JP2005187218A - Dielectric porcelain, laminated electronic component, and production method for laminated electronic component - Google Patents

Dielectric porcelain, laminated electronic component, and production method for laminated electronic component Download PDF

Info

Publication number
JP2005187218A
JP2005187218A JP2003426885A JP2003426885A JP2005187218A JP 2005187218 A JP2005187218 A JP 2005187218A JP 2003426885 A JP2003426885 A JP 2003426885A JP 2003426885 A JP2003426885 A JP 2003426885A JP 2005187218 A JP2005187218 A JP 2005187218A
Authority
JP
Japan
Prior art keywords
dielectric
electronic component
main crystal
batio
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003426885A
Other languages
Japanese (ja)
Other versions
JP4614656B2 (en
Inventor
Yumiko Ito
裕見子 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003426885A priority Critical patent/JP4614656B2/en
Publication of JP2005187218A publication Critical patent/JP2005187218A/en
Application granted granted Critical
Publication of JP4614656B2 publication Critical patent/JP4614656B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dielectric porcelain which maintains high dielectric constant even when its crystal particles are made fine, has a dielectric constant with a small temperature dependency, and is free of chipping; a laminated electronic component using the dielectric porcelain; and a production method for the laminated electronic component. <P>SOLUTION: The dielectric porcelain consists of a grain boundary phase and main crystal particles composed of a perovskite-type compound oxide at least containing Ba, Ti, a rare earth element, Mg, and Mn as metal elements; the content of Al in terms of oxide in the main crystal particles is 0.01 mass% or lower and that in the grain boundary phase is 0.05-2 mass%. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、誘電体磁器および積層型電子部品並びにその製法に関し、特に、より詳細には、例えば、誘電体層に印加される直流電圧が2V/μm以上であるような高電圧用の積層セラミックコンデンサ等の形成に特に有用な誘電体磁器、および該誘電体磁器を用いて形成された積層型電子部品、並びにその製法に関する。   The present invention relates to a dielectric ceramic, a multilayer electronic component, and a method for manufacturing the same, and more particularly, for example, a high voltage multilayer ceramic in which a DC voltage applied to a dielectric layer is 2 V / μm or more. The present invention relates to a dielectric ceramic particularly useful for forming capacitors and the like, a multilayer electronic component formed using the dielectric ceramic, and a method for manufacturing the same.

積層セラミックコンデンサ(MLC)の誘電体層の形成に使用される誘電体材料には、小型、高容量化の為に、高い比誘電率が要求されるのはもちろんのこと、誘電損失が小さく、誘電特性の温度に対する依存性(温度依存性)や直流電圧に対する依存性(DCバイアス依存性)が小さい等の種々の特性が要求される。   A dielectric material used for forming a dielectric layer of a multilayer ceramic capacitor (MLC) is required to have a high relative dielectric constant for miniaturization and high capacity, as well as low dielectric loss. Various characteristics are required such that the dependence of dielectric characteristics on temperature (temperature dependence) and dependence on DC voltage (dependence on DC bias) are small.

また、誘電体層の薄層化に伴い、積層セラミックコンデンサに印加する電界の増大による信頼性低下を抑制するために、粒子径のより小さい誘電体材料が使用されるようになってきているが、例えば、下記の特許文献1によれば、水熱合成法や加水分解法などの製法により調製した原料粉末を用いることにより、焼結後においてもサブミクロン粒径の主結晶粒子を有する誘電体層が得られている。   In addition, with the thinning of the dielectric layer, a dielectric material having a smaller particle diameter has been used in order to suppress a decrease in reliability due to an increase in the electric field applied to the multilayer ceramic capacitor. For example, according to the following Patent Document 1, by using a raw material powder prepared by a manufacturing method such as a hydrothermal synthesis method or a hydrolysis method, a dielectric having main crystal particles having a submicron particle size even after sintering A layer is obtained.

一方、上述のような誘電体層を有する積層セラミックコンデンサにおいて、誘電体層の薄層化に伴うデラミネーションの発生を防止するために、誘電体層を構成するBaTiOを主成分とする誘電体磁器中にAlなどの副成分を添加することが記載されている(例えば、特許文献2)。
特開平9−241075号 特開2001−247361号
On the other hand, in the multilayer ceramic capacitor having the dielectric layer as described above, in order to prevent the occurrence of delamination accompanying the thinning of the dielectric layer, the dielectric material mainly composed of BaTiO 3 constituting the dielectric layer. The addition of subcomponents such as Al 2 O 3 in porcelain is described (for example, Patent Document 2).
JP-A-9-241075 JP 2001-247361 A

しかしながら、上記特許文献1に開示された誘電体磁器は、厚みが3μmと薄層化され、主結晶粒子の平均粒径が0.1〜0.3μmであり、また、温度特性の異なる2種類以上の微細な主結晶粒子により構成され、温度依存性が小さくなっているものの、このような粒子サイズでは、最大でも2100程度の比誘電率しか得られず、高容量化に限界があった。   However, the dielectric ceramic disclosed in Patent Document 1 has a thickness as thin as 3 μm, an average grain size of main crystal grains of 0.1 to 0.3 μm, and two types having different temperature characteristics. Although it is composed of the above fine main crystal particles and the temperature dependence is small, with such a particle size, only a relative dielectric constant of about 2100 is obtained at the maximum, and there is a limit to increasing the capacity.

また、この特許文献1にて用いられる原料のように、粒子サイズが0.3μm以下になると、焼結時に容易に固溶体を形成し粒成長してしまうため、原料粒子サイズを維持したまま緻密な焼結体を作製することが極めて困難であり、このような誘電体磁器を用いて作製された積層セラミックコンデンサは、焼成時や外部電極形成時にチッピング(欠け)しやすいという問題が生じていた。   In addition, as in the raw material used in Patent Document 1, when the particle size is 0.3 μm or less, a solid solution is easily formed during grain growth and grain growth occurs. It is extremely difficult to produce a sintered body, and a multilayer ceramic capacitor produced using such a dielectric ceramic has a problem that it tends to chip (chip) during firing or external electrode formation.

一方、特許文献2にかかるAlを添加した誘電体磁器は、高い比誘電率を有するものであるが、そもそも、このような磁器は、特許文献2に記載の製法によれば、Alを、BaCO、TiO、MnCOおよびMgOなどの各種素原料とともに一括で混合し、仮焼、焼成されたものであり、このような製法により形成された誘電体磁器では、主成分であるBaTiOの主結晶粒子の内部にAlが固溶しており、高い比誘電率は得られるものの、反面、比誘電率の温度依存性が大きいという問題があった。 On the other hand, the dielectric porcelain to which Al 2 O 3 added according to Patent Document 2 has a high relative dielectric constant. However, according to the manufacturing method described in Patent Document 2, such a porcelain is basically made of Al 2 O 3. 2 O 3 is mixed together with various raw materials such as BaCO 3 , TiO 2 , MnCO 3, and MgO at one time, calcined, and baked. In a dielectric ceramic formed by such a manufacturing method, Although Al 2 O 3 is dissolved in the main crystal grains of the component BaTiO 3 and a high relative dielectric constant is obtained, there is a problem that the temperature dependence of the relative dielectric constant is large.

従って、本発明は、結晶粒子を微細化しても高い比誘電率を維持し、比誘電率の温度依存性が小さく、また、チッピングのない誘電体磁器および積層型電子部品ならびに積層型電子部品の製法を提供することを目的とする。   Therefore, the present invention maintains a high relative dielectric constant even when crystal grains are miniaturized, the temperature dependence of the relative dielectric constant is small, and there are no chipping dielectric ceramics and multilayer electronic components and multilayer electronic components. The purpose is to provide a manufacturing method.

本発明の誘電体磁器は、金属元素として、少なくともBa、Ti、希土類元素、MgおよびMnを含有するペロブスカイト型複合酸化物からなる主結晶粒子と、粒界相とからなる誘電体磁器において、前記主結晶粒子及び粒界相中にAlを含み、酸化物換算したときのAlの含有量が、前記主結晶粒子の内部が0.01質量%以下、粒界相が0.05〜2質量%であることを特徴とする。   The dielectric ceramic of the present invention is a dielectric ceramic comprising a main crystal particle made of a perovskite complex oxide containing at least Ba, Ti, rare earth elements, Mg and Mn as a metal element, and a grain boundary phase. The main crystal particles and the grain boundary phase contain Al, and the content of Al when converted to oxide is 0.01% by mass or less for the inside of the main crystal particle and 0.05 to 2% by mass for the grain boundary phase. It is characterized by being.

このような構成によれば、誘電体磁器中に含まれるAl成分を粒子内から極力排除し、一方、粒界に適正量を介在させることにより、主結晶粒子の比誘電率の低下を抑制しつつ、比誘電率の温度依存性を小さくし、かつ主結晶粒子の焼結性を高めチッピングなどの欠陥の発生を防止できる。   According to such a configuration, the Al component contained in the dielectric ceramic is eliminated as much as possible from the inside of the grain, and on the other hand, the appropriate amount is interposed at the grain boundary, thereby suppressing the decrease in the relative dielectric constant of the main crystal grain. However, it is possible to reduce the temperature dependence of the relative dielectric constant and to enhance the sinterability of the main crystal particles to prevent the occurrence of defects such as chipping.

上記誘電体磁器では、主結晶粒子は、その表面にMO(SiO)型構造(Mはアルカリ土類元素、Rは希土類元素)の複合酸化物からなる被覆層を有することが望ましい。 In the dielectric ceramic, the main crystal particles may have a coating layer made of a complex oxide of M 4 R 6 O (SiO 4 ) type structure (M is an alkaline earth element and R is a rare earth element) on the surface thereof. desirable.

本発明の誘電体磁器において、特に、主結晶粒子表面に、アルカリ土類元素、希土類元素およびSiからなる複合酸化物を形成すると、この複合酸化物が比較的高い絶縁抵抗を有するため、誘電体層1層当たりの電界強度を高め、誘電体磁器の絶縁破壊電圧を高めることができ、誘電体層を薄層化しても静電容量の温度特性を向上できる。   In the dielectric ceramic according to the present invention, in particular, when a complex oxide composed of an alkaline earth element, a rare earth element and Si is formed on the surface of the main crystal particle, the complex oxide has a relatively high insulation resistance. The electric field strength per layer can be increased, the dielectric breakdown voltage of the dielectric ceramic can be increased, and the temperature characteristics of the capacitance can be improved even if the dielectric layer is thinned.

上記誘電体磁器では、主結晶粒子の平均粒径が0.1〜0.4μmであり、c軸/a軸比が1.005以上であることが望ましい。このように微細結晶粒子においても高い正方晶性を有することで、高い誘電率を実現することができる。   In the dielectric ceramic, it is desirable that the average grain size of the main crystal grains is 0.1 to 0.4 μm and the c-axis / a-axis ratio is 1.005 or more. Thus, a high dielectric constant can be realized by having high tetragonal properties even in the fine crystal particles.

上記誘電体磁器では、主結晶粒子を構成するBa元素が30原子%以下の比率でCa元素に置換されていることが望ましい。主結晶粒子の一部あるいは全部のBa元素が30原子%以下の比率でCa元素に置き換えることにより、比誘電率の温度特性をさらに平坦化することができる。   In the dielectric ceramic, it is desirable that the Ba element constituting the main crystal particle is replaced with Ca element at a ratio of 30 atomic% or less. By replacing some or all of the Ba elements of the main crystal grains with Ca elements at a ratio of 30 atomic% or less, the temperature characteristics of the dielectric constant can be further flattened.

つまり、上記誘電体磁器では、比誘電率の温度特性が、JIS規格のB特性(−25〜85℃において、±15%以内)であることが望ましく、さらには、25℃における比誘電率が2500以上であることが望ましい。   That is, in the dielectric ceramic, it is desirable that the temperature characteristic of the relative dielectric constant is a JIS standard B characteristic (within ± 15% at −25 to 85 ° C.), and further, the relative dielectric constant at 25 ° C. It is desirable that it is 2500 or more.

本発明の積層型電子部品は、誘電体層と内部電極層とを交互に積層してなる電子部品本体を備えた積層型電子部品であって、前記誘電体層が上記の誘電体磁器からなることを特徴とするものであり、特に、誘電体層の厚みが3μm以下であることが望ましい。   The multilayer electronic component of the present invention is a multilayer electronic component having an electronic component body in which dielectric layers and internal electrode layers are alternately stacked, and the dielectric layer is made of the above dielectric ceramic. In particular, the thickness of the dielectric layer is desirably 3 μm or less.

本発明の誘電体磁器は、上記したように優れた特性を有するため、主結晶粒子を微細化して誘電体層を薄層化した積層型電子部品を形成したとしても、誘電特性や絶縁抵抗および誘電体磁器の絶縁破壊電圧を高め、誘電体層1層あたりの電界強度を向上することができ、誘電体層を薄層化しても静電容量の温度特性を向上でき、チッピングを抑制できる。   Since the dielectric ceramic of the present invention has excellent characteristics as described above, even if a multilayer electronic component in which the main crystal particles are refined and the dielectric layer is thinned is formed, the dielectric characteristics, insulation resistance and The dielectric breakdown voltage of the dielectric ceramic can be increased, the electric field strength per dielectric layer can be improved, and the temperature characteristics of the capacitance can be improved and chipping can be suppressed even if the dielectric layer is thinned.

本発明の積層型電子部品の製法は、BaTiOからなる原料粉末の表面に、希土類元素、MgおよびMnの混合物が被覆された被覆BaTiO粉末と、アルカリ土類元素およびSiを含み、Alを酸化物換算で0.05〜2質量%含有する副成分とを混合し、この混合粉末に対して、少なくとも有機バインダおよび有機溶媒を加えて誘電体スラリーを調製する工程と、該誘電体スラリーを用いて誘電体グリーンシートを形成する工程と、該誘電体グリーンシートの主面上に内部電極パターンを形成する工程と、該内部電極パターンが形成された誘電体グリーンシートを複数積層して、積層成形体を作製する工程と、該積層成形体を焼成する工程とを具備することを特徴とする。 Preparation of multilayer electronic component of the present invention, the surface of the raw material powder composed of BaTiO 3, a rare earth element, and a covering BaTiO 3 powder mixture of Mg and Mn is coated includes an alkaline-earth element and Si, the Al A step of preparing a dielectric slurry by mixing at least an organic binder and an organic solvent with respect to the mixed powder, and a subcomponent containing 0.05 to 2% by mass in terms of oxide, A step of forming a dielectric green sheet, a step of forming an internal electrode pattern on a main surface of the dielectric green sheet, and a plurality of dielectric green sheets each having the internal electrode pattern formed thereon It comprises a step of producing a molded body and a step of firing the laminated molded body.

この製法において、先ず、BaTiOからなる原料粉末の表面に、希土類元素、Mg、およびMnの混合物を被覆し、次に、この被覆BaTiO粉末にAlなどの添加物成分を添加することにより、BaTiOからなる主結晶粒子の表面にほぼ均一に高絶縁性の複合酸化物からなる被覆層を形成できる。このため、主結晶粒子が小さくても後に添加するAlなどの添加物の主結晶粒子への固溶を抑制でき、一方で、添加したAlを粒界相に偏析させることにより、誘電体層の比誘電率を高く維持したまま、薄層化した誘電体層の1層あたりの電界強度を高め、また絶縁破壊電圧を高め、さらには積層型電子部品の静電容量の温度特性を改善でき、チッピングの発生をも抑制することができる。 In this production method, first, a mixture of rare earth elements, Mg, and Mn is coated on the surface of a raw material powder made of BaTiO 3 , and then an additive component such as Al 2 O 3 is added to the coated BaTiO 3 powder. As a result, a coating layer made of a complex oxide having high insulating properties can be formed almost uniformly on the surface of the main crystal particles made of BaTiO 3 . For this reason, even if the main crystal particles are small, solid solution of additives such as Al 2 O 3 added later to the main crystal particles can be suppressed, while the added Al 2 O 3 is segregated to the grain boundary phase. Thus, while maintaining the dielectric constant of the dielectric layer high, the electric field strength per layer of the thinned dielectric layer is increased, the dielectric breakdown voltage is increased, and the capacitance of the multilayer electronic component is further increased. The temperature characteristics can be improved and the occurrence of chipping can also be suppressed.

即ち、本発明によれば、BaTiOからなる原料粉末の表面に、希土類元素、MgおよびMnの混合物が被覆された被覆BaTiO粉末と、アルカリ土類元素およびSiを含み、Alを酸化物換算で0.05〜2質量%含有する副成分とを混合したものを焼成し、結果として、酸化物換算したときのAlの含有量が、主結晶粒子の内部のAl酸化物の含有量が0.01質量%以下、粒界相が0.05〜2質量%とすることにより、主結晶粒子の比誘電率の低下を抑制しつつ、比誘電率の温度依存性を小さくし、絶縁抵抗や絶縁破壊電圧を高め、かつ主結晶粒子の焼結性を高めチッピングなどの欠陥の発生を防止できる。 That is, according to the present invention, the surface of the raw material powder composed of BaTiO 3, wherein the rare earth element, and a covering BaTiO 3 powder mixture is coated of Mg and Mn, the alkaline earth elements and Si, in terms of oxide of Al As a result, the content of Al when converted to oxide is 0, and the content of Al oxide inside the main crystal particles is 0. .01% by mass or less and the grain boundary phase is 0.05 to 2% by mass, while suppressing the decrease in the dielectric constant of the main crystal grains, the temperature dependence of the dielectric constant is reduced, and the insulation resistance and It is possible to increase the dielectric breakdown voltage, increase the sinterability of the main crystal particles, and prevent the occurrence of defects such as chipping.

本発明の誘電体磁器は金属元素として、少なくともBa、Ti、希土類元素、MgおよびMnを含有するペロブスカイト型複合酸化物からなる主結晶粒子と、粒界相とからなる誘電体磁器であって、主結晶粒子内部にAl元素を酸化物換算で0.01質量%以下であるとともに、粒界相に平均してAl元素を酸化物換算で0.05質量%から2.0質量%の割合で含有することにより優れた特性を示す。   The dielectric porcelain of the present invention is a dielectric porcelain comprising main crystal particles made of a perovskite complex oxide containing at least Ba, Ti, rare earth elements, Mg and Mn as metal elements, and a grain boundary phase, In the main crystal grains, the Al element is 0.01% by mass or less in terms of oxide, and the Al element is averaged in the grain boundary phase at a ratio of 0.05% to 2.0% by mass in terms of oxide. By containing, it exhibits excellent characteristics.

主結晶粒子は、BaTiO系のペロブスカイト型複合酸化物またはBaの一部がCaで置換されたペロブスカイト型複合酸化物さらにはその混合物であってもよい。主結晶粒子のBサイトには、通常、Mg、Mn及び希土類元素が固溶している。また、この主結晶粒子表面にはアルカリ土類元素、希土類元素およびSiを含有する複合酸化物からなる被覆層が形成されており、該被覆層がMO(SiO)型構造(Mはアルカリ土類元素、Rは希土類元素)を有する。この被覆層は主結晶粒子の全周を取り囲むように形成されている。この被覆層を含め、主結晶粒子内部に含有するAl元素は、酸化物に換算して0.01質量%以下であることが重要である。それ以上Alが主結晶相に含有された場合、特に、微小粒子の場合には比誘電率の低下が著しく、積層型電子部品としての使用に耐えない。特に、主結晶相に含有されるAl量は0.005質量%以下であることが好ましい。 The main crystal particles may be a BaTiO 3 -based perovskite complex oxide, a perovskite complex oxide in which a part of Ba is substituted with Ca, or a mixture thereof. Usually, Mg, Mn, and rare earth elements are dissolved in the B site of the main crystal particle. Further, a coating layer made of a complex oxide containing an alkaline earth element, a rare earth element and Si is formed on the surface of the main crystal particle, and the coating layer has an M 4 R 6 O (SiO 4 ) type structure ( M is an alkaline earth element, and R is a rare earth element. This coating layer is formed so as to surround the entire circumference of the main crystal particle. It is important that the Al element contained in the main crystal grains including this coating layer is 0.01% by mass or less in terms of oxide. When Al is further contained in the main crystal phase, particularly in the case of fine particles, the relative permittivity is remarkably lowered, and cannot be used as a multilayer electronic component. In particular, the amount of Al contained in the main crystal phase is preferably 0.005% by mass or less.

一方、粒界相は、例えば、CaO(SiO)結晶相や、他のCa、Y、Si、およびLi等を含む化合物から構成されており、この化合物に、平均して0.05質量%から2.0質量%の割合でAl元素が酸化物換算で含有されることにより、粒界相の強度、靱性が向上しチッピングの発生が抑制される。特に、粒界相の絶縁性、強度、靱性を考慮すると、Al含有量は0.07〜1.5質量%であることが望ましい。 On the other hand, the grain boundary phase is composed of, for example, a Ca 4 Y 6 O (SiO 4 ) crystal phase or a compound containing other Ca, Y, Si, Li, and the like. When the Al element is contained in an oxide conversion at a ratio of 0.05 mass% to 2.0 mass%, the strength and toughness of the grain boundary phase is improved and the occurrence of chipping is suppressed. In particular, when considering the insulation, strength, and toughness of the grain boundary phase, the Al content is preferably 0.07 to 1.5 mass%.

これに対して、主結晶粒子内部のAl含有量が0.01質量%より多い場合には、比誘電率の温度依存性が大きくなる。 On the other hand, when the content of Al 2 O 3 in the main crystal particles is more than 0.01% by mass, the temperature dependence of the dielectric constant is increased.

粒界相におけるAl含有量が0.05質量%より少ない場合には、誘電体磁器の強度が低下しチッピングしやすくなる。また、この粒界相におけるAl含有量が2質量%より多い場合には、誘電体磁器の比誘電率が低下する。 When the content of Al 2 O 3 in the grain boundary phase is less than 0.05% by mass, the strength of the dielectric ceramic decreases and chipping is likely to occur. Further, when the Al 2 O 3 content in the grain boundary phase is more than 2% by mass, the dielectric constant of the dielectric ceramic is lowered.

Mg、Mnについては、殆どが主結晶粒子内に固溶するが、一部粒界に存在し、非晶質相を形成する場合がある。また、結晶相や被覆層を構成するこのCaO(SiO)結晶相中のYの代わりに、他の希土類元素を用いても同様の複合酸化物を形成することができるが、CaO(SiO)結晶相と同じ結晶構造を持つ複合酸化物を形成する点から、Y、Dy、およびHoが望ましく、特に、高誘電率化という点からYが望ましい。 Most of Mg and Mn are dissolved in the main crystal grains, but some of them are present at the grain boundaries and an amorphous phase may be formed. Further, in place of Y in the Ca 4 Y 6 O (SiO 4 ) crystal phase constituting the crystal phase and the coating layer, a similar complex oxide can be formed by using other rare earth elements, Y, Dy, and Ho are desirable from the viewpoint of forming a composite oxide having the same crystal structure as the Ca 4 Y 6 O (SiO 4 ) crystal phase, and Y is particularly desirable from the viewpoint of increasing the dielectric constant.

一方、このCaO(SiO)結晶相中のCaの代わりに、他のアルカリ土類元素を用いても同様の複合酸化物を形成することができるが、CaO(SiO)結晶相と同じ結晶構造を持つ複合酸化物を形成する点から、CaもしくはSrが望ましく、特に、高い電界強度を有するために高絶縁抵抗化という点からCaが望ましい。 On the other hand, similar complex oxides can be formed by using other alkaline earth elements in place of Ca in the Ca 4 Y 6 O (SiO 4 ) crystal phase, but Ca 4 Y 6 O ( Ca or Sr is desirable from the viewpoint of forming a composite oxide having the same crystal structure as the SiO 4 ) crystal phase, and in particular, Ca is desirable from the viewpoint of high insulation resistance because it has a high electric field strength.

これらの主結晶粒子から構成されるシート状の誘電体層1層の厚みは3μm以下とされている。積層型電子部品A、例えば、積層セラミックコンデンサの大容量化に対して、誘電体層を薄層化することは効果的な手段であり、近年の小型、高容量の積層セラミックコンデンサを構成するためには、その誘電体層厚みは、静電容量の向上の点で薄層化することが、絶縁性向上の点で厚みの確保が必要であり、よって1〜3μmが好適である。   The thickness of one sheet-like dielectric layer composed of these main crystal particles is 3 μm or less. To increase the capacity of a multilayer electronic component A, for example, a multilayer ceramic capacitor, it is an effective means to make the dielectric layer thin, and in order to construct a recent small size and high capacity multilayer ceramic capacitor. In order to improve the insulation, it is necessary to secure the thickness of the dielectric layer from the viewpoint of improving the electrostatic capacity. Therefore, the thickness is preferably 1 to 3 μm.

また、主結晶粒子の平均粒径は高い絶縁抵抗を有するという理由から1μm以下、誘電体層を3μm以下とするためには、特には0.1〜0.4μmの範囲が望ましい。さらに、このような粒径で高い誘電率を発現するために、結晶粒子の正方晶性はc軸/a軸比が1.005以上であることが望ましい。c軸/a軸比がこれよりも小さいと、必要な容量を得るために誘電体層は1μm以下となるが、粒成長、添加物の固溶が必要以上に進行しやすく、所望の温度特性が得られない場合がある。このように、誘電体層の厚みが3μm以下の薄い誘電体層の場合には、厚い誘電体層に対する絶縁抵抗よりも高い絶縁抵抗が要求されるが、本発明の誘電体磁器では、上記したように高い誘電率、絶縁抵抗を有するため、特に望ましい。   In addition, the average grain size of the main crystal grains is preferably in the range of 0.1 to 0.4 μm in order to have a high insulation resistance, and in order to make the dielectric layer 3 μm or less. Furthermore, in order to develop a high dielectric constant with such a particle size, it is desirable that the tetragonal crystallinity of the crystal particles has a c-axis / a-axis ratio of 1.005 or more. If the c-axis / a-axis ratio is smaller than this, the dielectric layer will be 1 μm or less in order to obtain the required capacity, but grain growth and solid solution of the additive will easily proceed more than necessary, and the desired temperature characteristics May not be obtained. As described above, in the case of a thin dielectric layer having a thickness of 3 μm or less, a dielectric resistance higher than that of the thick dielectric layer is required. It is particularly desirable because of its high dielectric constant and insulation resistance.

そして。このような誘電体磁器は積層セラミックコンデンサに代表されるような積層型電子部品に好適である。   And then. Such a dielectric ceramic is suitable for a multilayer electronic component represented by a multilayer ceramic capacitor.

即ち、本発明の積層型電子部品は、誘電体層と内部電極層とを交互に積層してなる電子部品本体5を備えてなるものである。   That is, the multilayer electronic component of the present invention comprises an electronic component body 5 formed by alternately laminating dielectric layers and internal electrode layers.

本発明の積層型電子部品は、先ず、誘電体層となるグリーンシートを作製する。このグリーンシートは、例えば、BaTiO原料粉末を用いて形成する。 In the multilayer electronic component of the present invention, first, a green sheet to be a dielectric layer is produced. This green sheet is formed using, for example, BaTiO 3 raw material powder.

主原料のBaTiO粉の合成法は、固相法、液相法(シュウ酸塩を経過する方法等)、水熱合成法等があるが、そのうち粒度分布が狭く、結晶性が高いという理由から水熱合成法が望ましい。BaTiO粉の比表面積は1.7〜12.5(m/g)、平均粒径は0.1〜0.4μmが好ましい。 There are solid-phase method, liquid-phase method (method of passing oxalate, etc.), hydrothermal synthesis method, etc., as the main raw material BaTiO 3 powder synthesis method. Among them, the reason is that the particle size distribution is narrow and the crystallinity is high Therefore, hydrothermal synthesis is desirable. The specific surface area of the BaTiO 3 powder is preferably 1.7 to 12.5 (m 2 / g), and the average particle size is preferably 0.1 to 0.4 μm.

そして、本発明の誘電体磁器を作製するには、BaTiO原料粉末として、その表面を希土類元素、Mg、Mnの混合物で被覆したもの(以下、被覆BaTiO粉ということもある)を用いることが重要である。このようなBaTiO原料粉末の被覆手法としては、固相法、液相法、気相法などがあるが、手法は特に限定されるものではない。上記のBaTiO粉の表面に形成された被覆膜は、希土類元素、Mg、Mnの3種類の元素が混合されて、これらの元素が酸化物の状態で混在した状態となっていてもよいし、層状に形成されていてもよい。さらに、この被覆原料粉末を700℃から1000℃で熱処理し、被覆成分、特にMg、Mnを原料粉末粒子の外周部に固溶させることで他の添加成分が粒子内部に進入しにくくなる。 In order to produce the dielectric ceramic according to the present invention, a BaTiO 3 raw material powder whose surface is coated with a mixture of rare earth elements, Mg and Mn (hereinafter sometimes referred to as coated BaTiO 3 powder) is used. is important. Such a BaTiO 3 raw material coating method includes a solid phase method, a liquid phase method, a gas phase method, and the like, but the method is not particularly limited. The coating film formed on the surface of the BaTiO 3 powder may be a state in which three kinds of elements of rare earth elements, Mg, and Mn are mixed and these elements are mixed in an oxide state. However, it may be formed in layers. Furthermore, this coating raw material powder is heat-treated at 700 ° C. to 1000 ° C., and the coating components, particularly Mg and Mn, are dissolved in the outer periphery of the raw material powder particles, so that other additive components are less likely to enter the particles.

また、希土類元素、Mg、Mnによる被覆量は、BaTiO粉が100重量部に対して酸化イットリウム(Y)を0.5〜1.5モル部、酸化マグネシウム(MgO)を0.1〜0.3モル部、酸化マンガン(MnO)を0.1〜0.3モル部の割合が望ましい。 Moreover, the coverage with rare earth elements, Mg, and Mn is 0.5 to 1.5 parts by mole of yttrium oxide (Y 2 O 3 ) and 0.1% of magnesium oxide (MgO) with respect to 100 parts by weight of BaTiO 3 powder. A proportion of 1 to 0.3 mol parts and 0.1 to 0.3 mol parts of manganese oxide (MnO) is desirable.

グリーンシートの誘電体磁器組成は、この被覆BaTiO粉と、少なくともLiO、SiO、CaO、及び0.05〜2質量%のAlを含む添加物成分(Li、SiおよびCaのモル比が、それぞれ、0.9〜1.2:4.8〜5.3:0.5〜2.3)を、BaTiO粉100質量部に対して0.5〜2質量部添加して構成されている。なお、上記BaTiO粉の他、その一部あるいは全部が、Baの一部がCaに置換された粉体を使用することもできる。 The dielectric ceramic composition of the green sheet is obtained by adding this coated BaTiO 3 powder and additive components (Li, Si and Ca) containing at least Li 2 O, SiO 2 , CaO, and 0.05 to 2 % by mass of Al 2 O 3. 0.5 to 2 parts by mass of 0.9 to 1.2: 4.8 to 5.3: 0.5 to 2.3) with respect to 100 parts by mass of BaTiO 3 powder, respectively. Configured. In addition to the BaTiO 3 powder, part or all of the BaTiO 3 powder may be powder in which part of Ba is replaced with Ca.

次に、上記グリーンシートに内部電極ペーストを塗布して内部電極パターンを形成し、これを乾燥させ、この内部電極パターンが形成されたグリーンシートを複数枚積層し、熱圧着させる。その後、この積層物を格子状に切断して、電子部品本体の成形体を得る。この電子部品本体の成形体の両端面には、内部電極パターンの端部が交互に露出している。   Next, an internal electrode paste is applied to the green sheet to form an internal electrode pattern, which is dried, and a plurality of green sheets on which the internal electrode pattern is formed are stacked and thermocompression bonded. Thereafter, the laminate is cut into a lattice shape to obtain a molded body of the electronic component main body. End portions of the internal electrode pattern are alternately exposed on both end faces of the molded body of the electronic component main body.

次に、この電子部品本体の成形体を大気中で5〜40℃/hの昇温速度で200〜400℃にて脱バインダ処理を行い、その後、還元雰囲気中で少なくとも500℃からの昇温速度を100〜400℃/hとし、1100〜1300℃の温度で2〜5時間焼成し、続いて100〜400℃/hの降温速度で冷却し、窒素雰囲気中900〜1100℃で再酸化処理を行う。   Next, the molded body of the electronic component main body is subjected to a binder removal treatment at 200 to 400 ° C. at a temperature rising rate of 5 to 40 ° C./h in the air, and then heated from at least 500 ° C. in a reducing atmosphere. The rate is set to 100 to 400 ° C./h, firing at a temperature of 1100 to 1300 ° C. for 2 to 5 hours, followed by cooling at a temperature lowering rate of 100 to 400 ° C./h, and reoxidation treatment at 900 to 1100 ° C. in a nitrogen atmosphere. I do.

特に、500℃からの昇温速度を100〜400℃/hとし、1150〜1260℃の温度で焼成することにより、被覆された希土類元素、Mg、Mnが、主結晶粒子中により中央部側まで存在するようになるとともに、アルカリ土類元素、希土類元素およびSiを含有する複合酸化物を粒界相に存在させるとともに、Alが主結晶粒子中への進入を防ぎ、粒界相に存在させることができる。   In particular, the heating rate from 500 ° C. is set to 100 to 400 ° C./h, and firing is performed at a temperature of 1150 to 1260 ° C., so that the coated rare earth element, Mg, and Mn can reach the central portion side in the main crystal particles. In addition to the presence of alkaline earth elements, rare earth elements and Si-containing composite oxides in the grain boundary phase, Al prevents entry into the main crystal grains and exists in the grain boundary phase. Can do.

これはBaTiO粉の表面に希土類元素、MgおよびMnを被覆しているため、これらの希土類元素、MgおよびMnのBaTiO粉末へ固溶し易くなり、BaTiO内部まで全体に存在するようになるが、そのうちMgおよびMnが優先的にBaTiO粉末へ固溶していくため、被覆している希土類元素のうち一部がBaTiO粉末に固溶しきれず、BaTiO表面に取り残され、上記したような、500℃から焼結温度までの昇温速度を従来よりも低い100〜400℃/hとすることにより、添加物成分として添加したCaO、SiOと反応し、アルカリ土類元素、希土類元素およびSiとの複合酸化物、例えばCaO(SiO)結晶相からなる被覆層が主結晶粒子表面に生成すると考えている。 This is because the surface of the BaTiO 3 powder is coated with rare earth elements, Mg and Mn, so that it easily dissolves in the BaTiO 3 powder of these rare earth elements, Mg and Mn, so that the entire surface of the BaTiO 3 exists. made, but because of which Mg and Mn is gradually dissolved into preferentially BaTiO 3 powder, a portion of the rare earth element is coated is not completely dissolved in the BaTiO 3 powder, stranded on BaTiO 3 surface, the The heating rate from 500 ° C. to the sintering temperature is set to 100 to 400 ° C./h, which is lower than the conventional one, so that it reacts with CaO and SiO 2 added as additive components, and alkaline earth elements, It is considered that a coating layer composed of a complex oxide of a rare earth element and Si, for example, a Ca 4 Y 6 O (SiO 4 ) crystal phase is formed on the surface of the main crystal particle.

この後、焼成した電子部品本体をボールミルにてバレル研磨し、その両端面に、外部電極ペーストを塗布して窒素中で焼き付けることによって外部電極を形成する。さらに外部電極の表面を脱脂、酸洗浄、純水を用いた水洗を行った後、バレル方式により、メッキを行う。   Thereafter, the fired electronic component main body is barrel-polished by a ball mill, and an external electrode paste is applied to both end faces thereof and baked in nitrogen to form external electrodes. Further, the surface of the external electrode is degreased, acid washed, and washed with pure water, and then plated by a barrel method.

本発明では金属元素として、少なくともBa、Ti、希土類元素、MgおよびMnを含有するペロブスカイト型複合酸化物である主結晶粒子と、粒界相とからなり、主結晶粒子の内部に存在するAl元素が酸化物換算で0.01重量%以下であるとともに、粒界相に平均して0.05〜2.0質量%の割合でAl元素を含有することにより、結晶粒子を微細化しても高い比誘電率を維持し、チッピングを防止できるまた、主結晶粒子表面にはアルカリ土類元素、希土類元素およびSiを含有する複合酸化物からなる被覆層が形成されており、該被覆層がMO(SiO)型構造(Mはアルカリ土類元素、Rは希土類元素)を有することにより、薄層化しても誘電体磁器の絶縁破壊電圧を向上できる。主結晶粒子の一部あるいは全部のBa元素が30原子%以下の比率でCa元素に置き換えることもできる。 In the present invention, an Al element which is composed of a main crystal particle which is a perovskite complex oxide containing at least Ba, Ti, rare earth element, Mg and Mn as a metal element, and a grain boundary phase, and is present inside the main crystal particle. Is 0.01% by weight or less in terms of oxide, and it is high even if the crystal grains are refined by containing Al element in a proportion of 0.05 to 2.0% by mass on the average in the grain boundary phase. maintaining the specific permittivity, and can prevent chipping, the main crystal on the particle surface alkaline earth elements, and the coating layer made of a complex oxide containing a rare earth element and Si is formed, the coating layer is M 4 By having an R 6 O (SiO 4 ) type structure (M is an alkaline earth element and R is a rare earth element), the dielectric breakdown voltage of the dielectric ceramic can be improved even if the layer is thinned. Some or all of the main crystal grains may be replaced with Ca elements at a ratio of 30 atomic% or less.

積層型電子部品の一つである積層セラミックコンデンサを以下のようにして作製した。まず、誘電体素材料として、比表面積平均粒径が2.5μmのBaTiO粉末を用い、このBaTiO粉末100重量部に対して、MgOを0.2モル部、MnCOを0.1モル部と、Y、Dy、およびHoのうちのいずれか1種類0.5mol部とを、Mg、Mn、Y等が混在した状態で存在するように被覆し、この被覆BaTiO粉に対して、Alを1質量%含有するLiOおよびSiOと、CaOからなる添加物成分を、被覆BaTiO粉100質量部に対して、1質量部添加し、直径5mmのZrOボールを用いたボールミルにて湿式粉砕することにより調製した。 A multilayer ceramic capacitor, which is one of the multilayer electronic components, was produced as follows. First, BaTiO 3 powder having a specific surface area average particle size of 2.5 μm is used as a dielectric material, and 0.2 mol part of MgO and 0.1 mol of MnCO 3 are added to 100 parts by weight of this BaTiO 3 powder. And 0.5 mol part of any one of Y 2 O 3 , Dy 2 O 3 , and Ho 2 O 3 are coated so as to exist in a mixed state of Mg, Mn, Y, etc. for this coating BaTiO 3 powder, and Li 2 O and SiO 2 containing Al 2 O 3 1% by weight, the additive component consisting of CaO, based on coating BaTiO 3 powder 100 parts by weight 1 part by weight additive Then, it was prepared by wet grinding with a ball mill using ZrO 2 balls having a diameter of 5 mm.

次に、この粉末に有機バインダを混合してスラリーを調製し、ドクターブレードによりグリーンシートを作製した。その厚みは3.0μmである。   Next, an organic binder was mixed with this powder to prepare a slurry, and a green sheet was produced with a doctor blade. Its thickness is 3.0 μm.

次にこのグリーンシート上に、Niを主成分とする内部電極ペーストをスクリーン印刷した。   Next, an internal electrode paste containing Ni as a main component was screen-printed on the green sheet.

次に、内部電極ペーストを印刷したグリーンシートを100枚積層し、その上下面に、内部電極ペーストを印刷していないグリーンシートをそれぞれ20枚積層し、プレス機を用いて一体化し、積層成形体を得た。   Next, 100 green sheets on which internal electrode paste was printed were laminated, and 20 green sheets on which no internal electrode paste was printed were laminated on the upper and lower surfaces thereof, and were integrated using a press machine. Got.

この後、積層成形体を格子状に切断して、2.3mm×1.5mm×0.5mmの電子部品本体の成形体を作製した。   Thereafter, the laminated molded body was cut into a lattice shape to produce a molded body of an electronic component main body of 2.3 mm × 1.5 mm × 0.5 mm.

次に、この電子部品本体の成形体を10℃/hの昇温速度で大気中で250℃/hにて脱バインダー処理を行い、500℃からの昇温速度が150℃/hの昇温速度で、1150℃〜1250℃(酸素分圧10−11atm)で2時間焼成し、続いて150℃/hの降温速度で1000℃まで冷却し、窒素雰囲気中1000℃で4時間再酸化処理をし、150℃/hの降温速度で冷却し、電子部品本体を作製した。この内部電極層5の有効面積は2.1mmであった。また、誘電体層の厚みは2.3μmであった。また、誘電体粉末として、BaTiOのBaサイトをCaで10モル%置換したものも同様に作製した。 Next, the molded body of the electronic component main body was debindered at 250 ° C./h in the air at a temperature increase rate of 10 ° C./h, and the temperature increase rate from 500 ° C. was 150 ° C./h. Baked at a rate of 1150 ° C. to 1250 ° C. (oxygen partial pressure 10 −11 atm) for 2 hours, subsequently cooled to 1000 ° C. at a rate of 150 ° C./h, and reoxidized at 1000 ° C. for 4 hours in a nitrogen atmosphere. The electronic component main body was manufactured by cooling at a cooling rate of 150 ° C./h. The effective area of the internal electrode layer 5 was 2.1 mm 2 . The thickness of the dielectric layer was 2.3 μm. In addition, a dielectric powder in which the Ba site of BaTiO 3 was substituted with 10 mol% of Ca was similarly produced.

比較例として、被覆のないBaTiO100モル部に対して、粉末状のMgOを0.2モル部、MnCOを0.1モル部と、表1に示す割合の、Yを加え、さらにこれらの混合物100重量部に対して、LiOとSiOとBaOおよびAlからなる低融点ガラス成分(それぞれ20モル%、50モル%、20モル%、10mol%)を1重量部加えた組成物を湿式調製して、厚み3.0μmのグリーンシートを作製した。この比較例となる試料についても上記した積層、焼成工程を経て作製した。 As a comparative example, with respect to BaTiO 3 100 molar parts uncoated, 0.2 molar parts of powdered MgO, and 0.1 mole part of MnCO 3, in the proportions shown in Table 1, the Y 2 O 3 was added Further, a low-melting glass component composed of Li 2 O, SiO 2 , BaO, and Al 2 O 3 (20 mol%, 50 mol%, 20 mol%, 10 mol%, respectively) is 1 per 100 parts by weight of the mixture. The composition added with parts by weight was wet prepared to produce a green sheet having a thickness of 3.0 μm. This sample as a comparative example was also manufactured through the above-described lamination and firing steps.

次に、焼成した電子部品本体をバレル研磨した後、電子部品本体の両端部にCu粉末とガラスを含んだ外部電極ペーストを塗布し、850℃、窒素中で焼き付けを行い外部電極を形成した。その後、電解バレル機を用いて、この外部電極の表面に、順にNiメッキおよびSnメッキを行い、積層セラミックコンデンサを作製した。   Next, the fired electronic component body was barrel-polished, and then an external electrode paste containing Cu powder and glass was applied to both ends of the electronic component body, followed by baking in nitrogen at 850 ° C. to form external electrodes. Thereafter, using an electrolytic barrel machine, Ni plating and Sn plating were sequentially performed on the surface of the external electrode to produce a multilayer ceramic capacitor.

次に、これらの積層セラミックコンデンサの比誘電率、絶縁耐圧、静電容量の温度特性の測定を行った。比誘電率及び静電容量の温度特性は周波数1.0kHz、測定電圧0.5Vrmsの測定条件で、また絶縁耐圧は、リーク電流が0.5Aに達したときの電圧を測定した。また、バレル研磨時に100個あたり発生したチッピングの個数を表1に記載した。また、比誘電率は、静電容量と内部電極層の有効面積、誘電体層の厚みから算出した。主結晶粒子の平均粒径は断面の電子顕微鏡観察よりインターセプト法により求めた。結晶粒子のc/aはX線回折により求めた。結果を表1に記載する。   Next, the relative dielectric constant, withstand voltage, and capacitance temperature characteristics of these multilayer ceramic capacitors were measured. The temperature characteristics of the dielectric constant and capacitance were measured under the conditions of a frequency of 1.0 kHz and a measurement voltage of 0.5 Vrms, and the withstand voltage was measured when the leakage current reached 0.5 A. In addition, Table 1 shows the number of chippings generated per 100 during barrel polishing. The relative dielectric constant was calculated from the capacitance, the effective area of the internal electrode layer, and the thickness of the dielectric layer. The average particle size of the main crystal particles was determined by the intercept method from observation of the cross section by an electron microscope. The c / a of the crystal particles was determined by X-ray diffraction. The results are listed in Table 1.

尚、誘電体層中の被覆層の評価は、電子顕微鏡観察およびEDS測定と微小領域電子線回折法により行った。主結晶粒子内および粒界層中のAl量は透過電子顕微鏡観察およびEDS測定により算出した。

Figure 2005187218
The coating layer in the dielectric layer was evaluated by electron microscope observation, EDS measurement, and micro-area electron diffraction method. The amount of Al in the main crystal grains and in the grain boundary layer was calculated by observation with a transmission electron microscope and EDS measurement.
Figure 2005187218

表1の結果から明らかなように、本発明にかかる試料No.1、3、5〜7では、比誘電率が2050以上、静電容量の温度依存性が−10〜0%の範囲内、絶縁耐圧が210V以上でチッピングが無かった。また、本発明の試料では、いずれも主結晶粒子の平均粒径は0.4μm以下、結晶粒子のc/aは1.005以上であった。   As is apparent from the results in Table 1, the sample No. In 1, 3, 5-7, the relative dielectric constant was 2050 or more, the temperature dependency of capacitance was in the range of -10 to 0%, the withstand voltage was 210 V or more, and there was no chipping. In all the samples of the present invention, the average particle size of the main crystal particles was 0.4 μm or less, and the c / a of the crystal particles was 1.005 or more.

一方、粒界層のAl含有量が本発明の範囲に満たない場合、バレル研磨時に多くのチッピングが発生し、粒内において本発明の範囲よりもAl含有量が多いと温度特性が大きくなった。   On the other hand, when the Al content in the grain boundary layer is less than the range of the present invention, a lot of chipping occurred during barrel polishing, and the temperature characteristics increased when the Al content in the grain was larger than the range of the present invention. .

Claims (9)

金属元素として、少なくともBa、Ti、希土類元素、MgおよびMnを含有するペロブスカイト型複合酸化物からなる主結晶粒子と、粒界相とからなる誘電体磁器において、前記主結晶粒子及び粒界相中にAlを含み、酸化物換算したときのAlの含有量が、前記主結晶粒子の内部が0.01質量%以下、粒界相が0.05〜2質量%であることを特徴とする誘電体磁器。 In a dielectric ceramic comprising a main crystal particle comprising a perovskite complex oxide containing at least Ba, Ti, rare earth element, Mg and Mn as a metal element, and a grain boundary phase, the main crystal grain and the grain boundary phase Di is characterized in that the content of Al when converted to an oxide is 0.01% by mass or less and the grain boundary phase is 0.05 to 2% by mass in the main crystal grains. Body porcelain. 主結晶粒子は、その表面にMO(SiO)型構造(Mはアルカリ土類元素、Rは希土類元素)の複合酸化物からなる被覆層を有することを特徴とする請求項1に記載の誘電体磁器。 2. The main crystal particle has a coating layer made of a complex oxide of an M 4 R 6 O (SiO 4 ) type structure (M is an alkaline earth element and R is a rare earth element) on the surface thereof. Dielectric porcelain described in 1. 主結晶粒子の平均粒径が0.1〜0.4μmであり、c軸/a軸比が1.005以上であることを特徴とする請求項1または2記載の誘電体磁器。 3. The dielectric ceramic according to claim 1, wherein the main crystal grains have an average grain size of 0.1 to 0.4 μm and a c-axis / a-axis ratio of 1.005 or more. 主結晶粒子を構成するBa元素が30原子%以下の比率でCa元素に置換されていることを特徴とする請求項1乃至3のうちいずれか記載の誘電体磁器。 The dielectric ceramic according to any one of claims 1 to 3, wherein a Ba element constituting the main crystal particle is substituted with a Ca element at a ratio of 30 atomic% or less. 比誘電率の温度特性が、JIS規格のB特性(−25〜85℃において、±15%以内)であることを特徴とする請求項1乃至4のうちいずれか記載の誘電体磁器。 5. The dielectric ceramic according to claim 1, wherein the temperature characteristic of the relative permittivity is a JIS standard B characteristic (within ± 15% at −25 to 85 ° C.). 6. 25℃における比誘電率が2500以上であることを特徴とする請求項1乃至5のうちいずれか記載の誘電体磁器。 The dielectric ceramic according to any one of claims 1 to 5, wherein a relative dielectric constant at 25 ° C is 2500 or more. 誘電体層と内部電極層とを交互に積層してなる電子部品本体を備えた積層型電子部品であって、前記誘電体層が請求項1乃至6のうちいずれか記載の誘電体磁器からなることを特徴とする積層型電子部品。 A multilayer electronic component comprising an electronic component main body in which dielectric layers and internal electrode layers are alternately stacked, wherein the dielectric layer comprises the dielectric ceramic according to any one of claims 1 to 6. A multilayer electronic component characterized by that. 誘電体層の厚みが3μm以下であることを特徴とする請求項7に記載の積層型電子部品。 The multilayer electronic component according to claim 7, wherein the dielectric layer has a thickness of 3 μm or less. BaTiOからなる原料粉末の表面に、希土類元素、MgおよびMnの混合物が被覆された被覆BaTiO粉末と、アルカリ土類元素およびSiを含み、Alを酸化物換算で0.05〜2質量%含有する副成分とを混合し、この混合粉末に対して、少なくとも有機バインダおよび有機溶媒を加えて誘電体スラリーを調製する工程と、該誘電体スラリーを用いて誘電体グリーンシートを形成する工程と、該誘電体グリーンシートの主面上に内部電極パターンを形成する工程と、該内部電極パターンが形成された誘電体グリーンシートを複数積層して、積層成形体を作製する工程と、該積層成形体を焼成する工程とを具備することを特徴とする積層型電子部品の製法。 On the surface of the raw material powder composed of BaTiO 3, a rare earth element, comprising a coating BaTiO 3 powder mixture of Mg and Mn is coated, the alkaline earth elements and Si, 0.05 to 2 wt% of Al in terms of oxide And a step of preparing a dielectric slurry by adding at least an organic binder and an organic solvent to the mixed powder, and a step of forming a dielectric green sheet using the dielectric slurry. A step of forming an internal electrode pattern on the main surface of the dielectric green sheet, a step of stacking a plurality of dielectric green sheets on which the internal electrode pattern is formed, and forming a laminated molded body, and the laminated molding And a step of firing the body. A method for producing a multilayer electronic component.
JP2003426885A 2003-12-24 2003-12-24 Dielectric porcelain, multilayer electronic component, and method of manufacturing multilayer electronic component Expired - Lifetime JP4614656B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003426885A JP4614656B2 (en) 2003-12-24 2003-12-24 Dielectric porcelain, multilayer electronic component, and method of manufacturing multilayer electronic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003426885A JP4614656B2 (en) 2003-12-24 2003-12-24 Dielectric porcelain, multilayer electronic component, and method of manufacturing multilayer electronic component

Publications (2)

Publication Number Publication Date
JP2005187218A true JP2005187218A (en) 2005-07-14
JP4614656B2 JP4614656B2 (en) 2011-01-19

Family

ID=34786304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003426885A Expired - Lifetime JP4614656B2 (en) 2003-12-24 2003-12-24 Dielectric porcelain, multilayer electronic component, and method of manufacturing multilayer electronic component

Country Status (1)

Country Link
JP (1) JP4614656B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007026614A1 (en) * 2005-08-29 2007-03-08 Kyocera Corporation Dielectric ceramic, process for producing the same, and laminated ceramic capacitor
JP2007123835A (en) * 2005-09-27 2007-05-17 Kyocera Corp Laminated ceramic capacitor and manufacturing method thereof
JP2007331958A (en) * 2006-06-12 2007-12-27 Tdk Corp Electronic component, dielectric ceramic composition and method for producing the same
JP2008069030A (en) * 2006-09-13 2008-03-27 Kyocera Corp Dielectric raw powder and its manufacturing method, and multilayered ceramic capacitor
JP2009155117A (en) * 2007-12-25 2009-07-16 Kyocera Corp Dielectric ceramic and capacitor
KR101064243B1 (en) * 2006-11-29 2011-09-14 쿄세라 코포레이션 Multilayered ceramic capacitor
CN112979308A (en) * 2019-12-12 2021-06-18 Tdk株式会社 Dielectric composition and electronic component

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59180905A (en) * 1983-03-30 1984-10-15 富士通株式会社 High dielectric porcelain composition
JPH01124209A (en) * 1987-11-09 1989-05-17 Matsushita Electric Ind Co Ltd Grain boundary insulation type porcelain composition
JPH031516A (en) * 1989-04-05 1991-01-08 Matsushita Electric Ind Co Ltd Grain boundary insulated semiconductor ceramic capacitor and manufacture thereof
JPH05174627A (en) * 1991-12-19 1993-07-13 Ngk Spark Plug Co Ltd High frequency dielectric porcelain composition
JPH08330107A (en) * 1995-03-24 1996-12-13 Tdk Corp Stacked-type varistor
JPH10324566A (en) * 1997-05-20 1998-12-08 Matsushita Electric Ind Co Ltd Dielectric ceramic composition, its production and dielectric resonator and dielectric filter using that
JP2002020165A (en) * 2000-06-29 2002-01-23 Kyocera Corp Dielectric porcelain and layered electronic part
JP2002265260A (en) * 2001-03-07 2002-09-18 Kyocera Corp Dielectric ceramic and lamination type electronic part
JP2002293617A (en) * 2001-03-28 2002-10-09 Kyocera Corp Dielectric ceramic, laminated electronic parts and production method for the laminated electronic parts
JP2003040671A (en) * 2001-07-30 2003-02-13 Kyocera Corp Dielectric and laminated electronic parts and manufacturing method of laminated electronic parts
JP2003063863A (en) * 2001-08-29 2003-03-05 Kyocera Corp Dielectric porcelain and laminated electronic part and method for producing the latter

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59180905A (en) * 1983-03-30 1984-10-15 富士通株式会社 High dielectric porcelain composition
JPH01124209A (en) * 1987-11-09 1989-05-17 Matsushita Electric Ind Co Ltd Grain boundary insulation type porcelain composition
JPH031516A (en) * 1989-04-05 1991-01-08 Matsushita Electric Ind Co Ltd Grain boundary insulated semiconductor ceramic capacitor and manufacture thereof
JPH05174627A (en) * 1991-12-19 1993-07-13 Ngk Spark Plug Co Ltd High frequency dielectric porcelain composition
JPH08330107A (en) * 1995-03-24 1996-12-13 Tdk Corp Stacked-type varistor
JPH10324566A (en) * 1997-05-20 1998-12-08 Matsushita Electric Ind Co Ltd Dielectric ceramic composition, its production and dielectric resonator and dielectric filter using that
JP2002020165A (en) * 2000-06-29 2002-01-23 Kyocera Corp Dielectric porcelain and layered electronic part
JP2002265260A (en) * 2001-03-07 2002-09-18 Kyocera Corp Dielectric ceramic and lamination type electronic part
JP2002293617A (en) * 2001-03-28 2002-10-09 Kyocera Corp Dielectric ceramic, laminated electronic parts and production method for the laminated electronic parts
JP2003040671A (en) * 2001-07-30 2003-02-13 Kyocera Corp Dielectric and laminated electronic parts and manufacturing method of laminated electronic parts
JP2003063863A (en) * 2001-08-29 2003-03-05 Kyocera Corp Dielectric porcelain and laminated electronic part and method for producing the latter

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007026614A1 (en) * 2005-08-29 2007-03-08 Kyocera Corporation Dielectric ceramic, process for producing the same, and laminated ceramic capacitor
JP4805938B2 (en) * 2005-08-29 2011-11-02 京セラ株式会社 Dielectric porcelain, manufacturing method thereof, and multilayer ceramic capacitor
US8154851B2 (en) 2005-08-29 2012-04-10 Kyocera Corporation Dielectric ceramic, manufacturing method thereof, and multilayer ceramic capacitor
CN101238080B (en) * 2005-08-29 2012-10-24 京瓷株式会社 Dielectric ceramic, process for producing the same, and laminated ceramic capacitor
JP2007123835A (en) * 2005-09-27 2007-05-17 Kyocera Corp Laminated ceramic capacitor and manufacturing method thereof
JP2007331958A (en) * 2006-06-12 2007-12-27 Tdk Corp Electronic component, dielectric ceramic composition and method for producing the same
JP2008069030A (en) * 2006-09-13 2008-03-27 Kyocera Corp Dielectric raw powder and its manufacturing method, and multilayered ceramic capacitor
KR101064243B1 (en) * 2006-11-29 2011-09-14 쿄세라 코포레이션 Multilayered ceramic capacitor
JP2009155117A (en) * 2007-12-25 2009-07-16 Kyocera Corp Dielectric ceramic and capacitor
CN112979308A (en) * 2019-12-12 2021-06-18 Tdk株式会社 Dielectric composition and electronic component

Also Published As

Publication number Publication date
JP4614656B2 (en) 2011-01-19

Similar Documents

Publication Publication Date Title
JP4965435B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP4809152B2 (en) Multilayer ceramic capacitor
KR100891472B1 (en) Dielectric porcelain composition, and method for manufacturing capacitor using the same
KR20080048458A (en) Dielectric ceramic, process for producing the same, and laminated ceramic capacitor
JP2004035388A (en) Reduction-resistant low-temperature fired dielectric ceramic composition, multilayer ceramic capacitor using it, and its manufacturing method
JP4480367B2 (en) Dielectric porcelain and its manufacturing method, and multilayer electronic component and its manufacturing method
KR101366632B1 (en) Dielectric ceramic and laminated ceramic capacitor
JP2009035431A (en) Dielectric porcelain, method for producing the same, and laminated ceramic capacitor using the same
JP2008297179A (en) Dielectric porcelain and multilayer ceramic capacitor
JP4522025B2 (en) Dielectric porcelain, multilayer electronic component, and manufacturing method of multilayer electronic component
JP5685931B2 (en) Multilayer ceramic capacitor
JPWO2008132902A1 (en) Dielectric porcelain and multilayer ceramic capacitor
JP4582973B2 (en) Dielectric porcelain, multilayer electronic component, and manufacturing method of multilayer electronic component
JP5106626B2 (en) Multilayer ceramic capacitor
JP2008135638A (en) Multilayer ceramic capacitor
JP4663141B2 (en) Dielectric porcelain and multilayer electronic components
JP2010208905A (en) Method for manufacturing dielectric ceramic, dielectric ceramic, method for manufacturing laminated ceramic capacitor and the laminated ceramic capacitor
JP4614656B2 (en) Dielectric porcelain, multilayer electronic component, and method of manufacturing multilayer electronic component
JP4511323B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP2009096671A (en) Dielectric ceramic and multi-layer ceramic capacitor
JP4297743B2 (en) Multilayer electronic components
JP4652595B2 (en) Dielectric porcelain with excellent temperature characteristics
JP4508858B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP2002293617A (en) Dielectric ceramic, laminated electronic parts and production method for the laminated electronic parts
JP4463095B2 (en) Multilayer ceramic capacitor and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100921

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101019

R150 Certificate of patent or registration of utility model

Ref document number: 4614656

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3