、且つ成型後に溶媒等のバインダーを除去する操作が不要なので、操作性に優れており、且つ製造コストを低減することができる。
エネルギー貯蔵の例としては、リチウム二次電池、電気二重層キャパシタ及びメタンガスの吸着・貯蔵等を挙げることができる。
The tablet-like carbon material produced by the method of the present invention (e) has a microstructure such as micropores (micropores having a diameter of less than 20 angstroms) and mesopores (pores having a diameter of 20 to 50 angstroms). Is.
And the said tablet-like carbon material can be used, for example as an energy storage device using said fine structure. According to the method of the present invention (e), the carbon material can be produced while maintaining the shape of the tablet. And the thickness of the said tablet can be adjusted, and the amount of energy storage can be controlled easily. In addition, the tablet-like carbon material produced by the method of the present invention (e) can be molded into a tablet without using the above-mentioned binder, and the operation of removing the binder such as a solvent after molding is unnecessary, so that the operability The manufacturing cost can be reduced.
Examples of energy storage include lithium secondary batteries, electric double layer capacitors, and methane gas adsorption / storage.

以下、実施例により本発明をより詳細に説明するが、本発明は実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to an Example.

実施例1
[タブレット状カーボンクライオゲル電極の作製]
厚さ2mmのディスク状反応容器に、レゾルシン5.0g及び37重量%ホルマリン7.37gを仕込んだ。得られた混合物に炭酸ナトリウム0.0096g及び蒸留水10gを加え、25℃で1時間保温後、50℃で1時間保温させて、タブレット状の湿潤ゲルを得た。
この湿潤ゲルにt−ブチルアルコールを加えて洗浄し、上記ゲル中の水をt−ブチルアルコールに置換した。t−ブチルアルコールで置換されたゲルを凍結乾燥した。凍結乾燥後のゲルをアルゴン雰囲気下に1000℃で焼成(炭化)し、タブレット状カーボンクライオゲルを得た。
得られたカーボンクライオゲルを、10容量%の二酸化炭素を含む雰囲気下に1000℃で賦活処理して、タブレット状カーボン材料電極を作製した。
賦活処理後の電極の厚みは約0.60mmであった。
Example 1
[Production of tablet-like carbon cryogel electrode]
A 2 mm thick disc-shaped reaction vessel was charged with 5.0 g of resorcin and 7.37 g of 37 wt% formalin. 0.0096 g of sodium carbonate and 10 g of distilled water were added to the obtained mixture, and the mixture was kept at 25 ° C. for 1 hour and then kept at 50 ° C. for 1 hour to obtain a tablet-like wet gel.
T-Butyl alcohol was added to the wet gel for washing, and water in the gel was replaced with t-butyl alcohol. The gel substituted with t-butyl alcohol was lyophilized. The freeze-dried gel was baked (carbonized) at 1000 ° C. in an argon atmosphere to obtain a tablet-like carbon cryogel.
The obtained carbon cryogel was activated at 1000 ° C. in an atmosphere containing 10% by volume of carbon dioxide to produce a tablet-like carbon material electrode.
The thickness of the electrode after the activation treatment was about 0.60 mm.

実施例2及び3
厚さ2mmのディスク状反応容器を用いる以外は、実施例1と同様にしてタブレット状カーボン材料電極を作製した。賦活処理後の電極の厚みは約1.30mmであった。
また、厚さが3mmのディスク状反応容器を用いる以外は、実施例1と同様にしてタブレット状カーボン材料電極を作製した。賦活処理後の電極の厚みは約1.95mmであった。
Examples 2 and 3
A tablet-like carbon material electrode was produced in the same manner as in Example 1 except that a disk-shaped reaction vessel having a thickness of 2 mm was used. The thickness of the electrode after the activation treatment was about 1.30 mm.
Further, a tablet-like carbon material electrode was produced in the same manner as in Example 1 except that a disc-shaped reaction vessel having a thickness of 3 mm was used. The thickness of the electrode after the activation treatment was about 1.95 mm.

実施例4
[細孔特性と電気二重層容量の評価]
実施例1で得たカーボンクライオゲルの77度(絶対温度)における窒素の吸脱着等温線を測定し、BET式(ブルナウア−エメット−テーラー式)を用いて表面積を求めた。 また、脱着等温線にDollimore−Heal法を適用してメソ細孔容積とメソ細孔径分布を求めた。
さらに、4M水酸化カリウムを電解液として、2極式セルを用いた定電流充放電測定(300mA/g)により電気二重層容量を求めた。
Example 4
[Evaluation of pore characteristics and electric double layer capacity]
The adsorption / desorption isotherm of nitrogen at 77 degrees (absolute temperature) of the carbon cryogel obtained in Example 1 was measured, and the surface area was determined using the BET equation (Brunauer-Emmett-Taylor equation). Further, the Mesopore volume and the mesopore diameter distribution were determined by applying the Dollimore-Heal method to the desorption isotherm.
Furthermore, the electric double layer capacity | capacitance was calculated | required by the constant current charge / discharge measurement (300 mA / g) using 4 M potassium hydroxide as electrolyte solution and using a bipolar cell.

細孔構造パラメーターと活性カーボンゲルの電気二重層容量(レゾルシノールと炭酸ナトリウムのモル比率=500,レゾルシノールと蒸留水の重量比率=0.5)の関係を下表1に示す。   The relationship between the pore structure parameters and the electric double layer capacity of the activated carbon gel (resorcinol to sodium carbonate molar ratio = 500, resorcinol to distilled water weight ratio = 0.5) is shown in Table 1 below.

Figure 2005187320
Figure 2005187320

実験例1〜8
[表面の反り、ひび割れの有無]
表2に記載の厚さのディスク状反応容器を用いる以外は、実施例1と同様にしてタブレット状カーボン材料を作製し、得られたタブレット状湿潤ゲル及びカーボン材料について、厚み、反りの有無及びひび割れの有無を観察した。結果を表2に示した。尚、カーボン材料は賦活前の状態を表す。
Experimental Examples 1-8
[Surface warping and cracking]
A tablet-like carbon material was produced in the same manner as in Example 1 except that the disk-shaped reaction vessel having the thickness shown in Table 2 was used. The presence or absence of cracks was observed. The results are shown in Table 2. The carbon material represents a state before activation.

Figure 2005187320
Figure 2005187320

本発明の製造方法で得られるカーボン材料は、例えば、メタンガス、リチウム二次電池、電気二重層キャパシタのようなエネルギー源の吸着、貯蔵に利用できる。   The carbon material obtained by the production method of the present invention can be used for adsorption and storage of energy sources such as methane gas, lithium secondary batteries, and electric double layer capacitors.

Claims (20)

水及び触媒の存在下にフェノール化合物とアルデヒド化合物を反応させて得られる樹脂のゲルを脱水し、得られた乾燥ゲルを不活性ガス雰囲気中で焼成することを特徴とするカーボン材料の製造方法。   A method for producing a carbon material, comprising dehydrating a resin gel obtained by reacting a phenol compound and an aldehyde compound in the presence of water and a catalyst, and firing the obtained dried gel in an inert gas atmosphere. 触媒が、塩基性触媒である請求項1に記載のカーボン材料の製造方法。   The method for producing a carbon material according to claim 1, wherein the catalyst is a basic catalyst. 塩基性触媒が、炭酸ナトリウムである請求項2に記載のカーボン材料の製造方法。   The method for producing a carbon material according to claim 2, wherein the basic catalyst is sodium carbonate. フェノール化合物とアルデヒド化合物の反応が、ディスク状の容器中で行われる請求項1〜3のいずれかに記載のカーボン材料の製造方法。   The method for producing a carbon material according to any one of claims 1 to 3, wherein the reaction between the phenol compound and the aldehyde compound is performed in a disk-shaped container. 不活性ガスが、窒素またはアルゴンである請求項1〜4のいずれかに記載のカーボン材料の製造方法。   The method for producing a carbon material according to any one of claims 1 to 4, wherein the inert gas is nitrogen or argon. 焼成温度が、200〜3000℃である請求項1〜5のいずれかに記載のカーボン材料の製造方法。   The method for producing a carbon material according to any one of claims 1 to 5, wherein the firing temperature is 200 to 3000 ° C. 水及び触媒の存在下にフェノール化合物とアルデヒド化合物を反応させて得られる樹脂のゲルを脱水し、得られた乾燥ゲルを不活性ガス雰囲気中で焼成して得たカーボン材料を、上記の不活性ガスとは異なる酸化性ガス雰囲気下でさらに賦活することを特徴とするカーボン材料の製造方法。   Resin gel obtained by reacting phenolic compound and aldehyde compound in the presence of water and catalyst is dehydrated, and the resulting dry gel is baked in an inert gas atmosphere to obtain the above inert material. A method for producing a carbon material, wherein the carbon material is further activated in an oxidizing gas atmosphere different from gas. 水及び触媒の存在下にフェノール化合物とアルデヒド化合物をディスク状の容器中で反応させることを特徴とするタブレット状湿潤ゲルの製造方法。   A method for producing a tablet-like wet gel, which comprises reacting a phenol compound and an aldehyde compound in a disc-like container in the presence of water and a catalyst. 容器の厚さが3mm以下である請求項8に記載のタブレット状湿潤ゲルの製造方法。   The method for producing a tablet-like wet gel according to claim 8, wherein the container has a thickness of 3 mm or less. 触媒が、塩基性触媒である請求項8又は9に記載のタブレット状湿潤ゲルの製造方法。   The method for producing a tablet-like wet gel according to claim 8 or 9, wherein the catalyst is a basic catalyst. 塩基性触媒が、炭酸ナトリウムである請求項10に記載のタブレット状湿潤ゲルの製造方法。   The method for producing a tablet-like wet gel according to claim 10, wherein the basic catalyst is sodium carbonate. 水及び触媒の存在下にフェノール化合物とアルデヒド化合物をディスク状容器中で反応させてタブレット状湿潤ゲルを得、該湿潤ゲル中の水を親水性有機溶媒で置換後、凍結乾燥することを特徴とするタブレット状乾燥ゲルの製造方法。   A phenolic compound and an aldehyde compound are reacted in a disk-shaped container in the presence of water and a catalyst to obtain a tablet-shaped wet gel, and the water in the wet gel is replaced with a hydrophilic organic solvent, followed by lyophilization. A method for producing a tablet-like dry gel. 親水性有機溶媒が、t−ブチルアルコールである請求項12に記載のタブレット状乾燥ゲルの製造方法。   The method for producing a tablet-like dry gel according to claim 12, wherein the hydrophilic organic solvent is t-butyl alcohol. 水及び触媒の存在下にフェノール化合物とアルデヒド化合物をディスク状の容器中で反応させてタブレット状の湿潤ゲルを得、該湿潤ゲル中の水を親水性有機溶媒で置換後、凍結乾燥してタブレット状のカーボン乾燥ゲルを得た後、該タブレット状のカーボン乾燥ゲルを不活性ガス雰囲気中で焼成することを特徴とするタブレット状のカーボン材料の製造方法。   A phenolic compound and an aldehyde compound are reacted in a disk-shaped container in the presence of water and a catalyst to obtain a tablet-like wet gel. After the water in the wet gel is replaced with a hydrophilic organic solvent, the tablet is freeze-dried. A tablet-like carbon material is produced by firing the tablet-like carbon dry gel in an inert gas atmosphere after obtaining the carbon-like carbon gel. 親水性有機溶媒が、t−ブチルアルコールである請求項14に記載のタブレット状カーボン材料の製造方法。   The method for producing a tablet-like carbon material according to claim 14, wherein the hydrophilic organic solvent is t-butyl alcohol. フェノール化合物が、レゾルシノールである請求項1〜7のいずれかに記載のカーボン材料の製造方法。   The method for producing a carbon material according to claim 1, wherein the phenol compound is resorcinol. フェノール化合物が、レゾルシノールである請求項8〜11のいずれかに記載のタブレット状湿潤ゲルの製造方法。   The method for producing a tablet-like wet gel according to any one of claims 8 to 11, wherein the phenol compound is resorcinol. フェノール化合物が、レゾルシノールである請求項12又は13に記載のタブレット状乾燥ゲルの製造方法。   The method for producing a tablet-like dry gel according to claim 12 or 13, wherein the phenol compound is resorcinol. フェノール化合物が、レゾルシノールである請求項14又は15に記載のタブレット状カーボン材料の製造方法。   The method for producing a tablet-like carbon material according to claim 14 or 15, wherein the phenol compound is resorcinol. 請求項17〜19記載のタブレット状カーボン材料を用いた電気二重層キャパシタ。   The electric double layer capacitor using the tablet-like carbon material of Claims 17-19.
JP2004345721A 2003-12-01 2004-11-30 Method for producing carbon material and tablet-like dried gel Expired - Fee Related JP4754813B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004345721A JP4754813B2 (en) 2003-12-01 2004-11-30 Method for producing carbon material and tablet-like dried gel

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003401239 2003-12-01
JP2003401239 2003-12-01
JP2004345721A JP4754813B2 (en) 2003-12-01 2004-11-30 Method for producing carbon material and tablet-like dried gel

Publications (2)

Publication Number Publication Date
JP2005187320A true JP2005187320A (en) 2005-07-14
JP4754813B2 JP4754813B2 (en) 2011-08-24

Family

ID=34797451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004345721A Expired - Fee Related JP4754813B2 (en) 2003-12-01 2004-11-30 Method for producing carbon material and tablet-like dried gel

Country Status (1)

Country Link
JP (1) JP4754813B2 (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009040646A (en) * 2007-08-10 2009-02-26 Kyoto Univ Method for manufacturing carbon material, and electric double-layer capacitor containing the carbon material
JP2009129742A (en) * 2007-11-26 2009-06-11 Kyushu Univ Sodium ion secondary battery and negative active material for sodium ion secondary battery
JP2009173533A (en) * 2007-12-25 2009-08-06 Sumitomo Chemical Co Ltd Method for producing carbon material
JP2010018459A (en) * 2008-07-09 2010-01-28 Kyoto Univ Method for producing porous ceramic material
JP2010510674A (en) * 2006-11-15 2010-04-02 エナジーツー・インコーポレイテッド Electric double layer capacitor device
US7800886B2 (en) * 2005-04-12 2010-09-21 Sumitomo Chemical Company, Limited Electric double layer capacitor
JP2010245133A (en) * 2009-04-01 2010-10-28 Nippon Chemicon Corp Gel electrolyte and method for producing the same, and electrochemical element using the gel electrolyte
JP2013502214A (en) * 2009-09-10 2013-01-24 ブリティッシュ アメリカン タバコ (インヴェストメンツ) リミテッド Smoke filtration
US8404384B2 (en) 2009-07-01 2013-03-26 Energ2 Technologies, Inc. Ultrapure synthetic carbon materials
WO2013140937A1 (en) * 2012-03-23 2013-09-26 アイオン株式会社 Activated carbon for electrode of power storage device, and method for manufacturing activated carbon for electrode of power storage device
US8580870B2 (en) 2009-04-08 2013-11-12 Energ2 Technologies, Inc. Manufacturing methods for the production of carbon materials
US8709971B2 (en) 2005-11-21 2014-04-29 University Of Washington Activated carbon cryogels and related methods
US8916296B2 (en) 2010-03-12 2014-12-23 Energ2 Technologies, Inc. Mesoporous carbon materials comprising bifunctional catalysts
KR20160009681A (en) 2013-09-20 2016-01-26 아이온 가부시키가이샤 Activated carbon for use in electrode of power-storage device, and method for producing same
US9269502B2 (en) 2010-12-28 2016-02-23 Basf Se Carbon materials comprising enhanced electrochemical properties
US9412523B2 (en) 2010-09-30 2016-08-09 Basf Se Enhanced packing of energy storage particles
US9409777B2 (en) 2012-02-09 2016-08-09 Basf Se Preparation of polymeric resins and carbon materials
JP2017510685A (en) * 2014-04-11 2017-04-13 ハッチンソンHutchinson Adaptive road lighting
US10147950B2 (en) 2015-08-28 2018-12-04 Group 14 Technologies, Inc. Materials with extremely durable intercalation of lithium and manufacturing methods thereof
US10195583B2 (en) 2013-11-05 2019-02-05 Group 14 Technologies, Inc. Carbon-based compositions with highly efficient volumetric gas sorption
US10454103B2 (en) 2013-03-14 2019-10-22 Group14 Technologies, Inc. Composite carbon materials comprising lithium alloying electrochemical modifiers
US10490358B2 (en) 2011-04-15 2019-11-26 Basf Se Flow ultracapacitor
US10522836B2 (en) 2011-06-03 2019-12-31 Basf Se Carbon-lead blends for use in hybrid energy storage devices
US10590277B2 (en) 2014-03-14 2020-03-17 Group14 Technologies, Inc. Methods for sol-gel polymerization in absence of solvent and creation of tunable carbon structure from same
US10763501B2 (en) 2015-08-14 2020-09-01 Group14 Technologies, Inc. Nano-featured porous silicon materials
US11174167B1 (en) 2020-08-18 2021-11-16 Group14 Technologies, Inc. Silicon carbon composites comprising ultra low Z
US11335903B2 (en) 2020-08-18 2022-05-17 Group14 Technologies, Inc. Highly efficient manufacturing of silicon-carbon composites materials comprising ultra low z
US11611071B2 (en) 2017-03-09 2023-03-21 Group14 Technologies, Inc. Decomposition of silicon-containing precursors on porous scaffold materials
US11639292B2 (en) 2020-08-18 2023-05-02 Group14 Technologies, Inc. Particulate composite materials

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4873218A (en) * 1988-05-26 1989-10-10 The United States Department Of Energy Low density, resorcinol-formaldehyde aerogels
WO1993014511A1 (en) * 1992-01-17 1993-07-22 The Regents Of The University Of California Supercapacitors based on carbon foams
JPH09202610A (en) * 1996-01-24 1997-08-05 Mitsubishi Chem Corp Activated carbon and its production
JPH09328308A (en) * 1996-04-10 1997-12-22 Mitsubishi Chem Corp Activated carbon, its production and capacitor using the same
JP2001102053A (en) * 1999-09-30 2001-04-13 Sumitomo Durez Co Ltd Carbon material for secondary cell of non-aqueous electrolyte
JP2002003211A (en) * 2000-06-20 2002-01-09 Asahi Glass Co Ltd Method for producing carbon material and activated carbon
JP2002511899A (en) * 1997-07-05 2002-04-16 オシラス,インコーポレイテッド Low-density open-cell organic foam, low-density open-cell carbon foam and methods for preparing them
JP2002117850A (en) * 2000-10-12 2002-04-19 Tokuyama Corp Negative electrode active material for nonaqueous electrolytic solution secondary battery
WO2003026048A1 (en) * 2001-07-26 2003-03-27 Universite De Liege Porous carbon material
JP2005000752A (en) * 2003-06-10 2005-01-06 Matsushita Electric Ind Co Ltd Hydrogen occluding element, manufacturing method therefor and hydrogen occluding device using the same
JP2005060158A (en) * 2003-08-11 2005-03-10 Sumitomo Osaka Cement Co Ltd Carbon material and its production method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4873218A (en) * 1988-05-26 1989-10-10 The United States Department Of Energy Low density, resorcinol-formaldehyde aerogels
WO1993014511A1 (en) * 1992-01-17 1993-07-22 The Regents Of The University Of California Supercapacitors based on carbon foams
JPH09202610A (en) * 1996-01-24 1997-08-05 Mitsubishi Chem Corp Activated carbon and its production
JPH09328308A (en) * 1996-04-10 1997-12-22 Mitsubishi Chem Corp Activated carbon, its production and capacitor using the same
JP2002511899A (en) * 1997-07-05 2002-04-16 オシラス,インコーポレイテッド Low-density open-cell organic foam, low-density open-cell carbon foam and methods for preparing them
JP2001102053A (en) * 1999-09-30 2001-04-13 Sumitomo Durez Co Ltd Carbon material for secondary cell of non-aqueous electrolyte
JP2002003211A (en) * 2000-06-20 2002-01-09 Asahi Glass Co Ltd Method for producing carbon material and activated carbon
JP2002117850A (en) * 2000-10-12 2002-04-19 Tokuyama Corp Negative electrode active material for nonaqueous electrolytic solution secondary battery
WO2003026048A1 (en) * 2001-07-26 2003-03-27 Universite De Liege Porous carbon material
JP2005000752A (en) * 2003-06-10 2005-01-06 Matsushita Electric Ind Co Ltd Hydrogen occluding element, manufacturing method therefor and hydrogen occluding device using the same
JP2005060158A (en) * 2003-08-11 2005-03-10 Sumitomo Osaka Cement Co Ltd Carbon material and its production method

Cited By (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7800886B2 (en) * 2005-04-12 2010-09-21 Sumitomo Chemical Company, Limited Electric double layer capacitor
US8709971B2 (en) 2005-11-21 2014-04-29 University Of Washington Activated carbon cryogels and related methods
US10141122B2 (en) 2006-11-15 2018-11-27 Energ2, Inc. Electric double layer capacitance device
JP2010510674A (en) * 2006-11-15 2010-04-02 エナジーツー・インコーポレイテッド Electric double layer capacitor device
KR101496934B1 (en) * 2006-11-15 2015-03-03 유니버시티 오브 워싱톤 스루 이츠 센터 포 커머셜리제이션 electric double layer capacitance device
US8797717B2 (en) 2006-11-15 2014-08-05 University Of Washington Electrodes and electric double layer capacitance devices comprising an activated carbon cryogel
US8467170B2 (en) 2006-11-15 2013-06-18 Energ2, Inc. Electrodes and electric double layer capacitance devices comprising an activated carbon cryogel
US20110199716A1 (en) * 2006-11-15 2011-08-18 Energ2, Inc. Electric double layer capacitance device
US10600581B2 (en) 2006-11-15 2020-03-24 Basf Se Electric double layer capacitance device
JP2009040646A (en) * 2007-08-10 2009-02-26 Kyoto Univ Method for manufacturing carbon material, and electric double-layer capacitor containing the carbon material
JP2009129742A (en) * 2007-11-26 2009-06-11 Kyushu Univ Sodium ion secondary battery and negative active material for sodium ion secondary battery
JP2009173533A (en) * 2007-12-25 2009-08-06 Sumitomo Chemical Co Ltd Method for producing carbon material
JP2010018459A (en) * 2008-07-09 2010-01-28 Kyoto Univ Method for producing porous ceramic material
JP2010245133A (en) * 2009-04-01 2010-10-28 Nippon Chemicon Corp Gel electrolyte and method for producing the same, and electrochemical element using the gel electrolyte
US8580870B2 (en) 2009-04-08 2013-11-12 Energ2 Technologies, Inc. Manufacturing methods for the production of carbon materials
US8906978B2 (en) 2009-04-08 2014-12-09 Energ2 Technologies, Inc. Manufacturing methods for the production of carbon materials
US8404384B2 (en) 2009-07-01 2013-03-26 Energ2 Technologies, Inc. Ultrapure synthetic carbon materials
US9112230B2 (en) 2009-07-01 2015-08-18 Basf Se Ultrapure synthetic carbon materials
US10287170B2 (en) 2009-07-01 2019-05-14 Basf Se Ultrapure synthetic carbon materials
US9580321B2 (en) 2009-07-01 2017-02-28 Basf Se Ultrapure synthetic carbon materials
US10194687B2 (en) 2009-09-10 2019-02-05 British American Tobacco (Investments) Limited Smoke filtration
JP2013502214A (en) * 2009-09-10 2013-01-24 ブリティッシュ アメリカン タバコ (インヴェストメンツ) リミテッド Smoke filtration
JP2013240345A (en) * 2009-09-10 2013-12-05 British American Tobacco (Investments) Ltd Smoke filtration
US9680159B2 (en) 2010-03-12 2017-06-13 Basf Se Mesoporous carbon materials comprising bifunctional catalysts
US8916296B2 (en) 2010-03-12 2014-12-23 Energ2 Technologies, Inc. Mesoporous carbon materials comprising bifunctional catalysts
US9412523B2 (en) 2010-09-30 2016-08-09 Basf Se Enhanced packing of energy storage particles
US9985289B2 (en) 2010-09-30 2018-05-29 Basf Se Enhanced packing of energy storage particles
US9269502B2 (en) 2010-12-28 2016-02-23 Basf Se Carbon materials comprising enhanced electrochemical properties
US10490358B2 (en) 2011-04-15 2019-11-26 Basf Se Flow ultracapacitor
US10522836B2 (en) 2011-06-03 2019-12-31 Basf Se Carbon-lead blends for use in hybrid energy storage devices
US11732079B2 (en) 2012-02-09 2023-08-22 Group14 Technologies, Inc. Preparation of polymeric resins and carbon materials
US11401363B2 (en) 2012-02-09 2022-08-02 Basf Se Preparation of polymeric resins and carbon materials
US9409777B2 (en) 2012-02-09 2016-08-09 Basf Se Preparation of polymeric resins and carbon materials
US11718701B2 (en) 2012-02-09 2023-08-08 Group14 Technologies, Inc. Preparation of polymeric resins and carbon materials
US11725074B2 (en) 2012-02-09 2023-08-15 Group 14 Technologies, Inc. Preparation of polymeric resins and carbon materials
KR20160134868A (en) 2012-03-23 2016-11-23 아이온 가부시키가이샤 Activated carbon for electrode of power storage device, and method for manufacturing activated carbon for electrode of power storage device
WO2013140937A1 (en) * 2012-03-23 2013-09-26 アイオン株式会社 Activated carbon for electrode of power storage device, and method for manufacturing activated carbon for electrode of power storage device
JP2013201170A (en) * 2012-03-23 2013-10-03 Aion Kk Active carbon for power storage device electrode and process of manufacturing the same
KR101830022B1 (en) * 2012-03-23 2018-02-19 아이온 가부시키가이샤 Activated carbon for electrode of power storage device, and method for manufacturing activated carbon for electrode of power storage device
US10049824B2 (en) 2012-03-23 2018-08-14 Aion Co., Ltd Activated carbon for electrode of power storage device and method for manufacturing activated carbon for electrode of power storage device
US10454103B2 (en) 2013-03-14 2019-10-22 Group14 Technologies, Inc. Composite carbon materials comprising lithium alloying electrochemical modifiers
US10714744B2 (en) 2013-03-14 2020-07-14 Group14 Technologies, Inc. Composite carbon materials comprising lithium alloying electrochemical modifiers
US11495793B2 (en) 2013-03-14 2022-11-08 Group14 Technologies, Inc. Composite carbon materials comprising lithium alloying electrochemical modifiers
US10083800B2 (en) 2013-09-20 2018-09-25 Aion Co., Ltd. Activated carbon for use in electrode of power-storage device, and method for producing same
KR20160009681A (en) 2013-09-20 2016-01-26 아이온 가부시키가이샤 Activated carbon for use in electrode of power-storage device, and method for producing same
US10195583B2 (en) 2013-11-05 2019-02-05 Group 14 Technologies, Inc. Carbon-based compositions with highly efficient volumetric gas sorption
US10814304B2 (en) 2013-11-05 2020-10-27 Group14 Technologies, Inc. Carbon-based compositions with highly efficient volumetric gas sorption
US11707728B2 (en) 2013-11-05 2023-07-25 Group14 Technologies, Inc. Carbon-based compositions with highly efficient volumetric gas sorption
US10711140B2 (en) 2014-03-14 2020-07-14 Group14 Technologies, Inc. Methods for sol-gel polymerization in absence of solvent and creation of tunable carbon structure from same
US11661517B2 (en) 2014-03-14 2023-05-30 Group14 Technologies, Inc. Methods for sol-gel polymerization in absence of solvent and creation of tunable carbon structure from same
US10590277B2 (en) 2014-03-14 2020-03-17 Group14 Technologies, Inc. Methods for sol-gel polymerization in absence of solvent and creation of tunable carbon structure from same
JP2017510685A (en) * 2014-04-11 2017-04-13 ハッチンソンHutchinson Adaptive road lighting
US11611073B2 (en) 2015-08-14 2023-03-21 Group14 Technologies, Inc. Composites of porous nano-featured silicon materials and carbon materials
US10763501B2 (en) 2015-08-14 2020-09-01 Group14 Technologies, Inc. Nano-featured porous silicon materials
US11942630B2 (en) 2015-08-14 2024-03-26 Group14 Technologies, Inc. Nano-featured porous silicon materials
US10608254B2 (en) 2015-08-28 2020-03-31 Group14 Technologies, Inc. Materials with extremely durable intercalation of lithium and manufacturing methods thereof
US10147950B2 (en) 2015-08-28 2018-12-04 Group 14 Technologies, Inc. Materials with extremely durable intercalation of lithium and manufacturing methods thereof
US11495798B1 (en) 2015-08-28 2022-11-08 Group14 Technologies, Inc. Materials with extremely durable intercalation of lithium and manufacturing methods thereof
US11437621B2 (en) 2015-08-28 2022-09-06 Group14 Technologies, Inc. Materials with extremely durable intercalation of lithium and manufacturing methods thereof
US10784512B2 (en) 2015-08-28 2020-09-22 Group14 Technologies, Inc. Materials with extremely durable intercalation of lithium and manufacturing methods thereof
US10923722B2 (en) 2015-08-28 2021-02-16 Group14 Technologies, Inc. Materials with extremely durable intercalation of lithium and manufacturing methods thereof
US10756347B2 (en) 2015-08-28 2020-08-25 Group14 Technologies, Inc. Materials with extremely durable intercalation of lithium and manufacturing methods thereof
US11646419B2 (en) 2015-08-28 2023-05-09 Group 14 Technologies, Inc. Materials with extremely durable intercalation of lithium and manufacturing methods thereof
US11611071B2 (en) 2017-03-09 2023-03-21 Group14 Technologies, Inc. Decomposition of silicon-containing precursors on porous scaffold materials
US11639292B2 (en) 2020-08-18 2023-05-02 Group14 Technologies, Inc. Particulate composite materials
US11492262B2 (en) 2020-08-18 2022-11-08 Group14Technologies, Inc. Silicon carbon composites comprising ultra low Z
US11174167B1 (en) 2020-08-18 2021-11-16 Group14 Technologies, Inc. Silicon carbon composites comprising ultra low Z
US11335903B2 (en) 2020-08-18 2022-05-17 Group14 Technologies, Inc. Highly efficient manufacturing of silicon-carbon composites materials comprising ultra low z
US11611070B2 (en) 2020-08-18 2023-03-21 Group14 Technologies, Inc. Highly efficient manufacturing of silicon-carbon composites materials comprising ultra low Z
US11804591B2 (en) 2020-08-18 2023-10-31 Group14 Technologies, Inc. Highly efficient manufacturing of silicon-carbon composite materials comprising ultra low Z
US11498838B2 (en) 2020-08-18 2022-11-15 Group14 Technologies, Inc. Silicon carbon composites comprising ultra low z

Also Published As

Publication number Publication date
JP4754813B2 (en) 2011-08-24

Similar Documents

Publication Publication Date Title
JP4754813B2 (en) Method for producing carbon material and tablet-like dried gel
CN107074994B (en) Novel method for solvent-free sol-gel polymerization and production of adjustable carbon structures therefrom
JP5795309B2 (en) Ultra high purity synthetic carbon material
US8828533B2 (en) Mesoporous carbon materials
JP6047799B2 (en) Activated carbon for electrode of electricity storage device and method for producing activated carbon for electrode of electricity storage device
JP6080352B2 (en) Novel sulfur-modified monolithic porous carbon-based material, method for its preparation, and its use in energy storage and release
JP2006512265A (en) Foam mainly composed of carbon and having a high internal surface area, and method for producing the same
JP6485999B2 (en) Electrode of electric storage device and method of manufacturing the same
JP2009040646A (en) Method for manufacturing carbon material, and electric double-layer capacitor containing the carbon material
FR3099885A1 (en) Process for preparing a porous and nitrogenous carbonaceous material with a metal dopant, in particular useful as a catalyst for the reduction of oxygen (ORR)
Rey-Raap et al. Carbon gels and their applications: a review of patents
Yoshida et al. Solvent-free synthesis and KOH activation of mesoporous carbons using resorcinol/Pluronic F127/hexamethylenetetramine mixture and their application to EDLC
US20220177309A1 (en) Process for the preparation of a porous carbonaceous material, porous carbonaceous material, and a catalyst made of the material
JP6999131B2 (en) How to make activated carbon
JP2003282369A (en) Carbon material for electric double-layer capacitor and its manufacturing method
US20110177940A1 (en) Microporous carbon and method for making the same
JP7132258B2 (en) A novel method for solvent-free sol-gel polymerization and fabrication of variable carbon structures derived from sol-gel polymerization
Tzialla et al. Porous carbons from ionic liquid precursors confined within nanoporous silicas
JP2020138886A (en) Method for producing carbon porous body
JP2022525507A (en) Method for manufacturing porous carbon material and porous carbon material obtained by this method
JP2019044049A (en) Resin porous body and carbonized product of the same, adsorbent, and method for producing resin porous body
KR101695343B1 (en) Method for Manufacturing Activated Carbon Controlled Crystallinity
KR102133891B1 (en) Preparing method of carbone foam, carbone foam prepared by thereof and electrode for supercapacitor comprising the carbone foam
Elsayed Factors affecting of porous properties of carbon gel microsphere
JP2015098417A (en) Manufacturing method of mesoporous carbon and manufacturing method of carbon-based electrode for electrical double layer capacitor using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071029

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080124

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110524

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110526

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees