JP2005159045A - Semiconductor light emitting element mounting member and light emitting diode using the same - Google Patents

Semiconductor light emitting element mounting member and light emitting diode using the same Download PDF

Info

Publication number
JP2005159045A
JP2005159045A JP2003396149A JP2003396149A JP2005159045A JP 2005159045 A JP2005159045 A JP 2005159045A JP 2003396149 A JP2003396149 A JP 2003396149A JP 2003396149 A JP2003396149 A JP 2003396149A JP 2005159045 A JP2005159045 A JP 2005159045A
Authority
JP
Japan
Prior art keywords
light emitting
emitting element
semiconductor light
resistant resin
mounting member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003396149A
Other languages
Japanese (ja)
Inventor
Sadamu Ishizu
定 石津
Kenjiro Higaki
賢次郎 桧垣
Akio Amo
映夫 天羽
Yasushi Chikugi
保志 筑木
Yoshito Sakamoto
義人 阪本
Hiroshi Hayami
宏 早味
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2003396149A priority Critical patent/JP2005159045A/en
Priority to PCT/JP2004/016081 priority patent/WO2005053040A1/en
Publication of JP2005159045A publication Critical patent/JP2005159045A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new semiconductor light emitting element mounting member and a light emitting diode using the same, wherein since, in particular, a window frame is formed of a material with better processability than a conventional one has, a cost can still more be reduced, besides heat radiation capability is also excellent, and moreover an electrode layer and a reflection layer can be formed on the surface of the window frame or a base body in a fine shape with good accuracy, or in particular, an Al film, etc. with excellent reflection efficiency in light having a short wavelength can be formed. <P>SOLUTION: A semiconductor light emitting element mounting member BL is formed by joining a base body 1 containing a first high heat radiation member 11 to a heat resistive resin member 2 corresponding to a window frame via a joining layer AL2 to be unified. In a light emitting diode LE2, a semiconductor light emitting element LE1 is mounted on the first high heat radiation member 11 of the semiconductor light emitting element mounting member BL, to be sealed with a phosphor and/or a protection resin FR, and also a lens LS is arranged in the take-out direction of a light from the semiconductor light emitting element LE1. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、半導体発光素子を用いて発光ダイオードを形成するために用いる新規な半導体発光素子搭載部材と、当該半導体発光素子搭載部材に半導体発光素子を搭載した発光ダイオードとに関するものである。   The present invention relates to a novel semiconductor light emitting element mounting member used for forming a light emitting diode using a semiconductor light emitting element, and a light emitting diode in which a semiconductor light emitting element is mounted on the semiconductor light emitting element mounting member.

半導体基板上に発光層や電極層などを形成したチップ状の半導体発光素子を用いて発光ダイオードを形成する場合は、例えば開口と対向する底面を、当該半導体発光素子を搭載するための搭載部とした凹部を有するパッケージなどを用いるのが一般的である(例えば特許文献1参照)。また発光ダイオードの発光効率を向上するために、特許文献1記載の発明では、上記凹部を、底面側から開口側へ向けて外方に拡がった形状(すり鉢状)に形成するとともに、その内面を、半導体発光素子からの光を反射しうる金属膜にて被覆している。   When a light emitting diode is formed using a chip-shaped semiconductor light emitting element in which a light emitting layer, an electrode layer, or the like is formed on a semiconductor substrate, for example, a bottom surface facing the opening is mounted on a mounting portion for mounting the semiconductor light emitting element. In general, a package having a concave portion is used (see, for example, Patent Document 1). Further, in order to improve the light emission efficiency of the light emitting diode, in the invention described in Patent Document 1, the concave portion is formed in a shape (mortar shape) extending outward from the bottom surface side toward the opening side, and the inner surface thereof is formed. And a metal film capable of reflecting light from the semiconductor light emitting element.

かかるパッケージの搭載部に半導体発光素子を搭載し、次いで凹部に蛍光体および/または保護樹脂を充てんして、搭載した半導体発光素子を封止するとともに、光の取り出し方向である開口を、必要に応じて封止キャップやレンズなどで閉じることによって発光ダイオードが製造される。
特開2002−232017号公報(請求項1、第0003欄〜第0004欄、第0012欄〜第0023欄、図1、図4)
A semiconductor light emitting element is mounted on the mounting portion of such a package, and then a phosphor and / or protective resin is filled in the recess to seal the mounted semiconductor light emitting element, and an opening that is a light extraction direction is required. Accordingly, the light emitting diode is manufactured by closing with a sealing cap or a lens.
JP 2002-232017 (Claim 1, columns 0003 to 0004, columns 0012 to 0023, FIGS. 1 and 4)

上記特許文献1に記載のパッケージは、半導体発光素子を搭載するためのセラミック基体上に、上記凹部を形成するための部材(セラミック窓枠)を積層して構成される。また、かかるセラミック基体、およびセラミック窓枠のもとになるセラミックスとして従来は、アルミナが一般的であった。しかしアルミナは熱伝導率が低いため、特に最近の、半導体発光素子の高出力化に十分に対応する放熱性能が得られないという問題があった。   The package described in Patent Document 1 is configured by laminating a member (ceramic window frame) for forming the recess on a ceramic base for mounting a semiconductor light emitting element. Conventionally, alumina is generally used as the ceramic base and ceramics used as the ceramic window frame. However, since alumina has a low thermal conductivity, there has been a problem in that it is not possible to obtain a heat dissipation performance sufficiently corresponding to the recent increase in output of semiconductor light emitting devices.

そこで、熱伝導率が高く放熱性能に優れた窒化アルミニウムなどを用いて上記のパッケージを形成することが検討されたが、かかる放熱性能に優れたセラミックスの多くは加工性が良好でなく、特に前記のようにすり鉢状の凹部などの複雑な形状を有するセラミック窓枠を形成するのが困難であって製造コストが極めて高くつくという問題があった。   Therefore, it has been studied to form the above package using aluminum nitride or the like having high thermal conductivity and excellent heat dissipation performance. However, many ceramics excellent in heat dissipation performance are not good in workability, As described above, there is a problem that it is difficult to form a ceramic window frame having a complicated shape such as a mortar-shaped recess, and the manufacturing cost is extremely high.

また上記特許文献1では、セラミック基体とセラミック窓枠、さらにはこの両者の表面に設けた、半導体発光素子搭載のための電極層や、半導体発光素子からの光を反射するための反射層などとして機能する金属膜の下地層となるMo層やW層を、セラミックグリーンシートとメタライズペーストとを用いて高温で焼成、一体化する積層コファイア法によって形成している。   In Patent Document 1, the ceramic base and the ceramic window frame, as well as the electrode layer for mounting the semiconductor light emitting element, the reflective layer for reflecting the light from the semiconductor light emitting element, etc. provided on the surfaces of both of them are used. The Mo layer and W layer, which are the underlying layers of the functioning metal film, are formed by a laminated cofire method in which ceramic green sheets and metallized paste are baked and integrated at a high temperature.

ところがかかる方法では、Mo層やW層のもとになるメタライズペーストを、精度の低い印刷法によってセラミックグリーンシートの表面に印刷しなければならない上、焼成時に高温の熱履歴を受けてこれらの部材が熱変形を生じやすいため、上記Mo層やW層の上にめっき法などによって形成する電極層や反射層を微細な形状に、精度良くパターン形成するのが難しいという問題があった。また電極層や反射層は、上記のようにMo層やW層の上にめっき法などによって形成されるため、特に短波長の光の反射率に優れるものの、めっき法による膜化が困難なAl膜などを形成するのが難しいという問題もあった。   However, in such a method, the metallized paste that is the basis of the Mo layer or W layer must be printed on the surface of the ceramic green sheet by a low-precision printing method, and these members are subjected to a high-temperature thermal history during firing. However, it is difficult to pattern the electrode layer and the reflective layer formed on the Mo layer and W layer by a plating method in a fine shape with high accuracy. In addition, since the electrode layer and the reflective layer are formed on the Mo layer and the W layer by the plating method as described above, it is particularly excellent in the reflectance of light having a short wavelength, but it is difficult to form a film by the plating method. There was also a problem that it was difficult to form a film.

加工性を向上するために、放熱性能に優れたセラミック基体と、金属製の窓枠とを組み合わせることも検討された。しかし金属であっても、窓枠に対応した複雑な形状に形成するためには様々な加工を施す必要があることから、加工性の改善効果はさほど顕著ではなく、依然として製造コストが高くつくという問題があった。   In order to improve workability, it was also considered to combine a ceramic base having excellent heat dissipation performance with a metal window frame. However, even if it is metal, it is necessary to perform various processing to form a complicated shape corresponding to the window frame, so the improvement effect of workability is not so remarkable, and the manufacturing cost is still high. There was a problem.

この発明の目的は、特に窓枠が、これまでよりさらに加工性のよい材料で形成されているためより一層の低コスト化が可能である上、放熱性能にも優れており、しかも窓枠や基体の表面に、電極層、反射層などを微細な形状に精度良くパターン形成したり、特に短波長の光の反射効率にすぐれたAl膜などを形成したりすることができる新規な半導体発光素子搭載部材と、それを用いた発光ダイオードとを提供することにある。   The object of the present invention is that, in particular, the window frame is made of a material having better workability than before, so that the cost can be further reduced, and the heat dissipation performance is excellent. A novel semiconductor light emitting device capable of forming an electrode layer, a reflective layer, etc., in a fine shape with high precision on the surface of a substrate, or forming an Al film, etc., particularly excellent in the reflection efficiency of light having a short wavelength. It is in providing a mounting member and a light emitting diode using the same.

請求項1記載の発明は、熱伝導率が80W/mK以上で、かつ熱膨張係数が15×10−6/℃以下であり、半導体発光素子を搭載するための第1の高放熱部材を含む基体と、この基体に対して、少なくとも1層の接合層を介して接合、一体化した、半導体発光素子からの光を反射するための反射部を有する耐熱樹脂部材とを備えることを特徴とする半導体発光素子搭載部材である。 The invention according to claim 1 includes a first high heat dissipation member for mounting a semiconductor light emitting element, having a thermal conductivity of 80 W / mK or more and a thermal expansion coefficient of 15 × 10 −6 / ° C. or less. And a heat-resistant resin member having a reflecting portion for reflecting light from a semiconductor light emitting element, which is bonded to and integrated with the substrate through at least one bonding layer. It is a semiconductor light emitting element mounting member.

請求項2記載の発明は、基体が、熱伝導率が80W/mK以上で、かつ熱膨張係数が50×10−6/℃以下である第2の高放熱部材をも有しており、耐熱樹脂部材を、この第2の高放熱部材に対して、少なくとも1層の接合層を介して接合、一体化した請求項1記載の半導体発光素子搭載部材である。 In the invention described in claim 2, the substrate also has a second high heat dissipation member having a thermal conductivity of 80 W / mK or more and a thermal expansion coefficient of 50 × 10 −6 / ° C. or less. The semiconductor light-emitting element mounting member according to claim 1, wherein the resin member is joined and integrated with the second high heat dissipation member via at least one joining layer.

請求項3記載の発明は、基体が第1の高放熱部材のみからなり、耐熱樹脂部材を、この第1の高放熱部材に対して、少なくとも1層の接合層を介して接合、一体化した請求項1記載の半導体発光素子搭載部材である。   According to a third aspect of the present invention, the base body is composed only of the first high heat dissipation member, and the heat-resistant resin member is bonded and integrated with the first high heat dissipation member via at least one bonding layer. A semiconductor light emitting element mounting member according to claim 1.

請求項4記載の発明は、基体を構成する第1および第2の高放熱部材のうちの少なくとも一方に、半導体発光素子搭載のための電極層、および半導体発光素子からの光を反射するための反射層のうちの少なくとも一方として機能する金属膜を設けるとともに、この金属膜の最表面の少なくとも一部を、Ag、Alまたはこれらの合金にて形成した請求項1〜3のいずれかに記載の半導体発光素子搭載部材である。   According to a fourth aspect of the present invention, there is provided an electrode layer for mounting a semiconductor light emitting element on at least one of the first and second high heat dissipation members constituting the base, and a light for reflecting light from the semiconductor light emitting element. The metal film functioning as at least one of the reflective layers is provided, and at least a part of the outermost surface of the metal film is formed of Ag, Al, or an alloy thereof. It is a semiconductor light emitting element mounting member.

請求項5記載の発明は、耐熱樹脂部材の反射部を、当該耐熱樹脂部材の表面に形成した金属膜にて形成するとともに、この金属膜の最表面の少なくとも一部を、Ag、Alまたはこれらの合金にて形成した請求項1記載の半導体発光素子搭載部材である。   According to a fifth aspect of the present invention, the reflective portion of the heat resistant resin member is formed of a metal film formed on the surface of the heat resistant resin member, and at least a part of the outermost surface of the metal film is made of Ag, Al, or these. The semiconductor light emitting element mounting member according to claim 1, which is made of an alloy of

請求項6記載の発明は、耐熱樹脂部材の反射部を、当該耐熱樹脂部材の表面に形成した金属膜にて形成するとともに、この金属膜の、最表面の中心線平均粗さRaを1μm未満とした請求項1記載の半導体発光素子搭載部材である。   According to the sixth aspect of the present invention, the reflective portion of the heat resistant resin member is formed of a metal film formed on the surface of the heat resistant resin member, and the center line average roughness Ra of the outermost surface of the metal film is less than 1 μm. The semiconductor light-emitting element mounting member according to claim 1.

請求項7記載の発明は、インサート成形により、耐熱樹脂部材と、当該耐熱樹脂部材を貫通する、半導体発光素子への配線用の金属リードとを一体化した請求項1記載の半導体発光素子搭載部材である。   The invention according to claim 7 is the semiconductor light emitting element mounting member according to claim 1, wherein the heat resistant resin member and the metal lead for wiring to the semiconductor light emitting element penetrating the heat resistant resin member are integrated by insert molding. It is.

請求項8記載の発明は、金属リードの最表面の少なくとも一部を、Ag、Alまたはこれらの合金にて形成した請求項7記載の半導体発光素子搭載部材である。   The invention according to claim 8 is the semiconductor light emitting element mounting member according to claim 7, wherein at least a part of the outermost surface of the metal lead is formed of Ag, Al, or an alloy thereof.

請求項9記載の発明は、第1の高放熱部材を、AlN、SiC、Cu−W、Cu−Mo、Al−SiC、Si−SiC、Si、W、およびMoからなる群より選ばれた少なくとも一種を含む材料にて形成した請求項1記載の半導体発光素子搭載部材である。   The invention according to claim 9 is characterized in that the first high heat dissipation member is at least selected from the group consisting of AlN, SiC, Cu—W, Cu—Mo, Al—SiC, Si—SiC, Si, W, and Mo. The semiconductor light emitting element mounting member according to claim 1, wherein the semiconductor light emitting element mounting member is formed of a material including one kind.

請求項10記載の発明は、第2の高放熱部材を、Cu、Al、Fe、W、Mo、およびCu−Moからなる群より選ばれた少なくとも一種を含む材料にて形成した請求項2記載の半導体発光素子搭載部材である。   According to a tenth aspect of the present invention, the second high heat dissipation member is formed of a material containing at least one selected from the group consisting of Cu, Al, Fe, W, Mo, and Cu-Mo. This is a semiconductor light emitting element mounting member.

請求項11記載の発明は、耐熱樹脂部材の、260℃で60秒間の加熱後の寸法変化率が1%以下である請求項1記載の半導体発光素子搭載部材である。   The invention according to claim 11 is the semiconductor light-emitting element mounting member according to claim 1, wherein the dimensional change rate of the heat-resistant resin member after heating at 260 ° C. for 60 seconds is 1% or less.

請求項12記載の発明は、耐熱樹脂部材が平均粒径1〜10μmの無機フィラーを含んでおり、当該耐熱樹脂部材の熱膨張係数が30×10−6/℃以下である請求項1記載の半導体発光素子搭載部材である。 In the invention described in claim 12, the heat-resistant resin member contains an inorganic filler having an average particle diameter of 1 to 10 μm, and the heat expansion coefficient of the heat-resistant resin member is 30 × 10 −6 / ° C. or less. It is a semiconductor light emitting element mounting member.

請求項13記載の発明は、耐熱樹脂部材を、電離放射線の照射によって架橋させた架橋ポリエステル樹脂にて形成した請求項1記載の半導体発光素子搭載部材である。   A thirteenth aspect of the present invention is the semiconductor light-emitting element mounting member according to the first aspect, wherein the heat-resistant resin member is formed of a cross-linked polyester resin that is cross-linked by irradiation with ionizing radiation.

請求項14記載の発明は、請求項1記載の半導体発光素子搭載部材のうち第1の高放熱部材に半導体発光素子を搭載し、かつ搭載した半導体発光素子を蛍光体および保護樹脂のうちの少なくとも一方によって封止するとともに、半導体発光素子からの光の取り出し方向にレンズを配設したことを特徴とする発光ダイオードである。   According to a fourteenth aspect of the present invention, a semiconductor light emitting element is mounted on the first high heat dissipation member of the semiconductor light emitting element mounting member according to the first aspect, and the mounted semiconductor light emitting element is at least one of a phosphor and a protective resin. The light emitting diode is characterized in that it is sealed by one side and a lens is disposed in the direction of taking out light from the semiconductor light emitting element.

請求項1記載の発明によれば、半導体発光素子からの光を反射するための反射部を有する窓枠等の部材を耐熱樹脂部材にて形成しており、かかる耐熱樹脂部材は加工性に優れ、射出成形法などの種々の成形方法によって任意の形状に形成することが容易である上、射出成形法などによれば同じ形状のものを大量に製造することもできるため、半導体発光素子搭載部材の、より一層の低コスト化が可能となる。   According to invention of Claim 1, members, such as a window frame which has a reflection part for reflecting the light from a semiconductor light-emitting device, are formed with a heat resistant resin member, and this heat resistant resin member is excellent in workability. In addition, it is easy to form into an arbitrary shape by various molding methods such as an injection molding method, and a semiconductor light emitting element mounting member can be manufactured in large quantities according to the injection molding method. Further cost reduction is possible.

また請求項1記載の発明によれば、上記の耐熱樹脂部材を、熱伝導率が80W/mK以上で、かつ熱膨張係数が15×10−6/℃以下という、放熱性能に優れ、かつ半導体発光素子との熱膨張差の小さい材料からなる第1の高放熱部材を含む基体と組み合わせているため、半導体発光素子搭載部材は、放熱性能や信頼性にも優れたものとなる。 According to the invention of claim 1, the heat-resistant resin member is excellent in heat dissipation performance with a thermal conductivity of 80 W / mK or more and a thermal expansion coefficient of 15 × 10 −6 / ° C. or less, and a semiconductor. Since it is combined with the base including the first high heat dissipation member made of a material having a small difference in thermal expansion from the light emitting element, the semiconductor light emitting element mounting member is excellent in heat dissipation performance and reliability.

しかも請求項1記載の発明では、上記耐熱樹脂部材と基体とを、少なくとも1層の接合層を介して接合、一体化しているため、あらかじめ焼結した第1の高放熱部材や、あらかじめ成形した耐熱樹脂部材の表面などに、その後、耐熱樹脂部材と基体とを上記接合層を介して接合、一体化する前後いずれかの任意の工程で、電極層や反射層となる金属膜を、例えばフォトリソグラフィーなどを利用して精度良く形成することができる。このため当該電極層、反射層などを、例えば100μm以下の微細な形状にパターン形成することができる。詳しくはパターン間の間隔やパターン幅、パターンの平面形状などの最小値を100μm以下、特に50μm未満の高い精度で微細形成することができる。このため半導体発光素子のフリップチップ実装などが可能となる。また、前記のように特に短波長の光の反射率に優れるものの、めっきなどによる膜化が困難なAl膜などを形成することもできる。   In addition, in the first aspect of the present invention, the heat-resistant resin member and the base are joined and integrated through at least one joining layer, so that the first high heat dissipation member sintered in advance or molded in advance. A metal film to be used as an electrode layer or a reflective layer is formed, for example, on a surface of the heat-resistant resin member or the like in any step before or after the heat-resistant resin member and the substrate are joined and integrated via the joining layer. It can be formed with high precision using lithography or the like. For this reason, the said electrode layer, a reflection layer, etc. can be patterned in the fine shape of 100 micrometers or less, for example. Specifically, the minimum values such as the interval between patterns, the pattern width, and the planar shape of the pattern can be finely formed with high accuracy of 100 μm or less, particularly less than 50 μm. For this reason, it is possible to perform flip-chip mounting of a semiconductor light emitting element. Further, as described above, it is possible to form an Al film or the like that is particularly excellent in the reflectance of light having a short wavelength but is difficult to form by plating or the like.

また請求項2記載の発明によれば、基体を、上記第1の高放熱部材と、それよりも安価な、熱伝導率が80W/mK以上で、かつ熱膨張係数が50×10−6/℃以下である第2の高放熱部材とで形成するとともに、耐熱樹脂部材を、当該第2の高放熱部材に対して接合、一体化しており、第1の高放熱部材は、少なくとも半導体発光素子を搭載しうる大きさがあればよく、できる限り小型化することができるため、半導体発光素子搭載部材の、より一層の低コスト化が可能となる。 According to the invention described in claim 2, the substrate is made of the first high heat dissipation member and cheaper than that, having a thermal conductivity of 80 W / mK or more and a thermal expansion coefficient of 50 × 10 −6 / The heat-resistant resin member is joined and integrated with the second high heat dissipation member, and the first high heat dissipation member is at least a semiconductor light emitting element. The size of the semiconductor light-emitting element mounting member can be further reduced because the size can be reduced as much as possible.

一方、請求項3記載の発明によれば、基体を、第1の高放熱部材のみで形成して、耐熱樹脂部材を、この第1の高放熱部材に対して、少なくとも1層の接合層を介して接合、一体化しており、半導体発光素子搭載部材の構造や組み立て工程を簡略化できるため、やはりより一層の低コスト化が可能となる。   On the other hand, according to the third aspect of the present invention, the base body is formed of only the first high heat dissipation member, and the heat resistant resin member is provided with at least one bonding layer with respect to the first high heat dissipation member. Since the structure and the assembly process of the semiconductor light emitting element mounting member can be simplified, the cost can be further reduced.

請求項4記載の発明によれば、基体を構成する第1および第2の高放熱部材のうちの少なくとも一方に金属膜を設けるとともに、その最表面の少なくとも一部を、半導体発光素子からの光、中でも波長600nm以下の短波長の光を高い反射率で反射することができる、Ag、Alまたはこれらの合金にて形成しているため、半導体発光素子の発光効率、特に蛍光体と組み合わせて白色発光させるために用いる短波長の半導体発光素子の発光効率を向上できるという利点がある。   According to invention of Claim 4, while providing a metal film in at least one of the 1st and 2nd high thermal radiation member which comprises a base | substrate, at least one part of the outermost surface is made into the light from a semiconductor light-emitting device. In particular, it is made of Ag, Al, or an alloy thereof that can reflect light having a short wavelength of 600 nm or less with high reflectance. There is an advantage that the light emission efficiency of the short-wavelength semiconductor light-emitting element used for light emission can be improved.

また請求項5記載の発明によれば、耐熱樹脂部材の反射部を金属膜にて形成するとともに、この金属膜の最表面の少なくとも一部を、上記Ag、Alまたはこれらの合金にて形成しているため、同様に半導体発光素子の発光効率、特に短波長の半導体発光素子の発光効率を向上することができる。   According to the invention of claim 5, the reflective portion of the heat-resistant resin member is formed of a metal film, and at least a part of the outermost surface of the metal film is formed of the Ag, Al, or an alloy thereof. Therefore, similarly, the light emission efficiency of the semiconductor light emitting element, particularly the light emission efficiency of the short wavelength semiconductor light emitting element can be improved.

さらに請求項6記載の発明によれば、上記反射部としての金属膜の、最表面の中心線平均粗さRaを1μm未満として光沢度を向上しているため、やはり半導体発光素子の発光効率を、この場合は発光波長にかかわらず、向上することができる。   Furthermore, according to the invention described in claim 6, since the glossiness is improved by setting the center line average roughness Ra of the outermost surface of the metal film as the reflective portion to less than 1 μm, the luminous efficiency of the semiconductor light emitting device is also improved. In this case, it can be improved regardless of the emission wavelength.

請求項7記載の発明によれば、耐熱樹脂部材と、当該耐熱樹脂部材を貫通する金属リードとを、インサート成形によって1工程で一体形成できるため、かかる金属リードを有する半導体発光素子搭載部材のさらなる低コスト化が可能である。   According to the seventh aspect of the present invention, since the heat-resistant resin member and the metal lead penetrating the heat-resistant resin member can be integrally formed in one step by insert molding, the semiconductor light-emitting element mounting member having such a metal lead is further provided. Cost reduction is possible.

また請求項8記載の発明では、上記金属リードの表面を、前記Ag、Alまたはこれらの合金にて形成しているため、この場合もやはり半導体発光素子の発光効率、特に短波長の半導体発光素子の発光効率を向上することができる。   In the invention according to claim 8, since the surface of the metal lead is formed of the Ag, Al or an alloy thereof, the light emission efficiency of the semiconductor light emitting device, in particular, the semiconductor light emitting device having a short wavelength is also used in this case. The luminous efficiency of can be improved.

第1の高放熱部材を形成する、前述した、熱伝導率が80W/mK以上で、かつ熱膨張係数が15×10−6/℃以下という放熱性能を満足する材料としては、請求項9に記載したように、AlN、SiC、Cu−W、Cu−Mo、Al−SiC、Si−SiC、Si、W、およびMoからなる群より選ばれた少なくとも一種を含む材料を用いるのが好ましい。 As the material that forms the first high heat dissipation member and satisfies the heat dissipation performance described above, which has a thermal conductivity of 80 W / mK or more and a thermal expansion coefficient of 15 × 10 −6 / ° C. or less, As described, it is preferable to use a material containing at least one selected from the group consisting of AlN, SiC, Cu—W, Cu—Mo, Al—SiC, Si—SiC, Si, W, and Mo.

また第2の高放熱部材を形成する、熱伝導率が80W/mK以上で、かつ熱膨張係数が50×10−6/℃以下という放熱性能を満足する材料としては、請求項10に記載したように、Cu、Al、Fe、W、Mo、およびCu−Moからなる群より選ばれた少なくとも一種を含む材料を用いるのが好ましい。 In addition, the material that forms the second high heat dissipation member and has a heat conductivity of 80 W / mK or more and a thermal expansion coefficient of 50 × 10 −6 / ° C. or less is described in claim 10. Thus, it is preferable to use a material containing at least one selected from the group consisting of Cu, Al, Fe, W, Mo, and Cu—Mo.

さらに耐熱樹脂部材としては、例えば鉛フリーのはんだリフローによる、半導体発光素子搭載部材の、配線基板等への実装などを可能とする耐熱性を確保するため、請求項11に記載したように、260℃で60秒間の加熱後の寸法変化率が1%以下であるものを用いるのが好ましい。   Furthermore, as the heat-resistant resin member, in order to ensure heat resistance that enables mounting of the semiconductor light-emitting element mounting member on a wiring board or the like by, for example, lead-free solder reflow, as described in claim 11, 260 It is preferable to use one having a dimensional change rate of 1% or less after heating at 60 ° C. for 60 seconds.

また、かかる耐熱樹脂部材としては、その熱膨張係数を第1および/または第2の高放熱部材の熱膨張係数に近づけることによって、上記はんだリフローによる半導体発光素子搭載部材の実装時や、高出力の半導体発光素子を発光させる使用時などの熱履歴による熱応力を低減するため、請求項12に記載したように、平均粒径1〜10μmの無機フィラーを含んでおり、熱膨張係数が30×10−6/℃以下であるものを用いるのが好ましい。 Moreover, as such a heat-resistant resin member, the thermal expansion coefficient thereof is brought close to the thermal expansion coefficient of the first and / or second high heat dissipation member, so that the semiconductor light-emitting element mounting member is mounted by the above-described solder reflow or a high output. In order to reduce thermal stress due to thermal history during use, such as when the semiconductor light-emitting element is used, the inorganic filler having an average particle diameter of 1 to 10 μm is included and the thermal expansion coefficient is 30 ×. It is preferable to use one having a temperature of 10 −6 / ° C. or lower.

また上記の耐熱樹脂部材としては、所定の形状に成形するための加工性と、成形後の耐熱性とを考慮すると、架橋性を有する未架橋のポリエステル樹脂を、耐熱樹脂部材の形状に成形後、電離放射線の照射によって架橋させた、請求項13記載の架橋ポリエステル樹脂が好ましい。   In addition, as the above heat-resistant resin member, in consideration of workability for molding into a predetermined shape and heat resistance after molding, an uncrosslinked polyester resin having crosslinkability is molded into the shape of the heat-resistant resin member. The crosslinked polyester resin according to claim 13, which is crosslinked by irradiation with ionizing radiation.

さらに請求項14記載の発光ダイオードは、上記の半導体発光素子搭載部材を使用したものゆえ、低コスト化が可能である上、当該半導体発光素子搭載部材が放熱性能に優れるため、特に高出力の半導体発光素子を組み込んだ場合に、発光効率等を向上するとともに、長寿命化が可能となる。   Furthermore, since the light-emitting diode according to claim 14 uses the semiconductor light-emitting element mounting member, the cost can be reduced and the semiconductor light-emitting element mounting member has excellent heat dissipation performance. When a light emitting element is incorporated, the light emission efficiency and the like can be improved and the life can be extended.

図1(a)は、この発明の半導体発光素子搭載部材BLの、実施の形態の一例を示す断面図である。また図2は、上記例の半導体発光素子搭載部材BLを基材1と耐熱樹脂部材2とに分解した状態を示す一部切り欠き斜視図である。   FIG. 1A is a cross-sectional view showing an example of an embodiment of a semiconductor light emitting element mounting member BL of the present invention. FIG. 2 is a partially cutaway perspective view showing a state in which the semiconductor light emitting element mounting member BL of the above example is disassembled into a base material 1 and a heat resistant resin member 2.

これらの図に見るように、この例の半導体発光素子搭載部材BLのうち基材1は、平面形状が矩形状である平板状の第2の高放熱部材12と、当該第2の高放熱部材12の、図において上面120の面方向中央に、接合層AL1を介して接合、一体化された、上面110を半導体発光素子〔図1(b)中のLE1〕の搭載面とした、同様に平面形状が矩形状である平板状で、かつ上記第2の高放熱部材12よりも面方向の大きさが小さい第1の高放熱部材11とを備えている。   As seen in these drawings, the base material 1 of the semiconductor light emitting element mounting member BL of this example includes a flat plate-like second high heat dissipation member 12 having a rectangular planar shape, and the second high heat dissipation member. 12, the upper surface 110, which is joined and integrated via the bonding layer AL1 at the center in the surface direction of the upper surface 120 in the drawing, is used as the mounting surface of the semiconductor light emitting device [LE1 in FIG. 1B]. The first high heat radiating member 11 is a flat plate having a rectangular planar shape and smaller in the surface direction than the second high heat radiating member 12.

上記のうち第1の高放熱部材11は、前記のように熱伝導率が80W/mK以上で、かつ熱膨張係数が15×10−6/℃以下である必要がある。熱伝導率が80W/mK未満では放熱性が不十分であるため、搭載した半導体発光素子LE1が、発光時の自身の発熱によって早期に劣化、損傷してしまう。 Of the above, the first high heat dissipation member 11 needs to have a thermal conductivity of 80 W / mK or more and a thermal expansion coefficient of 15 × 10 −6 / ° C. or less as described above. When the thermal conductivity is less than 80 W / mK, the heat dissipation is insufficient, and thus the mounted semiconductor light emitting device LE1 is deteriorated and damaged early due to its own heat generation during light emission.

また熱膨張係数が15×10−6/℃を超える場合には、半導体発光素子LE1との熱膨張係数の差が大きくなりすぎる。そして第1の高放熱部材11の上面110に半導体発光素子LE1を実装する際の熱履歴や、半導体発光素子搭載部材BLを配線基板等に実装する際の、前述したはんだリフローなどによる熱履歴、あるいは半導体発光素子LE1の発光時の発熱などによって第1の高放熱部材11が膨張収縮した際に過大な応力が加わるなどして、半導体発光素子LE1が破損したり、両者間の接合が外れたりするおそれがある。 On the other hand, when the thermal expansion coefficient exceeds 15 × 10 −6 / ° C., the difference in thermal expansion coefficient from the semiconductor light emitting element LE1 becomes too large. And the thermal history when mounting the semiconductor light emitting element LE1 on the upper surface 110 of the first high heat dissipation member 11, the thermal history due to the solder reflow or the like when mounting the semiconductor light emitting element mounting member BL on the wiring board, Alternatively, when the first high heat dissipation member 11 expands and contracts due to heat generated during light emission of the semiconductor light emitting element LE1, the semiconductor light emitting element LE1 is damaged or the joint between the two is disconnected. There is a risk.

上記の条件を満足する第1の高放熱部材11を形成しうる材料としては、AlN、SiC、Cu−W、Cu−Mo、Al−SiC、Si−SiC、Si、W、Moなどを含む材料を挙げることができる。   Materials that can form the first high heat dissipation member 11 that satisfies the above conditions include materials including AlN, SiC, Cu—W, Cu—Mo, Al—SiC, Si—SiC, Si, W, and Mo. Can be mentioned.

なお機械的強度などの、第1の高放熱部材11の他の物性との兼ね合いや、あるいは製造コストなどを考慮すると、当該第1の高放熱部材11の熱伝導率は、上記の範囲内でも特に300W/mK以下とするのが好ましい。また第1の高放熱部材11の熱膨張係数は、半導体発光素子LE1との熱膨張差をできるだけ小さくすることを考慮すると、上記の範囲内でも特に4×10−6〜7×10−6/℃とするのが好ましい。 In consideration of the balance with other physical properties of the first high heat radiating member 11 such as mechanical strength, or the manufacturing cost, the thermal conductivity of the first high heat radiating member 11 is within the above range. In particular, it is preferably 300 W / mK or less. Further, the coefficient of thermal expansion of the first high heat radiating member 11 is particularly 4 × 10 −6 to 7 × 10 −6 / even within the above range in consideration of making the difference in thermal expansion with the semiconductor light emitting element LE1 as small as possible. It is preferable to set it as ° C.

また第1の高放熱部材11の、面方向の大きさは、搭載する半導体発光素子LE1の、面方向の大きさの4倍以下であるのが好ましい。第1の高放熱部材11の、面方向の大きさが上記の範囲を超える場合には、基材1を第1および第2の高放熱部材11、12で構成して、第1の高放熱部材11を小型化したことによるコストダウンの効果が不十分になるおそれがある。なお第1の高放熱部材11の、面方向の大きさは、半導体発光素子LE1を搭載する際の作業性を向上することを考慮すると、当該半導体発光素子LE1の、面方向の大きさの1.05倍以上であるのが好ましい。   Moreover, it is preferable that the magnitude | size of the surface direction of the 1st high heat radiating member 11 is 4 times or less of the magnitude | size of the surface direction of semiconductor light emitting element LE1 mounted. When the size of the first high heat dissipation member 11 in the surface direction exceeds the above range, the base 1 is composed of the first and second high heat dissipation members 11, 12, and the first high heat dissipation member 11 is configured. There exists a possibility that the effect of the cost reduction by having miniaturized the member 11 may become inadequate. Note that the size of the first high heat dissipation member 11 in the surface direction is one of the size in the surface direction of the semiconductor light emitting element LE1 in consideration of improving workability when the semiconductor light emitting element LE1 is mounted. .05 times or more is preferable.

また第2の高放熱部材12は、これも前記のように熱伝導率が80W/mK以上で、かつ熱膨張係数が50×10−6/℃以下であるのが好ましい。熱伝導率が80W/mK未満では放熱性が不十分であるため、第1の高放熱部材11上に搭載した半導体発光素子LE1が、発光時の自身の発熱によって早期に劣化、損傷してしまうおそれがある。 As described above, the second high heat dissipation member 12 preferably has a thermal conductivity of 80 W / mK or more and a thermal expansion coefficient of 50 × 10 −6 / ° C. or less. If the thermal conductivity is less than 80 W / mK, the heat dissipation is insufficient, and thus the semiconductor light emitting device LE1 mounted on the first high heat dissipation member 11 is deteriorated and damaged early due to its own heat generation during light emission. There is a fear.

また熱膨張係数が50×10−6/℃を超える場合には、第1の高放熱部材11との熱膨張係数の差が大きくなりすぎる。そして第1の高放熱部材11の上面110に半導体発光素子LE1を実装する際の熱履歴や、半導体発光素子搭載部材BLを配線基板等に実装する際の、はんだリフローなどによる熱履歴、あるいは半導体発光素子LE1の発光時の発熱などによって第2の高放熱部材12が膨張収縮した際に過大な応力が加わるなどして、半導体発光素子LE1や第1の高放熱部材11が破損したり、上記3者間の、いずれかの接合が外れたりするおそれがある。 When the thermal expansion coefficient exceeds 50 × 10 −6 / ° C., the difference in thermal expansion coefficient with the first high heat dissipation member 11 becomes too large. The thermal history when the semiconductor light emitting element LE1 is mounted on the upper surface 110 of the first high heat dissipation member 11, the thermal history due to solder reflow or the like when the semiconductor light emitting element mounting member BL is mounted on a wiring board, or the like When the second high heat radiating member 12 expands and contracts due to heat generated during light emission of the light emitting element LE1, the semiconductor light emitting element LE1 or the first high heat radiating member 11 is damaged or the like. There is a risk that one of the three members will be disconnected.

上記の条件を満足する第2の高放熱部材12を形成しうる材料としては、Cu、Al、Fe、W、Mo、Cu−Moなどの金属を挙げることができる。なお基材1を第1および第2の高放熱部材11、12に分けたことによる、前述したコストダウンの効果をより一層、効果的なものとするためには、第1の高放熱部材11をW、Mo、Cu−Moなどの金属で形成する場合、第2の高放熱部材12は、上記例示のうちW、Mo、Cu−Mo以外の他の金属にて形成するのが好ましい。   Examples of a material that can form the second high heat dissipation member 12 that satisfies the above conditions include metals such as Cu, Al, Fe, W, Mo, and Cu—Mo. In order to make the above-described cost reduction effect by dividing the base material 1 into the first and second high heat dissipation members 11 and 12 more effective, the first high heat dissipation member 11 is used. Is formed of a metal such as W, Mo, or Cu—Mo, the second high heat dissipation member 12 is preferably formed of a metal other than W, Mo, or Cu—Mo among the above examples.

また機械的強度などの、第2の高放熱部材12の他の物性との兼ね合いや、あるいは製造コストなどを考慮すると、当該第2の高放熱部材12の熱伝導率は、上記の範囲内でも特に400W/mK以下とするのが好ましく、熱膨張係数は、上記の範囲内でも特に15×10−6〜25×10−6/℃とするのが好ましい。 In consideration of the balance with other physical properties of the second high heat dissipation member 12, such as mechanical strength, or the manufacturing cost, the thermal conductivity of the second high heat dissipation member 12 is also within the above range. In particular, it is preferably 400 W / mK or less, and the thermal expansion coefficient is particularly preferably 15 × 10 −6 to 25 × 10 −6 / ° C. even within the above range.

耐熱樹脂部材2は、外形が、上記第2の高放熱部材12の平面形状と一致する矩形状に形成され、当該第2の高放熱部材12の上面120に、接合層AL2を介して接合、一体化されたものであって、中央に、第2の高放熱部材12と接合、一体化した状態で、第1の高放熱部材11と、その上面110に搭載される半導体発光素子LE1とを収容する凹部を構成するための通孔21を有している。   The heat-resistant resin member 2 is formed in a rectangular shape whose outer shape matches the planar shape of the second high heat dissipation member 12, and is bonded to the upper surface 120 of the second high heat dissipation member 12 via a bonding layer AL2. In the center, the first high heat dissipation member 11 and the semiconductor light emitting element LE1 mounted on the upper surface 110 thereof are joined and integrated with the second high heat dissipation member 12 at the center. It has a through hole 21 for constituting a recess to be accommodated.

また通孔21は、そのうち下部内周面21aが、第1の高放熱部材11を囲む矩形状とされ、上部内周面21bが、半導体発光素子LE1からの光を上部開口21cを通して図において上方に反射させるために、凹部の底面(第2の高放熱部材12の上面120)側から開口21c側へ向けて外方に拡がったすり鉢状とされている。また、上記通孔21のうちすり鉢状の上部内周面21bと、それに続く耐熱樹脂部材2の上面20には、反射部としての金属膜22を形成してある。なお耐熱樹脂部材2の上面20には、後述するようにレンズLSや封止キャップが接着される場合があり、その場合には接着強度を高めるために、当該上面20上に金属膜22を形成しないこともある。   In addition, the through hole 21 has a lower inner peripheral surface 21a having a rectangular shape surrounding the first high heat dissipation member 11, and an upper inner peripheral surface 21b passes light from the semiconductor light emitting element LE1 upward through the upper opening 21c in the drawing. In order to reflect it, it is formed in a mortar shape that spreads outward from the bottom surface of the recess (the upper surface 120 of the second high heat dissipation member 12) toward the opening 21c. In addition, a metal film 22 as a reflecting portion is formed on the mortar-shaped upper inner peripheral surface 21 b of the through hole 21 and the upper surface 20 of the heat-resistant resin member 2 subsequent thereto. Note that a lens LS and a sealing cap may be bonded to the upper surface 20 of the heat-resistant resin member 2 as will be described later. In this case, a metal film 22 is formed on the upper surface 20 in order to increase the adhesive strength. Sometimes it doesn't.

金属膜22は単層構造でも、複数層の積層構造でも良いが、その最表面の少なくとも一部は、前記のようにAg、Alまたはこれらの合金にて形成するのが好ましい。中でもAlは、特に450nm以下の短波長の光の反射率に優れており、蛍光体と組み合わせて白色発光させるために用いる、短波長の半導体発光素子LE1の発光効率を向上できる点で好ましい。   The metal film 22 may have a single-layer structure or a multi-layer structure, but at least a part of the outermost surface is preferably formed of Ag, Al, or an alloy thereof as described above. Among them, Al is particularly excellent in the reflectance of light having a short wavelength of 450 nm or less, and is preferable in terms of improving the light emission efficiency of the short wavelength semiconductor light emitting device LE1 used for emitting white light in combination with the phosphor.

また金属膜22は、これも前記のように、最表面の中心線平均粗さRaを1μm未満の光沢面に仕上げるのが好ましい。中心線平均粗さが1μmを超える場合には、金属膜22の光沢度が低下して、半導体発光素子LE1の発光効率を向上する効果が得られないおそれがある。金属膜22の、最表面の中心線平均粗さを上記の範囲内とするには、従来公知の種々の方法を採用することができるが、特にMID(Molded Interconnect Device:3次元射出成形回路部品)の製造方法を採用するのが好ましい。詳細は後述する。   Also, as described above, the metal film 22 is preferably finished to a glossy surface having a center line average roughness Ra of the outermost surface of less than 1 μm. When the center line average roughness exceeds 1 μm, the glossiness of the metal film 22 is lowered, and the effect of improving the light emission efficiency of the semiconductor light emitting element LE1 may not be obtained. In order to set the center line average roughness of the outermost surface of the metal film 22 within the above range, various conventionally known methods can be employed. In particular, MID (Molded Interconnect Device: three-dimensional injection molded circuit component) It is preferable to employ the production method of Details will be described later.

また通孔21の下部内周面21aと上部内周面21bとの境界部分には、耐熱樹脂部材2を貫通させて、当該耐熱樹脂部材2の外部と通孔21内とを繋ぐように、半導体発光素子LE1への配線用の金属リード3を2本配設してある。かかる金属リード3は、前記のようにインサート成形によって耐熱樹脂部材2と一体化するのが、製造工程を簡略化できる点で好ましい。   In addition, the heat-resistant resin member 2 is passed through the boundary portion between the lower inner peripheral surface 21a and the upper inner peripheral surface 21b of the through hole 21 so as to connect the outside of the heat-resistant resin member 2 and the inside of the through hole 21. Two metal leads 3 for wiring to the semiconductor light emitting element LE1 are provided. It is preferable that the metal lead 3 is integrated with the heat-resistant resin member 2 by insert molding as described above because the manufacturing process can be simplified.

詳しくは、耐熱樹脂部材2の外形に対応した型窩を有するとともに、その所定の位置に金属リード3を保持する保持部を設けた金型を使用し、かかる保持部に金属リード3を保持した状態で、型窩内に、耐熱樹脂部材2のもとになる加熱溶融状態の樹脂を注入して冷却、固化させたのち、型から取り出した耐熱樹脂部材2を必要に応じてさらに架橋させることによって、金属リード3が所定の位置に一体化された耐熱樹脂部材2を製造することができる。   Specifically, a mold having a mold cavity corresponding to the outer shape of the heat-resistant resin member 2 and having a holding portion for holding the metal lead 3 at a predetermined position is used, and the metal lead 3 is held in the holding portion. In this state, after injecting a heat-melted resin that is the base of the heat-resistant resin member 2 into the mold cavity and cooling and solidifying it, the heat-resistant resin member 2 taken out from the mold is further cross-linked as necessary. Thus, the heat-resistant resin member 2 in which the metal lead 3 is integrated at a predetermined position can be manufactured.

また金属リード3は、これも前記のように、その最表面の少なくとも一部、具体的には図において上面側の、耐熱樹脂部材2から通孔2内へ突出した部分の表面などを、Ag、Alまたはこれらの合金にて形成するのが好ましい。また金属リード3の、耐熱樹脂部材2から外方へ突出した部分のうち配線が接続される接続部の表面などは、接続の信頼性を向上するためにAuなどで形成してもよい。   Also, as described above, the metal lead 3 has at least a part of its outermost surface, specifically, a surface of a portion protruding from the heat-resistant resin member 2 into the through hole 2 on the upper surface side in the drawing, and the like. , Al or an alloy thereof is preferable. Further, the surface of the connecting portion to which the wiring is connected among the portions of the metal lead 3 protruding outward from the heat-resistant resin member 2 may be formed of Au or the like in order to improve the connection reliability.

金属リード3の最表面を上記の金属で形成するには、その全体を上記いずれかの金属で形成してもよいし、表面に上記いずれかの金属をめっきしてもよいし、この両方を組み合わせてもよい。   In order to form the outermost surface of the metal lead 3 with the above metal, the whole may be formed with any of the above metals, or any one of the above metals may be plated on the surface. You may combine.

耐熱樹脂部材2は、インサート成形などの成形が可能で、なおかつ成形後に、前記のように260℃で60秒間の加熱後の寸法変化率が1%以下である耐熱樹脂部材2を形成しうる種々の樹脂によって形成することができるが、特に電離放射線の照射によって架橋させた架橋ポリエステル樹脂にて形成するのが好ましい。   The heat-resistant resin member 2 can be molded by insert molding or the like, and can form the heat-resistant resin member 2 having a dimensional change rate of 1% or less after heating at 260 ° C. for 60 seconds as described above. In particular, it is preferable to form a crosslinked polyester resin that has been crosslinked by irradiation with ionizing radiation.

また、かかる架橋ポリエステル樹脂のもとになる、電離放射線の照射によって架橋可能なポリエステル樹脂としては、例えばポリブチレンテレフタレート(PBT)、ポリエチレンテレフタレート(PET)、ポリブチレンナフタレート(PBN)、ポリエチレンナフタレート(PEN)、ポリシクロヘキシレンテレフタレート(PCT)、ポリシクロへキシレンテレフタレート・ポリエチレンテレフタレート共重合体(PCT−PET)、ポリシクロへキシレンジメチレンテレフタレート・イソフタレート共重合体(PCTA)、ポリブチレンサクシネート(PBS)等を挙げることができる。   Examples of the polyester resin that can be cross-linked by irradiation with ionizing radiation include the polybutylene terephthalate (PBT), polyethylene terephthalate (PET), polybutylene naphthalate (PBN), and polyethylene naphthalate. (PEN), polycyclohexylene terephthalate (PCT), polycyclohexylene terephthalate / polyethylene terephthalate copolymer (PCT-PET), polycyclohexylene dimethylene terephthalate / isophthalate copolymer (PCTA), polybutylene succinate (PBS) And the like.

上記ポリエステル樹脂はそれぞれ単独で、あるいは2種以上を組み合わせて使用することができる。ポリエステル樹脂は、例えば以下のような方法により、電離放射線の照射により架橋可能な状態とすることができる。
(1) 多官能性モノマーを配合する方法
The above polyester resins can be used alone or in combination of two or more. The polyester resin can be brought into a crosslinkable state by irradiation with ionizing radiation, for example, by the following method.
(1) Method of blending polyfunctional monomer

ポリエステル樹脂に多官能性モノマーを配合することにより、電離放射線の照射によって架橋可能な状態とすることができる。多官能性モノマーとしては、例えばジエチレングリコールジアクリレートなどのジアクリレート類;エチレングリコールジメタクリレート、ジプロヒレングリコールジメタクリレードなどのジメタクリレート類;トリメチロールエタントリアクリレート、トリメチロールプロパントリアクリレートなどのトリアクリレート類;トリメチロールエタントリメタクリレート、トリメチロールプロパントリメタクリレートなどのトリメタクリレート類;トリアリルシアヌレート、トリアリルイソシアヌレートなどの(イソ)シアヌレート類などを挙げることができる。中でも特にトリアリルイソシアヌレート、トリメチロールプロパントリメタクリレートが好ましい。   By mix | blending a polyfunctional monomer with a polyester resin, it can be made the state which can be bridge | crosslinked by irradiation of ionizing radiation. Examples of the multifunctional monomer include diacrylates such as diethylene glycol diacrylate; dimethacrylates such as ethylene glycol dimethacrylate and diprohylene glycol dimethacrylate; triacrylates such as trimethylolethane triacrylate and trimethylolpropane triacrylate And trimethacrylates such as trimethylolethane trimethacrylate and trimethylolpropane trimethacrylate; (iso) cyanurates such as triallyl cyanurate and triallyl isocyanurate; Of these, triallyl isocyanurate and trimethylolpropane trimethacrylate are particularly preferable.

多官能性モノマーの配合量は、ポリエステル樹脂100重量部に対して0.1〜20重量部、中でも0.5〜15重量部、特に1〜10重量部とするのが好ましい。多官能性モノマーの配合量が少なすぎると、電離放射線を照射してもポリエステル樹脂の架橋の程度が不十分となることがある。そして架橋が不十分であると、前記の寸法変化率を維持することができず、耐はんだリフロー性を満足することが困難になる。逆に多官能性モノマーの配合量が多すぎると、ポリエステル樹脂との溶融混合が困難となり、さらには成形時のバリが多くなるため好ましくない。
(2) 重合性官能基を導入する方法
The compounding amount of the polyfunctional monomer is preferably 0.1 to 20 parts by weight, more preferably 0.5 to 15 parts by weight, and particularly preferably 1 to 10 parts by weight with respect to 100 parts by weight of the polyester resin. If the blending amount of the polyfunctional monomer is too small, the degree of crosslinking of the polyester resin may become insufficient even when irradiated with ionizing radiation. If the crosslinking is insufficient, the dimensional change rate cannot be maintained, and it becomes difficult to satisfy the solder reflow resistance. On the other hand, if the amount of the polyfunctional monomer is too large, melt mixing with the polyester resin becomes difficult, and further, burrs during molding increase, which is not preferable.
(2) Method of introducing polymerizable functional group

ポリエステル樹脂と多官能性有機化合物とを反応させて、ポリエステル樹脂中に重合性官能基を導入することにより、電離放射線の照射によって架橋可能な状態とすることができる。多官能性有機化合物としては、同一分子内にビニル基、アリル基、アクリロイル基、メタクリロイル基などの重合性官能基と、アミノ基、ヒドロキシル基、エポキシ基(グリシジル基)、カルボキシル酸基、酸無水物基などの官能基とを有する有機化合物を使用する。   By reacting the polyester resin with the polyfunctional organic compound and introducing a polymerizable functional group into the polyester resin, the polyester resin can be crosslinked by irradiation with ionizing radiation. As polyfunctional organic compounds, polymerizable functional groups such as vinyl group, allyl group, acryloyl group, methacryloyl group, amino group, hydroxyl group, epoxy group (glycidyl group), carboxylic acid group, acid anhydride in the same molecule An organic compound having a functional group such as a physical group is used.

このような多官能性有機化合物としては、例えばグリシジルアクリレート、グリシジルメタクリレート、アリルグリシジルエーテル、2−メチルアリルグリシジルエーテル、p−グリシジルスチレン、o−、m−またはp−アリルフェノールのグリシジルエーテル、3,4−エポキシ−1−ブテン、3,4−エポキシ−3−メチル−1−ブテン、3,4−エポキシ−1−ペンテン、5,6−エポキシ−1−ヘキセン、クロトン酸、無水マレイン酸、無水クロトン酸、ウンデシレン酸、β−メタクリロイルオキシエチルハイドロジェンサクシネート、2−ヒドロキシエチルアクリレート、2−ヒドロキシエチルメタクリレート、3−ヒドロキシプロピルアクリレート、3−ヒドロキシプロピルメタクリレート、プロピレングリコールモノアクリレート、プロピレングリコールモノメタクリレート、アリルアルコール、メタクリル酸ジメチルアミノエチル、メ夕クリル酸tert−ブチルアミノエチルなどを挙げることができる。   Examples of such polyfunctional organic compounds include glycidyl acrylate, glycidyl methacrylate, allyl glycidyl ether, 2-methylallyl glycidyl ether, p-glycidyl styrene, o-, m- or p-allylphenol glycidyl ether, 3, 4-epoxy-1-butene, 3,4-epoxy-3-methyl-1-butene, 3,4-epoxy-1-pentene, 5,6-epoxy-1-hexene, crotonic acid, maleic anhydride, anhydrous Crotonic acid, undecylenic acid, β-methacryloyloxyethyl hydrogen succinate, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 3-hydroxypropyl acrylate, 3-hydroxypropyl methacrylate, propylene glycol monoacrylate , Mention may be made of propylene glycol monomethacrylate, allyl alcohol, dimethylaminoethyl methacrylate, main evening tert- butylaminoethyl acrylic acid and the like.

これらの多官能性有機化合物は、それぞれ単独で、あるいは2種以上を組み合わせて使用することができる。中でも特にグリシジルメタクリレート、β−メタクリロイルオキシエチルハイドロジェンサクシネートが好ましい。ポリエステル樹脂と多官能性有機化合物とを反応させるには、両者を溶融混合する方法が好ましい。溶融混合に除し、他の添加剤成分を一緒に混合することもできる。   These polyfunctional organic compounds can be used alone or in combination of two or more. Of these, glycidyl methacrylate and β-methacryloyloxyethyl hydrogen succinate are particularly preferable. In order to react the polyester resin and the polyfunctional organic compound, a method in which both are melt mixed is preferable. Apart from melt mixing, other additive components can also be mixed together.

多官能性有機化合物の使用量は、ポリエステル樹脂100重量部に対して0.1〜20重量部、中でも0.5〜15重量部、特に1〜10重量部とするのが好ましい。多官能性有機化合物の使用量が少なすぎると、電離放射線の照射による架橋の程度が不十分となることがある。逆に多官能性有機化合物の使用量が多すぎると、ポリエステル樹脂との溶融混合が困難となり、さらには成形時のバリが多くなるため好ましくない。
(3) 主鎖に炭素−炭素二重結合を導入する方法
The amount of the polyfunctional organic compound used is preferably 0.1 to 20 parts by weight, more preferably 0.5 to 15 parts by weight, and particularly preferably 1 to 10 parts by weight with respect to 100 parts by weight of the polyester resin. If the amount of the polyfunctional organic compound used is too small, the degree of crosslinking by irradiation with ionizing radiation may be insufficient. Conversely, if the amount of the polyfunctional organic compound used is too large, melt mixing with the polyester resin becomes difficult, and further, burrs during molding increase, which is not preferable.
(3) Method of introducing a carbon-carbon double bond into the main chain

ポリエステル樹脂の重合段階において、不飽和ジオールまたは不飽和ジカルボン酸を共重合して、主鎖に炭素−炭素二重結合を有するポリエステル樹脂を合成することにより、電離放射線の照射によって架橋可能な状態とすることができる。不飽和ジオールとしては、例えば2−ブテン−1,4−ジオール等を挙げることができる。また不飽和カルボン酸としては、例えばフマル酸、マレイン酸、イタコン酸、シトラコン酸などの不飽和脂肪族ジカルボン酸やこれらのアルキルエステル、これらの酸無水物などを挙げることができる。   In the polymerization stage of the polyester resin, by copolymerizing an unsaturated diol or unsaturated dicarboxylic acid to synthesize a polyester resin having a carbon-carbon double bond in the main chain, it can be crosslinked by irradiation with ionizing radiation. can do. Examples of the unsaturated diol include 2-butene-1,4-diol. Examples of the unsaturated carboxylic acid include unsaturated aliphatic dicarboxylic acids such as fumaric acid, maleic acid, itaconic acid, and citraconic acid, alkyl esters thereof, and acid anhydrides thereof.

不飽和ジオールまたは不能和ジカルボン酸の共重合割合は、ジオール成分またはジカルボン酸成分を基準として1〜20モル%、特に1〜10モル%とするのが好ましい。不飽和ジオールまたは不飽和ジカルボン酸の共重合割合が小さすぎると、電離放射線の照射による架橋の程度が不十分となって、十分な耐熱性を得ることが難しくなり、逆に大きすぎると、ポリエステル樹脂の融点が低下して耐熱性が低下することがある。不飽和ジオールと不飽和ジカルボン酸は、両者を併用してもよい。
(4) 前記方法の組み合わせ
The copolymerization ratio of the unsaturated diol or the unsaturated dicarboxylic acid is preferably 1 to 20 mol%, particularly preferably 1 to 10 mol% based on the diol component or dicarboxylic acid component. If the copolymerization ratio of the unsaturated diol or unsaturated dicarboxylic acid is too small, the degree of crosslinking due to irradiation with ionizing radiation becomes insufficient, making it difficult to obtain sufficient heat resistance. The melting point of the resin may decrease and the heat resistance may decrease. Both unsaturated diol and unsaturated dicarboxylic acid may be used in combination.
(4) Combination of the above methods

上記(1)〜(3)の方法を組み合わせた方法も採用することができる。好ましい方法としては、前記(2)または(3)の方法と(1)の方法とを組み合わせる方法が挙げられる。中でも(1)(2)の方法を組み合わせて、重合性官能基を導入したポリエステル樹脂に、多官能性モノマーを配合する方法が好ましい。   A method combining the methods (1) to (3) above can also be employed. Preferable methods include a method in which the method (2) or (3) is combined with the method (1). Among them, a method of combining a polyfunctional monomer with a polyester resin having a polymerizable functional group introduced by combining the methods (1) and (2) is preferable.

また耐熱樹脂部材2は、平均粒径1〜10μmの無機フィラーを含んでおり、熱膨張係数が30×10−6/℃以下であるのが好ましい。耐熱樹脂部材2の熱膨張係数が30×10−6/℃を超える場合には、第2の高放熱部材12との熱膨張係数の差が大きくなりすぎる。そして第1の高放熱部材11の上面110に半導体発光素子LE1を実装する際の、はんだリフローなどによる熱履歴や、あるいは半導体発光素子LE1の発光時の発熱などによって耐熱樹脂部材2が膨張収縮した際に過大な応力が加わるなどして、耐熱樹脂部材2が破損したり、第2の高放熱部材12との間の接合が外れたりするおそれがある。 Moreover, the heat resistant resin member 2 contains an inorganic filler having an average particle diameter of 1 to 10 μm, and preferably has a thermal expansion coefficient of 30 × 10 −6 / ° C. or less. When the thermal expansion coefficient of the heat-resistant resin member 2 exceeds 30 × 10 −6 / ° C., the difference in thermal expansion coefficient with the second high heat dissipation member 12 becomes too large. The heat-resistant resin member 2 expands and contracts due to a thermal history due to solder reflow or the like when the semiconductor light emitting element LE1 is mounted on the upper surface 110 of the first high heat dissipation member 11, or due to heat generation during light emission of the semiconductor light emitting element LE1. There is a possibility that the heat resistant resin member 2 may be damaged due to excessive stress applied thereto, or the joint with the second high heat dissipation member 12 may be disconnected.

耐熱樹脂部材2の熱膨張係数を調整するには、無機フィラーの使用量を調整すればよい。なお耐熱樹脂部材2の熱膨張係数は、上記の範囲内でも特に4×10−6〜20×10−6/℃とするのが好ましい。 In order to adjust the thermal expansion coefficient of the heat-resistant resin member 2, the amount of inorganic filler used may be adjusted. The thermal expansion coefficient of the heat resistant resin member 2 is particularly preferably 4 × 10 −6 to 20 × 10 −6 / ° C. even within the above range.

無機フィラーとしては、例えばピロリン酸カルシウム、破砕シリカ、真球シリカ、クレー、タルク、マイカ、炭酸カルシウム、炭酸マグネシウム、酸化チタン等を挙げることができる。中でも特にピロリン酸カルシウム、破砕シリカ、真球シリカが、成形時の樹脂の溶融流動性や、成形品の機械的強度などの観点から好ましい。無機フィラーはそれぞれ単独で、あるいは2種以上を組み合わせて使用することができる。
耐熱樹脂部材2を難燃化するためには難燃剤を配合すればよい。特に比較的少量の添加で高度の難燃性を得るためには臭素系難燃剤を使用するのが好ましい。
Examples of the inorganic filler include calcium pyrophosphate, crushed silica, true spherical silica, clay, talc, mica, calcium carbonate, magnesium carbonate, titanium oxide and the like. Among these, calcium pyrophosphate, crushed silica, and true spherical silica are particularly preferable from the viewpoints of the melt fluidity of the resin during molding, the mechanical strength of the molded product, and the like. The inorganic fillers can be used alone or in combination of two or more.
In order to make the heat resistant resin member 2 flame retardant, a flame retardant may be blended. In particular, a brominated flame retardant is preferably used in order to obtain a high level of flame retardancy with a relatively small amount of addition.

臭素系難燃剤としては、例えばエチレンビステトラブロモフタルイミド、エチレンビスペンタブロモジフェニル、テトラブロモ無水フ夕ル酸、テトラブロモフ夕ルイミド、テトラブロモビスフェノールA、テトラブロモビスフェノールA−ビス(ヒドロキシエチルエーテル)、テトラブロモビスフェノールA−ビス(2,3−ジブロモブロピルエーテル)、テトラブロモビスフェノールA−ビス(ブロモエチルエーテル)、テトラブロモビスフェノールA−ビス(アリルエーテル)、テトラブロモビスフェノールAカーボネートオリゴマー、テトラブロモビスフェノールAエポキシオリゴマー、テトラブロモビスフェノールS、テトラブロモビスフェノールS−ビス(ヒドロキシエチルエーテル)、テトラブロモビスフェノールS−ビス(2,3−ジブロモプロピルエーテル)、臭素化ポリスチレン、臭素化ポリフェニレンエーテル、臭素化ポリカーポネ一ト、臭素化エポキシ樹脂、臭素化ポリエステル、臭素化アクリル樹脂、臭素化フェノキシ樹脂、ヘキサブロモベンゼン、ペンタブロモエチルベンゼン、デカブロモジフェニル、ヘキサブロモジフェニルオキサイド、オクタブロモジフェニルオキサイド、デカブロモジフェニルオキサイド、ポリペンタブロモベンジルアクリレート、オクタブロモナフタレン、ヘキサブロモシクロドデカン、ビス(ペンタブロモフェニル)エタン、ビス(トリブロモフェニル)フマルイミド、N−メチルヘキサブロモジフェニルアミンなどを挙げることができる。   Examples of brominated flame retardants include ethylene bistetrabromophthalimide, ethylene bispentabromodiphenyl, tetrabromofuranic anhydride, tetrabromofurimide, tetrabromobisphenol A, tetrabromobisphenol A-bis (hydroxyethyl ether), tetrabromo. Bisphenol A-bis (2,3-dibromopropyl ether), tetrabromobisphenol A-bis (bromoethyl ether), tetrabromobisphenol A-bis (allyl ether), tetrabromobisphenol A carbonate oligomer, tetrabromobisphenol A epoxy Oligomer, tetrabromobisphenol S, tetrabromobisphenol S-bis (hydroxyethyl ether), tetrabromobisphenol S-bis (2 3-dibromopropyl ether), brominated polystyrene, brominated polyphenylene ether, brominated polycarbonate, brominated epoxy resin, brominated polyester, brominated acrylic resin, brominated phenoxy resin, hexabromobenzene, pentabromoethylbenzene, deca Bromodiphenyl, hexabromodiphenyl oxide, octabromodiphenyl oxide, decabromodiphenyl oxide, polypentabromobenzyl acrylate, octabromonaphthalene, hexabromocyclododecane, bis (pentabromophenyl) ethane, bis (tribromophenyl) fumarimide, N -Methylhexabromodiphenylamine and the like can be mentioned.

臭素系難燃剤はそれぞれ単独で,あるいは2種以上を組み合わせて使用することができる。中でもエチレンビステトラブロモフタルイミド、ビス(ペンタブロモフェニル)エタン、テトラビスフェノールAカーボネートオリゴマー、臭素化ポリスチレン、臭素化ポリフェニレンエーテル等が好ましく、特にエチレンビステトラブロモフタルイミドが、射出成形時の溶融粘度の経時変化が少ない点で特に好ましい。   Brominated flame retardants can be used alone or in combination of two or more. Among them, ethylene bistetrabromophthalimide, bis (pentabromophenyl) ethane, tetrabisphenol A carbonate oligomer, brominated polystyrene, brominated polyphenylene ether and the like are preferable. Especially, ethylene bistetrabromophthalimide is a change with time in melt viscosity during injection molding. Is particularly preferable in that it has a small amount.

臭素系難燃剤の配合量は、ポリエステル樹脂100重量部に対して10〜50重量部、特に15〜45重量部とするのが好ましい。臭素系難燃剤を上記範囲内で配合することにより、UL−94試験において規格値V−0を満足する難燃性を達成することができる。臭素系難燃剤の配合量が少なすぎると、かかる規格値V−0を満足する難燃性を達成することが困難である。逆に臭素系難燃剤の配合量が多すぎると、射出成形品にバリ等の不良が生じ易くなる。   The blending amount of the brominated flame retardant is preferably 10 to 50 parts by weight, particularly 15 to 45 parts by weight with respect to 100 parts by weight of the polyester resin. By blending the brominated flame retardant within the above range, flame retardancy satisfying the standard value V-0 in the UL-94 test can be achieved. If the amount of the brominated flame retardant is too small, it is difficult to achieve flame retardancy that satisfies the standard value V-0. Conversely, if the amount of the brominated flame retardant is too large, defects such as burrs tend to occur in the injection molded product.

上記臭素系難燃剤とともに、三酸化アンチモン、五酸化アンチモン、錫酸亜鉛、ヒドロキシ錫酸亜鉛、ホウ酸亜鉛等の無機系の難燃剤または難燃助剤;赤リン、リン酸エステル等のリン系難燃剤;パークロロペンタシクロデカンのような塩素系難燃剤などを、必要に応じて適宜配合することも可能である。   In addition to the above brominated flame retardants, inorganic flame retardants or flame retardant aids such as antimony trioxide, antimony pentoxide, zinc stannate, zinc hydroxystannate, zinc borate; phosphorus systems such as red phosphorus and phosphate esters Flame retardant: A chlorine-based flame retardant such as perchloropentacyclodecane can be appropriately blended as necessary.

耐熱樹脂部材2は、前述したMIDの製造方法など、種々の製造方法によって製造することができる。このうちMIDの製造方法としては、
・ 樹脂基材上に、無電解めっきや真空プロセス(スパッタ、真空蒸着等)によって銅めっき層を形成後、回路としない部分にレーザー光を照射することでアブレーションして回路を形成するレーザー法や、
・ 樹脂基板上の回路を形成しない部分に、フォトレジストを用いて無電解めっきのマスクを形成してからめっきを行うワンショット法、あるいは
・ 回路を形成しない部分に、レジスト樹脂を射出成形法等によって形成してから無電解めっきを行い、さらにレジスト樹脂を除去するツーショット法
等があり、回路の形状等によってこれらの方法を適宜、使い分けることができる。
The heat-resistant resin member 2 can be manufactured by various manufacturing methods such as the above-described MID manufacturing method. Among these, as a manufacturing method of MID,
・ After a copper plating layer is formed on a resin substrate by electroless plating or vacuum process (sputtering, vacuum deposition, etc.), a laser method is used to form a circuit by ablation by irradiating a portion that is not a circuit with laser light. ,
・ One-shot method in which electroless plating mask is formed using photoresist on the part where the circuit is not formed on the resin substrate, or the resist resin is injection-molded on the part where the circuit is not formed, etc. There is a two-shot method or the like in which electroless plating is carried out after the formation of the resist and further the resist resin is removed. These methods can be appropriately used depending on the shape of the circuit and the like.

例えばツーショット法によって耐熱樹脂部材2を製造する場合は、まずインサート成形によって金属リード3と一体に形成した耐熱樹脂部材2の表面をエッチング処理する。このエッチング処理は、耐熱樹脂部材2の表面に存在する無機フィラーをエッチング除去することで、当該耐熱樹脂部材2の表面に凹部を形成して、いわゆるアンカー効果により、金属膜22の密着性を向上するためである。   For example, when manufacturing the heat resistant resin member 2 by the two-shot method, first, the surface of the heat resistant resin member 2 formed integrally with the metal lead 3 by insert molding is etched. In this etching process, the inorganic filler existing on the surface of the heat-resistant resin member 2 is removed by etching, thereby forming a recess in the surface of the heat-resistant resin member 2 and improving the adhesion of the metal film 22 by a so-called anchor effect. It is to do.

またこの際、樹脂として、前述した電離放射線の照射によって架橋可能なポリエステル樹脂を用いるとともに、当該ポリエステル樹脂中に、先に述べた、平均粒径が1〜10μmの無機フィラーを配合したものを成形材料として使用すると、成形後の耐熱樹脂部材2の表面をエッチング処理成形した際に、十分なアンカー効果を有しながら、なおかつ表面平滑性にも優れた表面を得ることができる。そしてその結果として次工程で、最表面の中心線平均粗さRaが1μm未満である金属膜22を形成することができる。   At this time, as the resin, the above-mentioned polyester resin that can be cross-linked by irradiation with ionizing radiation is used, and the above-described polyester resin is blended with the inorganic filler having an average particle diameter of 1 to 10 μm described above. When used as a material, when the surface of the heat-resistant resin member 2 after molding is formed by etching, a surface having a sufficient anchor effect and excellent surface smoothness can be obtained. As a result, in the next step, the metal film 22 having an outermost centerline average roughness Ra of less than 1 μm can be formed.

これは、
・ ポリエステル樹脂が、成形のための加熱溶融時に適度な溶融粘度を維持しており、例えば液晶ポリマーのように溶融粘度が急激に低下しないため、混合のせん断力を無機フィラーに良好に伝達して、その凝集を防止する効果を有すること、
・ 無機フィラーの平均粒径を1μm以上として、凝集しやすい小粒径の成分を排除したこと、さらには
・ 無機フィラーの平均粒径を10μm以下として、大粒径の成分を排除したこと、
が主な要因である。
this is,
・ The polyester resin maintains an appropriate melt viscosity at the time of heating and melting for molding, and the melt viscosity does not drop sharply, like for example liquid crystal polymers. Have the effect of preventing the aggregation,
・ The average particle size of the inorganic filler is set to 1 μm or more, and components having a small particle size that are likely to aggregate are excluded. Furthermore, the average particle size of the inorganic filler is set to 10 μm or less, and a component having a large particle size is excluded.
Is the main factor.

つまり多数の無機フィラーが凝集した状態でエッチング除去されたり、粒径が大きすぎる無機フィラーがエッチング除去されたりすると、その後には大きな凹部を生じるため、エッチング後の耐熱樹脂部材2の表面平滑性が低下して、その上に形成した金属膜22の表面平滑性も低下してしまう。   That is, if a large number of inorganic fillers are aggregated and removed by etching, or if inorganic fillers having a particle size that is too large are removed by etching, a large recess is formed thereafter, so that the surface smoothness of the heat-resistant resin member 2 after etching is improved. The surface smoothness of the metal film 22 formed thereon is also lowered.

ところが上記のように平均粒径を1μm以上として凝集しやすい成分を排除した無機フィラーとポリエステル樹脂とを組み合わせた場合には、当該無機フィラーを、凝集を生じることなくポリエステル樹脂中に均一に分散させることができるため、平均粒径を10μm以下として大粒径の成分を排除したことと相まって、エッチング後の耐熱樹脂部材2の表面は、個々の無機フィラーの大きさに相当する微小な凹部が均一に分散しており、前記のように十分なアンカー効果を有しながら、なおかつ表面平滑性にも優れた状態となる。   However, when the inorganic filler from which the average particle size is set to 1 μm or more and the component that easily aggregates is excluded and the polyester resin are combined, the inorganic filler is uniformly dispersed in the polyester resin without causing aggregation. Therefore, the surface of the heat-resistant resin member 2 after etching is uniformly provided with minute recesses corresponding to the size of the individual inorganic fillers, coupled with the removal of the large particle size component with an average particle size of 10 μm or less. As described above, it has a sufficient anchoring effect and is excellent in surface smoothness.

なお無機フィラーの平均粒径は、上述した効果をより一層、効果的なものとすることを考慮すると、前記の範囲内でも2〜8μm、特に2〜6μmとするのが好ましい。
また、エッチング後の耐熱樹脂部材2の表面粗さRaは、金属膜22の表面平滑性を向上することを考慮すると1μm未満、特に0.6μm未満とするのが好ましい。
The average particle size of the inorganic filler is preferably 2 to 8 μm, particularly 2 to 6 μm even in the above range, considering that the above-described effects are further effective.
Further, the surface roughness Ra of the heat-resistant resin member 2 after etching is preferably less than 1 μm, particularly preferably less than 0.6 μm in consideration of improving the surface smoothness of the metal film 22.

また無機フィラーの添加量は、前記のように耐熱樹脂部材2の熱膨張係数も勘案しなければならないものの、上述した効果を効果的なものとし、なおかつアンカー効果を高めることを考慮すると、全樹脂組成物を基準として5〜20体積%、中でも7〜18体積%、特に10〜15体積%とするのが好ましい。この範囲より無機フィラーの添加量が少なすぎると、十分なアンカー効果が得られないため、金属膜22の耐熱樹脂部材2に対する密着性が低下するおそれがある。また逆に多すぎると、エッチング処理後の表面粗さが上記の範囲よりも大きくなって、上述した、金属膜22の表面平滑性を向上する効果が得られないおそれがある。   In addition, the amount of the inorganic filler added, considering the thermal expansion coefficient of the heat-resistant resin member 2 as described above, makes the above-mentioned effect effective, and considering the enhancement of the anchor effect, the total resin 5 to 20% by volume based on the composition, preferably 7 to 18% by volume, particularly preferably 10 to 15% by volume. If the amount of the inorganic filler added is less than this range, a sufficient anchor effect cannot be obtained, so that the adhesion of the metal film 22 to the heat resistant resin member 2 may be reduced. On the other hand, if the amount is too large, the surface roughness after the etching treatment becomes larger than the above range, and the above-described effect of improving the surface smoothness of the metal film 22 may not be obtained.

次に、上記耐熱樹脂部材2の表面のうち金属膜22を形成しない面や、あるいは金属リード3の表面などを、耐熱樹脂部材2を溶解しない溶媒に可溶性のレジスト樹脂からなる二次成形部分によって被覆した状態で無電解めっきなどを施す。そうすると上記のように、最表面の中心線平均粗さRaが1μm未満である、光沢度の高い金属膜22を形成することができる。   Next, the surface of the heat-resistant resin member 2 on which the metal film 22 is not formed or the surface of the metal lead 3 is formed by a secondary molding portion made of a resist resin soluble in a solvent that does not dissolve the heat-resistant resin member 2. Apply electroless plating in the coated state. Then, as described above, it is possible to form the metal film 22 having a high glossiness with the center line average roughness Ra of the outermost surface being less than 1 μm.

これに対し、例えば液晶ポリマー等の他の耐熱樹脂は、前記のように成形のための加熱溶融時に、溶融粘度が急激に低下して無機フィラーが凝集しやすいため、光沢に優れた金属膜22を形成しにくく、当該金属膜22の、最表面の中心線平均粗さRaを1μm未満とするためには、めっきを20〜30μm程度まで厚付けてレべリングする必要があり、コストや生産効率の点で不利である。   On the other hand, for example, other heat-resistant resins such as a liquid crystal polymer, when heated and melted for molding as described above, the melt viscosity is rapidly reduced and the inorganic filler is likely to aggregate, so that the metal film 22 having excellent gloss is obtained. In order to make the center line average roughness Ra of the outermost surface of the metal film 22 less than 1 μm, it is necessary to level the plating to a thickness of about 20 to 30 μm, and cost and production It is disadvantageous in terms of efficiency.

このあと、上記二次成形部分を溶媒を用いて溶解して除去し、さらに電子線などの電離放射線を照射してポリエステル樹脂を架橋させると、上記所定の面にのみ選択的に金属膜22が形成された、前述した所定の特性を満足する耐熱樹脂部材2を製造することができる。電離放射線としては、上記電子線や、あるいはガンマ線などを例示することができる。電子線の場合は、照射する耐熱樹脂部材2の厚みに応じて、その加速電圧を適宜、設定すればよい。また照射線量は、ポリエステル樹脂を架橋させて耐熱樹脂部材2に十分な耐熱性を付与することを考慮すると、50〜100kGyであるのが好ましく、150〜500kGyであるのがさらに好ましい。   Thereafter, the secondary molded portion is dissolved and removed using a solvent, and further, when the polyester resin is crosslinked by irradiating with ionizing radiation such as an electron beam, the metal film 22 is selectively formed only on the predetermined surface. The formed heat-resistant resin member 2 that satisfies the above-described predetermined characteristics can be manufactured. Examples of the ionizing radiation include the electron beam and gamma ray. In the case of an electron beam, the acceleration voltage may be appropriately set according to the thickness of the heat-resistant resin member 2 to be irradiated. The irradiation dose is preferably 50 to 100 kGy, and more preferably 150 to 500 kGy, considering that the polyester resin is crosslinked to give sufficient heat resistance to the heat resistant resin member 2.

前記第1および第2の高放熱部材11、12を、接合層AL1を介して接合、一体化するためには種々の接合方法を採用することができる。すなわち接着剤による接着の他、はんだ接合、ろう接合、金−金圧着等を採用することができるが、特に製造コストの点で接着剤による接着が好ましい。また第2の高放熱部材12と耐熱樹脂部材2とを、接合層AL2を介して接合、一体化するためにも接着剤による接着が好ましい。   In order to join and integrate the first and second high heat dissipation members 11 and 12 via the joining layer AL1, various joining methods can be employed. That is, in addition to bonding with an adhesive, solder bonding, brazing bonding, gold-gold bonding, or the like can be employed, but bonding with an adhesive is particularly preferable in terms of manufacturing cost. Also, bonding with an adhesive is preferable in order to bond and integrate the second high heat dissipation member 12 and the heat-resistant resin member 2 via the bonding layer AL2.

ただし接着剤は、第1の高放熱部材11の上面110に半導体発光素子LE1を実装する際の熱履歴や、半導体発光素子搭載部材BLを配線基板等に実装する際の、はんだリフローなどによる熱履歴、あるいは半導体発光素子LE1の発光時の発熱などに対して十分な耐熱性を有している必要があり、かかる高耐熱性の接着剤としては、例えばエポキシ系、ポリイミド系、ポリアミドイミド系、ポリエーテルイミド系、ポリエーテルスルホン系、液晶ポリマー系などの接着剤を挙げることができる。   However, the adhesive is a heat history when the semiconductor light emitting element LE1 is mounted on the upper surface 110 of the first high heat dissipation member 11, and heat due to solder reflow when the semiconductor light emitting element mounting member BL is mounted on a wiring board or the like. It is necessary to have sufficient heat resistance against the history or heat generated during light emission of the semiconductor light emitting device LE1, and as such a high heat-resistant adhesive, for example, epoxy-based, polyimide-based, polyamide-imide-based, Examples thereof include polyetherimide-based, polyethersulfone-based, and liquid crystal polymer-based adhesives.

中でも、上述した熱履歴などに十分に耐え得ることを考慮すると、ガラス転移温度が200℃以上、または熱分解温度が260℃以上の接着剤を用いるのが好ましい。また取り扱い上の観点から、基本的にポットライフのない熱可塑性樹脂系の接着剤、具体的にはポリアミドイミド系接着剤等を用いるのが好ましい。   Among them, it is preferable to use an adhesive having a glass transition temperature of 200 ° C. or higher or a thermal decomposition temperature of 260 ° C. or higher in consideration of sufficiently withstanding the above-described heat history. From the viewpoint of handling, it is preferable to use a thermoplastic resin adhesive having no pot life, specifically, a polyamide-imide adhesive or the like.

これら樹脂系の接着剤を用いて上記各部を接合するためには、例えば適当な溶剤に溶解または分散させてペースト化したものを、スクリーン印刷などによって、少なくとも一方の接合面に塗布して乾燥固化させるか、もしくはシート状に形成したものを接合面の間に挟んだ状態で加圧、加熱すればよい。   In order to join the above parts using these resin-based adhesives, for example, a paste obtained by dissolving or dispersing in an appropriate solvent is applied to at least one joining surface by screen printing or the like, and then dried and solidified. Or may be pressed and heated in a state where a sheet-like material is sandwiched between bonding surfaces.

図1(b)は、上記例の半導体発光素子搭載部材BLを用いた、この発明の発光ダイオードLE2の、実施の形態の一例を示す断面図である。図に見るようにこの例においては、半導体発光素子搭載部材BLのうち、第1の高放熱部材11の上面110に半導体発光素子LE1を実装するとともに、当該半導体発光素子LE1の、図示しない一対の電極と、通孔21内に突出させた一対の金属リード3とを、ワイヤーボンドWB、WBを介して電気的に結線することによって、上記半導体発光素子LE1を、半導体発光素子搭載部材BLに搭載している。   FIG. 1B is a cross-sectional view showing an example of an embodiment of the light emitting diode LE2 of the present invention using the semiconductor light emitting element mounting member BL of the above example. As shown in the figure, in this example, the semiconductor light emitting element LE1 is mounted on the upper surface 110 of the first high heat dissipation member 11 of the semiconductor light emitting element mounting member BL, and a pair of semiconductor light emitting elements LE1 (not shown) is mounted. The semiconductor light emitting element LE1 is mounted on the semiconductor light emitting element mounting member BL by electrically connecting the electrodes and the pair of metal leads 3 protruding into the through holes 21 via wire bonds WB and WB. doing.

そしてこの状態で、通孔21内に蛍光体および/または保護樹脂FRを充てんして半導体発光素子LE1を封止するとともに、通孔21の開口21cを、半導体発光素子LE1からの光を透過し得る材料にて形成したレンズLS、または封止キャップで閉じると、図に示した発光ダイオードLE2を得ることができる。   In this state, the through hole 21 is filled with a phosphor and / or a protective resin FR to seal the semiconductor light emitting element LE1, and light from the semiconductor light emitting element LE1 is transmitted through the opening 21c of the through hole 21. When the lens LS made of the material to be obtained is closed with a sealing cap, the light emitting diode LE2 shown in the figure can be obtained.

図3(a)は、この発明の半導体発光素子搭載部材BLの、実施の形態の他の例を示す断面図である。また図4は、上記例の半導体発光素子搭載部材BLを基材1と耐熱樹脂部材2とに分解した状態を示す一部切り欠き斜視図である。   FIG. 3A is a cross-sectional view showing another example of the embodiment of the semiconductor light emitting element mounting member BL of the present invention. FIG. 4 is a partially cutaway perspective view showing a state in which the semiconductor light emitting element mounting member BL of the above example is disassembled into the base material 1 and the heat resistant resin member 2.

図に見るようにこの例の半導体発光素子搭載部材BLは、基材1の全体を、平面形状が矩形状である平板状の第1の高放熱部材11のみで形成するとともに、この第1の高放熱部材11の上面110に、外形が、上記第1の高放熱部材11の平面形状より僅かに小さい矩形状に形成された耐熱樹脂部材2を、接合層AL3を介して接合、一体化した点が、先の例と相違している。   As shown in the figure, the semiconductor light emitting element mounting member BL of this example is formed by forming the entire base material 1 only with the flat first high heat dissipation member 11 whose planar shape is a rectangular shape. The heat-resistant resin member 2 whose outer shape is formed in a rectangular shape slightly smaller than the planar shape of the first high heat dissipation member 11 is bonded and integrated on the upper surface 110 of the high heat dissipation member 11 via the bonding layer AL3. This is different from the previous example.

またこの例では、上記第1の高放熱部材11の上面110に、面方向の中央に狭いギャップを設けて互いに絶縁した状態で、半導体発光素子〔図3(b)中のLE1〕を搭載するための電極層、および/または半導体発光素子LE1からの光を反射するための反射層として機能する2つの金属膜13を形成してある。また金属膜13は、上記上面110の、ギャップ以外の全面、つまり通孔21内だけでなく、耐熱樹脂部材2の外側にも及ぶように形成してあり、それによって耐熱樹脂部材2の外部と通孔21内とを繋ぐ、前記金属リード3と同様の機能をも有している。   In this example, the semiconductor light emitting element [LE1 in FIG. 3B] is mounted on the upper surface 110 of the first high heat dissipation member 11 in a state of being insulated from each other by providing a narrow gap in the center of the surface direction. Two metal films 13 functioning as an electrode layer and / or a reflective layer for reflecting light from the semiconductor light emitting element LE1 are formed. Further, the metal film 13 is formed so as to extend not only to the entire surface of the upper surface 110 other than the gap, that is, to the outside of the heat-resistant resin member 2 but also to the outside of the heat-resistant resin member 2. It also has the same function as the metal lead 3 that connects the inside of the through hole 21.

上記金属膜13は、前記のようにフォトリソグラフィーなどを利用することで、例えば100μm以下の微細な形状にパターン形成することができる。詳しくはパターン間の間隔やパターン幅、パターンの平面形状などの最小値を100μm以下、特に50μm未満の高い精度で微細形成することができる。このため半導体発光素子LE1のフリップチップ実装が可能となる。   The metal film 13 can be patterned into a fine shape of, for example, 100 μm or less by using photolithography as described above. Specifically, the minimum values such as the interval between patterns, the pattern width, and the planar shape of the pattern can be finely formed with high accuracy of 100 μm or less, particularly less than 50 μm. For this reason, the semiconductor light emitting element LE1 can be flip-chip mounted.

なお、外部と接続する電極を高放熱部材11の裏面に形成するとともに、高放熱部材11にビアやスルーホール、サイドメタライズを形成して金属膜13と接続しても良い。この場合、高放熱部材11の面方向の外形は、耐熱樹脂部材2の同方向の外形と同等であってもよいし、小さくても構わない。   In addition, an electrode connected to the outside may be formed on the back surface of the high heat dissipation member 11, and a via, a through hole, or a side metallization may be formed in the high heat dissipation member 11 and connected to the metal film 13. In this case, the outer shape in the surface direction of the high heat dissipation member 11 may be the same as or smaller than the outer shape in the same direction of the heat-resistant resin member 2.

高放熱部材11それ自体としては、先の例と同じ材料からなり、同じ特性を有するものを用いるのが好ましい。また金属膜13は単層構造でも、複数層の積層構造でも良いが、その最表面の少なくとも一部、具体的には耐熱樹脂部材2の中央の通孔21に対応する領域などを、前記のようにAg、Alまたはこれらの合金にて形成するのが好ましい。また金属膜13は、上記領域のうち、図3(b)に示す半導体発光素子LE1の搭載状態において、接続のための金バンプBPが接続される部分の最表面と、耐熱樹脂部材2の外側の部分の最表面とを、接続の信頼性を向上するために、Auにて形成してもよい。   As the high heat dissipation member 11 itself, it is preferable to use a material made of the same material as the previous example and having the same characteristics. The metal film 13 may have a single-layer structure or a multi-layered structure. However, at least a part of the outermost surface, specifically, a region corresponding to the central through hole 21 of the heat-resistant resin member 2, etc. Thus, it is preferable to form with Ag, Al or an alloy thereof. The metal film 13 includes the outermost surface of the portion to which the gold bump BP for connection is connected and the outer side of the heat-resistant resin member 2 in the mounted state of the semiconductor light emitting element LE1 shown in FIG. In order to improve the connection reliability, the outermost surface of this portion may be formed of Au.

耐熱樹脂部材2は、中央に、第1の高放熱部材11と接合、一体化した状態で、その上面110に搭載される半導体発光素子LE1を収容する凹部を構成するための通孔21を有している。また通孔21の内周面21dは、半導体発光素子LE1からの光を上部開口21eを通して図において上方に反射させるために、凹部の底面(第1の高放熱部材11の上面110)側から開口21e側へ向けて外方に拡がったすり鉢状とされている。   The heat-resistant resin member 2 has a through hole 21 in the center for forming a recess for housing the semiconductor light emitting element LE1 mounted on the upper surface 110 in a state of being joined and integrated with the first high heat dissipation member 11. doing. Further, the inner peripheral surface 21d of the through hole 21 is opened from the bottom surface of the recess (the upper surface 110 of the first high heat dissipation member 11) in order to reflect light from the semiconductor light emitting element LE1 upward in the drawing through the upper opening 21e. It is in the shape of a mortar that spreads outward toward the 21e side.

また、上記通孔21のうちすり鉢状の内周面21dと、それに続く耐熱樹脂部材2の上面20には、反射部としての金属膜22を形成してある。かかる耐熱樹脂部材2および金属膜22は、先の例と同様の構成とすることができる。また両部材は、先の例と同様にMIDの製造方法によって製造することができる。さらに耐熱樹脂部材2と第1の高放熱部材11とを接合、一体化するための接合層AL3も、先の例と同様の構成とすることができる。   In addition, a metal film 22 as a reflection portion is formed on the inner peripheral surface 21 d of the mortar shape in the through hole 21 and the upper surface 20 of the heat-resistant resin member 2 subsequent thereto. The heat-resistant resin member 2 and the metal film 22 can have the same configuration as the previous example. Moreover, both members can be manufactured by the manufacturing method of MID similarly to the previous example. Furthermore, the bonding layer AL3 for bonding and integrating the heat-resistant resin member 2 and the first high heat dissipation member 11 can also have the same configuration as in the previous example.

図3(b)は、上記例の半導体発光素子搭載部材BLを用いた、この発明の発光ダイオードLE2の、実施の形態の他の例を示す断面図である。図に見るようにこの例においては、半導体発光素子搭載部材BLのうち、第1の高放熱部材11の上面110に設けた一対の金属膜13と、半導体発光素子LE1の、図示しない一対の電極とを、金バンプBP、BPを介してを介して電気的に結線するとともに物理的に固定することによって、上記半導体発光素子LE1を、半導体発光素子搭載部材BLに搭載している。   FIG. 3B is a cross-sectional view showing another example of the embodiment of the light emitting diode LE2 of the present invention using the semiconductor light emitting element mounting member BL of the above example. As shown in the figure, in this example, of the semiconductor light emitting element mounting member BL, a pair of metal films 13 provided on the upper surface 110 of the first high heat dissipation member 11 and a pair of electrodes (not shown) of the semiconductor light emitting element LE1. Are electrically connected through the gold bumps BP and BP, and are physically fixed, thereby mounting the semiconductor light emitting element LE1 on the semiconductor light emitting element mounting member BL.

そしてこの状態で、通孔21内に蛍光体および/または保護樹脂FRを充てんして半導体発光素子LE1を封止するとともに、通孔21の開口21eを、半導体発光素子LE1からの光を透過し得る材料にて形成したレンズLS、または封止キャップで閉じると、図に示した発光ダイオードLE2を得ることができる。   In this state, the through hole 21 is filled with a phosphor and / or a protective resin FR to seal the semiconductor light emitting element LE1, and light from the semiconductor light emitting element LE1 is transmitted through the opening 21e of the through hole 21. When the lens LS made of the material to be obtained is closed with a sealing cap, the light emitting diode LE2 shown in the figure can be obtained.

なお本発明の構成は、以上で説明した各図の例のものには限定されず、この発明の要旨を変更しない範囲で、種々の設計変更を施すことができる。   The configuration of the present invention is not limited to the examples shown in the drawings described above, and various design changes can be made without changing the gist of the present invention.

同図(a)は、この発明の半導体発光素子搭載部材の、実施の形態の一例を示す断面図、同図(b)は、上記例の半導体発光素子搭載部材を用いた、この発明の発光ダイオードの、実施の形態の一例を示す断面図である。FIG. 4A is a cross-sectional view showing an example of an embodiment of a semiconductor light emitting element mounting member of the present invention, and FIG. 4B is a light emission of the present invention using the semiconductor light emitting element mounting member of the above example. It is sectional drawing which shows an example of embodiment of a diode. 上記例の半導体発光素子搭載部材を基材と耐熱樹脂部材とに分解した状態を示す、一部切り欠き斜視図である。It is a partially cutaway perspective view which shows the state which decomposed | disassembled the semiconductor light-emitting element mounting member of the said example into the base material and the heat resistant resin member. 同図(a)は、この発明の半導体発光素子搭載部材の、実施の形態の他の例を示す断面図、同図(b)は、上記例の半導体発光素子搭載部材を用いた、この発明の発光ダイオードの、実施の形態の他の例を示す断面図である。FIG. 4A is a cross-sectional view showing another example of the embodiment of the semiconductor light emitting element mounting member of the present invention, and FIG. 4B shows the invention using the semiconductor light emitting element mounting member of the above example. It is sectional drawing which shows the other example of embodiment of this light emitting diode. 上記例の半導体発光素子搭載部材を基材と耐熱樹脂部材とに分解した状態を示す、一部切り欠き斜視図である。It is a partially cutaway perspective view which shows the state which decomposed | disassembled the semiconductor light-emitting element mounting member of the said example into the base material and the heat resistant resin member.

符号の説明Explanation of symbols

BL 半導体発光素子搭載部材
1 基体
11 第1の高放熱部材
12 第2の高放熱部材
2 耐熱樹脂部材
22 金属膜(反射部)
AL1〜AL3 接合層
LE1 半導体発光素子
LE2 発光ダイオード
BL semiconductor light emitting element mounting member 1 base 11 first high heat dissipation member 12 second high heat dissipation member 2 heat resistant resin member 22 metal film (reflecting portion)
AL1 to AL3 Junction layer LE1 Semiconductor light emitting element LE2 Light emitting diode

Claims (14)

熱伝導率が80W/mK以上で、かつ熱膨張係数が15×10−6/℃以下であり、半導体発光素子を搭載するための第1の高放熱部材を含む基体と、この基体に対して、少なくとも1層の接合層を介して接合、一体化した、半導体発光素子からの光を反射するための反射部を有する耐熱樹脂部材とを備えることを特徴とする半導体発光素子搭載部材。 A substrate having a thermal conductivity of 80 W / mK or more and a thermal expansion coefficient of 15 × 10 −6 / ° C. or less and including a first high heat dissipation member for mounting a semiconductor light emitting element; And a heat-resistant resin member having a reflecting portion for reflecting light from the semiconductor light-emitting element, which is bonded and integrated through at least one bonding layer. 基体が、熱伝導率が80W/mK以上で、かつ熱膨張係数が50×10−6/℃以下である第2の高放熱部材をも有しており、耐熱樹脂部材を、この第2の高放熱部材に対して、少なくとも1層の接合層を介して接合、一体化した請求項1記載の半導体発光素子搭載部材。 The base also has a second high heat dissipation member having a thermal conductivity of 80 W / mK or more and a thermal expansion coefficient of 50 × 10 −6 / ° C. or less. The semiconductor light emitting element mounting member according to claim 1, wherein the semiconductor light emitting element mounting member is joined and integrated with the high heat dissipation member via at least one joining layer. 基体が第1の高放熱部材のみからなり、耐熱樹脂部材を、この第1の高放熱部材に対して、少なくとも1層の接合層を介して接合、一体化した請求項1記載の半導体発光素子搭載部材。   2. The semiconductor light emitting element according to claim 1, wherein the base is composed of only the first high heat dissipation member, and the heat-resistant resin member is bonded and integrated to the first high heat dissipation member via at least one bonding layer. Mounting member. 基体を構成する第1および第2の高放熱部材のうちの少なくとも一方に、半導体発光素子搭載のための電極層、および半導体発光素子からの光を反射するための反射層のうちの少なくとも一方として機能する金属膜を設けるとともに、この金属膜の最表面の少なくとも一部を、Ag、Alまたはこれらの合金にて形成した請求項1〜3のいずれかに記載の半導体発光素子搭載部材。   As at least one of an electrode layer for mounting a semiconductor light emitting element and a reflective layer for reflecting light from the semiconductor light emitting element on at least one of the first and second high heat dissipation members constituting the base The semiconductor light-emitting element mounting member according to claim 1, wherein a functional metal film is provided and at least a part of the outermost surface of the metal film is formed of Ag, Al, or an alloy thereof. 耐熱樹脂部材の反射部を、当該耐熱樹脂部材の表面に形成した金属膜にて形成するとともに、この金属膜の最表面の少なくとも一部を、Ag、Alまたはこれらの合金にて形成した請求項1記載の半導体発光素子搭載部材。   The reflective portion of the heat resistant resin member is formed of a metal film formed on the surface of the heat resistant resin member, and at least a part of the outermost surface of the metal film is formed of Ag, Al, or an alloy thereof. The semiconductor light-emitting element mounting member according to 1. 耐熱樹脂部材の反射部を、当該耐熱樹脂部材の表面に形成した金属膜にて形成するとともに、この金属膜の、最表面の中心線平均粗さRaを1μm未満とした請求項1記載の半導体発光素子搭載部材。   2. The semiconductor according to claim 1, wherein the reflective portion of the heat resistant resin member is formed of a metal film formed on the surface of the heat resistant resin member, and the center line average roughness Ra of the outermost surface of the metal film is less than 1 μm. Light emitting element mounting member. インサート成形により、耐熱樹脂部材と、当該耐熱樹脂部材を貫通する、半導体発光素子への配線用の金属リードとを一体化した請求項1記載の半導体発光素子搭載部材。   The semiconductor light emitting element mounting member according to claim 1, wherein the heat resistant resin member and a metal lead for wiring to the semiconductor light emitting element penetrating the heat resistant resin member are integrated by insert molding. 金属リードの最表面の少なくとも一部を、Ag、Alまたはこれらの合金にて形成した請求項7記載の半導体発光素子搭載部材。   The semiconductor light emitting element mounting member according to claim 7, wherein at least a part of the outermost surface of the metal lead is formed of Ag, Al, or an alloy thereof. 第1の高放熱部材を、AlN、SiC、Cu−W、Cu−Mo、Al−SiC、Si−SiC、Si、W、およびMoからなる群より選ばれた少なくとも一種を含む材料にて形成した請求項1記載の半導体発光素子搭載部材。   The first high heat dissipation member is formed of a material containing at least one selected from the group consisting of AlN, SiC, Cu—W, Cu—Mo, Al—SiC, Si—SiC, Si, W, and Mo. The semiconductor light emitting element mounting member according to claim 1. 第2の高放熱部材を、Cu、Al、Fe、W、Mo、およびCu−Moからなる群より選ばれた少なくとも一種を含む材料にて形成した請求項2記載の半導体発光素子搭載部材。   The semiconductor light emitting element mounting member according to claim 2, wherein the second high heat dissipation member is formed of a material including at least one selected from the group consisting of Cu, Al, Fe, W, Mo, and Cu—Mo. 耐熱樹脂部材の、260℃で60秒間の加熱後の寸法変化率が1%以下である請求項1記載の半導体発光素子搭載部材。   The semiconductor light-emitting element mounting member according to claim 1, wherein the dimensional change rate of the heat-resistant resin member after heating at 260 ° C. for 60 seconds is 1% or less. 耐熱樹脂部材が平均粒径1〜10μmの無機フィラーを含んでおり、当該耐熱樹脂部材の熱膨張係数が30×10−6/℃以下である請求項1記載の半導体発光素子搭載部材。 The semiconductor light emitting element mounting member according to claim 1, wherein the heat resistant resin member contains an inorganic filler having an average particle diameter of 1 to 10 μm, and the thermal expansion coefficient of the heat resistant resin member is 30 × 10 −6 / ° C. or less. 耐熱樹脂部材を、電離放射線の照射によって架橋させた架橋ポリエステル樹脂にて形成した請求項1記載の半導体発光素子搭載部材。   The semiconductor light-emitting element mounting member according to claim 1, wherein the heat-resistant resin member is formed of a crosslinked polyester resin crosslinked by irradiation with ionizing radiation. 請求項1記載の半導体発光素子搭載部材のうち第1の高放熱部材に半導体発光素子を搭載し、かつ搭載した半導体発光素子を蛍光体および保護樹脂のうちの少なくとも一方によって封止するとともに、半導体発光素子からの光の取り出し方向にレンズを配設したことを特徴とする発光ダイオード。   The semiconductor light emitting device is mounted on the first high heat dissipation member of the semiconductor light emitting device mounting member according to claim 1, and the mounted semiconductor light emitting device is sealed with at least one of phosphor and protective resin, and the semiconductor A light-emitting diode, wherein a lens is disposed in a direction in which light is extracted from the light-emitting element.
JP2003396149A 2003-11-26 2003-11-26 Semiconductor light emitting element mounting member and light emitting diode using the same Pending JP2005159045A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003396149A JP2005159045A (en) 2003-11-26 2003-11-26 Semiconductor light emitting element mounting member and light emitting diode using the same
PCT/JP2004/016081 WO2005053040A1 (en) 2003-11-26 2004-10-22 Semiconductor light-emitting device mounting member and light-emitting diode using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003396149A JP2005159045A (en) 2003-11-26 2003-11-26 Semiconductor light emitting element mounting member and light emitting diode using the same

Publications (1)

Publication Number Publication Date
JP2005159045A true JP2005159045A (en) 2005-06-16

Family

ID=34631507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003396149A Pending JP2005159045A (en) 2003-11-26 2003-11-26 Semiconductor light emitting element mounting member and light emitting diode using the same

Country Status (2)

Country Link
JP (1) JP2005159045A (en)
WO (1) WO2005053040A1 (en)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005347375A (en) * 2004-06-01 2005-12-15 Shinko Electric Ind Co Ltd Stem for light-emitting element, and optical semiconductor device
JP2007043126A (en) * 2005-06-30 2007-02-15 Matsushita Electric Works Ltd Luminaire using led
JP2007043125A (en) * 2005-06-30 2007-02-15 Matsushita Electric Works Ltd Light-emitting device
JP2007116075A (en) * 2005-09-20 2007-05-10 Matsushita Electric Works Ltd Light-emitting apparatus
JP2007116108A (en) * 2005-09-20 2007-05-10 Matsushita Electric Works Ltd Light-emitting apparatus
JP2007116109A (en) * 2005-09-20 2007-05-10 Matsushita Electric Works Ltd Led lighting equipment
JP2007116122A (en) * 2005-09-20 2007-05-10 Matsushita Electric Works Ltd Light emitting device
JP2007116129A (en) * 2005-09-20 2007-05-10 Matsushita Electric Works Ltd Light emitting device
JP2007142280A (en) * 2005-11-21 2007-06-07 Matsushita Electric Works Ltd Light-emitting apparatus and manufacturing method thereof
JP2007142278A (en) * 2005-11-21 2007-06-07 Matsushita Electric Works Ltd Light emitting device and its manufacturing method
JP2007142281A (en) * 2005-11-21 2007-06-07 Matsushita Electric Works Ltd Light-emitting apparatus and manufacturing method thereof
JP2007142279A (en) * 2005-11-21 2007-06-07 Matsushita Electric Works Ltd Light-emitting apparatus and manufacturing method thereof
JP2007165815A (en) * 2005-09-20 2007-06-28 Matsushita Electric Works Ltd Light-emitting device
JP2007165937A (en) * 2005-06-30 2007-06-28 Matsushita Electric Works Ltd Light-emitting device
JP2007189031A (en) * 2006-01-12 2007-07-26 Allied Material Corp Semiconductor device mounting member, semiconductor device and light emitting diode using the same
JP2007274010A (en) * 2007-07-17 2007-10-18 Matsushita Electric Works Ltd Light emitting device and method of manufacturing same
JP2007295007A (en) * 2005-09-20 2007-11-08 Matsushita Electric Works Ltd Led lighting equipment
KR100775922B1 (en) * 2006-05-10 2007-11-15 한솔엘씨디 주식회사 Led module and process of manufacture for back light unit
JPWO2005091386A1 (en) * 2004-03-24 2008-02-07 東芝ライテック株式会社 Lighting device
JP2008034799A (en) * 2006-07-27 2008-02-14 Samsung Electro-Mechanics Co Ltd Surface-mounted light emitting diode element
JP2008199011A (en) * 2007-02-15 2008-08-28 Samsung Electro Mech Co Ltd Package board and method for manufacturing thereof
JP2010010345A (en) * 2008-06-26 2010-01-14 Mitsubishi Electric Corp Semiconductor package and semiconductor light-emitting apparatus
US7800124B2 (en) 2005-06-30 2010-09-21 Panasonic Electric Works Co., Ltd. Light-emitting device
JP2010232643A (en) * 2009-03-05 2010-10-14 Nichia Corp Optical semiconductor device and method of manufacturing the same
JP2010272736A (en) * 2009-05-22 2010-12-02 Toshiba Lighting & Technology Corp Light-emitting device
JP2011505072A (en) * 2007-11-28 2011-02-17 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Chip assembly, connection assembly, LED, and method of manufacturing chip assembly
US7948001B2 (en) 2005-09-20 2011-05-24 Panasonic Electric Works, Co., Ltd. LED lighting fixture
US7956372B2 (en) 2005-09-20 2011-06-07 Panasonic Electric Works Co., Ltd. Light emitting device
WO2012014679A1 (en) * 2010-07-30 2012-02-02 ポリプラスチックス株式会社 Method for producing light-emitting device, light-emitting device, and reflector
WO2012141136A1 (en) * 2011-04-11 2012-10-18 株式会社日立製作所 Aluminum electroplating solution
JP2012533893A (en) * 2009-07-20 2012-12-27 フラオンホファー−ゲゼルシャフト・ツア・フェルデルング・デア・アンゲヴァンテン・フォルシュング・エー・ファオ Solar cell assembly and further solar cell structure
JP2013522891A (en) * 2010-03-15 2013-06-13 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Optoelectronic component and manufacturing method thereof
JP2013153191A (en) * 2005-06-23 2013-08-08 Rensselaer Polytechnic Institute Package design for producing white light with short-wavelength leds and down-conversion materials
WO2013145071A1 (en) * 2012-03-26 2013-10-03 富士機械製造株式会社 Led package and manufacturing method for same
US9368697B2 (en) 2007-07-06 2016-06-14 Lg Innotek Co., Ltd. Light emitting device package

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120128962A (en) * 2011-05-18 2012-11-28 삼성전자주식회사 Light emitting diode package and manufacturing method of the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05299699A (en) * 1992-04-24 1993-11-12 Fujitsu Ltd Semiconductor light emitting device
JPH09246603A (en) * 1996-03-08 1997-09-19 Nichia Chem Ind Ltd Light emitting diode and display unit using it
JPH09307145A (en) * 1996-05-13 1997-11-28 Nichia Chem Ind Ltd Optical semiconductor device
JPH11103096A (en) * 1997-07-30 1999-04-13 Rohm Co Ltd Semiconductor light-emitting device
JP4432275B2 (en) * 2000-07-13 2010-03-17 パナソニック電工株式会社 Light source device
JP4269709B2 (en) * 2002-02-19 2009-05-27 日亜化学工業株式会社 Light emitting device and manufacturing method thereof
JP3088472U (en) * 2002-03-08 2002-09-13 東貝光電科技股▲ふん▼有限公司 Light emitting diode
JP3509809B2 (en) * 2002-04-30 2004-03-22 住友電気工業株式会社 Submount and semiconductor device

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005091386A1 (en) * 2004-03-24 2008-02-07 東芝ライテック株式会社 Lighting device
JP2005347375A (en) * 2004-06-01 2005-12-15 Shinko Electric Ind Co Ltd Stem for light-emitting element, and optical semiconductor device
JP2013153191A (en) * 2005-06-23 2013-08-08 Rensselaer Polytechnic Institute Package design for producing white light with short-wavelength leds and down-conversion materials
JP2007165937A (en) * 2005-06-30 2007-06-28 Matsushita Electric Works Ltd Light-emitting device
JP2007043126A (en) * 2005-06-30 2007-02-15 Matsushita Electric Works Ltd Luminaire using led
JP2007043125A (en) * 2005-06-30 2007-02-15 Matsushita Electric Works Ltd Light-emitting device
US8044424B2 (en) 2005-06-30 2011-10-25 Panasonic Electric Works Co., Ltd. Light-emitting device
US7800124B2 (en) 2005-06-30 2010-09-21 Panasonic Electric Works Co., Ltd. Light-emitting device
JP2007116122A (en) * 2005-09-20 2007-05-10 Matsushita Electric Works Ltd Light emitting device
JP2007116109A (en) * 2005-09-20 2007-05-10 Matsushita Electric Works Ltd Led lighting equipment
US7948001B2 (en) 2005-09-20 2011-05-24 Panasonic Electric Works, Co., Ltd. LED lighting fixture
JP2007116075A (en) * 2005-09-20 2007-05-10 Matsushita Electric Works Ltd Light-emitting apparatus
JP2007165815A (en) * 2005-09-20 2007-06-28 Matsushita Electric Works Ltd Light-emitting device
US7956372B2 (en) 2005-09-20 2011-06-07 Panasonic Electric Works Co., Ltd. Light emitting device
JP2007116108A (en) * 2005-09-20 2007-05-10 Matsushita Electric Works Ltd Light-emitting apparatus
JP2007116129A (en) * 2005-09-20 2007-05-10 Matsushita Electric Works Ltd Light emitting device
JP2007295007A (en) * 2005-09-20 2007-11-08 Matsushita Electric Works Ltd Led lighting equipment
JP2007142280A (en) * 2005-11-21 2007-06-07 Matsushita Electric Works Ltd Light-emitting apparatus and manufacturing method thereof
US8278678B2 (en) 2005-11-21 2012-10-02 Panasonic Corporation Light emitting device
JP2007142278A (en) * 2005-11-21 2007-06-07 Matsushita Electric Works Ltd Light emitting device and its manufacturing method
JP2007142279A (en) * 2005-11-21 2007-06-07 Matsushita Electric Works Ltd Light-emitting apparatus and manufacturing method thereof
JP2007142281A (en) * 2005-11-21 2007-06-07 Matsushita Electric Works Ltd Light-emitting apparatus and manufacturing method thereof
US7767475B2 (en) 2005-11-21 2010-08-03 Panasonic Electric Works Co., Ltd. Light emitting device
JP2007189031A (en) * 2006-01-12 2007-07-26 Allied Material Corp Semiconductor device mounting member, semiconductor device and light emitting diode using the same
KR100775922B1 (en) * 2006-05-10 2007-11-15 한솔엘씨디 주식회사 Led module and process of manufacture for back light unit
US7511312B2 (en) 2006-07-27 2009-03-31 Samsung Electro-Mechanics Co., Ltd. Surface mounting device-type light emitting diode
JP2008034799A (en) * 2006-07-27 2008-02-14 Samsung Electro-Mechanics Co Ltd Surface-mounted light emitting diode element
KR100851636B1 (en) 2006-07-27 2008-08-13 삼성전기주식회사 Surface mounting light emitting diode device
JP2008199011A (en) * 2007-02-15 2008-08-28 Samsung Electro Mech Co Ltd Package board and method for manufacturing thereof
US9368697B2 (en) 2007-07-06 2016-06-14 Lg Innotek Co., Ltd. Light emitting device package
JP4678392B2 (en) * 2007-07-17 2011-04-27 パナソニック電工株式会社 Light emitting device and manufacturing method thereof
JP2007274010A (en) * 2007-07-17 2007-10-18 Matsushita Electric Works Ltd Light emitting device and method of manufacturing same
JP2011505072A (en) * 2007-11-28 2011-02-17 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Chip assembly, connection assembly, LED, and method of manufacturing chip assembly
JP2010010345A (en) * 2008-06-26 2010-01-14 Mitsubishi Electric Corp Semiconductor package and semiconductor light-emitting apparatus
JP2010232643A (en) * 2009-03-05 2010-10-14 Nichia Corp Optical semiconductor device and method of manufacturing the same
JP2010272736A (en) * 2009-05-22 2010-12-02 Toshiba Lighting & Technology Corp Light-emitting device
JP2012533893A (en) * 2009-07-20 2012-12-27 フラオンホファー−ゲゼルシャフト・ツア・フェルデルング・デア・アンゲヴァンテン・フォルシュング・エー・ファオ Solar cell assembly and further solar cell structure
JP2013522891A (en) * 2010-03-15 2013-06-13 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Optoelectronic component and manufacturing method thereof
US9121585B2 (en) 2010-03-15 2015-09-01 Osram Opto Semiconductors Gmbh Optoelectronic component and method for the production thereof
JP2012033726A (en) * 2010-07-30 2012-02-16 Polyplastics Co Manufacturing method of light-emitting device, light-emitting device, and reflector
CN103069594A (en) * 2010-07-30 2013-04-24 宝理塑料株式会社 Method for producing light-emitting device, light-emitting device, and reflector
WO2012014679A1 (en) * 2010-07-30 2012-02-02 ポリプラスチックス株式会社 Method for producing light-emitting device, light-emitting device, and reflector
WO2012141136A1 (en) * 2011-04-11 2012-10-18 株式会社日立製作所 Aluminum electroplating solution
WO2013145071A1 (en) * 2012-03-26 2013-10-03 富士機械製造株式会社 Led package and manufacturing method for same
JPWO2013145071A1 (en) * 2012-03-26 2015-08-03 富士機械製造株式会社 LED package and manufacturing method thereof

Also Published As

Publication number Publication date
WO2005053040A1 (en) 2005-06-09

Similar Documents

Publication Publication Date Title
JP2005159045A (en) Semiconductor light emitting element mounting member and light emitting diode using the same
JP6306652B2 (en) Thermosetting light reflecting resin composition and method for producing the same
JP5232369B2 (en) Manufacturing method of package substrate for mounting optical semiconductor element and manufacturing method of optical semiconductor device using the same
JP5177319B2 (en) Metal substrate and light source device
JP5060707B2 (en) Thermosetting resin composition for light reflection
JP5472726B2 (en) Wiring board, electronic component package and manufacturing method thereof
US20110042124A1 (en) Multilayer wiring substrate having cavity portion
JP2008518461A (en) Solid metal block semiconductor light emitting device mounting substrate and package including cavity and heat sink and method for packaging them
JP5665285B2 (en) Optical semiconductor element mounting member and optical semiconductor device
JP5233186B2 (en) Thermosetting light reflecting resin composition, substrate for mounting optical semiconductor element using the same, method for manufacturing the same, and optical semiconductor device
JP5767160B2 (en) Manufacturing method of substrate for optical semiconductor device
KR101011913B1 (en) Plated polyester resin article and method for production thereof
JP2010235753A (en) Thermosetting resin composition for light reflection, substrate for mounting optical semiconductor element and method of producing the substrate, and optical semiconductor device
JP2009065219A (en) Light-emitting device and manufacturing method
JP2004179342A (en) Light emitting device and manufacturing method therefor
JP5956937B2 (en) Method for manufacturing package substrate for mounting optical semiconductor element
CN113491017A (en) Phosphor substrate, light-emitting substrate, method for producing phosphor substrate, method for producing light-emitting substrate, and lighting device
JP6191705B2 (en) Thermosetting resin composition for light reflection, substrate for mounting optical semiconductor element, method for manufacturing the same, and optical semiconductor device
JP6337996B2 (en) Thermosetting resin composition for light reflection, substrate for mounting optical semiconductor element, method for manufacturing the same, and optical semiconductor device
JP2013168684A (en) Member for mounting optical semiconductor element, and optical semiconductor device
JP2013032539A (en) Thermosetting resin composition for light reflection, substrate for mounting optical semiconductor element and method of producing the substrate, and optical semiconductor device
JP2020154101A (en) Molding material for light reflector, light reflector, and a light-emitting device
JP2006100624A (en) Three-dimensional sheet-like adhesive material used for optical module
JP2005012156A (en) Highly heat-conductive circuit component and highly heat-radiative module