JP2002020165A - Dielectric porcelain and layered electronic part - Google Patents

Dielectric porcelain and layered electronic part

Info

Publication number
JP2002020165A
JP2002020165A JP2000197390A JP2000197390A JP2002020165A JP 2002020165 A JP2002020165 A JP 2002020165A JP 2000197390 A JP2000197390 A JP 2000197390A JP 2000197390 A JP2000197390 A JP 2000197390A JP 2002020165 A JP2002020165 A JP 2002020165A
Authority
JP
Japan
Prior art keywords
rare earth
earth element
dielectric
crystal grains
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000197390A
Other languages
Japanese (ja)
Other versions
JP5046432B2 (en
Inventor
Daisuke Fukuda
大輔 福田
Yasushi Yamaguchi
泰史 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2000197390A priority Critical patent/JP5046432B2/en
Publication of JP2002020165A publication Critical patent/JP2002020165A/en
Application granted granted Critical
Publication of JP5046432B2 publication Critical patent/JP5046432B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Inorganic Insulating Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide dielectric porcelain enhanced in reliability at high- temperature load test and prolonged in service life. SOLUTION: This dielectric porcelain consists of crystalline particles each consisting of perovskite type multiple oxide of Ba, Ti, a rare earth element, Mg and Mn as metallic elements and grain boundary phases. The rare earth element is made to exist more extensively to the center part side of the crystalline particle compared with Mg.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、誘電体磁器および
積層型電子部品に関し、特に、携帯電話など小型、高機
能の電子機器に使用され、極めて薄い誘電体層と内部電
極層を交互に積層して構成される小形大容量の積層セラ
ミックコンデンサに好適に用いられる誘電体磁器および
積層型電子部品に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dielectric porcelain and a laminated electronic component, and more particularly, to a dielectric ceramic and an internal electrode layer which are used in a small and high-performance electronic device such as a cellular phone, and which are alternately laminated. TECHNICAL FIELD The present invention relates to a dielectric ceramic and a multilayer electronic component suitably used for a small-sized and large-capacity multilayer ceramic capacitor configured as described above.

【0002】[0002]

【従来技術】近年、電子機器の小型化、高密度化に伴
い、積層型電子部品、例えば、積層セラミックコンデン
サは小型大容量化が求められており、このため誘電体層
の積層数の増加と誘電体層自体の薄層化が図られてい
る。
2. Description of the Related Art In recent years, as electronic devices have become smaller and higher in density, multilayer electronic components, for example, multilayer ceramic capacitors, have been required to have smaller sizes and larger capacities. The thickness of the dielectric layer itself has been reduced.

【0003】このような積層セラミックコンデンサ等の
ための誘電体磁器としては、例えば、特開平10−33
0160号公報に開示されるようなものが知られてい
る。この公報に開示された誘電体磁器では、耐還元性を
向上させるMn、V等の添加成分を、結晶粒子のほぼ全
体にほぼ均一に分布させており、これにより絶縁破壊電
圧を高くできると記載されている。
As a dielectric ceramic for such a multilayer ceramic capacitor, for example, Japanese Patent Application Laid-Open No. H10-33
One disclosed in Japanese Patent Application No. 0160 is known. In the dielectric porcelain disclosed in this publication, the additive components such as Mn and V for improving the reduction resistance are distributed almost uniformly over almost the entire crystal grains, whereby the dielectric breakdown voltage can be increased. Have been.

【0004】また、特開平5−144319号公報に
は、BaTiO3粉体と、Dy、Co等の有機溶剤可溶
の有機化合物と、酸化物ガラス成分を構成する有機溶剤
可溶の有機化合物とを配合し、有機成分を除去して、B
aTiO3表面に、Dy、Co等の酸化物からなる添加
成分をコーティングし、この原料を用いて誘電体磁器が
作製されている。
Japanese Patent Application Laid-Open No. Hei 5-144319 discloses that BaTiO 3 powder, an organic compound soluble in an organic solvent such as Dy and Co, and an organic compound soluble in an organic solvent constituting an oxide glass component. And remove the organic components, B
An aTiO 3 surface is coated with an additional component composed of an oxide such as Dy or Co, and a dielectric ceramic is manufactured using the raw material.

【0005】そして、このような誘電体磁器では、より
効果的に添加成分をBaTiO3粉末表面に均一に付着
させることができ、少ない添加量でBaTiO3粉体表
面に均一なシェルを形成できるため、電気特性を悪化さ
せる要因となる添加元素の添加割合を減少させることに
より、誘電特性や絶縁特性などの電気特性に優れ、かつ
焼結性にも優れた誘電体磁器を確実に得ることができる
と記載されている。
[0005] In such a dielectric porcelain, the additional components can be more effectively adhered to the surface of the BaTiO 3 powder more effectively, and a uniform shell can be formed on the surface of the BaTiO 3 powder with a small amount of addition. By reducing the addition ratio of the additional element that causes deterioration of the electric characteristics, it is possible to reliably obtain a dielectric ceramic excellent in electric characteristics such as dielectric characteristics and insulating characteristics and also excellent in sinterability. It is described.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記し
た特開平10−330160号公報に開示される誘電体
磁器は、高温負荷試験における信頼性が低いという問題
があった。即ち、近年においては小型高容量化が要求さ
れているが、上記公報では、信頼性を向上する希土類元
素が結晶粒子表面にのみ存在するため、積層セラミック
コンデンサの誘電体層を薄層化すると、絶縁抵抗の低下
が多発し、信頼性が低下するという問題があった。
However, the dielectric ceramic disclosed in Japanese Patent Application Laid-Open No. H10-330160 has a problem that its reliability in a high-temperature load test is low. That is, in recent years, miniaturization and high capacity have been demanded, but in the above-mentioned publication, since the rare earth element for improving the reliability is present only on the crystal particle surface, when the dielectric layer of the multilayer ceramic capacitor is thinned, There has been a problem that insulation resistance frequently decreases and reliability decreases.

【0007】また、特開平5−144319号公報に開
示された誘電体磁器は、BaTiO 3表面に、Dy、C
o等の酸化物からなる添加成分をコーティングした原料
を用いて誘電体磁器が作製されているものの、焼成条件
等から希土類元素を含む添加成分が結晶粒子表面に存在
するため、誘電体層を薄層化すると、絶縁抵抗の低下が
多発し、信頼性が低下するという問題があった。
[0007] Also, Japanese Unexamined Patent Publication No. Hei.
The dielectric porcelain shown is BaTiO ThreeDy, C on the surface
Raw materials coated with additional components consisting of oxides such as o
Although the dielectric porcelain is manufactured using
Additives containing rare earth elements are present on the crystal grain surface
Therefore, if the dielectric layer is made thinner, the insulation resistance will decrease.
There was a problem that it frequently occurred and the reliability was reduced.

【0008】本発明は上述の課題に鑑みて案出されたも
のであり、その目的は高温負荷試験における信頼性を向
上し、長寿命とすることができる誘電体磁器および積層
型電子部品を提供することを目的とする。
The present invention has been devised in view of the above-mentioned problems, and has as its object to provide a dielectric ceramic and a laminated electronic component which can improve reliability in a high-temperature load test and have a long life. The purpose is to do.

【0009】[0009]

【課題を解決するための手段】本発明の誘電体磁器は、
金属元素として、Ba、Ti、希土類元素、Mgおよび
Mnを含有するペロブスカイト型複合酸化物からなる結
晶粒子と、粒界相とからなる誘電体磁器であって、前記
希土類元素が前記Mgよりも前記結晶粒子の中央部まで
存在することを特徴とする。
According to the present invention, there is provided a dielectric porcelain comprising:
A dielectric porcelain comprising a crystal particle composed of a perovskite-type composite oxide containing Ba, Ti, a rare earth element, Mg and Mn as a metal element, and a grain boundary phase, wherein the rare earth element is more than the Mg. It is characterized in that it exists up to the center of the crystal grain.

【0010】このような誘電体磁器では、結晶粒子が、
Ba、Ti、希土類元素、Mg、Mnを含有するペロブ
スカイト型複合酸化物からなるとともに、信頼性を向上
する希土類元素がMgよりも結晶粒子の中央部側にまで
存在することにより、高温負荷試験における信頼性を向
上し、長寿命とすることができる。
In such a dielectric porcelain, the crystal grains are:
A perovskite-type composite oxide containing Ba, Ti, a rare earth element, Mg, and Mn, and a rare earth element that improves reliability is present even closer to the center of the crystal grains than Mg. The reliability can be improved and the life can be extended.

【0011】また、本発明の誘電体磁器では、結晶粒子
内における希土類元素の存在量が、前記結晶粒子の中央
部側に向けて次第に減少していることが望ましい。この
ような構成によれば、結晶粒子の中央部には希土類元素
が存在していないため、BaTiO3のみの強誘電性の
部分が残り、これにより高い誘電率を保持したまま、高
温負荷試験において高い信頼性を得ることができる。
In the dielectric porcelain of the present invention, it is preferable that the amount of the rare earth element in the crystal grains is gradually reduced toward the center of the crystal grains. According to such a configuration, since the rare earth element does not exist in the central part of the crystal grain, a ferroelectric portion of only BaTiO 3 remains, thereby maintaining a high dielectric constant in a high temperature load test. High reliability can be obtained.

【0012】さらに、本発明の誘電体磁器では、Mnが
結晶粒子内にほぼ均一に存在していることが望ましい。
このように、Mnが結晶粒子内においてほぼ均一に存在
することにより、還元性雰囲気中で焼成される誘電体磁
器中の結晶粒子の結晶成長を抑制しつつ、粒界相を生成
させ、また、誘電体の還元反応を抑えることにより、高
絶縁性の誘電体磁器を得ることができる。
Furthermore, in the dielectric porcelain of the present invention, it is desirable that Mn is present almost uniformly in the crystal grains.
As described above, since Mn is substantially uniformly present in the crystal grains, the grain boundary phase is generated while suppressing the crystal growth of the crystal grains in the dielectric porcelain fired in the reducing atmosphere. By suppressing the reduction reaction of the dielectric, a highly insulating dielectric porcelain can be obtained.

【0013】また、本発明の誘電体磁器では、希土類元
素は、結晶粒子表面から、その半径の0.55倍以上中
央部側にまで存在することが望ましい。これにより、希
土類元素がより結晶粒子の中央部側まで存在しているた
め、高温負荷試験における信頼性を向上し、長寿命とす
ることができる。
In the dielectric porcelain of the present invention, it is desirable that the rare earth element is present from the surface of the crystal grain to at least 0.55 times its radius and toward the center. Thereby, since the rare earth element is present further to the center of the crystal grain, the reliability in the high temperature load test can be improved and the life can be extended.

【0014】本発明の積層型電子部品は、上記誘電体磁
器からなる誘電体層と内部電極層とを交互に積層してな
るものである。
The laminated electronic component of the present invention is obtained by alternately laminating dielectric layers made of the above-mentioned dielectric porcelain and internal electrode layers.

【0015】[0015]

【発明の実施の形態】本発明の積層型電子部品Aである
積層セラミックコンデンサについて、図1の概略断面図
をもとに詳細に説明する。本発明の積層型電子部品A
は、電子部品本体1の両端部に外部電極3を形成して構
成されている。この外部電極3は、例えば、Cuもしく
はCuとNiの合金ペーストを焼き付けて形成されてい
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A multilayer ceramic capacitor which is a multilayer electronic component A of the present invention will be described in detail with reference to a schematic sectional view of FIG. Laminated electronic component A of the present invention
Are formed by forming external electrodes 3 at both ends of the electronic component body 1. The external electrodes 3 are formed by baking Cu or an alloy paste of Cu and Ni, for example.

【0016】電子部品本体1は、内部電極層5と誘電体
層7を交互に積層してなる容量部9の積層方向の両面
に、誘電体層7と同一材料からなる絶縁層11を形成し
て構成されている。また外部電極3の表面には、例え
ば、順にNiメッキ層13、Snメッキ層もしくはSn
−Pb合金メッキ層15が形成されている。
In the electronic component body 1, insulating layers 11 made of the same material as the dielectric layer 7 are formed on both sides in the stacking direction of the capacitor section 9 in which the internal electrode layers 5 and the dielectric layers 7 are alternately stacked. It is configured. On the surface of the external electrode 3, for example, a Ni plating layer 13, a Sn plating layer,
A -Pb alloy plating layer 15 is formed.

【0017】一方、内部電極層5は導電性ペーストの膜
を焼結させた金属膜からなり、導電性ペーストとして
は、例えば、Ni、Co、Cu等の卑金属が使用されて
いる。また、内部電極層5は卑金属を主成分とし、概略
矩形状の導体膜であり、上から第1層目、第3層目、第
5層目・・・の奇数層の内部電極層5は、その一端がコ
ンデンサ本体1の一方端面に露出しており、上から第2
層目、第4層目、第6層目・・・の内部電極層5は、そ
の一端が電子部品本体1の他方端面に露出している。
尚、外部電極3と内部電極層5は必ずしも同一材料から
構成される必要はない。
On the other hand, the internal electrode layer 5 is formed of a metal film obtained by sintering a film of a conductive paste. As the conductive paste, for example, a base metal such as Ni, Co, and Cu is used. The internal electrode layer 5 is a substantially rectangular conductor film containing a base metal as a main component, and odd-numbered internal electrode layers 5 of a first layer, a third layer, a fifth layer,. , One end of which is exposed to one end surface of the capacitor body 1 and the second
One end of each of the internal electrode layers 5 of the layers, the fourth layer, the sixth layer,... Is exposed to the other end surface of the electronic component body 1.
Note that the external electrode 3 and the internal electrode layer 5 do not necessarily need to be made of the same material.

【0018】そして、本発明の積層型電子部品Aでは、
誘電体磁器からなる誘電体層7の結晶粒子は、金属元素
としてBa、Ti、希土類元素、Mg、Mnを含有する
ペロブスカイト型複合酸化物から構成されている。結晶
粒子の粒界には、例えば、成分としてLi、Siおよび
Caを含有する粒界相が主にガラスとして存在してい
る。
In the multilayer electronic component A of the present invention,
The crystal grains of the dielectric layer 7 made of dielectric porcelain are made of a perovskite-type composite oxide containing Ba, Ti, a rare earth element, Mg, and Mn as metal elements. At the grain boundaries of the crystal grains, for example, a grain boundary phase containing Li, Si and Ca as components exists mainly as glass.

【0019】希土類元素は、Mgよりも結晶粒子の中央
部まで存在している。希土類元素がMgよりも結晶粒子
の中央部側にまで存在するとは、エネルギー分散型X線
検出器(EDS)によるMg濃度がほぼ0になる位置よ
りも、希土類元素濃度がほぼ0となる位置の方が、結晶
粒子の中央部側であることを意味する。また、誘電体磁
器中のすべての結晶粒子について、希土類元素がMgよ
りも結晶粒子の中央部側にまで存在することが望ましい
が、そのような構造となっていない粒子が存在する場合
がある。
The rare earth element exists up to the center of the crystal grains rather than Mg. The fact that the rare earth element exists closer to the center of the crystal particle than Mg means that the position where the concentration of the rare earth element is almost zero is smaller than the position where the Mg concentration by the energy dispersive X-ray detector (EDS) is almost zero. Is closer to the center of the crystal grain. Further, it is desirable that the rare earth element is present at a portion closer to the center of the crystal grains than Mg in all the crystal grains in the dielectric porcelain, but there may be a case where the grains do not have such a structure.

【0020】また、結晶粒子内における希土類元素の存
在量は、結晶粒子の中央部に向けて次第に減少してい
る。これは、希土類元素が結晶粒界(粒子表面)から、
連続的な濃度分布を持つことを意味しており、一定の濃
度勾配でなくともかまわない。尚、希土類元素として
は、Y、Sc、Ce、Pr、Nd、Sm、En、Gd、
Tb、Dy、Ho、Er、Tm、Yb、La等が挙げら
れるが、これらのうちでもYが望ましい。
Further, the abundance of the rare earth element in the crystal grains gradually decreases toward the center of the crystal grains. This is because the rare earth element is
It means having a continuous concentration distribution, and does not have to be a constant concentration gradient. The rare earth elements include Y, Sc, Ce, Pr, Nd, Sm, En, Gd,
Tb, Dy, Ho, Er, Tm, Yb, La and the like can be mentioned, and among these, Y is desirable.

【0021】さらに、希土類元素は、結晶粒子表面か
ら、その半径の0.55倍以***部側にまで存在する
ことが望ましいが、結晶粒子の中央部には、希土類元素
が存在しない領域があることが望ましい。また、Mnは
結晶粒子内にほぼ均一に存在している。
Further, it is desirable that the rare earth element be present from the surface of the crystal grain to the center of the crystal grain at least 0.55 times its radius, but there is a region where the rare earth element does not exist in the center of the crystal grain. It is desirable. Further, Mn exists almost uniformly in the crystal grains.

【0022】希土類元素、Mg、Mnの粒径0.8μm
の結晶粒子内における存在量を図2に示す。この図2か
ら、希土類元素は、Mgよりも結晶粒子の中央部まで存
在し、結晶粒子内における希土類元素の存在量は、結晶
粒子の中央部に向けて次第に減少しており、Mnは結晶
粒子内にほぼ均一に存在していることが判る。また、図
4は、粒径0.8μmの結晶粒子内のY濃度を示すもの
で、この図4から、Yは、結晶粒子表面から、その半径
の0.7倍程度まで中央部側に存在していることが判
る。
Particle size of rare earth element, Mg, Mn 0.8 μm
FIG. 2 shows the abundance in the crystal grains. From FIG. 2, the rare earth element exists to the center of the crystal grain rather than Mg, and the abundance of the rare earth element in the crystal grain gradually decreases toward the center of the crystal grain. It can be seen that they exist almost uniformly in the inside. FIG. 4 shows the Y concentration in a crystal particle having a particle size of 0.8 μm. From FIG. 4, Y exists from the surface of the crystal particle to about 0.7 times the radius of the crystal particle at the center. You can see that it is.

【0023】これらの結晶粒子から構成されるシート状
の誘電体層1層の厚みは3μm以下とされている。積層
電子部品Aの、例えば、積層セラミックコンデンサの大
容量化に対して、誘電体層を薄層化することは効果的な
手段であり、近年の小型、高容量の積層セラミックコン
デンサを構成するためには、その誘電体層厚みは1〜3
μmが好適である。
The thickness of one sheet-like dielectric layer composed of these crystal grains is 3 μm or less. To increase the capacitance of the multilayer electronic component A, for example, to increase the capacitance of the multilayer ceramic capacitor, it is an effective means to reduce the thickness of the dielectric layer. Has a thickness of 1 to 3
μm is preferred.

【0024】また、結晶粒子の平均粒径は1μm以下、
特には0.8μm以下が望ましい。上記したように誘電
体層を3μm以下とするためには、平均粒径は1μm以
下が必要であり、また、このような微粒の結晶粒子とす
ることにより、希土類元素を結晶粒子の中央部まで存在
させることができる。
The average particle size of the crystal grains is 1 μm or less,
In particular, 0.8 μm or less is desirable. As described above, in order to make the dielectric layer 3 μm or less, the average particle size is required to be 1 μm or less, and by forming such fine crystal particles, the rare earth element can be extended to the center of the crystal particles. Can be present.

【0025】(製法)本発明の積層型電子部品Aは、先
ず、誘電体層となるグリーンシートを作製する。このグ
リーンシートは、例えば、BaTiO3原料粉末を用い
て形成することができ、主原料のBaTiO3粉の合成
法は、固相法、液相法(シュウ酸塩を経過する方法
等)、水熱合成法等があるが、そのうち粒度分布が狭
く、結晶性が高いという理由から水熱合成法が望まし
い。
(Production Method) In the multilayer electronic component A of the present invention, first, a green sheet to be a dielectric layer is produced. The green sheet can be formed using, for example, BaTiO 3 raw material powder. The main raw material BaTiO 3 powder can be synthesized by a solid phase method, a liquid phase method (such as passing through an oxalate), water, or the like. Although there are thermal synthesis methods and the like, the hydrothermal synthesis method is desirable because the particle size distribution is narrow and the crystallinity is high.

【0026】そして、BaTiO3粉の比表面積は1.
7〜6.6(m2/g)が好ましい。このBaTiO3
に希土類元素酸化物を表面に被覆したものを主原料とす
る。被覆手法としては、固相法、液相法、気相法などが
あるが、手法は特に限定されるものではない。希土類元
素酸化物を表面に被覆したBaTiO3粉を用いること
により、希土類元素がBaTiO3中央部まで存在しや
すくなる。
The specific surface area of the BaTiO 3 powder is 1.
7~6.6 (m 2 / g) are preferable. A material obtained by coating the surface of the BaTiO 3 powder with a rare earth element oxide is used as a main raw material. Examples of the coating method include a solid phase method, a liquid phase method, and a gas phase method, but the method is not particularly limited. By using a BaTiO 3 powder coated on the surface with a rare earth element oxide, the rare earth element can easily exist up to the center of BaTiO 3 .

【0027】次に、そのグリーンシートに導電性ペース
トからなる内部電極層の電極パターンを印刷し、これを
乾燥させる。次に、この電極パターンが形成されたグリ
ーンシートを複数枚積層し、熱圧着させる。その後、こ
の積層物を格子状に切断して、電子部品本体1の成形体
を得る。この電子部品本体1の成形体の両端面には、内
部電極層5の電極パターンの端部が交互に露出してい
る。
Next, an electrode pattern of an internal electrode layer made of a conductive paste is printed on the green sheet and dried. Next, a plurality of green sheets on which the electrode patterns are formed are laminated and thermocompression-bonded. Thereafter, the laminate is cut into a lattice to obtain a molded body of the electronic component body 1. The ends of the electrode pattern of the internal electrode layer 5 are alternately exposed on both end surfaces of the molded body of the electronic component body 1.

【0028】次に、この電子部品本体1の成形体を大気
中で40〜80℃/hの昇温速度で400〜500℃に
て脱バインダー処理を行い、その後、還元雰囲気中で5
00℃からの昇温速度を40〜80℃/hとし、127
0〜1300℃の温度で2〜5時間焼成し、続いて80
〜120℃/hの降温速度で冷却し、大気雰囲気中75
0〜850℃で再酸化処理を行う。
Next, the molded body of the electronic component body 1 is subjected to a binder removal treatment in the atmosphere at a temperature rising rate of 40 to 80 ° C./h at 400 to 500 ° C., and then, in a reducing atmosphere.
The rate of temperature rise from 00 ° C is 40 to 80 ° C / h, and 127
Baking at a temperature of 0-1300 ° C. for 2-5 hours, followed by 80
Cool at a cooling rate of ~ 120 ° C / h, and
A reoxidation treatment is performed at 0 to 850 ° C.

【0029】特に、500℃からの昇温速度を40〜8
0℃/hとし、1270〜1300℃の温度で焼成する
ことにより、被覆された希土類元素が、BaTiO3
により中央部側まで存在するようになる。
In particular, the rate of temperature rise from 500 ° C. is 40 to 8
By firing at 0 ° C./h and at a temperature of 1270 ° C. to 1300 ° C., the coated rare earth element is present more in BaTiO 3 up to the center.

【0030】この後、焼成したコンデンサ本体の両端面
に、外部電極用ペーストを塗布して窒素中で焼き付ける
ことによって、外部電極3を形成する。
Thereafter, an external electrode paste is applied to both end surfaces of the fired capacitor body and baked in nitrogen to form external electrodes 3.

【0031】さらに外部電極3の表面を脱脂、酸洗浄、
純水を用いた水洗を行った後、バレル方式により、メッ
キを行う。
Further, the surface of the external electrode 3 is degreased, acid-washed,
After washing with pure water, plating is performed by a barrel method.

【0032】本発明では、結晶粒子が、Ba、Ti、希
土類元素、Mg、Mnを含有するペロブスカイト型複合
酸化物からなるとともに、信頼性を向上する希土類元素
がMgよりも結晶粒子の中央部側にまで存在することに
より、高温負荷試験における信頼性を向上し、長寿命と
することができる。
In the present invention, the crystal grains are made of a perovskite-type composite oxide containing Ba, Ti, a rare earth element, Mg and Mn, and the rare earth element for improving reliability is closer to the center of the crystal grains than Mg. , The reliability in a high-temperature load test can be improved and the life can be extended.

【0033】[0033]

【実施例】積層型電子部品の一つである積層セラミック
コンデンサを以下のようにして作製した。まず、誘電体
素材料として、比表面積が3.2(m2/g)となるB
aTiO3粉末であって、BaTiO3100重量部に対
して1重量部のY23を被覆したBaTiO3粉末を用
い、このBaTiO3100重量部に対して、MgOを
0.2重量部、MnCO3を0.1重量部、Li2OとS
iO2とCaOからなる粒界相成分を0.5重量部とす
る原料粉末を、直径5mmφのZrO2ボールを用いた
ボールミルにて湿式粉砕することにより、調製した。
EXAMPLE A multilayer ceramic capacitor, which is one of multilayer electronic components, was manufactured as follows. First, as a dielectric material, B having a specific surface area of 3.2 (m 2 / g) is used.
A ATiO 3 powder, using a BaTiO 3 powder coated with Y 2 O 3 of 1 part by weight with respect to BaTiO 3 100 parts by weight, relative to the BaTiO 3 100 parts by weight, 0.2 parts by weight of MgO, 0.1 parts by weight of MnCO 3 , Li 2 O and S
A raw material powder containing 0.5 parts by weight of a grain boundary phase component composed of iO 2 and CaO was prepared by wet pulverization in a ball mill using ZrO 2 balls having a diameter of 5 mmφ.

【0034】比較例として、誘電体素材料として、比表
面積が3.2(m2/g)となるBaTiO3100重量
部に対して、Y23を1重量部、MgOを0.2重量
部、MnCO3を0.1重量部、Li2OとSiO2とC
aOからなる粒界相成分を0.5重量部とする原料粉末
を、調製した。
As a comparative example, as a dielectric material, 1 part by weight of Y 2 O 3 and 0.2 part by weight of MgO were added to 100 parts by weight of BaTiO 3 having a specific surface area of 3.2 (m 2 / g). Parts by weight, 0.1 parts by weight of MnCO 3 , Li 2 O, SiO 2 and C
A raw material powder containing 0.5 part by weight of a grain boundary phase component composed of aO was prepared.

【0035】次に、有機バインダを混合してスラリーを
調製し、ドクターブレードによりグリーンシートを作製
した。
Next, a slurry was prepared by mixing an organic binder, and a green sheet was prepared using a doctor blade.

【0036】次にこのグリーンシート上に、内部電極ペ
ーストをスクリーン印刷した。この内部電極層の有効面
積は2.1mm2であった。
Next, the internal electrode paste was screen-printed on the green sheet. The effective area of this internal electrode layer was 2.1 mm 2 .

【0037】次に、内部電極ペーストを印刷したグリー
ンシートを100枚積層し、その上下面に、内部電極ペ
ーストを印刷していないグリーンシートをそれぞれ20
枚積層し、プレス機を用いて一体化し、積層体を得た。
Next, 100 green sheets on which the internal electrode paste was printed were laminated, and 20 green sheets on which the internal electrode paste was not printed were respectively placed on the upper and lower surfaces.
The sheets were laminated and integrated using a press machine to obtain a laminate.

【0038】この後、積層体を格子状に切断して、2.
3mm×1.5mm×1.5mmの電子部品本体1の成
形体を作製した。
Thereafter, the laminate is cut into a lattice shape.
A molded body of the electronic component body 1 having a size of 3 mm × 1.5 mm × 1.5 mm was produced.

【0039】次に、この電子部品本体の成形体を50℃
/hの昇温速度で大気中で500℃にて脱バインダー処
理を行い、500℃からの昇温速度が50℃/hの昇温
速度で、1270℃〜1300℃(酸素分圧10-11
tm)で2時間焼成し、続いて100℃/hの降温速度
で800℃まで冷却し、大気雰囲気中800℃で4時間
再酸化処理をし、200℃/hの降温速度で冷却し、電
子部品本体を作製した。誘電体層の厚みは2.5μmで
あった。
Next, the molded body of the electronic component body was heated to 50 ° C.
The binder removal treatment is performed at 500 ° C. in the air at a heating rate of 500 ° C./h, and the heating rate from 500 ° C. is 1270 ° C. to 1300 ° C. (oxygen partial pressure 10 −11) at a heating rate of 50 ° C./h. a
tm) for 2 hours, followed by cooling to 800 ° C. at a temperature lowering rate of 100 ° C./h, reoxidizing at 800 ° C. for 4 hours in an air atmosphere, cooling at a temperature lowering rate of 200 ° C./h, A component body was produced. The thickness of the dielectric layer was 2.5 μm.

【0040】次に、焼成した電子部品本体1をバレル研
磨した後、電子部品本体の両端部にCu粉末とガラスを
含んだ外部電極ペーストを塗布し、850℃、窒素中で
焼き付けを行い外部電極を形成した。その後、電解バレ
ル機を用いて、この外部電極の表面に、順にNiおよび
Snメッキを行い、積層型電子部品を作製した。
Next, after the fired electronic component main body 1 is barrel-polished, an external electrode paste containing Cu powder and glass is applied to both ends of the electronic component main body, and baked at 850 ° C. in nitrogen to form an external electrode. Was formed. Then, using an electrolytic barrel machine, Ni and Sn plating were sequentially performed on the surface of the external electrode to produce a multilayer electronic component.

【0041】積層型コンデンサの高温負荷寿命試験を、
本実施例および比較例のそれぞれ50個について行っ
た。試験条件は、125℃で定格電圧の2倍の直流電圧
を印可したもの、125℃で定格電圧の3倍の直流電圧
を印可したもの、および150℃で定格の2倍の直流電
圧を印可したものの3通りで行った。
The high-temperature load life test of the multilayer capacitor was performed as follows.
This was performed for each of the present example and 50 comparative examples. The test conditions were as follows: a DC voltage of twice the rated voltage was applied at 125 ° C., a DC voltage of three times the rated voltage was applied at 125 ° C., and a DC voltage of twice the rated voltage was applied at 150 ° C. We went in three ways.

【0042】試験時間1000時間後のショートしたコ
ンデンサの、ショートに至った数を測定することにより
評価した。この結果を表1に記載した。
Evaluation was made by measuring the number of short-circuited capacitors that had been short-circuited after a test time of 1000 hours, which resulted in short-circuiting. The results are shown in Table 1.

【0043】[0043]

【表1】 [Table 1]

【0044】高温負荷寿命は、誘電体層を薄層化する際
に特に重要となるものである。試験条件の如何に関わら
ず、実施例は比較例よりも高い信頼性を有することが分
かる。
The high temperature load life is particularly important when the thickness of the dielectric layer is reduced. It can be seen that the examples have higher reliability than the comparative examples regardless of the test conditions.

【0045】結晶粒内の元素の濃度分布をエネルギー分
散型X線検出器(EDS)により測定した結果につい
て、本発明の試料No.2を図2に、比較例の試料N
o.3を図3に示す。また、No.2について、結晶粒
子の半径内におけるY濃度を図4に示す。
The results of the measurement of the concentration distribution of the elements in the crystal grains by an energy dispersive X-ray detector (EDS) show that the sample No. of the present invention was used. 2 is shown in FIG.
o. 3 is shown in FIG. In addition, No. FIG. 4 shows the Y concentration within the radius of the crystal grain for No. 2.

【0046】比較例では、Mgの濃度が0になる距離
と、Y濃度が0になる距離が同じであるが、本実施例で
は、Mgより、Yが結晶粒中央部側に存在していること
が分かる。そのため、高い信頼性が発現することが判
る。尚、試料は、Ba、Ti、希土類元素、Mgおよび
Mnを含有するペロブスカイト型複合酸化物からなる結
晶粒子と、Li2OとSiO2とCaOからなる粒界相と
から構成されていた。
In the comparative example, the distance at which the concentration of Mg is 0 is the same as the distance at which the Y concentration is 0. In the present embodiment, however, Y is located closer to the center of the crystal grain than Mg. You can see that. Therefore, it can be seen that high reliability is exhibited. The sample was composed of crystal grains composed of a perovskite-type composite oxide containing Ba, Ti, a rare earth element, Mg and Mn, and a grain boundary phase composed of Li 2 O, SiO 2 and CaO.

【0047】[0047]

【発明の効果】以上のように構成された誘電体磁器で
は、誘電体層を構成する結晶粒子が、Ba、Ti、希土
類元素、Mg、Mnを含有するペロブスカイト型複合酸
化物から成るとともに、希土類元素がMgよりも結晶粒
子の中央部側にまで存在することにより、高温負荷試験
における信頼性を向上し、長寿命とすることができる。
In the dielectric porcelain constructed as described above, the crystal grains constituting the dielectric layer are made of a perovskite-type composite oxide containing Ba, Ti, a rare earth element, Mg, and Mn. Since the element is present closer to the center of the crystal grain than Mg, the reliability in a high-temperature load test can be improved and the life can be extended.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の積層型電子部品の概略断面図である。FIG. 1 is a schematic cross-sectional view of a multilayer electronic component of the present invention.

【図2】本発明の試料No.2の結晶粒内におけるY、
Mg、Mnの濃度分布を表す図である。
FIG. 2 shows a sample No. of the present invention. Y in the crystal grain of No. 2,
It is a figure showing the concentration distribution of Mg and Mn.

【図3】比較例の試料No.3の結晶粒内におけるY、
Mg、Mnの濃度分布を表す図である。
FIG. 3 shows a sample No. of a comparative example. Y in the crystal grain of No. 3,
It is a figure showing the concentration distribution of Mg and Mn.

【図4】本発明の試料No.2の結晶粒の半径内におけ
るY濃度分布を表す図である。
FIG. 4 shows a sample No. of the present invention. FIG. 4 is a diagram illustrating a Y concentration distribution within a radius of a second crystal grain.

【符号の説明】[Explanation of symbols]

5・・・内部電極層 7・・・誘電体層 5 ... internal electrode layer 7 ... dielectric layer

フロントページの続き Fターム(参考) 4G031 AA03 AA06 AA11 AA19 BA09 CA01 CA05 5E001 AB03 AC04 AC09 AE00 AE02 AE03 AE04 AF00 AF06 AH05 AH06 AH09 AJ02 5E082 AA01 AB03 BC40 EE23 EE26 EE35 FG06 FG22 FG26 FG27 FG54 GG10 GG11 GG26 GG28 JJ03 JJ05 JJ21 JJ23 LL02 LL03 MM22 MM24 5G303 AA01 AB01 AB14 BA12 CA01 CB03 CB17 CB18 CB35 CB40Continued on the front page F-term (reference) 4G031 AA03 AA06 AA11 AA19 BA09 CA01 CA05 5E001 AB03 AC04 AC09 AE00 AE02 AE03 AE04 AF00 AF06 AH05 AH06 AH09 AJ02 5E082 AA01 AB03 BC40 EE23 EE26 EE27 FG26 GG27 FG26 GG27 JJ23 LL02 LL03 MM22 MM24 5G303 AA01 AB01 AB14 BA12 CA01 CB03 CB17 CB18 CB35 CB40

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】金属元素として、Ba、Ti、希土類元
素、MgおよびMnを含有するペロブスカイト型複合酸
化物からなる結晶粒子と、粒界相とからなる誘電体磁器
であって、前記希土類元素が前記Mgよりも前記結晶粒
子の中央部まで存在していることを特徴とする誘電体磁
器。
1. A dielectric ceramic comprising crystal grains composed of a perovskite-type composite oxide containing Ba, Ti, a rare earth element, Mg and Mn as metal elements, and a grain boundary phase, wherein the rare earth element is A dielectric porcelain characterized by being present up to a central portion of the crystal grain rather than the Mg.
【請求項2】結晶粒子内における希土類元素の存在量
が、前記結晶粒子の中央部側に向けて次第に減少してい
ることを特徴とする請求項1記載の誘電体磁器。
2. The dielectric ceramic according to claim 1, wherein the abundance of the rare earth element in the crystal grains gradually decreases toward the center of the crystal grains.
【請求項3】Mnが結晶粒子内にほぼ均一に存在するこ
とを特徴とする請求項1または2記載の誘電体磁器。
3. The dielectric ceramic according to claim 1, wherein Mn is substantially uniformly present in the crystal grains.
【請求項4】請求項1乃至3のうちいずれかに記載の誘
電体磁器からなる誘電体層と内部電極層とを交互に積層
してなることを特徴とする積層型電子部品。
4. A multilayer electronic component comprising a dielectric layer comprising the dielectric porcelain according to claim 1 and internal electrode layers alternately laminated.
JP2000197390A 2000-06-29 2000-06-29 Dielectric porcelain and multilayer electronic components Expired - Fee Related JP5046432B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000197390A JP5046432B2 (en) 2000-06-29 2000-06-29 Dielectric porcelain and multilayer electronic components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000197390A JP5046432B2 (en) 2000-06-29 2000-06-29 Dielectric porcelain and multilayer electronic components

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011012097A Division JP5372034B2 (en) 2011-01-24 2011-01-24 Dielectric porcelain and multilayer electronic components

Publications (2)

Publication Number Publication Date
JP2002020165A true JP2002020165A (en) 2002-01-23
JP5046432B2 JP5046432B2 (en) 2012-10-10

Family

ID=18695723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000197390A Expired - Fee Related JP5046432B2 (en) 2000-06-29 2000-06-29 Dielectric porcelain and multilayer electronic components

Country Status (1)

Country Link
JP (1) JP5046432B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002265260A (en) * 2001-03-07 2002-09-18 Kyocera Corp Dielectric ceramic and lamination type electronic part
JP2005187218A (en) * 2003-12-24 2005-07-14 Kyocera Corp Dielectric porcelain, laminated electronic component, and production method for laminated electronic component
WO2008038722A1 (en) * 2006-09-27 2008-04-03 Kyocera Corporation Multilayer ceramic capacitor and method for production thereof
JP2008109120A (en) * 2006-09-27 2008-05-08 Kyocera Corp Multilayer ceramic capacitor and its fabrication process
JP2008297179A (en) * 2007-06-01 2008-12-11 Kyocera Corp Dielectric porcelain and multilayer ceramic capacitor
WO2009037922A1 (en) * 2007-09-19 2009-03-26 Murata Manufacturing Co., Ltd. Dielectric ceramics and laminated ceramic capacitor
JP2011162401A (en) * 2010-02-10 2011-08-25 Murata Mfg Co Ltd Dielectric ceramic and laminated ceramic capacitor
DE102021120413A1 (en) 2020-08-28 2022-03-03 Adamcio Andrzej Przedsiębiorstwo Wielobranżowe Anmet Block for geotechnical applications, execution type of the block for geotechnical applications and execution type of the structure using the block for geotechnical applications

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07335474A (en) * 1994-06-03 1995-12-22 Murata Mfg Co Ltd Manufacture of ceramic capacitor
JPH10308321A (en) * 1997-05-06 1998-11-17 Taiyo Yuden Co Ltd Dielectric porcelain
JPH10330160A (en) * 1997-05-30 1998-12-15 Taiyo Yuden Co Ltd Dielectric substance ceramic and its production
JPH11273986A (en) * 1998-01-20 1999-10-08 Murata Mfg Co Ltd Dielectric ceramic and its manufacture and laminated ceramic electronic part and its manufacture
JP2000348961A (en) * 1999-06-02 2000-12-15 Matsushita Electric Ind Co Ltd Dielectric material, its manufacture, laminated ceramic capacitor formed thereof, and its manufacture
JP2001240466A (en) * 2000-02-28 2001-09-04 Taiyo Yuden Co Ltd Porcelain of dielectrics and electronic parts of laminated ceramics

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07335474A (en) * 1994-06-03 1995-12-22 Murata Mfg Co Ltd Manufacture of ceramic capacitor
JPH10308321A (en) * 1997-05-06 1998-11-17 Taiyo Yuden Co Ltd Dielectric porcelain
JPH10330160A (en) * 1997-05-30 1998-12-15 Taiyo Yuden Co Ltd Dielectric substance ceramic and its production
JPH11273986A (en) * 1998-01-20 1999-10-08 Murata Mfg Co Ltd Dielectric ceramic and its manufacture and laminated ceramic electronic part and its manufacture
JP2000348961A (en) * 1999-06-02 2000-12-15 Matsushita Electric Ind Co Ltd Dielectric material, its manufacture, laminated ceramic capacitor formed thereof, and its manufacture
JP2001240466A (en) * 2000-02-28 2001-09-04 Taiyo Yuden Co Ltd Porcelain of dielectrics and electronic parts of laminated ceramics

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4663141B2 (en) * 2001-03-07 2011-03-30 京セラ株式会社 Dielectric porcelain and multilayer electronic components
JP2002265260A (en) * 2001-03-07 2002-09-18 Kyocera Corp Dielectric ceramic and lamination type electronic part
JP2005187218A (en) * 2003-12-24 2005-07-14 Kyocera Corp Dielectric porcelain, laminated electronic component, and production method for laminated electronic component
JP4614656B2 (en) * 2003-12-24 2011-01-19 京セラ株式会社 Dielectric porcelain, multilayer electronic component, and method of manufacturing multilayer electronic component
WO2008038722A1 (en) * 2006-09-27 2008-04-03 Kyocera Corporation Multilayer ceramic capacitor and method for production thereof
JP2008109120A (en) * 2006-09-27 2008-05-08 Kyocera Corp Multilayer ceramic capacitor and its fabrication process
US8184427B2 (en) 2006-09-27 2012-05-22 Kyocera Corporation Multilayer ceramic capacitor and method for production thereof
CN101517672B (en) * 2006-09-27 2012-05-16 京瓷株式会社 Multilayer ceramic capacitor and method for production thereof
KR101053945B1 (en) 2006-09-27 2011-08-04 쿄세라 코포레이션 Multilayer Ceramic Capacitor and its Manufacturing Method
JP2008297179A (en) * 2007-06-01 2008-12-11 Kyocera Corp Dielectric porcelain and multilayer ceramic capacitor
US7911764B2 (en) 2007-09-19 2011-03-22 Murata Manufacturing Co., Ltd. Dielectric ceramics, and laminated ceramic capacitor
JPWO2009037922A1 (en) * 2007-09-19 2011-01-06 株式会社村田製作所 Dielectric ceramic and multilayer ceramic capacitor
WO2009037922A1 (en) * 2007-09-19 2009-03-26 Murata Manufacturing Co., Ltd. Dielectric ceramics and laminated ceramic capacitor
KR101161495B1 (en) * 2007-09-19 2012-06-29 가부시키가이샤 무라타 세이사쿠쇼 Dielectric ceramics and laminated ceramic capacitor
JP5182531B2 (en) * 2007-09-19 2013-04-17 株式会社村田製作所 Dielectric ceramic and multilayer ceramic capacitor
JP2011162401A (en) * 2010-02-10 2011-08-25 Murata Mfg Co Ltd Dielectric ceramic and laminated ceramic capacitor
DE102021120413A1 (en) 2020-08-28 2022-03-03 Adamcio Andrzej Przedsiębiorstwo Wielobranżowe Anmet Block for geotechnical applications, execution type of the block for geotechnical applications and execution type of the structure using the block for geotechnical applications

Also Published As

Publication number Publication date
JP5046432B2 (en) 2012-10-10

Similar Documents

Publication Publication Date Title
JP4805938B2 (en) Dielectric porcelain, manufacturing method thereof, and multilayer ceramic capacitor
JP5046700B2 (en) Dielectric porcelain and multilayer ceramic capacitor
JP4965435B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
EP1767507B1 (en) Dielectric ceramic composition and laminated ceramic capacitor
JPH11273985A (en) Dielectric ceramic and its manufacture, and laminated ceramic electronic part and its manufacture
KR102163417B1 (en) Multi-layered ceramic capacitor
JP4191496B2 (en) Dielectric porcelain composition and electronic component
CN106747419B (en) Dielectric material for medium-high voltage X7R characteristic multilayer ceramic capacitor
JP2004214539A (en) Dielectric ceramic and laminated ceramic capacitor
JP4999988B2 (en) Multilayer ceramic capacitor
JP2020203824A (en) Dielectric ceramic composition and multilayer ceramic capacitor comprising the same
JP4663141B2 (en) Dielectric porcelain and multilayer electronic components
JP5046432B2 (en) Dielectric porcelain and multilayer electronic components
JP2001307940A (en) Laminated ceramic capacitor and its manufacturing method
JP4511323B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP5153288B2 (en) Dielectric porcelain composition and electronic component
JP3908458B2 (en) Method for producing dielectric ceramic composition
JP2001338828A (en) Laminated electronic part
JP5372034B2 (en) Dielectric porcelain and multilayer electronic components
JP4463093B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP2002293617A (en) Dielectric ceramic, laminated electronic parts and production method for the laminated electronic parts
JP2004210604A (en) Dielectric ceramic and laminated ceramic capacitor
JP4463095B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP4557708B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
WO2023234392A1 (en) Multilayer ceramic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100722

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110126

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110203

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120717

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees