JP2005154879A - Metal mask for vapor deposition, and method of producing vapor deposition pattern using the same - Google Patents

Metal mask for vapor deposition, and method of producing vapor deposition pattern using the same Download PDF

Info

Publication number
JP2005154879A
JP2005154879A JP2003398993A JP2003398993A JP2005154879A JP 2005154879 A JP2005154879 A JP 2005154879A JP 2003398993 A JP2003398993 A JP 2003398993A JP 2003398993 A JP2003398993 A JP 2003398993A JP 2005154879 A JP2005154879 A JP 2005154879A
Authority
JP
Japan
Prior art keywords
vapor deposition
metal mask
metal
mask
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003398993A
Other languages
Japanese (ja)
Inventor
Naotada Mabuchi
尚直 真淵
Naoki Tatebayashi
直樹 館林
Shozo Asai
正三 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Components Inc
Original Assignee
Canon Components Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Components Inc filed Critical Canon Components Inc
Priority to JP2003398993A priority Critical patent/JP2005154879A/en
Publication of JP2005154879A publication Critical patent/JP2005154879A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a metal mask for vapor deposition capable of forming the vapor deposition pattern of an organic luminescent material in an organic EL (electroluminescence) display panel on a glass substrate with high positional precision. <P>SOLUTION: The metal mask for vapor deposition having a plurality of vapor through holes for vapor-depositing a vapor deposition material on a glass substrate is formed of a stacked body obtained by stacking at least two or more kinds of metallic layers or alloy layers with different thermal expansion coefficients. At this time, by suitably deciding the thickness of the respective metallic layers or alloy layers, the thermal expansion coefficient in the plane direction of the metal mask for vapor deposition can be controlled so as to be almost the same as that of the glass substrate subjected to vapor deposition. By using the metal mask for vapor deposition, the difference in the thermal expansion between the glass substrate and the mask is eliminated, and a vapor deposition pattern with high positional precision can be formed. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、蒸着用メタルマスク、および蒸着用メタルマスクの製造方法に関し、特に有機EL(エレクトロルミネッセンス)表示パネルの製造において、蒸着法で素子を形成する際に用いられる蒸着用メタルマスクに関する。   The present invention relates to a metal mask for vapor deposition and a method for producing a metal mask for vapor deposition, and more particularly to a metal mask for vapor deposition used in forming an element by vapor deposition in the production of an organic EL (electroluminescence) display panel.

有機EL表示パネルであって、各画素を構成する素子の製造方法は、ガラス基板表面に透明導電膜などで形成された電極を配線した後、その表層に有機EL層を含む有機層からなる有機発光材料を配置し、更にその表層をアルミニウムまたはマグネシウムからなる金属電極を順に積層する構造が知られている。
このような有機EL素子の形成方法は、有機発光材料が水分を嫌うため、ドライプロセスが好適であり、なかでもマスク蒸着法が精度および生産性を考慮して多く採用されている。
An organic EL display panel, which is an organic EL display panel, includes an organic layer including an organic EL layer as a surface layer after wiring an electrode formed of a transparent conductive film on a glass substrate surface. There is known a structure in which a light emitting material is disposed and a metal electrode made of aluminum or magnesium is sequentially laminated on the surface layer.
As a method for forming such an organic EL element, an organic light emitting material dislikes moisture, and thus a dry process is suitable. Among them, a mask vapor deposition method is often employed in consideration of accuracy and productivity.

マスク蒸着法による有機EL素子の形成方法は、まず真空蒸着室内にガラス基板を透明電極が形成された面を下向きにして配置し、その下側の蒸着源に有機発光材料等を置き加熱気化させる。
その際、所定パターン形状で開口した複数の蒸気通孔を有する蒸着用メタルマスクを前記ガラス基板と前記蒸着源との間に配置し、該蒸気通孔を通った有機発光材料の気化成分だけが選択的に前記ガラス基板上の所定位置に蒸着され、所定パターンの有機EL層を形成する。その後対向電極を形成して有機EL素子を構成し、所定の方法により封止層を配置して、有機EL表示パネルを完成する。この際、蒸着マスクを前記ガラス基板に密接するように配置することにより、有機EL層のパターンを精度良く形成することができる。
A method for forming an organic EL element by a mask vapor deposition method is as follows. First, a glass substrate is placed in a vacuum vapor deposition chamber with the surface on which a transparent electrode is formed facing downward, and an organic light emitting material or the like is placed on the vapor deposition source below and vaporized by heating. .
At that time, a metal mask for vapor deposition having a plurality of vapor passage holes opened in a predetermined pattern shape is disposed between the glass substrate and the vapor deposition source, and only the vaporization component of the organic light-emitting material that has passed through the vapor passage holes. It selectively vapor-deposits on the said glass substrate in the predetermined position, and forms the organic EL layer of a predetermined pattern. Thereafter, a counter electrode is formed to constitute an organic EL element, and a sealing layer is disposed by a predetermined method to complete an organic EL display panel. At this time, the pattern of the organic EL layer can be accurately formed by arranging the vapor deposition mask so as to be in close contact with the glass substrate.

有機EL表示パネルの高解像化に伴い、各素子の微細化が進みつつある。従って、マスク蒸着法による有機EL表示パネルの製造に当たっては、ガラス基板上に形成された各画素の画素電極である透明電極のパターンと、蒸着マスクを介して配置された有機EL層との間で幾何学的な位置ずれが生じると、有機EL層における有効発光面積が少なくなるため、発光輝度が低下したり、パネル位置による発光ムラが起きるなど、有機EL表示パネルとして品質が悪化する。   As the organic EL display panel has been improved in resolution, each element has been miniaturized. Therefore, in manufacturing an organic EL display panel by a mask vapor deposition method, between a pattern of a transparent electrode that is a pixel electrode of each pixel formed on a glass substrate and an organic EL layer disposed through a vapor deposition mask. When the geometric misalignment occurs, the effective light emitting area in the organic EL layer is reduced, so that the quality of the organic EL display panel is deteriorated such that the light emission luminance is reduced or the light emission unevenness occurs depending on the panel position.

かかる位置ずれが生じる原因の一つは、蒸着時に加熱された蒸着源からの熱によりガラス基板と蒸着マスクが加熱され、それぞれの材種種固有の熱膨張係数で伸縮することにより発生することが知られている。この改善策として、ガラス基板の熱膨張係数に近い金属材料を選択して蒸着マスクを製造する方法が提案されている(例えば特許文献1を参照のこと)。   One of the causes of such misalignment is that the glass substrate and the evaporation mask are heated by the heat from the evaporation source heated at the time of evaporation, and are expanded and contracted by the thermal expansion coefficient specific to each material type. It has been. As an improvement measure, a method of manufacturing a vapor deposition mask by selecting a metal material having a thermal expansion coefficient close to that of a glass substrate has been proposed (for example, see Patent Document 1).

さらに同一金属で2層積層構成の蒸着用メタルマスクの例が知られている(例えば特許文献2を参照のこと)。この方法はニッケル金属の電鋳法により、蒸着源に対して開口部が広がりを持つテーパー形状を持つ蒸着用メタルマスクを提供している。
公開特許公報 特開2003−157974号公報 公開特許公報 特開2003−45657号公報
Further, an example of a metal mask for vapor deposition of the same metal and having a two-layer structure is known (see, for example, Patent Document 2). This method provides a metal mask for vapor deposition having a taper shape with an opening widened with respect to a vapor deposition source by an electroforming method of nickel metal.
JP Patent Publication No. 2003-157974 JP Patent Publication No. 2003-45657

ガラス基板表面に形成された透明電極とそれに対応して形成される有機EL層のパターンとの幾何学的な位置精度の良いことが、有機EL素子における品質上の重要な要素である。有機ELパネルの大判化、微細化とともに、この位置精度の許容値はより小さくなってきている。
マスク蒸着法において、蒸着時のガラス基板及び蒸着マスクは、蒸着材料の加熱された蒸着源からの輻射熱により10℃〜30℃程度昇温する。有機EL素子の製造時に、ガラス基板と蒸着マスクが係る昇温状態にある場合、ガラス基板上の透明電極のパターンと、その表面に蒸着される有機EL層のパターンとの幾何学的な位置ずれを、最小値にするための対応が求められる。
Good geometric positional accuracy between the transparent electrode formed on the surface of the glass substrate and the pattern of the organic EL layer formed corresponding thereto is an important factor in the quality of the organic EL element. As the organic EL panel is increased in size and miniaturized, the allowable value of this positional accuracy is becoming smaller.
In the mask vapor deposition method, the glass substrate and the vapor deposition mask at the time of vapor deposition are heated by about 10 ° C. to 30 ° C. by radiant heat from a vapor deposition source heated with a vapor deposition material. When a glass substrate and a vapor deposition mask are in a temperature rising state during the manufacture of an organic EL element, the geometric misalignment between the pattern of the transparent electrode on the glass substrate and the pattern of the organic EL layer deposited on the surface thereof Is required to have a minimum value.

しかし、一種類の金属材料を用いる改善策は、選択した金属種によって熱膨張係数が一義的に決まることになり、種々のガラス基板やシリコン基板などの全てに対応することは困難である。
またマスク蒸着法において、ニッケルからなる電鋳品またはニッケル合金からなる電鋳品が剛性と強磁性を有することから多用されている。
更に、蒸着マスクに設けられた微細な開口が形成された蒸気通孔の周辺は、平坦性が良いことと寸法精度良く仕上げられていることが、品質の良い有機EL素子の形成のために重要である。しかしながら、電鋳法によるニッケル−鉄合金の金属層だけで成る蒸着マスクを製造した場合、めっき膜に生じる内部応力が大きい為に微細な蒸気通孔の周囲形状が変形(マスク膜の反りまたはねじれ)を起こし、平坦性と寸法精度が損なわれることがある。
However, in the improvement measure using one kind of metal material, the thermal expansion coefficient is uniquely determined by the selected metal species, and it is difficult to cope with all of various glass substrates and silicon substrates.
In the mask vapor deposition method, an electroformed product made of nickel or an electroformed product made of a nickel alloy is frequently used because it has rigidity and ferromagnetism.
Furthermore, it is important for the formation of a high-quality organic EL element that the periphery of the vapor passage hole provided with a fine opening provided in the vapor deposition mask has good flatness and is finished with high dimensional accuracy. It is. However, when an evaporation mask consisting only of a nickel-iron alloy metal layer is produced by electroforming, the internal stress generated in the plating film is large, so the surrounding shape of the fine vapor passages is deformed (warping or twisting of the mask film). ) And flatness and dimensional accuracy may be impaired.

更に、電鋳法においてステンレス基板を母材に用いてニッケル−鉄合金をめっきした場合、めっき後の該合金層とステンレス基板との引き剥がし性が非常に悪いことが問題であり、この引き剥がし工程において、薄膜マスクの機械的変形を起こさせることが多かった。このために、マスクの製造歩留まりが低く、マスクのコストアップの要因にもなっていた。   Furthermore, when a nickel-iron alloy is plated using a stainless steel substrate as a base material in the electroforming method, there is a problem that the peelability between the alloy layer after plating and the stainless steel substrate is very bad. In the process, mechanical deformation of the thin film mask was often caused. For this reason, the manufacturing yield of the mask is low, which has been a factor in increasing the cost of the mask.

本発明の目的は、蒸着用メタルマスクを用いる有機ELパネルの製造において、上記課題を解決し品質の良い有機EL素子を形成するための蒸着用メタルマスクおよび蒸着マスクの製造方法を提供することである。   The object of the present invention is to provide a metal mask for vapor deposition and a method for producing the vapor deposition mask for solving the above-mentioned problems and forming a high-quality organic EL element in the production of an organic EL panel using the metal mask for vapor deposition. is there.

本発明は、平面基板にマスク蒸着するための複数の蒸気通孔を有する蒸着用メタルマスクにおいて、該蒸着用メタルマスクが少なくとも2種以上の異なる金属層からなる積層体であることを特徴とする蒸着用メタルマスクである。
特に有機EL表示パネル製造用の蒸着用メタルマスクであって、該蒸着用メタルマスクが少なくとも2種以上の異なる金属層を重ね合せた積層体からなることを特徴とする。この金属層のいずれかの層には、単一の金属だけではなく合金を用いることも好ましい。
The present invention is a deposition metal mask having a plurality of vapor passage holes for mask deposition on a flat substrate, wherein the deposition metal mask is a laminate composed of at least two different metal layers. It is a metal mask for vapor deposition.
In particular, it is a metal mask for vapor deposition for manufacturing an organic EL display panel, and the metal mask for vapor deposition is composed of a laminate in which at least two different metal layers are superposed. It is also preferable to use an alloy as well as a single metal for any one of the metal layers.

また本発明は、蒸着用メタルマスクの平面方向の熱膨張係数が、前記平面基板の熱膨張係数と略同一であることを特徴とする蒸着用メタルマスクである。
このように少なくとも2種以上の異なる金属層を積層し、該金属層のそれぞれの厚みを適切に決定することによって、蒸着マスクの平面方向の熱膨張係数が蒸着を施すガラス基板の熱膨張係数と略同一に調整されることを特徴とする。
The present invention is also the vapor deposition metal mask characterized in that the thermal expansion coefficient in the planar direction of the vapor deposition metal mask is substantially the same as the thermal expansion coefficient of the planar substrate.
In this way, by laminating at least two different metal layers and appropriately determining the thickness of each of the metal layers, the thermal expansion coefficient in the plane direction of the vapor deposition mask is the thermal expansion coefficient of the glass substrate on which the vapor deposition is performed. It is characterized by being adjusted substantially the same.

さらに本発明は、前記金属層のうち少なくとも1種以上の金属層を電鋳法で形成することが好ましい。さらに本発明の好ましい形態として、ステンレス材などで作られた基板表面に、第一のレジストパターンを形成後、第一の金属層としてニッケル層をめっき形成し、更にその表面に第二のレジストパターンを形成後、第二の金属層としてニッケル−鉄合金層をめっき形成することが蒸着メタルマスクの好ましい形態である。
また本発明は特に、蒸着時にガラス基板に接する側の第一層をニッケル層とすることにより、微細で寸法精度の良い蒸気通孔が形成できる製造方法を提供するものである。
Furthermore, in the present invention, it is preferable that at least one of the metal layers is formed by electroforming. Furthermore, as a preferred embodiment of the present invention, a first resist pattern is formed on the surface of a substrate made of stainless steel or the like, and then a nickel layer is formed by plating as a first metal layer. Further, a second resist pattern is formed on the surface. It is a preferable form of the vapor deposition metal mask to form a nickel-iron alloy layer as the second metal layer after forming the film.
In particular, the present invention provides a manufacturing method in which a vapor layer having fine and dimensional accuracy can be formed by using a nickel layer as the first layer in contact with the glass substrate during vapor deposition.

本発明による蒸着用メタルマスクは、熱に対するパターン寸法安定性、機械的安定性が良く、これを使用して有機EL素子を蒸着法で製造することにより、ガラス基板上に配線された透明電極パターンとの幾何学的位置ずれが少なく、且つ寸法精度の良い有機EL層パターンが形成された有機EL素子からなる有機EL表示パネルの生産が可能となる。   The metal mask for vapor deposition according to the present invention has good pattern dimensional stability and mechanical stability against heat, and the transparent electrode pattern wired on the glass substrate by using this to produce an organic EL element by vapor deposition. Therefore, it is possible to produce an organic EL display panel including an organic EL element on which an organic EL layer pattern having a small dimensional accuracy and a high dimensional accuracy is formed.

以下、本発明の好適な実施の形態について説明する。
図1は本発明にかかる蒸着用メタルマスクを用いて、有機EL表示パネルの発光層のパターンをマスク蒸着法で形成するための真空蒸着室内の図である。なお、ガラス基板1と有機EL層3との間には透明電極2の他にバッファー層などが形成されることとが必要であるが、図1での図示は省略する。またこの積層体の総厚みは特に規定しないが、50μm〜150μmの範囲が望ましい。
Hereinafter, preferred embodiments of the present invention will be described.
FIG. 1 is a view of a vacuum evaporation chamber for forming a light emitting layer pattern of an organic EL display panel by a mask evaporation method using an evaporation metal mask according to the present invention. It is necessary to form a buffer layer or the like in addition to the transparent electrode 2 between the glass substrate 1 and the organic EL layer 3, but the illustration in FIG. 1 is omitted. The total thickness of the laminate is not particularly specified, but is preferably in the range of 50 μm to 150 μm.

蒸着用メタルマスク7の下方には、有機発光材料を加熱気化する蒸着源9が配置されており、気化した有機発光材料8は蒸着用メタルマスク7の蒸気通孔6を通りガラス基板1に蒸着される。蒸着用メタルマスク7はガラス基板1に隙間無く接するように配置されており、その端部は金属製の固定枠などによって支持されている(不図示)。
この時、蒸着源9を所定温度に加熱し蒸着を開始すると、ガラス基板1と蒸着用メタルマスク7は蒸着源9からの輻射熱により、この温度は蒸着源9からの距離に影響するが、10〜30℃昇温する。
A vapor deposition source 9 for heating and vaporizing the organic light emitting material is disposed below the vapor deposition metal mask 7, and the vaporized organic light emitting material 8 is vapor deposited on the glass substrate 1 through the vapor passage hole 6 of the vapor deposition metal mask 7. Is done. The metal mask for vapor deposition 7 is disposed so as to be in contact with the glass substrate 1 without a gap, and its end is supported by a metal fixing frame or the like (not shown).
At this time, when the vapor deposition source 9 is heated to a predetermined temperature and vapor deposition is started, the glass substrate 1 and the metal mask for vapor deposition 7 affect the distance from the vapor deposition source 9 due to radiant heat from the vapor deposition source 9. Increase the temperature by -30 ° C.

このような温度関係下での蒸着工程におけるガラス基板1と蒸着用メタルマスク7に関して、それぞれの熱膨張係数と寸法変化の関係を実施形態に基づいて説明する。有機EL素子において、ガラス基板1上に既に形成されている透明電極2のパターンと蒸着用メタルマスク7の蒸気通孔6のとの許容される位置ずれは、パネルの表示品質上5μm以下に制御する必要があり、小さければ小さいほど良いことは言うまでもない。
例えば200mm四方のガラス基板と蒸着メタルマスクを用いた場合、各辺の中央部で夫々の位置を固定するほうが、周辺部で位置決めする場合よりも絶対的なずれ量が少なくなる。各辺の中央部で固定する場合、周辺部のずれ量は、
熱膨張係数の差 × 温度差 × 基板寸法の1/2
で表すことができる。
この基板を例にして、以下実施例を用いて説明する。
Regarding the glass substrate 1 and the metal mask for vapor deposition 7 in the vapor deposition process under such a temperature relationship, the relationship between the respective thermal expansion coefficients and dimensional changes will be described based on the embodiments. In the organic EL element, the allowable positional deviation between the pattern of the transparent electrode 2 already formed on the glass substrate 1 and the vapor passage hole 6 of the metal mask for vapor deposition 7 is controlled to 5 μm or less in view of the display quality of the panel. Needless to say, the smaller, the better.
For example, when a 200 mm square glass substrate and a vapor deposition metal mask are used, the absolute deviation amount is smaller when the respective positions are fixed at the center portion of each side than when the positions are fixed at the peripheral portion. When it is fixed at the center of each side,
Difference in thermal expansion coefficient × temperature difference × 1/2 of substrate dimensions
It can be expressed as
This substrate will be described as an example with reference to examples.

ガラス基板1には、無アルカリガラス(コーニング社製#1737)の0.7mm厚の基板を用いた。この上に定法によってポリシリコンによる薄膜トランジスタと、電極配線、及び画素電極がマトリクス状に形成されている(不図示)。本実施の形態では、図1に示す蒸着用メタルマスク7の平面方向の熱膨張係数と、ガラス基板1の熱膨張係数とを略同一に調整している例を示す。その製造工程の概略を図2に示すが、電鋳法によって第一の金属層のニッケル層13と、第二の金属層のニッケル−鉄合金層15からなる積層体として蒸着用メタルマスクを製造するものである。   As the glass substrate 1, a 0.7 mm thick substrate made of alkali-free glass (Corning # 1737) was used. On top of this, thin film transistors made of polysilicon, electrode wirings, and pixel electrodes are formed in a matrix (not shown). In the present embodiment, an example is shown in which the thermal expansion coefficient in the planar direction of the evaporation metal mask 7 shown in FIG. 1 and the thermal expansion coefficient of the glass substrate 1 are adjusted to be substantially the same. The outline of the manufacturing process is shown in FIG. 2, and a metal mask for vapor deposition is manufactured as a laminate comprising a nickel layer 13 of the first metal layer and a nickel-iron alloy layer 15 of the second metal layer by electroforming. To do.

まず、電鋳法の母材として鏡面仕上げしたステンレス板11を用い、その表面に第一のレジストパターン12を厚み20μmで複数の蒸気通孔に対応する位置に形成した。その後、下記に示したニッケルめっき浴で50分間めっきを行い、ニッケル層13を第一の金属層として形成した。
(ニッケルめっき浴)
スルファミン酸ニッケル 350g/L
塩化ニッケル 3g/L
ホウ酸 40g/L
光沢剤 微 量
めっき浴PH 4
めっき浴温度 55℃
アノード電極 純ニッケル
電流密度 3.0A/dm
更に、第一のレジストパターン12の表面にフォトレジストを用いて第二のレジストパターン14を形成する。この時、蒸気通孔の形状にテーパーを持たせるために、第二のレジストパターン14の面積は第一のレジストパターン12より広い面積にすることが好ましい。
さらに本発明の蒸着メタルマスクの機械的強度を第二の金属層によって得るために、第二の金属層の厚みを厚くする必要がある。このために、第二の金属層の厚みは、前記第二のレジストパターンの厚みに匹敵することになるため、第二のレジストパターンの厚みを100μmとした。
このレジストの厚みはネガタイプで50μm厚の感光性ドライフィルムレジストを2枚重ねラミネートすることで形成する。またこのレジストを露光する際には、光量を適正値から約1割少なくし、その後PEB(ポスト・エックスポージャ・べーク)処理を行うことにより、現像後のパターン端面が図2(C)の14に示すようにテーパ−状になるよう形成してある。
First, a mirror-finished stainless steel plate 11 was used as a base material for electroforming, and a first resist pattern 12 was formed on the surface at a position corresponding to a plurality of vapor passage holes with a thickness of 20 μm. Thereafter, plating was carried out for 50 minutes in the nickel plating bath shown below to form the nickel layer 13 as the first metal layer.
(Nickel plating bath)
Nickel sulfamate 350g / L
Nickel chloride 3g / L
Boric acid 40g / L
Brightener Fine amount
Plating bath PH 4
Plating bath temperature 55 ° C
Anode electrode Pure nickel Current density 3.0 A / dm 2
Further, a second resist pattern 14 is formed on the surface of the first resist pattern 12 using a photoresist. At this time, it is preferable that the area of the second resist pattern 14 is wider than that of the first resist pattern 12 in order to give a taper to the shape of the vapor passage hole.
Furthermore, in order to obtain the mechanical strength of the vapor deposition metal mask of the present invention by the second metal layer, it is necessary to increase the thickness of the second metal layer. For this reason, since the thickness of the second metal layer is comparable to the thickness of the second resist pattern, the thickness of the second resist pattern is set to 100 μm.
This resist has a negative thickness and is formed by laminating and laminating two photosensitive dry film resists having a thickness of 50 μm. Further, when this resist is exposed, the amount of light is reduced by about 10% from the appropriate value, and then the PEB (post-exposure bake) process is performed, so that the pattern end face after development is shown in FIG. 14) is formed in a tapered shape.

次に下記ニッケル−鉄合金めっき浴で120分間のめっきを行い、ニッケル−鉄合金層15からなる第二の金属層を形成する。
(ニッケル−鉄合金めっき浴)
スルファミン酸ニッケル 130g/L
塩化ニッケル 2g/L
スルファミン酸第一鉄 130g/L
ホウ酸 40g/L
光沢剤 微 量
めっき浴PH 1.56
めっき浴温度 55℃
アノード電極 ニッケル合金(INVAR)
電流密度 1.2A/dm

その後、80℃水酸カリウム水溶液で第一及び第二のレジストパターンを剥離し、2種の異種金属層を重ね合せた積層体を電鋳母材11から引き剥がして蒸着メタルマスク19を完成させる。
図4にこの平面図を示す。200mm四方の蒸着メタルマスクの中に、小さな開口17で第一の金属層が形成されており、その上に大きな開口18で第二の金属層が形成されている。こうすることで開口部16のパターン形状は周囲を第一の金属層によって正確に形成されており、また蒸着用メタルマスクの機械的な強度に関しては、第二の金属層の強度で支持している。
Next, plating is performed for 120 minutes in the following nickel-iron alloy plating bath to form a second metal layer made of the nickel-iron alloy layer 15.
(Nickel-iron alloy plating bath)
Nickel sulfamate 130g / L
Nickel chloride 2g / L
Ferrous sulfamate 130g / L
Boric acid 40g / L
Brightener Fine amount
Plating bath PH 1.56
Plating bath temperature 55 ° C
Anode electrode Nickel alloy (INVAR)
Current density 1.2A / dm 2

Thereafter, the first and second resist patterns are peeled off with an aqueous potassium hydroxide solution at 80 ° C., and the laminate obtained by superimposing two kinds of different metal layers is peeled off from the electroformed base material 11 to complete the vapor deposition metal mask 19. .
FIG. 4 shows this plan view. A first metal layer is formed with a small opening 17 in a 200 mm square evaporated metal mask, and a second metal layer is formed with a large opening 18 thereon. By doing so, the pattern shape of the opening 16 is accurately formed around the first metal layer, and the mechanical strength of the metal mask for vapor deposition is supported by the strength of the second metal layer. Yes.

(測定方法)
本発明における測定方法に関して、熱膨張係数の測定方法は、それぞれ10mm×10mmのテストピースをつくり、TMA(熱機械分析)装置(株式会社リガク製)により20℃から100℃の範囲で計測した。
また金属成分の元素分析は、X線マイクロアナライザー法で求めた。また厚みは、接触式膜厚計でそれぞれ求めた。
ガラス基板及び本実施例で作成した蒸着用用メタルマスクの熱膨張係数を下記に示す。
ガラス基板 3.8 ×10−6/K
蒸着用メタルマスク 3.63×10−6/K
また本実施例と同じ条件で第一の金属層及び第二の金属層を別々に形成した単層膜を用いて、成分と膜厚を測定したところ、第一の金属層はニッケル100wt%で厚み15μm、第二の金属層はニッケル36wt%と鉄64wt%の組成で、厚み85μmが得られた。
(Measuring method)
Regarding the measuring method in the present invention, the thermal expansion coefficient was measured by making test pieces of 10 mm × 10 mm, respectively, and measuring them in the range of 20 ° C. to 100 ° C. with a TMA (thermomechanical analysis) device (manufactured by Rigaku Corporation).
The elemental analysis of the metal component was determined by the X-ray microanalyzer method. The thickness was determined with a contact-type film thickness meter.
The thermal expansion coefficients of the glass substrate and the metal mask for vapor deposition created in this example are shown below.
Glass substrate 3.8 × 10 −6 / K
Metal mask for vapor deposition 3.63 × 10 −6 / K
Moreover, when the component and film thickness were measured using the single layer film which formed the 1st metal layer and the 2nd metal layer separately on the same conditions as a present Example, the 1st metal layer is nickel 100wt%. The thickness was 15 μm, the second metal layer was composed of nickel 36 wt% and iron 64 wt%, and a thickness of 85 μm was obtained.

これらの条件で、200mm四方のガラス基板用の蒸着用メタルマスクを作成した。蒸着用メタルマスクは4辺を金属製の固定枠で支持し、ガラス基板への配置方法は4辺の固定枠の各センター部位で固定し、ガラス基板上の透明電極位置とマスクの蒸気通孔部の位置合わせを行った。
この状態でそれぞれが30℃昇温した場合の位置ずれ量を見積もると、
(3.8−3.63)×10−6×30℃×100=≒0.51μm
となり、温度上昇に起因する基板周辺部の位置ずれは、わずか1μm以下となる。
実際の公知の発光材料に有機EL表示パネルを作成したところ、実質的に位置ずれを起こさないで発光部が形成されており、表示ムラもないパネルが得られた。
Under these conditions, a metal mask for vapor deposition for a 200 mm square glass substrate was prepared. The metal mask for vapor deposition is supported by a metal fixed frame on the four sides, and the placement method on the glass substrate is fixed at each center portion of the fixed frame on the four sides. The transparent electrode position on the glass substrate and the vapor passage hole of the mask The parts were aligned.
In this state, when the amount of misalignment when each is heated by 30 ° C. is estimated,
(3.8-3.63) × 10 −6 × 30 ° C. × 100 = ≈0.51 μm
Thus, the positional deviation of the peripheral portion of the substrate due to the temperature rise is only 1 μm or less.
When an organic EL display panel was made of an actual known light-emitting material, a light-emitting portion was formed with substantially no displacement, and a panel without display unevenness was obtained.

本実施例では、蒸着用メタルマスクの熱膨張係数をガラス基板のそれに近づけるために、蒸着用メタルマスクの総厚を100μmとし、第一の金属層をニッケル層15μm厚とし、第二の金属層をニッケル−鉄合金層85μm厚とした。かかる積層体構成によりガラス基板とほぼ同一の熱膨張係数を達成した。
これは各々異なる熱膨張係数を持つ金属の積層体に関するバイメタルでの知見を応用したものである。いま多層積層体の熱膨張係数をαx、各金属層の弾性係数をEi、金属層の厚みをHiとすると、

Figure 2005154879
で表されることが知られている。例えば、金属aとbからなる2種の金属積層体に関しての熱膨張
係数α2は、
Figure 2005154879
で表すことができる。
このように、希望する熱膨張係数得るための積層体の金属種と厚みは、上式を用いて容易に推定可能であることが判った。
また、それぞれの金属層の厚みは、電鋳法で形成する場合、めっき時間を適切に調節することで適宜選択することが可能である。したがって、本発明により任意の熱膨張係数を持つ蒸着用メタルマスクの製造は、上記熱膨張係数の式を用い、僅かの試行確認で比較的容易に製造することが可能であることが判った。 In this example, in order to make the thermal expansion coefficient of the vapor deposition metal mask close to that of the glass substrate, the total thickness of the vapor deposition metal mask is 100 μm, the first metal layer is a nickel layer 15 μm thick, and the second metal layer The nickel-iron alloy layer had a thickness of 85 μm. With such a laminate structure, the thermal expansion coefficient almost the same as that of the glass substrate was achieved.
This is an application of bimetal knowledge of metal laminates with different coefficients of thermal expansion. Assuming that the thermal expansion coefficient of the multilayer laminate is αx, the elastic coefficient of each metal layer is Ei, and the thickness of the metal layer is Hi,
Figure 2005154879
It is known that For example, the thermal expansion coefficient α2 for two types of metal laminates composed of metals a and b is
Figure 2005154879
It can be expressed as
Thus, it was found that the metal type and thickness of the laminate for obtaining a desired thermal expansion coefficient can be easily estimated using the above equation.
Moreover, when forming by the electroforming method, the thickness of each metal layer can be suitably selected by adjusting plating time appropriately. Therefore, it has been found that the metal mask for vapor deposition having an arbitrary thermal expansion coefficient according to the present invention can be manufactured relatively easily by a few trial confirmations using the thermal expansion coefficient formula.

本実施例の蒸着用メタルマスクように、電鋳母材であるステンレス基板11に直接めっきする第一の金属層として、ニッケル層13を用いることは次の点で好適である。
第一の理由は、図2(E)のレジストの剥離終了後、電鋳母材のステンレス基板11から電鋳品としての蒸着用メタルマスク19を引き剥がすことは容易であり、下記の比較例2に示すような皺や折り目は全く生じない蒸着用メタルマスクが製造できることである。
第二の理由は、ニッケル−鉄合金に比べ、めっきによる内部応力が少ないため、変形が少なく形状と寸法が安定していることにある。
As in the metal mask for vapor deposition of the present embodiment, it is preferable to use the nickel layer 13 as the first metal layer directly plated on the stainless steel substrate 11 which is an electroformed base material in the following points.
The first reason is that it is easy to peel the evaporation metal mask 19 as an electroformed product from the stainless steel substrate 11 of the electroformed base material after the resist peeling in FIG. The metal mask for vapor deposition which does not produce any wrinkles or creases as shown in 2 can be manufactured.
The second reason is that since the internal stress due to plating is less than that of the nickel-iron alloy, deformation and deformation are stable.

実施例1の第二の金属層をめっきした後、図3に示すように更に第三の金属層としてニッケル層21を20μm厚でめっきした三層構成の蒸着用メタルマスク22を製作した。この場合、第三の金属層であるニッケル層の開口部は、第二の金属層の開口部よりも広くしてある以外、実施例1のニッケル層と同一の条件で形成した。
得られた熱膨張係数の値は実施例1とほぼ同様であり、周辺部での位置ずれはほとんど見られなかった。さらにこの構成の特徴は、厚み方向に対し積層された金属材料が第二の金属層を中心にして対称構成となることによって、熱膨張係数の違う金属層の積層に由来する昇温時の蒸着メタルマスク全体の反り又はねじれが効果的に抑えられ、平坦性に優れたものが得られることにある。そのために大面積パネルに用いた場合も、TFT基板を傷つけることなく好適である。
また本発明の他の好ましい形態として、図5に示すように、各金属層の断面形状はテーパー形状でなくてもよく、斜め方向からの蒸着物に対して障害にならなければ、ストレートであってもよい。このストレート形状であれば、パターニングの時の制御が簡単で、生産性に優れている。
After plating the second metal layer of Example 1, as shown in FIG. 3, a metal mask 22 for vapor deposition having a three-layer structure in which a nickel layer 21 was further plated to a thickness of 20 μm as a third metal layer was manufactured. In this case, the opening of the nickel layer as the third metal layer was formed under the same conditions as the nickel layer of Example 1 except that the opening was wider than the opening of the second metal layer.
The obtained coefficient of thermal expansion was almost the same as that of Example 1, and almost no misalignment was observed at the periphery. Furthermore, the feature of this structure is that the metal materials laminated in the thickness direction are symmetrical with respect to the second metal layer, so that vapor deposition during heating is derived from the lamination of metal layers with different thermal expansion coefficients. The object is that warpage or twisting of the entire metal mask can be effectively suppressed, and an excellent flatness can be obtained. Therefore, even when used for a large-area panel, it is suitable without damaging the TFT substrate.
As another preferred embodiment of the present invention, as shown in FIG. 5, the cross-sectional shape of each metal layer does not have to be a taper shape, and is straight if it does not become an obstacle to the deposit from an oblique direction. May be. With this straight shape, the control during patterning is easy and the productivity is excellent.

(比較例1)
ガラス基板には、実施例1と同様の無アルカリガラス基板を用い、ニッケル電鋳法で200mm四方のニッケル製の蒸着用メタルマスクを作成した。
このニッケル製の蒸着用メタルマスクは、電鋳法により母材のステンレス基板面にドライフィルムレジストで蒸気通孔となるパターンを形成した後、先に示したニッケルめっき浴の条件で120分間のめっきを施したものである。
(Comparative Example 1)
A non-alkali glass substrate similar to that used in Example 1 was used as the glass substrate, and a 200 mm square nickel metal mask for vapor deposition was prepared by a nickel electroforming method.
This metal mask for vapor deposition made of nickel is formed by forming a pattern to be a vapor through hole with a dry film resist on the base stainless steel substrate surface by electroforming, and then plating for 120 minutes under the conditions of the nickel plating bath described above. Is given.

本比較例で用いたガラス基板及びニッケル製の蒸着用メタルマスクの熱膨張係数を以下に示す。
ガラス基板 3.8×10−6/K
ニッケル製の蒸着用メタルマスク 13.3×10−6/K
実施例1と同様に、この条件下での蒸着用メタルマスクとガラス基板の4辺周囲部の熱膨張の差は、30℃昇温した場合、
(13.3−3.8)×10−6×30℃×100mm=0.0285mm
となり、周辺部では約30μmの位置ずれを生じることになる。
一般にずれ量の許容値は5μm以下でないと、表示画素の輝度にも影響を与え、パネル全体としては中央部から周辺部にかけて発光輝度が低下する輝度むらが表れる。
The thermal expansion coefficients of the glass substrate and nickel deposition metal mask used in this comparative example are shown below.
Glass substrate 3.8 × 10 −6 / K
Nickel metal mask for vapor deposition 13.3 × 10 −6 / K
As in Example 1, the difference in thermal expansion between the four sides of the metal mask for vapor deposition and the glass substrate under this condition is as follows:
(13.3-3.8) × 10 −6 × 30 ° C. × 100 mm = 0.0285 mm
Thus, a positional shift of about 30 μm occurs in the peripheral portion.
In general, if the allowable value of the deviation amount is not less than 5 μm, the luminance of the display pixel is also affected, and the panel as a whole exhibits luminance unevenness in which the emission luminance decreases from the central portion to the peripheral portion.

(比較例2)
前記蒸着用メタルマスクを、ニッケル−鉄合金であるINVAR材(36wt%Ni+64wt%Feの合金)で製造した例を説明する。比較例1と同様に電鋳法の母材のステンレス基板にレジストで蒸気通孔パターンを形成した後、先に示したニッケル−鉄合金めっき浴の条件で90分間のめっきを施した。
(Comparative Example 2)
An example in which the metal mask for vapor deposition is manufactured from an INVAR material (36 wt% Ni + 64 wt% Fe alloy) which is a nickel-iron alloy will be described. In the same manner as in Comparative Example 1, after forming a vapor passage pattern with a resist on a stainless steel substrate as a base material for electroforming, plating was performed for 90 minutes under the conditions of the nickel-iron alloy plating bath described above.

比較例2で製造した蒸着用メタルマスクの元素分析は、ニッケル36wt%、鉄64wt%であった。また熱膨張係数は、1.2×10−6/Kが得られた。
比較例1と同様に、ガラス基板と蒸着用メタルマスクとも200mm幅で、各辺のセンター部位で位置決めした場合、30℃昇温している場合の熱膨張の差は
(3.8−1.2)×10−6×100mm×30℃=0.0078mm
となり、位置ずれ量は7.8μmとなる。
The elemental analysis of the metal mask for vapor deposition produced in Comparative Example 2 was nickel 36 wt% and iron 64 wt%. The thermal expansion coefficient was 1.2 × 10 −6 / K.
As in Comparative Example 1, when the glass substrate and the metal mask for vapor deposition are both 200 mm wide and positioned at the center portion of each side, the difference in thermal expansion when the temperature is raised by 30 ° C. is (3.8-1. 2) × 10 −6 × 100 mm × 30 ° C. = 0.0078 mm
Thus, the positional deviation amount is 7.8 μm.

本比較例2によるニッケル−鉄合金で製造した蒸着用メタルマスクは、めっき膜に生じる内部応力が大きい為に、微細な蒸気通孔の周囲形状が変形を起こし、平坦性とパターンの寸法精度が損なわれる。更にめっき後、該合金層とステンレス基板との引き剥がし性が非常に悪く、皺または折れ目が生じるために、ガラス基板との密着性が悪く、隙間から蒸着物質が回り込んでしまう欠点がある。   In the metal mask for vapor deposition manufactured by the nickel-iron alloy according to the comparative example 2, since the internal stress generated in the plating film is large, the surrounding shape of the fine vapor passage is deformed, and the flatness and the dimensional accuracy of the pattern are improved. Damaged. Further, after the plating, the peelability between the alloy layer and the stainless steel substrate is very poor, and wrinkles or creases occur, so that the adhesion to the glass substrate is poor and the vapor deposition material wraps around the gap. .

本発明による2種以上の異種金属の積層体からなる蒸着用メタルマスクは、その平面方向の熱膨張係数を比較的幅広い範囲で容易に調整できる利点がある。このために低熱膨張係数のガラス基板またはシリコン基板に微細パターンを精度良く蒸着する際にも適用できる。
以上、本実施例の蒸着用メタルマスクは、マスク蒸着法による有機EL素子の製造において、ガラス基板上に形成された透明電極パターンとの幾何学的位置ずれが少なく、且つ寸法精度の良い有機EL表示パネルの生産が可能となる。
The metal mask for vapor deposition which consists of a laminated body of 2 or more types of different metals according to the present invention has an advantage that the thermal expansion coefficient in the plane direction can be easily adjusted within a relatively wide range. For this reason, the present invention can be applied to the case where a fine pattern is accurately deposited on a glass substrate or a silicon substrate having a low thermal expansion coefficient.
As described above, the metal mask for vapor deposition according to the present example is an organic EL having a small dimensional accuracy with respect to the transparent electrode pattern formed on the glass substrate and having good dimensional accuracy in the production of the organic EL element by the mask vapor deposition method. Display panel production is possible.

本発明の実施形態の蒸着用メタルマスクによる有機発光材料の蒸着工程を説明する図The figure explaining the vapor deposition process of the organic light emitting material by the metal mask for vapor deposition of embodiment of this invention 実施例1に係る有機EL表示パネル製造の蒸着用マスクの製造過程を説明する図The figure explaining the manufacturing process of the mask for vapor deposition of the organic electroluminescent display panel manufacture which concerns on Example 1. FIG. 実施例2に係る有機EL表示パネル製造の蒸着用マスクの一部拡大縦断面説明図Partially enlarged vertical sectional view of an evaporation mask for manufacturing an organic EL display panel according to Example 2 本発明の蒸着用用メタルマスクの一部拡大平面説明図Partially enlarged plan view of a metal mask for vapor deposition according to the present invention 本発明の第二の金属層における蒸気通孔の内周面がストレート状である蒸着用マスクの説明図Explanatory drawing of the mask for vapor deposition by which the internal peripheral surface of the vapor | steam passage hole in the 2nd metal layer of this invention is straight shape

符号の説明Explanation of symbols

1 ガラス基板
3 有機EL層
4 第一の金属層
5 第二の金属層
6 蒸気通孔
7 2種以上の異種金属の積層体からなる蒸着用メタルマスク
9 蒸着源
11 電鋳母材のステンレス基板
12 第一のレジストパターン
13 ニッケル層
14 第二のレジストパターン
15 ニッケル−鉄合金層
16 蒸着マスクに設けた蒸気通孔
19 積層体からなる蒸着用メタルマスク
21 第三の金属層のニッケル層
22 3層の積層体からなる蒸着用メタルマスク
DESCRIPTION OF SYMBOLS 1 Glass substrate 3 Organic EL layer 4 1st metal layer 5 2nd metal layer 6 Vapor through-hole 7 The metal mask for vapor deposition 9 which consists of a laminated body of 2 or more types of different metals Vapor deposition source 11 Stainless steel substrate of electroforming base material DESCRIPTION OF SYMBOLS 12 1st resist pattern 13 Nickel layer 14 2nd resist pattern 15 Nickel-iron alloy layer 16 Vapor passage hole 19 provided in the vapor deposition mask 19 Metal mask for vapor deposition 21 consisting of a laminated body Nickel layer 22 3 of the 3rd metal layer Metal mask for vapor deposition consisting of a laminate of layers

Claims (7)

平面基板にマスク蒸着するための複数の蒸気通孔を有する蒸着用メタルマスクにおいて、該蒸着用メタルマスクが少なくとも2種以上の異なる金属層からなる積層体であることを特徴とする蒸着用メタルマスク。   An evaporation metal mask having a plurality of vapor passage holes for mask evaporation on a flat substrate, wherein the evaporation metal mask is a laminate composed of at least two different metal layers. . 前記金属層に関して、少なくとも一層は合金であることを特徴とする請求項1に記載の蒸着用メタルマスク。   The metal mask for vapor deposition according to claim 1, wherein at least one of the metal layers is an alloy. 前記蒸着用メタルマスクの平面方向の熱膨張係数が、前記平面基板の熱膨張係数と略同一であることを特徴とする請求項1乃至2に記載の蒸着用メタルマスク。   The metal mask for vapor deposition according to claim 1, wherein a thermal expansion coefficient in a planar direction of the metal mask for vapor deposition is substantially the same as a thermal expansion coefficient of the planar substrate. 前記蒸着用メタルマスクを構成する金属層のうち、少なくとも1層以上の金属層を電鋳法で形成したことを特徴とする請求項1乃至3に記載の蒸着用メタルマスク。   The metal mask for vapor deposition according to claim 1, wherein at least one metal layer among the metal layers constituting the metal mask for vapor deposition is formed by electroforming. 前記金属層が、ニッケル層とニッケル−鉄合金層からなる積層体であることを特徴とする請求項4に記載の蒸着用メタルマスク。   The metal mask for vapor deposition according to claim 4, wherein the metal layer is a laminate including a nickel layer and a nickel-iron alloy layer. 前記蒸着用メタルマスクを構成する金属層のうち、蒸着源に向かって開口部の形状が広がっていることを特徴とする請求項1に記載の蒸着用メタルマスク。   2. The metal mask for vapor deposition according to claim 1, wherein a shape of an opening of the metal layer constituting the metal mask for vapor deposition is widened toward a vapor deposition source. 請求項5に記載の蒸着用メタルマスクを用いる蒸着パターンの製造方法に関して、被蒸着面に対向する金属層がニッケル層であることを特徴とする蒸着方法。

6. The method for producing a vapor deposition pattern using the metal mask for vapor deposition according to claim 5, wherein the metal layer facing the deposition surface is a nickel layer.

JP2003398993A 2003-11-28 2003-11-28 Metal mask for vapor deposition, and method of producing vapor deposition pattern using the same Pending JP2005154879A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003398993A JP2005154879A (en) 2003-11-28 2003-11-28 Metal mask for vapor deposition, and method of producing vapor deposition pattern using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003398993A JP2005154879A (en) 2003-11-28 2003-11-28 Metal mask for vapor deposition, and method of producing vapor deposition pattern using the same

Publications (1)

Publication Number Publication Date
JP2005154879A true JP2005154879A (en) 2005-06-16

Family

ID=34723675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003398993A Pending JP2005154879A (en) 2003-11-28 2003-11-28 Metal mask for vapor deposition, and method of producing vapor deposition pattern using the same

Country Status (1)

Country Link
JP (1) JP2005154879A (en)

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100752216B1 (en) * 2005-12-29 2007-08-27 엘지.필립스 엘시디 주식회사 Shadow Mask, Method for Manufacturing the Same and Method For Manufacturing Organic Electro-luminescence Device
WO2008093862A1 (en) * 2007-02-02 2008-08-07 Canon Kabushiki Kaisha Display apparatus and production method thereof
JP2008209902A (en) * 2007-02-02 2008-09-11 Canon Inc Display apparatus and production method thereof
JP2008255449A (en) * 2007-04-09 2008-10-23 Kyushu Hitachi Maxell Ltd Vapor deposition mask, and method for producing the same
JP2009249706A (en) * 2008-04-09 2009-10-29 Sumco Corp Mask for vapor deposition, method for producing vapor-deposition pattern using the same, method for producing sample for evaluating semiconductor wafer, method for evaluating semiconductor wafer, and method for manufacturing semiconductor wafer
WO2011148750A1 (en) * 2010-05-28 2011-12-01 シャープ株式会社 Evaporation mask, and production method and production apparatus for organic el element using evaporation mask
WO2012086453A1 (en) * 2010-12-21 2012-06-28 シャープ株式会社 Vapor deposition device, vapor deposition method, and organic el display device
CN103205693A (en) * 2012-01-16 2013-07-17 昆山允升吉光电科技有限公司 A mask assembly
CN103205696A (en) * 2012-01-16 2013-07-17 昆山允升吉光电科技有限公司 Mask plate for vapor plating
CN103205701A (en) * 2012-01-16 2013-07-17 昆山允升吉光电科技有限公司 A vapor deposition mask plate and a production method thereof
CN103205695A (en) * 2012-01-16 2013-07-17 昆山允升吉光电科技有限公司 A mask plate for vapor plating and a production method thereof
KR101317794B1 (en) * 2006-01-11 2013-10-15 세이코 엡슨 가부시키가이샤 Mask, film forming method, light-emitting device, and electronic apparatus
JP2013216978A (en) * 2012-01-12 2013-10-24 Dainippon Printing Co Ltd Vapor deposition mask, method for manufacturing vapor deposition mask device, and method for manufacturing organic semiconductor element
CN103374734A (en) * 2012-04-17 2013-10-30 昆山允升吉光电科技有限公司 Method for raising coating binding force
JP2014065928A (en) * 2012-09-24 2014-04-17 Dainippon Printing Co Ltd Vapor deposition mask manufacturing method
JP2015143375A (en) * 2014-01-31 2015-08-06 ソニー株式会社 Metal mask and production method thereof, and production method of display device
JP2015151581A (en) * 2014-02-14 2015-08-24 日立マクセル株式会社 Electroformed article and method for manufacturing the same
WO2015174269A1 (en) * 2014-05-13 2015-11-19 大日本印刷株式会社 Metal plate, method for manufacturing metal plate, and method for manufacturing mask using metal plate
WO2016104207A1 (en) * 2014-12-27 2016-06-30 日立マクセル株式会社 Vapor deposition mask and manufacturing method therefor
JP2016148112A (en) * 2015-02-10 2016-08-18 大日本印刷株式会社 Method of manufacturing vapor deposition mask, and vapor deposition mask
JP2016148113A (en) * 2015-02-10 2016-08-18 大日本印刷株式会社 Method of manufacturing vapor deposition mask, and vapor deposition mask
JP2016196675A (en) * 2015-04-02 2016-11-24 大日本印刷株式会社 Vapor deposition mask production method
JP2016199775A (en) * 2015-04-07 2016-12-01 大日本印刷株式会社 Manufacturing method for vapor deposition mask
US9543520B1 (en) 2015-10-05 2017-01-10 Samsung Display Co., Ltd. Method of manufacturing mask for deposition
JP2017036471A (en) * 2015-08-07 2017-02-16 大日本印刷株式会社 Vapor deposition mask manufacturing method
JP2017057494A (en) * 2015-09-17 2017-03-23 大日本印刷株式会社 Vapor deposition mask, method for manufacturing vapor deposition mask and method for manufacturing organic semiconductor element
JP2017057495A (en) * 2015-09-16 2017-03-23 大日本印刷株式会社 Vapor deposition mask, method for manufacturing vapor deposition mask and method for manufacturing organic semiconductor element
JP2017061728A (en) * 2015-09-25 2017-03-30 大日本印刷株式会社 Vapor deposition mask and manufacturing method of vapor deposition mask
WO2017057621A1 (en) * 2015-09-30 2017-04-06 大日本印刷株式会社 Deposition mask, method for manufacturing deposition mask, and metal plate
KR101832988B1 (en) * 2016-08-04 2018-02-28 주식회사 티지오테크 Mother plate and producing method of the same, and producing method of the same
KR20180028899A (en) * 2016-09-09 2018-03-19 주식회사 티지오테크 Electroforming mother plate used in manufacturing oled picture element forming mask
KR20180037253A (en) * 2015-08-05 2018-04-11 어플라이드 머티어리얼스, 인코포레이티드 Shadow mask for manufacturing organic light emitting diodes
KR101860013B1 (en) * 2016-11-28 2018-05-23 주식회사 티지오테크 Mask
KR101861702B1 (en) * 2016-09-09 2018-05-29 주식회사 티지오테크 Mother plate and producing method of the same, and producing method of the same
WO2018097559A1 (en) * 2016-11-28 2018-05-31 주식회사 티지오테크 Mother plate, method for manufacturing mother plate, and method for manufacturing mask
JP2018090910A (en) * 2018-02-26 2018-06-14 大日本印刷株式会社 Vapor deposition mask
KR20180079983A (en) * 2017-01-03 2018-07-11 주식회사 티지오테크 Mother plate and producing method of mask
WO2018128304A1 (en) * 2017-01-04 2018-07-12 주식회사 티지오테크 Method for manufacturing mask and mother plate used therefor
CN108468072A (en) * 2018-03-13 2018-08-31 阿德文泰克全球有限公司 Iron-nickel alloy shadow mask and preparation method thereof
CN108486616A (en) * 2018-03-13 2018-09-04 阿德文泰克全球有限公司 Metal shadow mask and preparation method thereof
WO2019009526A1 (en) * 2017-07-04 2019-01-10 주식회사 티지오테크 Mask and method for manufacturing mask, and mother plate
KR20190004491A (en) * 2017-07-04 2019-01-14 주식회사 티지오테크 Mask same, and producing method of the same
KR20190011097A (en) * 2017-07-24 2019-02-01 주식회사 티지오테크 Mother plate and producing method thereof
CN109309175A (en) * 2017-07-27 2019-02-05 三星显示有限公司 The manufacturing method of mask frame and display device
US10233546B2 (en) 2013-09-13 2019-03-19 Dai Nippon Printing Co., Ltd. Metal plate, method of manufacturing metal plate, and method of manufacturing mask by use of metal plate
US10384417B2 (en) 2015-01-20 2019-08-20 Sharp Kabushiki Kaisha Deposition mask and manufacturing method
CN110431256A (en) * 2017-03-14 2019-11-08 Lg伊诺特有限公司 Metal plate, deposition mas and its manufacturing method
US10541387B2 (en) 2015-09-30 2020-01-21 Dai Nippon Printing Co., Ltd. Deposition mask, method of manufacturing deposition mask and metal plate
US10570498B2 (en) 2015-02-10 2020-02-25 Dai Nippon Printing Co., Ltd. Manufacturing method for deposition mask, metal plate used for producing deposition mask, and manufacturing method for said metal sheet
CN114127338A (en) * 2019-05-13 2022-03-01 创造未来有限公司 Method for manufacturing mold for manufacturing fine metal mask and method for manufacturing fine metal mask
KR20220068770A (en) * 2020-11-19 2022-05-26 크레아퓨쳐 주식회사 Invar sheet with enhanced corrosion resistance and manufacturing method thereof
US11486031B2 (en) 2013-10-15 2022-11-01 Dai Nippon Printing Co., Ltd. Metal plate

Cited By (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100752216B1 (en) * 2005-12-29 2007-08-27 엘지.필립스 엘시디 주식회사 Shadow Mask, Method for Manufacturing the Same and Method For Manufacturing Organic Electro-luminescence Device
KR101317794B1 (en) * 2006-01-11 2013-10-15 세이코 엡슨 가부시키가이샤 Mask, film forming method, light-emitting device, and electronic apparatus
US8159117B2 (en) 2007-02-02 2012-04-17 Canon Kabushiki Kaisha Display apparatus and production method thereof
WO2008093862A1 (en) * 2007-02-02 2008-08-07 Canon Kabushiki Kaisha Display apparatus and production method thereof
JP2008209902A (en) * 2007-02-02 2008-09-11 Canon Inc Display apparatus and production method thereof
JP2008255449A (en) * 2007-04-09 2008-10-23 Kyushu Hitachi Maxell Ltd Vapor deposition mask, and method for producing the same
JP2009249706A (en) * 2008-04-09 2009-10-29 Sumco Corp Mask for vapor deposition, method for producing vapor-deposition pattern using the same, method for producing sample for evaluating semiconductor wafer, method for evaluating semiconductor wafer, and method for manufacturing semiconductor wafer
WO2011148750A1 (en) * 2010-05-28 2011-12-01 シャープ株式会社 Evaporation mask, and production method and production apparatus for organic el element using evaporation mask
US9580791B2 (en) 2010-05-28 2017-02-28 Sharp Kabushiki Kaisha Vapor deposition mask, and manufacturing method and manufacturing device for organic EL element using vapor deposition mask
KR101434084B1 (en) * 2010-05-28 2014-09-22 샤프 가부시키가이샤 Evaporation mask, and production method and production apparatus for organic el element using evaporation mask
WO2012086453A1 (en) * 2010-12-21 2012-06-28 シャープ株式会社 Vapor deposition device, vapor deposition method, and organic el display device
CN103210113A (en) * 2010-12-21 2013-07-17 夏普株式会社 Vapor deposition device, vapor deposition method, and organic el display device
JPWO2012086453A1 (en) * 2010-12-21 2014-05-22 シャープ株式会社 Vapor deposition apparatus and vapor deposition method
JP5291839B2 (en) * 2010-12-21 2013-09-18 シャープ株式会社 Vapor deposition apparatus and vapor deposition method
JP2013216978A (en) * 2012-01-12 2013-10-24 Dainippon Printing Co Ltd Vapor deposition mask, method for manufacturing vapor deposition mask device, and method for manufacturing organic semiconductor element
CN103205701A (en) * 2012-01-16 2013-07-17 昆山允升吉光电科技有限公司 A vapor deposition mask plate and a production method thereof
CN103205695B (en) * 2012-01-16 2015-11-25 昆山允升吉光电科技有限公司 A kind of evaporation mask plate and manufacture craft thereof
CN103205695A (en) * 2012-01-16 2013-07-17 昆山允升吉光电科技有限公司 A mask plate for vapor plating and a production method thereof
CN103205696A (en) * 2012-01-16 2013-07-17 昆山允升吉光电科技有限公司 Mask plate for vapor plating
CN103205693A (en) * 2012-01-16 2013-07-17 昆山允升吉光电科技有限公司 A mask assembly
CN103374734A (en) * 2012-04-17 2013-10-30 昆山允升吉光电科技有限公司 Method for raising coating binding force
JP2014065928A (en) * 2012-09-24 2014-04-17 Dainippon Printing Co Ltd Vapor deposition mask manufacturing method
US10731261B2 (en) 2013-09-13 2020-08-04 Dai Nippon Printing Co., Ltd. Metal plate, method of manufacturing metal plate, and method of manufacturing mask by use of metal plate
US10233546B2 (en) 2013-09-13 2019-03-19 Dai Nippon Printing Co., Ltd. Metal plate, method of manufacturing metal plate, and method of manufacturing mask by use of metal plate
US11486031B2 (en) 2013-10-15 2022-11-01 Dai Nippon Printing Co., Ltd. Metal plate
JP2015143375A (en) * 2014-01-31 2015-08-06 ソニー株式会社 Metal mask and production method thereof, and production method of display device
JP2015151581A (en) * 2014-02-14 2015-08-24 日立マクセル株式会社 Electroformed article and method for manufacturing the same
US11217750B2 (en) 2014-05-13 2022-01-04 Dai Nippon Printing Co., Ltd. Metal plate, method of manufacturing metal plate, and method of manufacturing mask by using metal plate
WO2015174269A1 (en) * 2014-05-13 2015-11-19 大日本印刷株式会社 Metal plate, method for manufacturing metal plate, and method for manufacturing mask using metal plate
US10600963B2 (en) 2014-05-13 2020-03-24 Dai Nippon Printing Co., Ltd. Metal plate, method of manufacturing metal plate, and method of manufacturing mask by using metal plate
WO2016104207A1 (en) * 2014-12-27 2016-06-30 日立マクセル株式会社 Vapor deposition mask and manufacturing method therefor
JP2016125097A (en) * 2014-12-27 2016-07-11 日立マクセル株式会社 Vapor deposition mask and method for manufacturing the same
US10384417B2 (en) 2015-01-20 2019-08-20 Sharp Kabushiki Kaisha Deposition mask and manufacturing method
US10612124B2 (en) 2015-02-10 2020-04-07 Dai Nippon Printing Co., Ltd. Manufacturing method for deposition mask, metal plate used for producing deposition mask, and manufacturing method for said metal sheet
US10570498B2 (en) 2015-02-10 2020-02-25 Dai Nippon Printing Co., Ltd. Manufacturing method for deposition mask, metal plate used for producing deposition mask, and manufacturing method for said metal sheet
JP2016148113A (en) * 2015-02-10 2016-08-18 大日本印刷株式会社 Method of manufacturing vapor deposition mask, and vapor deposition mask
WO2016129534A1 (en) * 2015-02-10 2016-08-18 大日本印刷株式会社 Method for manufacturing deposition mask, and deposition mask
JP2016148112A (en) * 2015-02-10 2016-08-18 大日本印刷株式会社 Method of manufacturing vapor deposition mask, and vapor deposition mask
JP2016196675A (en) * 2015-04-02 2016-11-24 大日本印刷株式会社 Vapor deposition mask production method
JP2016199775A (en) * 2015-04-07 2016-12-01 大日本印刷株式会社 Manufacturing method for vapor deposition mask
KR102050860B1 (en) * 2015-08-05 2019-12-02 어플라이드 머티어리얼스, 인코포레이티드 Shadow mask for manufacturing organic light emitting diode
JP2018526534A (en) * 2015-08-05 2018-09-13 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Shadow mask for organic light emitting diode manufacturing
KR20180037253A (en) * 2015-08-05 2018-04-11 어플라이드 머티어리얼스, 인코포레이티드 Shadow mask for manufacturing organic light emitting diodes
JP2017036471A (en) * 2015-08-07 2017-02-16 大日本印刷株式会社 Vapor deposition mask manufacturing method
JP2017057495A (en) * 2015-09-16 2017-03-23 大日本印刷株式会社 Vapor deposition mask, method for manufacturing vapor deposition mask and method for manufacturing organic semiconductor element
JP2017057494A (en) * 2015-09-17 2017-03-23 大日本印刷株式会社 Vapor deposition mask, method for manufacturing vapor deposition mask and method for manufacturing organic semiconductor element
JP2017061728A (en) * 2015-09-25 2017-03-30 大日本印刷株式会社 Vapor deposition mask and manufacturing method of vapor deposition mask
JP2019007083A (en) * 2015-09-30 2019-01-17 大日本印刷株式会社 Vapor deposition mask, vapor deposition mask apparatus, method of manufacturing vapor deposition mask, method of manufacturing vapor deposition mask apparatus, and vapor deposition method
US10538838B2 (en) 2015-09-30 2020-01-21 Dai Nippon Printing Co., Ltd. Deposition mask, method of manufacturing deposition mask and metal plate
CN108138303B (en) * 2015-09-30 2020-12-25 大日本印刷株式会社 Vapor deposition mask, method for manufacturing vapor deposition mask, and metal plate
CN108138303A (en) * 2015-09-30 2018-06-08 大日本印刷株式会社 Deposition mask, the manufacturing method of deposition mask and metallic plate
KR20220025944A (en) * 2015-09-30 2022-03-03 다이니폰 인사츠 가부시키가이샤 Deposition mask, method of manufacturing deposition mask and metal plate
KR102366712B1 (en) 2015-09-30 2022-02-23 다이니폰 인사츠 가부시키가이샤 Deposition mask, method of manufacturing deposition mask and metal plate
US10541387B2 (en) 2015-09-30 2020-01-21 Dai Nippon Printing Co., Ltd. Deposition mask, method of manufacturing deposition mask and metal plate
JPWO2017057621A1 (en) * 2015-09-30 2017-12-14 大日本印刷株式会社 Vapor deposition mask, vapor deposition mask manufacturing method, and metal plate
US11118258B2 (en) 2015-09-30 2021-09-14 Dai Nippon Printing Co., Ltd. Deposition mask, method of manufacturing deposition mask and metal plate
KR20200137032A (en) * 2015-09-30 2020-12-08 다이니폰 인사츠 가부시키가이샤 Deposition mask, method of manufacturing deposition mask and metal plate
EP3358038A4 (en) * 2015-09-30 2020-01-01 Dai Nippon Printing Co., Ltd. Deposition mask, method for manufacturing deposition mask, and metal plate
KR102477941B1 (en) * 2015-09-30 2022-12-16 다이니폰 인사츠 가부시키가이샤 Deposition mask, method of manufacturing deposition mask and metal plate
EP3757247A1 (en) * 2015-09-30 2020-12-30 Dai Nippon Printing Co., Ltd. Deposition mask, method of manufacturing deposition mask and metal plate
WO2017057621A1 (en) * 2015-09-30 2017-04-06 大日本印刷株式会社 Deposition mask, method for manufacturing deposition mask, and metal plate
US9543520B1 (en) 2015-10-05 2017-01-10 Samsung Display Co., Ltd. Method of manufacturing mask for deposition
KR101832988B1 (en) * 2016-08-04 2018-02-28 주식회사 티지오테크 Mother plate and producing method of the same, and producing method of the same
KR102010001B1 (en) * 2016-09-09 2019-08-12 주식회사 티지오테크 Electroforming mother plate used in manufacturing oled picture element forming mask
KR101861702B1 (en) * 2016-09-09 2018-05-29 주식회사 티지오테크 Mother plate and producing method of the same, and producing method of the same
KR20180028899A (en) * 2016-09-09 2018-03-19 주식회사 티지오테크 Electroforming mother plate used in manufacturing oled picture element forming mask
KR101843035B1 (en) * 2016-09-09 2018-03-29 주식회사 티지오테크 Producing methods of the mother plate and mask
KR101871956B1 (en) * 2016-11-28 2018-07-02 주식회사 티지오테크 Mother plate and producing method of the same, and producing method of the same
KR101860013B1 (en) * 2016-11-28 2018-05-23 주식회사 티지오테크 Mask
WO2018097559A1 (en) * 2016-11-28 2018-05-31 주식회사 티지오테크 Mother plate, method for manufacturing mother plate, and method for manufacturing mask
KR20180079983A (en) * 2017-01-03 2018-07-11 주식회사 티지오테크 Mother plate and producing method of mask
KR101907490B1 (en) * 2017-01-03 2018-10-12 주식회사 티지오테크 Mother plate and producing method of mask
WO2018128304A1 (en) * 2017-01-04 2018-07-12 주식회사 티지오테크 Method for manufacturing mask and mother plate used therefor
CN113622004A (en) * 2017-03-14 2021-11-09 Lg伊诺特有限公司 Metal plate, deposition mask and method for manufacturing the same
US11293105B2 (en) 2017-03-14 2022-04-05 Lg Innotek Co., Ltd. Metal plate, deposition mask, and manufacturing method therefor
CN113622004B (en) * 2017-03-14 2024-04-16 Lg伊诺特有限公司 Metal plate, deposition mask and manufacturing method thereof
CN110431256A (en) * 2017-03-14 2019-11-08 Lg伊诺特有限公司 Metal plate, deposition mas and its manufacturing method
US11781224B2 (en) 2017-03-14 2023-10-10 Lg Innotek Co., Ltd. Metal plate, deposition mask, and manufacturing method therefor
JP2020509238A (en) * 2017-03-14 2020-03-26 エルジー イノテック カンパニー リミテッド Metal plate, mask for vapor deposition and method of manufacturing the same
EP3940113A1 (en) * 2017-03-14 2022-01-19 Lg Innotek Co. Ltd Metal plate, deposition mask, and manufacturing method therefor
EP3597794A4 (en) * 2017-03-14 2021-01-06 LG Innotek Co., Ltd. Metal plate, deposition mask, and manufacturing method therefor
CN110431256B (en) * 2017-03-14 2021-08-20 Lg伊诺特有限公司 Metal plate, deposition mask and method for manufacturing the same
KR102246536B1 (en) * 2017-07-04 2021-04-30 주식회사 오럼머티리얼 Mask same, and producing method of the same
WO2019009526A1 (en) * 2017-07-04 2019-01-10 주식회사 티지오테크 Mask and method for manufacturing mask, and mother plate
KR20190004491A (en) * 2017-07-04 2019-01-14 주식회사 티지오테크 Mask same, and producing method of the same
KR20190011097A (en) * 2017-07-24 2019-02-01 주식회사 티지오테크 Mother plate and producing method thereof
KR102055405B1 (en) * 2017-07-24 2020-01-22 주식회사 티지오테크 Mother plate and producing method thereof
CN109309175A (en) * 2017-07-27 2019-02-05 三星显示有限公司 The manufacturing method of mask frame and display device
CN109309175B (en) * 2017-07-27 2023-05-30 三星显示有限公司 Mask frame assembly and method of manufacturing display device
JP2018090910A (en) * 2018-02-26 2018-06-14 大日本印刷株式会社 Vapor deposition mask
CN108486616A (en) * 2018-03-13 2018-09-04 阿德文泰克全球有限公司 Metal shadow mask and preparation method thereof
CN108468072A (en) * 2018-03-13 2018-08-31 阿德文泰克全球有限公司 Iron-nickel alloy shadow mask and preparation method thereof
CN108486616B (en) * 2018-03-13 2020-05-05 阿德文泰克全球有限公司 Metal shadow mask and method for manufacturing the same
CN114574908A (en) * 2019-05-13 2022-06-03 创造未来有限公司 Method for manufacturing fine metal mask
CN114574908B (en) * 2019-05-13 2022-11-25 创造未来有限公司 Method for manufacturing fine metal mask
CN114127338B (en) * 2019-05-13 2022-12-09 创造未来有限公司 Method for manufacturing mold for manufacturing fine metal mask and method for manufacturing fine metal mask
CN114127338A (en) * 2019-05-13 2022-03-01 创造未来有限公司 Method for manufacturing mold for manufacturing fine metal mask and method for manufacturing fine metal mask
KR20220068770A (en) * 2020-11-19 2022-05-26 크레아퓨쳐 주식회사 Invar sheet with enhanced corrosion resistance and manufacturing method thereof
KR102558317B1 (en) * 2020-11-19 2023-07-21 크레아퓨쳐 주식회사 Invar sheet with enhanced corrosion resistance and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP2005154879A (en) Metal mask for vapor deposition, and method of producing vapor deposition pattern using the same
JP4072422B2 (en) Deposition mask structure, method for producing the same, and method for producing organic EL element using the same
US10439170B2 (en) Multi-layer mask
US9321074B2 (en) Method of manufacturing a mask frame assembly for thin film deposition
US7915073B2 (en) Method of manufacturing the organic electroluminescent display and organic electroluminescent display manufactured by the method
US8701592B2 (en) Mask frame assembly, method of manufacturing the same, and method of manufacturing organic light-emitting display device using the mask frame assembly
US7185419B2 (en) Method of manufacturing a mask for evaporation
WO2016129534A1 (en) Method for manufacturing deposition mask, and deposition mask
WO2017117999A1 (en) Metal mask plate and manufacturing method therefor
US20060110663A1 (en) Mask for depositing thin film of flat panel display and method of fabricating the mask
JP2008156686A (en) Mask, and mask vapor-deposition apparatus
JP5215742B2 (en) Manufacturing method of organic EL display device
JP2008255449A (en) Vapor deposition mask, and method for producing the same
JP2007234248A (en) Deposition mask and manufacturing method of organic el display using it
CN110506342B (en) Method for manufacturing fine metal mask and fine metal mask for manufacturing light emitting element
CN113286916B (en) Micro precise mask plate, manufacturing method thereof and AMOLED display device
JP2008196002A (en) Vapor-deposition mask, and its manufacturing method
WO2016104207A1 (en) Vapor deposition mask and manufacturing method therefor
JP2008184670A (en) Method for producing organic el element, and mask for film deposition
JP2005276480A (en) Mask, manufacturing method of mask, forming method of thin film pattern, manufacturing method of electro-optical device, and electronic apparatus
JP6624504B2 (en) Evaporation mask and method of manufacturing evaporation mask
JP7421617B2 (en) vapor deposition mask
KR100671975B1 (en) Shadow mask and the method of its fabrication for OLED
JP2017036471A (en) Vapor deposition mask manufacturing method
KR102129777B1 (en) Manufacturing method of fine metal mask