JP2005149885A - Manufacturing method of positive electrode material of lithium ion secondary battery - Google Patents

Manufacturing method of positive electrode material of lithium ion secondary battery Download PDF

Info

Publication number
JP2005149885A
JP2005149885A JP2003385050A JP2003385050A JP2005149885A JP 2005149885 A JP2005149885 A JP 2005149885A JP 2003385050 A JP2003385050 A JP 2003385050A JP 2003385050 A JP2003385050 A JP 2003385050A JP 2005149885 A JP2005149885 A JP 2005149885A
Authority
JP
Japan
Prior art keywords
positive electrode
lithium
electrode material
secondary battery
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003385050A
Other languages
Japanese (ja)
Other versions
JP4163595B2 (en
Inventor
Shi-Huang Wu
溪煌 呉
Yung-Ren Lin
永仁 林
Mu-Rung Yang
木榮 楊
Wen-Ren Liou
文仁 劉
Yi-Gen Chen
怡亘 陳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tatung Co Ltd
Original Assignee
Tatung Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tatung Co Ltd filed Critical Tatung Co Ltd
Priority to JP2003385050A priority Critical patent/JP4163595B2/en
Publication of JP2005149885A publication Critical patent/JP2005149885A/en
Application granted granted Critical
Publication of JP4163595B2 publication Critical patent/JP4163595B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a positive electrode material of a lithium ion secondary battery. <P>SOLUTION: This method is used for manufacturing a positive electrode material of a lithium ion battery represented by general a formula of Li<SB>1+x</SB>Mn<SB>2-y</SB>O<SB>4</SB>by an organic acid gel coprecipitation method. In this case, Li is lithium; Mn is manganese; M is magnesium, aluminum, chromium, iron, cobalt or nickel; 0≤x≤0.4; and 0≤y≤0.2; a starting solution is prepared by mixing lithium salt, manganese salt and M salt with at least one kind of solvent; the ratio of the number of moles of lithium ions included in the lithium salt, the number of moles of manganese ions included in the manganese salt, and the number of moles of M ions included in the M salt is (1+x):(2-y):y; a suspended solution is formed by adding at least one kind of binder in the starting solution; the suspended solution is filtered to obtain a coprecipitation product; and finally the coprecipitation product is tentatively baked and heat-treated. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は一種のリチウムイオン二次電池の正極材料の製造方法に係り、特に、携帯電話、ノートブック型コンピュータ、携帯型プレイヤー等に使用されるリチウムイオン二次電池の正極材料の製造方法に関する。   The present invention relates to a method for manufacturing a positive electrode material for a kind of lithium ion secondary battery, and more particularly to a method for manufacturing a positive electrode material for a lithium ion secondary battery used in a mobile phone, a notebook computer, a portable player, and the like.

日本のSony社が1990年に最初にリチウムイオン電池を商品化し、それはリチウムイオンを出し入れできる化合物を純リチウム金属の代わりに用いてリチウム電池の負極材料となした安全な充電式リチウム電池である。リチウムイオン二次電池の正極電極材料には通常強酸化性を具備する化合物、例えばリチウムコバルト酸化物(LiCoO2 )、リチウムニッケル酸化物(LiNiO2 )、リチウムマンガン酸化物(LiMn24 )が使用され、負極電極には炭素材料が使用され、電解液には非水系溶剤が使用される。リチウムコバルト酸化物(LiCoO2 )を含む電池は高い放電容量を有し、ゆえに現在、携帯式製品の主要な電源供給源となっている。リチウムニッケル酸化物(LiNiO2 )は合成しにくく、熱安定性が低いという欠点を有している。また、リチウムマンガン酸化物(LiMn24 )は前の二つに較べて、製造コストが低く、安全性が高く、環境保護面からの長所を有しており、充電式ニッケル金属とリチウムイオン電池の正極材料として非常に適している。 Sony Corporation of Japan first commercialized a lithium ion battery in 1990, which is a safe rechargeable lithium battery that uses a compound capable of taking in and out lithium ions as a negative electrode material for lithium batteries using pure lithium metal. The positive electrode material of the lithium ion secondary battery is usually a compound having strong oxidizing properties, such as lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), lithium manganese oxide (LiMn 2 O 4 ). A carbon material is used for the negative electrode, and a non-aqueous solvent is used for the electrolyte. Batteries containing lithium cobalt oxide (LiCoO 2 ) have a high discharge capacity and are therefore currently the main power source for portable products. Lithium nickel oxide (LiNiO 2 ) has the disadvantages that it is difficult to synthesize and has low thermal stability. In addition, lithium manganese oxide (LiMn 2 O 4 ) has lower manufacturing costs, higher safety, and environmental protection, compared to the previous two, rechargeable nickel metal and lithium ion It is very suitable as a positive electrode material for batteries.

商業ベースで生産する時、伝統的な固体反応法は前駆物粉末を機械式に混合し、さらに長時間の高温での熱処理及び研磨を必要とし、得られた生成物は研磨によりその粉末顆粒が破壊され、その放電容量が低くなり、且つサイクル性能上の容量もまた減少しやすい。   When produced on a commercial basis, traditional solid reaction methods require mechanical mixing of the precursor powder and further heat treatment and polishing at high temperatures for an extended period of time. It is destroyed, its discharge capacity is lowered, and the capacity on cycle performance is also likely to decrease.

近年、湿式化学法の技術がLiMn24 の合成に広く使用されるようになった。その長所は均一な混合が容易で、合成温度が低く、且つ表面積に対する反応が高いことである。既に数種類の湿式化学法合成技術が開発されており、例えば、ゾル−ゲル法、Pechini工程及びクエン酸ゲル法等がある。これらの方法中、一部のゾル−ゲル法は慣性ガス中で行なわねばならない。Pechini工程については非特許文献1を参照されたい。それは、製造するリチウムマグネシウム酸化物の電気化学性質方面を改善するが、製造コストが高く、大量生産製造が難しい。クエン酸ゲル法は加熱乾燥のステップを必要とし、相当にエネルギー資源とコストがかかる。 In recent years, wet chemical techniques have become widely used for the synthesis of LiMn 2 O 4 . Its advantages are easy uniform mixing, low synthesis temperature and high reaction to surface area. Several types of wet chemical synthesis techniques have already been developed, such as the sol-gel method, the Pechini process, and the citric acid gel method. Among these methods, some sol-gel methods must be performed in inertial gases. Refer to Non-Patent Document 1 for the Pechini process. Although it improves the electrochemical properties of the lithium magnesium oxide to be produced, it is expensive to manufacture and difficult to mass produce. The citric acid gel method requires a heating and drying step, which requires considerable energy resources and costs.

J.Electrochem.Soc.1996年発行,第143巻,第879號 liu氏等J. et al. Electrochem. Soc. Published in 1996, Volume 143, Volume 879 Liu, etc.

本発明の主要な目的は、一種のリチウムイオン二次電池の正極材料の製造方法を提供することにあり、それは、簡単な工程により、性能が良好で且つ環境保護に有効なリチウムイオン二次電池の正極材料を製造でき、エネルギー資源と製造コストを節約できる製造方法であるものとする。   A main object of the present invention is to provide a method for producing a positive electrode material of a kind of lithium ion secondary battery, which is a lithium ion secondary battery that has good performance and is effective for environmental protection by a simple process. It is assumed that the production method can produce a positive electrode material and can save energy resources and production costs.

本発明の提供するリチウムイオン二次電池の正極材料の製造方法によると、有機酸ゲル共沈法でLi1+x Mn2-yy4 の一般式で示されるリチウムイオン電池の正極材料を製造する方法であり、そのうち、Liはリチウム、Mnはマンガン、Mはマグネシウム、アルミニウム、クロム、鉄、コバルト或いはニッケル、0≦x≦0.4,0≦y≦0.2であり、リチウム塩、マンガン塩とM塩を少なくとも一種類の溶剤と混合して開始溶液を形成し、そのうち、リチウム塩中に含まれるリチウムイオンのモル数、マンガン塩中に含まれるマンガンイオンのモル数、及び、M塩中に含まれるMイオンのモル数の比は(1+x):(2−y):yであり、少なくとも一種類のバインダーを開始溶液中に添加して懸濁溶液を形成し、該懸濁溶液を濾過して共沈生成物を得て、最後に該共沈生成物を仮焼及び熱処理する。 According to the method for producing a positive electrode material for a lithium ion secondary battery provided by the present invention, a positive electrode material for a lithium ion battery represented by the general formula of Li 1 + x Mn 2 -y My O 4 by an organic acid gel coprecipitation method Of which Li is lithium, Mn is manganese, M is magnesium, aluminum, chromium, iron, cobalt, or nickel, 0 ≦ x ≦ 0.4, 0 ≦ y ≦ 0.2, and lithium Salt, manganese salt and M salt are mixed with at least one solvent to form an initial solution, of which the number of moles of lithium ions contained in the lithium salt, the number of moles of manganese ions contained in the manganese salt, and The ratio of the number of moles of M ions contained in the M salt is (1 + x) :( 2-y): y, and at least one binder is added to the starting solution to form a suspension solution, Filter the suspended solution And to obtain a coprecipitation product, finally calcined and heat treated coprecipitated product.

本発明のリチウムイオン二次電池の正極材料の製造方法で使用するリチウム塩に特殊な制限はなく、例えばリチウムの硝酸塩、塩化物、水酸化物、炭酸塩、或いは酢酸塩とされうる。マンガン塩にも特殊な制限はなく、例えばマンガンの硝酸塩、塩化物、水酸化物、炭酸塩、或いは酢酸塩とされうる。M塩はマグネシウム、アルミニウム、クロム、鉄、コバルト或いはニッケルの硝酸塩、塩化物、水酸化物、炭酸塩、或いは酢酸塩とされうる。本発明の使用する溶剤は、好ましくは、水、メタノール、エタノール、プロピルアルコール或いはブタノールの少なくとも一種類、即ち単一溶剤或いは二種類以上の溶剤の混合物とされる。バインダーはカルボキシル基を具えた多プロトン有機酸であればよく、好ましくはクエン酸、しゅう酸、或いは酒石酸とされる。バインダーはリチウム塩、マンガン塩とM塩に橋かけ反応させるのに用いられ、一般にはバインダーのモル数とリチウム塩中に含まれるリチウムイオンのモル数の比が、1:1から5:1とされることで、結晶相が良好な正極材料を形成することができる。更に好ましくは、バインダーのモル数とリチウム塩中に含まれるリチウムイオンのモル数の比は1:1から3:1とされる。続く仮焼は200℃〜400℃で1時間から4時間行なわれ、及び600℃から900℃で1時間から8時間熱処理される。仮焼及び熱処理の工程と条件は本発明の重点ではないため、詳しい説明は省略する。   There is no special restriction | limiting in the lithium salt used with the manufacturing method of the positive electrode material of the lithium ion secondary battery of this invention, For example, it can be set as the nitrate, chloride, hydroxide, carbonate, or acetate of lithium. The manganese salt is not particularly limited, and may be manganese nitrate, chloride, hydroxide, carbonate, or acetate, for example. The M salt can be magnesium, aluminum, chromium, iron, cobalt or nickel nitrate, chloride, hydroxide, carbonate, or acetate. The solvent used in the present invention is preferably at least one of water, methanol, ethanol, propyl alcohol or butanol, that is, a single solvent or a mixture of two or more solvents. The binder may be any polyprotonic organic acid having a carboxyl group, and is preferably citric acid, oxalic acid, or tartaric acid. The binder is used to cross-link the lithium salt, manganese salt and M salt. Generally, the ratio of the number of moles of the binder to the number of moles of lithium ions contained in the lithium salt is 1: 1 to 5: 1. By doing so, a positive electrode material having a good crystal phase can be formed. More preferably, the ratio of the number of moles of binder to the number of moles of lithium ions contained in the lithium salt is 1: 1 to 3: 1. Subsequent calcination is performed at 200 ° C. to 400 ° C. for 1 hour to 4 hours, and heat treatment is performed at 600 ° C. to 900 ° C. for 1 hour to 8 hours. Since the process and conditions of calcination and heat treatment are not the focus of the present invention, detailed explanation is omitted.

請求項1の発明は、Li1+x Mn2-yy4 の一般式で示されるリチウムイオン電池の正極材料を製造する方法であり、そのうち、Liはリチウム、Mnはマンガン、Mはマグネシウム、アルミニウム、クロム、鉄、コバルト或いはニッケル、0≦x≦0.4,0≦y≦0.2であり、
(A)リチウム塩、マンガン塩とM塩を少なくとも一種類の溶剤と混合して開始溶液を形成する工程、そのうち、リチウム塩中に含まれるリチウムイオンのモル数:マンガン塩中に含まれるマンガンイオンのモル数:M塩中に含まれるMイオンのモル数=(1+x):(2−y):yとされる、
(B)バインダーを前述の開始溶液中に添加して懸濁溶液を形成する工程、
(C)該懸濁溶液を濾過して共沈生成物を得る工程、
(D)共沈生成物を更に仮焼及び熱処理する工程、
以上の(A)から(D)の工程を具えたことを特徴とする、リチウムイオン二次電池の正極材料の製造方法としている。
請求項2の発明は、請求項1記載のリチウムイオン二次電池の正極材料の製造方法において、リチウム塩がリチウムの硝酸塩、塩化物、水酸化物、炭酸塩、或いは酢酸塩とされることを特徴とする、リチウムイオン二次電池の正極材料の製造方法としている。
請求項3の発明は、請求項1記載のリチウムイオン二次電池の正極材料の製造方法において、マンガン塩がマンガンの硝酸塩、塩化物、水酸化物、炭酸塩、或いは酢酸塩とされることを特徴とする、リチウムイオン二次電池の正極材料の製造方法としている。
請求項4の発明は、請求項1記載のリチウムイオン二次電池の正極材料の製造方法において、M塩がマグネシウム、アルミニウム、クロム、鉄、コバルト或いはニッケルの硝酸塩、塩化物、水酸化物、炭酸塩、或いは酢酸塩とされることを特徴とする、リチウムイオン二次電池の正極材料の製造方法としている。
請求項5の発明は、請求項1記載のリチウムイオン二次電池の正極材料の製造方法において、溶剤が水、メタノール、エタノール、プロピルアルコール或いはブタノールとされたことを特徴とする、リチウムイオン二次電池の正極材料の製造方法としている。
請求項6の発明は、請求項1記載のリチウムイオン二次電池の正極材料の製造方法において、バインダーがクエン酸、しゅう酸、或いは酒石酸とされたことを特徴とする、リチウムイオン二次電池の正極材料の製造方法としている。
請求項7の発明は、請求項1記載のリチウムイオン二次電池の正極材料の製造方法において、バインダーのモル数とリチウム塩中に含まれるリチウムイオンのモル数の比が1:1から5:1とされたことを特徴とする、リチウムイオン二次電池の正極材料の製造方法としている。
請求項8の発明は、請求項1記載のリチウムイオン二次電池の正極材料の製造方法において、バインダーのモル数とリチウム塩中に含まれるリチウムイオンのモル数の比が1:1から3:1とされたことを特徴とする、リチウムイオン二次電池の正極材料の製造方法としている。
請求項9の発明は、請求項1記載のリチウムイオン二次電池の正極材料の製造方法において、仮焼の温度が200℃から400℃とされたことを特徴とする、リチウムイオン二次電池の正極材料の製造方法としている。
請求項10の発明は、請求項1記載のリチウムイオン二次電池の正極材料の製造方法において、仮焼の時間が1時間から4時間とされたことを特徴とする、リチウムイオン二次電池の正極材料の製造方法としている。
請求項11の発明は、請求項1記載のリチウムイオン二次電池の正極材料の製造方法において、熱処理の温度が600℃から900℃とされたことを特徴とする、リチウムイオン二次電池の正極材料の製造方法としている。
請求項12の発明は、請求項1記載のリチウムイオン二次電池の正極材料の製造方法において、熱処理の時間が1時間から8時間とされたことを特徴とする、リチウムイオン二次電池の正極材料の製造方法としている。
The invention according to claim 1, a method for producing a positive electrode material of a lithium ion battery represented by the general formula Li 1 + x Mn 2-y M y O 4, of which, Li is lithium, Mn is manganese, M is Magnesium, aluminum, chromium, iron, cobalt or nickel, 0 ≦ x ≦ 0.4, 0 ≦ y ≦ 0.2,
(A) A step of mixing a lithium salt, a manganese salt and an M salt with at least one solvent to form an initiation solution, of which the number of moles of lithium ions contained in the lithium salt: manganese ions contained in the manganese salt The number of moles of: The number of moles of M ions contained in the M salt = (1 + x) :( 2-y): y.
(B) adding a binder into the aforementioned starting solution to form a suspension solution;
(C) filtering the suspension solution to obtain a coprecipitation product;
(D) a step of further calcining and heat-treating the coprecipitation product,
A method for producing a positive electrode material for a lithium ion secondary battery, comprising the steps (A) to (D) described above.
According to a second aspect of the present invention, in the method for producing a positive electrode material for a lithium ion secondary battery according to the first aspect, the lithium salt is lithium nitrate, chloride, hydroxide, carbonate, or acetate. A feature is a manufacturing method of a positive electrode material of a lithium ion secondary battery.
According to a third aspect of the present invention, in the method for producing a positive electrode material for a lithium ion secondary battery according to the first aspect, the manganese salt is manganese nitrate, chloride, hydroxide, carbonate, or acetate. A feature is a manufacturing method of a positive electrode material of a lithium ion secondary battery.
The invention of claim 4 is the method for producing a positive electrode material of a lithium ion secondary battery according to claim 1, wherein the M salt is a nitrate, chloride, hydroxide, carbonate of magnesium, aluminum, chromium, iron, cobalt or nickel. A method for producing a positive electrode material for a lithium ion secondary battery, characterized in that the salt is a salt or an acetate.
The invention of claim 5 is the lithium ion secondary battery manufacturing method of claim 1, wherein the solvent is water, methanol, ethanol, propyl alcohol or butanol. This is a method for producing a positive electrode material for a battery.
The invention of claim 6 is a method for producing a positive electrode material for a lithium ion secondary battery according to claim 1, characterized in that the binder is citric acid, oxalic acid or tartaric acid. The manufacturing method of the positive electrode material.
The invention according to claim 7 is the method for producing a positive electrode material for a lithium ion secondary battery according to claim 1, wherein the ratio of the number of moles of binder to the number of moles of lithium ions contained in the lithium salt is 1: 1 to 5: 1 is a method for producing a positive electrode material for a lithium ion secondary battery.
The invention according to claim 8 is the method for producing a positive electrode material for a lithium ion secondary battery according to claim 1, wherein the ratio of the number of moles of the binder to the number of moles of the lithium ions contained in the lithium salt is 1: 1 to 3: 1 is a method for producing a positive electrode material for a lithium ion secondary battery.
The invention of claim 9 is the method for producing a positive electrode material for a lithium ion secondary battery according to claim 1, characterized in that the calcining temperature is 200 ° C to 400 ° C. The manufacturing method of the positive electrode material.
A tenth aspect of the present invention is the method for producing a positive electrode material for a lithium ion secondary battery according to the first aspect, wherein the calcining time is 1 hour to 4 hours. The manufacturing method of the positive electrode material.
The invention according to claim 11 is the positive electrode material for a lithium ion secondary battery according to claim 1, wherein the heat treatment temperature is 600 ° C. to 900 ° C. It is a material manufacturing method.
The invention of claim 12 is the positive electrode material for a lithium ion secondary battery according to claim 1, wherein the heat treatment time is 1 hour to 8 hours. It is a material manufacturing method.

本発明のリチウムイオン二次電池の正極材料の製造方法は、簡単な工程により、性能が良好で且つ環境保護に有効なリチウムイオン二次電池の正極材料を製造でき、エネルギー資源と製造コストを節約できる製造方法である。   The method for producing a positive electrode material for a lithium ion secondary battery of the present invention can produce a positive electrode material for a lithium ion secondary battery that has good performance and is effective for environmental protection through a simple process, saving energy resources and production costs. It is a manufacturing method that can be performed.

本発明は有機酸ゲル共沈法によりLi1+x Mn2-yy4 の一般式で示されるリチウムイオン電池の正極材料を製造する方法であり、そのうち、Liはリチウム、Mnはマンガン、Mはマグネシウム、アルミニウム、クロム、鉄、コバルト或いはニッケル、0≦x≦0.4,0≦y≦0.2である。 The present invention is a method for producing a positive electrode material of a lithium ion battery represented by the general formula Li 1 + x Mn 2-y M y O 4 with an organic acid gel coprecipitation, of which, Li is lithium, Mn is manganese , M is magnesium, aluminum, chromium, iron, cobalt or nickel, and 0 ≦ x ≦ 0.4 and 0 ≦ y ≦ 0.2.

本発明の方法は以下の二つの長所を有している。即ち、(1)合成工程がいずれも一般環境下で行なわれて特定の反応条件を必要としない。(2)表面積に対して高い電流密度の製品を形成でき、且つリチウムマンガン比を制御しやすい。   The method of the present invention has the following two advantages. That is, (1) all the synthesis steps are performed in a general environment and no specific reaction conditions are required. (2) A product having a high current density with respect to the surface area can be formed, and the lithium manganese ratio can be easily controlled.

本発明の製造過程は図1のフローチャートに示されるとおりであり、ステップ(A)で、リチウム塩、マンガン塩とM塩を少なくとも一種類の溶剤と混合して開始溶液を形成する。そのうち、リチウム塩はリチウムの硝酸塩、塩化物、水酸化物、炭酸塩、或いは酢酸塩のいずれかとされ、マンガン塩はマンガンの硝酸塩、塩化物、水酸化物、炭酸塩、或いは酢酸塩のいずれかとされ、M塩はマグネシウム、アルミニウム、クロム、鉄、コバルト或いはニッケルの硝酸塩、塩化物、水酸化物、炭酸塩、或いは酢酸塩とされる。上述の、(リチウム塩中に含まれるリチウムイオンのモル数):(マンガン塩中に含まれるマンガンイオンのモル数):(M塩中に含まれるMイオンのモル数)=(1+x):(2−y):yである。溶剤は水、メタノール、エタノール、プロピルアルコール或いはブタノールの少なくとも一種類とされる。   The manufacturing process of the present invention is as shown in the flowchart of FIG. 1, and in step (A), a lithium salt, a manganese salt, and an M salt are mixed with at least one solvent to form an initial solution. Among them, the lithium salt is any one of lithium nitrate, chloride, hydroxide, carbonate, or acetate, and the manganese salt is any one of manganese nitrate, chloride, hydroxide, carbonate, or acetate. The M salt is magnesium, aluminum, chromium, iron, cobalt or nickel nitrate, chloride, hydroxide, carbonate, or acetate. As described above, (number of moles of lithium ions contained in lithium salt): (number of moles of manganese ions contained in manganese salt): (number of moles of M ions contained in M salt) = (1 + x): ( 2-y): y. The solvent is at least one of water, methanol, ethanol, propyl alcohol, or butanol.

続いてステップ(B)でバインダーを前述の開始溶液中に添加して開始溶液に橋かけ反応を発生させて、共沈生成物を生成して懸濁溶液を形成し、リチウムイオンとマンガンイオンを開始溶液中で十分に分散させ、これにより橋かけ反応により生成された共沈生成物中に含まれるリチウムイオンとマンガンイオンの比を開始溶液中のリチウムイオンとマンガンイオンの計量比に正確に相当させることができる。バインダーはクエン酸、しゅう酸、或いは酒石酸或いはその他のカルボキシル基を具えた有機酸とされ、且つそのモル数はステップ(A)のリチウム塩に含まれるリチウムイオンのモル数の比は、1:1から5:1とされ、更に好ましくは1:1から3:1とされることで最終的に正極材料が良好な結晶相で生成され、もしこの比より小さければ共沈生成物中にその他の予期せぬ副製品が生成している。   Subsequently, in step (B), a binder is added to the above starting solution to cause a crosslinking reaction in the starting solution, thereby forming a coprecipitation product to form a suspension solution, and lithium ions and manganese ions are added. Disperse well in the starting solution, so that the ratio of lithium ions to manganese ions in the coprecipitation product produced by the cross-linking reaction corresponds exactly to the metric ratio of lithium ions to manganese ions in the starting solution Can be made. The binder is citric acid, oxalic acid, tartaric acid or other organic acid having a carboxyl group, and the number of moles of the lithium ions contained in the lithium salt in step (A) is 1: 1. To 5: 1, and more preferably 1: 1 to 3: 1, so that the positive electrode material is finally produced in a good crystalline phase, and if this ratio is smaller than other ratios in the coprecipitation product An unexpected by-product is generated.

本発明の共沈生成物は室温下で僅かに溶剤に溶けるだけであるため長時間かけて蒸留して溶剤除去する必要はなく、濾過方式でこの共沈生成物を得ることができ、ステップ(C)では前述の懸濁溶液を濾過してそのうちの溶液と共沈生成物を分離し、共沈生成物を更にステップ(D)で仮焼と熱処理して結晶相が良好な正極材料を得る。仮焼は200℃〜400℃で1時間から4時間行ない、及び熱処理は600℃から900℃で1時間から8時間行なう。   Since the coprecipitation product of the present invention is only slightly soluble in a solvent at room temperature, it is not necessary to distill over a long period of time to remove the solvent, and this coprecipitation product can be obtained by filtration. In C), the above suspension solution is filtered to separate the coprecipitation product and the coprecipitation product, and the coprecipitation product is further calcined and heat-treated in step (D) to obtain a positive electrode material having a good crystal phase. . The calcination is performed at 200 to 400 ° C. for 1 to 4 hours, and the heat treatment is performed at 600 to 900 ° C. for 1 to 8 hours.

本発明の正極材料をリチウムイオン二次電池に使用する時、カーボンブラック及びポリビニリデンフルオライド(polyvinylidene fluoride)粘着剤を加え、その後、アルミ箔基板に塗布して試験電池の正極となし、並びにそれとリチウム箔負極と隔離膜とを非水系電解質に加えて組み立てた電池の試験を行なう。この試験電池に対して、一般のリチウム電池に使用される3.6〜4.3ボルト電圧下で、C/3(三時間で一回の充電を完成)の速度で充放電サイクル試験を行なうか、或いはその他の充放電速度下で充放電サイクル試験を行なう。   When the positive electrode material of the present invention is used in a lithium ion secondary battery, carbon black and polyvinylidene fluoride adhesive are added, and then applied to an aluminum foil substrate to form a positive electrode for a test battery, and A battery assembled by adding a lithium foil negative electrode and a separator to a non-aqueous electrolyte is tested. This test battery is subjected to a charge / discharge cycle test at a speed of C / 3 (completed once in 3 hours) under a voltage of 3.6 to 4.3 volts used for a general lithium battery. Alternatively, a charge / discharge cycle test is performed at other charge / discharge rates.

本発明中で使用される各種金属塩類、溶剤及びバインダーの取得及び実験の操作はこの技術に習熟する者にとって周知であるため、説明を省略する。   The acquisition of various metal salts, solvents and binders used in the present invention and the operation of the experiment are well known to those skilled in the art, and will not be described.

比較例1:
伝統的な固体反応法で製造する。酢酸マンガンと炭酸リチウムを化学計量比に依り計量し混合し、さらにこの混合物を酸化アルミニウム坩堝中に置き、350℃で24時間仮焼し、さらに800℃で72時間熱処理し、その後、24時間かけて室温まで降温し、リチウムマンガン酸化物(LiMn24 )化合物を得る。
Comparative Example 1:
Manufactured by traditional solid reaction method. Manganese acetate and lithium carbonate are weighed and mixed according to the chemical ratio, and this mixture is placed in an aluminum oxide crucible, calcined at 350 ° C. for 24 hours, further heat treated at 800 ° C. for 72 hours, and then over 24 hours. The temperature is lowered to room temperature to obtain a lithium manganese oxide (LiMn 2 O 4 ) compound.

比較例2:
Pechini法で製造する。重合前駆物を製造する時に三つの主要な反応がある。即ち、金属酸バインダー生成、エステル化反応及び重合反応である。その詳細な合成方法については、非特許文献1を参照されたい。生成物を210℃で6時間仮焼し、その後、800℃で8時間熱処理し、最後に毎分1℃の速度でゆっくりと生成物を室温まで冷却する。
Comparative Example 2:
Manufactured by Pechini method. There are three main reactions when producing the polymerization precursor. That is, metal acid binder formation, esterification reaction and polymerization reaction. Refer to Non-Patent Document 1 for the detailed synthesis method. The product is calcined at 210 ° C. for 6 hours, then heat treated at 800 ° C. for 8 hours, and finally the product is slowly cooled to room temperature at a rate of 1 ° C. per minute.

比較例3:
クエン酸ゲル法で製造し、硝酸リチウム、硝酸マンガンとクエン酸を脱イオン水中に溶かし、そのうち、Li+ 、Mn2+とクエン酸のモル比は0.4:0.7:1.0とし、この混合物を75℃で0.5時間攪拌し、反応物が均一に混合されるようにする。この混合物が橋かけ反応を開始する時、溶液は突然にゲル状に変化する。これを加熱して水分を除去する。得られた乾燥粉末をさらに300℃で6時間仮焼し、その後、800℃で8時間熱処理し、最後に毎分1℃の速度でゆっくりと製品を室温まで冷却する。
Comparative Example 3:
Manufactured by a citric acid gel method, lithium nitrate, manganese nitrate and citric acid are dissolved in deionized water, and the molar ratio of Li + , Mn 2+ and citric acid is 0.4: 0.7: 1.0 The mixture is stirred at 75 ° C. for 0.5 hour to ensure that the reactants are uniformly mixed. When this mixture initiates a crosslinking reaction, the solution suddenly changes to a gel. This is heated to remove moisture. The obtained dry powder is further calcined at 300 ° C. for 6 hours, then heat treated at 800 ° C. for 8 hours, and finally the product is slowly cooled to room temperature at a rate of 1 ° C. per minute.

実施例1:
0.106モルの酢酸リチウムと0.2モルの酢酸マンガンを100ミリリットルのエタノールに溶かし、その後、クエン酸エタノール溶液を加えて混合すると、溶液が迅速に懸濁溶液に変わる。さらに1時間攪拌し、この懸濁溶液を濾過して共沈生成物を得る。得られた共沈生成物は即ちリチウムマンガンクエン酸塩前駆物質である。続いてこの共沈生成物を高温炉中に置き、300℃で2時間仮焼し、その後続けて800℃まで加熱して4時間熱処理し、最後に毎分1℃の速度でゆっくりと共沈生成物を室温まで冷却する。
Example 1:
When 0.106 moles of lithium acetate and 0.2 moles of manganese acetate are dissolved in 100 milliliters of ethanol and then the citrate ethanol solution is added and mixed, the solution quickly turns into a suspension. The mixture is further stirred for 1 hour, and the suspension solution is filtered to obtain a coprecipitation product. The resulting coprecipitation product is thus a lithium manganese citrate precursor. Subsequently, this coprecipitation product is placed in a high-temperature furnace, calcined at 300 ° C. for 2 hours, subsequently heated to 800 ° C. and heat-treated for 4 hours, and finally slowly coprecipitated at a rate of 1 ° C. per minute. The product is cooled to room temperature.

実施例2:
実施例1の方法で調整し、一系列のその他の金属イオンを含むリチウムマンガン酸化物を製造する。その分子式はLi1.06Mn2-yy4 とされる。Mがコバルトとされる時、yは0.15とされ、Mがニッケルとされる時、yは0.05とされる。
上述の比較例1から3及び実施例1で得られた製品にそれぞれ13重量%のカーボンブラック及び7%のポリビニリデンフルオライド粘着剤を加え、その後、アルミ箔基板に塗布して試験電池の正極となし、並びにそれをリチウム箔負極と隔離膜及び適量の電解液と組み合わせて電池を形成して試験を行なう。そのうち、隔離膜は1:1の体積比のエチレンカーボネート(ethylene carbonate)とジエチレンカーボネート(diethylene carbonate)で製造した1MのLiPH6 を含む電解液に浸される。この試験電池を室温環境中で、C/3(3時間で一回の充電を完成)の速度で充放電サイクル試験を行ない、充放電の停止電圧はそれぞれ4.3と3.6Vとする。図2から分かるように、本発明の方法で製造した電池の正極は、その電池の放電容量とサイクル安定性がいずれもその他の周知の技術で合成した正極粉末よりも優れている。
Example 2:
A lithium manganese oxide containing a series of other metal ions is prepared by the method of Example 1. Its molecular formula is Li 1.06 Mn 2- y My O 4 . When M is cobalt, y is 0.15, and when M is nickel, y is 0.05.
13% by weight of carbon black and 7% of polyvinylidene fluoride adhesive were added to the products obtained in Comparative Examples 1 to 3 and Example 1, respectively, and then applied to an aluminum foil substrate to form a positive electrode for a test battery. In addition, a battery is formed by combining a lithium foil negative electrode with a separator and an appropriate amount of electrolytic solution, and the test is performed. Among them, the separator is immersed in an electrolyte containing 1M LiPH 6 made of ethylene carbonate and diethylene carbonate in a volume ratio of 1: 1. This test battery is subjected to a charge / discharge cycle test at a rate of C / 3 (completed once in 3 hours) in a room temperature environment, and the charge / discharge stop voltages are 4.3 and 3.6 V, respectively. As can be seen from FIG. 2, the battery positive electrode produced by the method of the present invention is superior to the positive electrode powder synthesized by other well-known techniques in both the discharge capacity and cycle stability of the battery.

実施例3:
0.106モルの酢酸リチウムと0.2モルの酢酸マンガンを100ミリリットルのメタノールに溶かし、別に0.169モルのクエン酸を100ミリリットルのメタノールに溶かす。二つの溶液を混合後に、沈殿が生成し、続けて10分間攪拌して濾過し、リチウムマンガンクエン酸塩前駆物質である共沈生成物を得る。続いてこの共沈生成物を高温炉中に置き、300℃で2時間仮焼し、その後続けて750℃まで加熱して4時間熱処理し、最後に毎分1℃の速度でゆっくりと共沈生成物を室温まで冷却する。
以上により得られた製品をCuKα X線解析機(XRD)で測定し、図3中の1のスペクトルを得る。その分析は合成されたリチウムマンガン酸化物が高度結晶体であることを示す。
Example 3:
0.106 moles of lithium acetate and 0.2 moles of manganese acetate are dissolved in 100 milliliters of methanol and another 0.169 mole of citric acid is dissolved in 100 milliliters of methanol. After mixing the two solutions, a precipitate forms, which is subsequently stirred for 10 minutes and filtered to obtain a coprecipitation product that is a lithium manganese citrate precursor. Subsequently, this coprecipitation product is placed in a high temperature furnace, calcined at 300 ° C. for 2 hours, then heated to 750 ° C. and heat-treated for 4 hours, and finally slowly coprecipitated at a rate of 1 ° C. per minute. The product is cooled to room temperature.
The product obtained as described above is measured with a CuKα X-ray analyzer (XRD) to obtain a spectrum 1 in FIG. The analysis shows that the synthesized lithium manganese oxide is highly crystalline.

実施例4:
実施例3の方法で、メタノールの代わりにエタノールを溶剤として使用する。0.106モルの酢酸リチウムと0.2モルの酢酸マンガンを100ミリリットルのエタノールに溶かし、別に0.169モルのクエン酸を100ミリリットルのエタノールに溶かす。二つの溶液を混合後に、沈殿が生成し、続けて10分間攪拌して濾過し、リチウムマンガンクエン酸塩前駆物質である共沈生成物を得る。続いてこの共沈生成物を高温炉中に置き、300℃で2時間仮焼し、その後続けて750℃まで加熱して4時間熱処理し、最後に毎分1℃の速度でゆっくりと共沈生成物を室温まで冷却する。
以上により得られた製品をCuKα X線解析機(XRD)で測定し、図3中の2のスペクトルを得る。その分析は合成されたリチウムマンガン酸化物が高度結晶体であることを示す。
Example 4:
In the method of Example 3, ethanol is used as a solvent instead of methanol. 0.106 mol of lithium acetate and 0.2 mol of manganese acetate are dissolved in 100 ml of ethanol, and 0.169 mol of citric acid is dissolved in 100 ml of ethanol. After mixing the two solutions, a precipitate forms, which is subsequently stirred for 10 minutes and filtered to obtain a coprecipitation product that is a lithium manganese citrate precursor. Subsequently, this coprecipitation product is placed in a high temperature furnace, calcined at 300 ° C. for 2 hours, then heated to 750 ° C. and heat-treated for 4 hours, and finally slowly coprecipitated at a rate of 1 ° C. per minute. The product is cooled to room temperature.
The product obtained as described above is measured with a CuKα X-ray analyzer (XRD) to obtain the spectrum 2 in FIG. The analysis shows that the synthesized lithium manganese oxide is highly crystalline.

実施例5:
実施例3の方法で、メタノールの代わりにプロピルアルコールを溶剤として使用する。0.106モルの酢酸リチウムと0.2モルの酢酸マンガンを200ミリリットルのプロピルアルコールに溶かし、別に0.169モルのクエン酸を150ミリリットルのプロピルアルコールに溶かす。二つの溶液を混合後に、沈殿が生成し、続けて10分間攪拌して濾過し、リチウムマンガンクエン酸塩前駆物質である共沈生成物を得る。続いてこの共沈生成物を高温炉中に置き、300℃で2時間仮焼し、その後続けて750℃まで加熱して4時間熱処理し、最後に毎分1℃の速度でゆっくりと共沈生成物を室温まで冷却する。
以上により得られた製品をCuKα X線解析機(XRD)で測定し、図3中の3のスペクトルを得る。その分析は合成されたリチウムマンガン酸化物が高度結晶体であることを示す。
Example 5:
In the method of Example 3, propyl alcohol is used as a solvent instead of methanol. 0.106 moles of lithium acetate and 0.2 moles of manganese acetate are dissolved in 200 milliliters of propyl alcohol and another 0.169 mole of citric acid is dissolved in 150 milliliters of propyl alcohol. After mixing the two solutions, a precipitate forms, which is subsequently stirred for 10 minutes and filtered to obtain a coprecipitation product that is a lithium manganese citrate precursor. Subsequently, this coprecipitation product is placed in a high temperature furnace, calcined at 300 ° C. for 2 hours, then heated to 750 ° C. and heat-treated for 4 hours, and finally slowly coprecipitated at a rate of 1 ° C. per minute. The product is cooled to room temperature.
The product obtained as described above is measured with a CuKα X-ray analyzer (XRD), and the spectrum 3 in FIG. 3 is obtained. The analysis shows that the synthesized lithium manganese oxide is highly crystalline.

実施例6:
実施例3の方法で、メタノールの代わりにブタノールを溶剤として使用する。0.106モルの酢酸リチウムと0.2モルの酢酸マンガンを250ミリリットルのブタノールに溶かし、別に0.169モルのクエン酸を150ミリリットルのブタノールに溶かす。二つの溶液を混合後に、沈殿が生成し、続けて10分間攪拌して濾過し、リチウムマンガンクエン酸塩前駆物質である共沈生成物を得る。続いてこの共沈生成物を高温炉中に置き、300℃で2時間仮焼し、その後続けて750℃まで加熱して4時間熱処理し、最後に毎分1℃の速度でゆっくりと共沈生成物を室温まで冷却する。
以上により得られた製品をCuKα X線解析機(XRD)で測定し、図3中の4のスペクトルを得る。その分析は合成されたリチウムマンガン酸化物が高度結晶体であることを示す。
Example 6:
In the method of Example 3, butanol is used as the solvent instead of methanol. 0.106 mole of lithium acetate and 0.2 mole of manganese acetate are dissolved in 250 milliliters of butanol, and another 0.169 mole of citric acid is dissolved in 150 milliliters of butanol. After mixing the two solutions, a precipitate forms, which is subsequently stirred for 10 minutes and filtered to obtain a coprecipitation product that is a lithium manganese citrate precursor. Subsequently, this coprecipitation product is placed in a high temperature furnace, calcined at 300 ° C. for 2 hours, then heated to 750 ° C. and heat-treated for 4 hours, and finally slowly coprecipitated at a rate of 1 ° C. per minute. The product is cooled to room temperature.
The product obtained as described above is measured with a CuKα X-ray analyzer (XRD), and the spectrum 4 in FIG. 3 is obtained. The analysis shows that the synthesized lithium manganese oxide is highly crystalline.

実施例7:
実施例3の方法で、クエン酸の代わりにしゅう酸を使用する。0.106モルの酢酸リチウムと0.2モルの酢酸マンガンを100ミリリットルのメタノールに溶かし、別に0.506モルのしゅう酸を150ミリリットルのメタノールに溶かす。二つの溶液を混合後に、沈殿が生成し、続けて10分間攪拌して濾過し、リチウムマンガンしゅう酸塩前駆物質である共沈生成物を得る。続いてこの共沈生成物を高温炉中に置き、300℃で2時間仮焼し、その後続けて750℃まで加熱して4時間熱処理し、最後に毎分1℃の速度でゆっくりと共沈生成物を室温まで冷却する。
以上により得られた製品をCuKα X線解析機(XRD)で測定し、図3中の5のスペクトルを得る。その分析は合成されたリチウムマンガン酸化物が一部のMn23 雑相の生成を有するが、ほとんどはスピネル構造のリチウムマンガン酸化物(LiMn24 )高度結晶体であることを示す。
Example 7:
In the method of Example 3, oxalic acid is used instead of citric acid. 0.106 mol of lithium acetate and 0.2 mol of manganese acetate are dissolved in 100 ml of methanol, and 0.506 mol of oxalic acid is dissolved in 150 ml of methanol. After mixing the two solutions, a precipitate forms, which is subsequently stirred for 10 minutes and filtered to obtain a coprecipitation product that is a lithium manganese oxalate precursor. Subsequently, this coprecipitation product is placed in a high temperature furnace, calcined at 300 ° C. for 2 hours, then heated to 750 ° C. and heat-treated for 4 hours, and finally slowly coprecipitated at a rate of 1 ° C. per minute. The product is cooled to room temperature.
The product obtained as described above is measured with a CuKα X-ray analyzer (XRD), and the spectrum of 5 in FIG. 3 is obtained. The analysis shows that the synthesized lithium manganese oxide has some Mn 2 O 3 miscellaneous phase formation, but most are highly crystalline spinel lithium manganese oxide (LiMn 2 O 4 ).

実施例8:
実施例3の方法で、クエン酸の代わりにしゅう酸を使用する。0.150モルの酢酸リチウムと0.2モルの酢酸マンガンを150ミリリットルのメタノールに溶かし、別に0.55モルのしゅう酸を150ミリリットルのメタノールに溶かす。二つの溶液を混合後に、沈殿が生成し、続けて10分間攪拌して濾過し、リチウムマンガンしゅう酸塩前駆物質である共沈生成物を得る。続いてこの共沈生成物を高温炉中に置き、300℃で2時間仮焼し、その後続けて750℃まで加熱して4時間熱処理し、最後に毎分1℃の速度でゆっくりと共沈生成物を室温まで冷却する。
以上により得られた製品をCuKα X線解析機(XRD)で測定し、図3中の6のスペクトルを得る。その分析は合成されたリチウムマンガン酸化物が高度結晶体であることを示す。
Example 8:
In the method of Example 3, oxalic acid is used instead of citric acid. 0.150 mol of lithium acetate and 0.2 mol of manganese acetate are dissolved in 150 ml of methanol, and 0.55 mol of oxalic acid is dissolved in 150 ml of methanol. After mixing the two solutions, a precipitate forms, which is subsequently stirred for 10 minutes and filtered to obtain a coprecipitation product that is a lithium manganese oxalate precursor. Subsequently, this coprecipitation product is placed in a high temperature furnace, calcined at 300 ° C. for 2 hours, then heated to 750 ° C. and heat-treated for 4 hours, and finally slowly coprecipitated at a rate of 1 ° C. per minute. The product is cooled to room temperature.
The product obtained as described above is measured with a CuKα X-ray analyzer (XRD), and the spectrum 6 in FIG. 3 is obtained. The analysis shows that the synthesized lithium manganese oxide is highly crystalline.

実施例9:
実施例3の方法で、クエン酸の代わりに酒石酸を使用する。0.106モルの酢酸リチウムと0.2モルの酢酸マンガンを100ミリリットルのメタノールに溶かし、別に0.506モルの酒石酸を150ミリリットルのメタノールに溶かす。二つの溶液を混合後に、沈殿が生成し、続けて10分間攪拌して濾過し、リチウムマンガン酒石酸塩前駆物質である共沈生成物を得る。続いてこの共沈生成物を高温炉中に置き、300℃で2時間仮焼し、その後続けて750℃まで加熱して4時間熱処理し、最後に毎分1℃の速度でゆっくりと共沈生成物を室温まで冷却する。
以上により得られた製品をCuKα X線解析機(XRD)で測定し、図3中の7のスペクトルを得る。その分析は合成されたリチウムマンガン酸化物が一部のMn23 雑相の生成を有するが、ほとんどはスピネル構造のリチウムマンガン酸化物(LiMn24 )高度結晶体であることを示す。
Example 9:
In the method of Example 3, tartaric acid is used instead of citric acid. 0.106 moles of lithium acetate and 0.2 moles of manganese acetate are dissolved in 100 milliliters of methanol, and 0.506 moles of tartaric acid are dissolved in 150 milliliters of methanol. After mixing the two solutions, a precipitate forms, which is subsequently stirred for 10 minutes and filtered to obtain a coprecipitation product that is a lithium manganese tartrate precursor. Subsequently, this coprecipitation product is placed in a high temperature furnace, calcined at 300 ° C. for 2 hours, then heated to 750 ° C. and heat-treated for 4 hours, and finally slowly coprecipitated at a rate of 1 ° C. per minute. The product is cooled to room temperature.
The product obtained as described above is measured with a CuKα X-ray analyzer (XRD), and a spectrum 7 in FIG. 3 is obtained. The analysis shows that the synthesized lithium manganese oxide has some Mn 2 O 3 miscellaneous phase formation, but most are highly crystalline spinel lithium manganese oxide (LiMn 2 O 4 ).

以上の実施例のほか、本発明の方法はその他の塩類、バインダー、溶剤も適用可能であるが、反応を進行できる原料が非常に多いため一々証明することはできないため、上述の実施例を以て説明した。並びにリチウム塩とマンガン塩はそれぞれ異なるバインダーで橋かけ反応させて沈殿を生成させることができるが、バインダーの橋かけ能力の違いにより、一部の組合せは比較的長い反応時間を必要とする。   In addition to the above examples, other salts, binders, and solvents can be applied to the method of the present invention. However, since there are so many raw materials that can proceed with the reaction, it cannot be proved one by one. did. Lithium salts and manganese salts can also be crosslinked with different binders to form precipitates, but some combinations require relatively long reaction times due to differences in the crosslinking ability of the binder.

実施例7、9、10で生成されるMn23 は、その生成の原因が、共沈生成物中のリチウムとマンガンの比が1:2より小さいことにあり、開始剤の比例上の調整により改善されうる。例えば実施例8でリチウム塩の開始比例を増してマンガン塩との比を1.5:2とすると、高度結晶性のメタ構造のリチウムマンガン酸化物(LiMn24 )を得ることができる。本発明はリチウム塩とマンガン塩を溶液中でバインダーと橋かけ反応させて沈殿を生成するという概念を以て設計されている。異なる原料の組合せ反応に対しては僅かに開始剤量の比、反応時間等の面で調整を行ない、共沈生成物を200℃以上の高温で仮焼後、更に500℃以上の高温で熱処理すれば結晶性が良好なリチウムマンガン酸化物(LiMn24 )を得ることができる。 Mn 2 O 3 produced in Examples 7, 9, and 10 is caused by the fact that the ratio of lithium to manganese in the coprecipitation product is smaller than 1: 2, which is proportional to the initiator. It can be improved by adjustment. For example, when the starting proportion of the lithium salt is increased in Example 8 and the ratio to the manganese salt is 1.5: 2, lithium manganese oxide (LiMn 2 O 4 ) having a highly crystalline meta structure can be obtained. The present invention is designed with the concept that a lithium salt and a manganese salt are reacted with a binder in a solution to form a precipitate. For the combined reaction of different raw materials, the initiator ratio is slightly adjusted and the reaction time is adjusted, and the coprecipitation product is calcined at a high temperature of 200 ° C or higher, and further heat-treated at a high temperature of 500 ° C or higher. Then, lithium manganese oxide (LiMn 2 O 4 ) having good crystallinity can be obtained.

総合すると、本発明はその目的、手段、機能のいずれにおいても従来の技術の特徴とは異なっており、リチウムイオン二次電池の正極材料の製造方法の一大突破である。なお、以上の実施例は本発明の実施範囲を限定するものではなく、本発明に基づきなしうる細部の修飾或いは改変は、いずれも本発明の請求範囲に属するものとする。   Overall, the present invention differs from the features of the prior art in any of its purpose, means, and function, and is a major breakthrough in a method for producing a positive electrode material for a lithium ion secondary battery. The above embodiments do not limit the scope of the present invention, and any modification or alteration of details that can be made based on the present invention shall fall within the scope of the claims of the present invention.

本発明のフローチャートである。3 is a flowchart of the present invention. 固体反応法、Pechini法、クエン酸ゲル法と本発明で合成したリチウムマンガン酸化物(LiMn24 )をそれぞれ使用した電池の充放電試験比較図である。Solid reaction method, Pechini method, a charge-discharge test comparison diagram of the battery using each citric acid gel method and the lithium-manganese oxide synthesized in the present invention (LiMn 2 O 4). 本発明の実施例3〜10のリチウムマンガン酸化物のCuKα X線回折スペクトルである。It is a CuK (alpha) X-ray-diffraction spectrum of the lithium manganese oxide of Examples 3-10 of this invention.

Claims (12)

Li1+x Mn2-yy4 の一般式で示されるリチウムイオン電池の正極材料を製造する方法であり、そのうち、Liはリチウム、Mnはマンガン、Mはマグネシウム、アルミニウム、クロム、鉄、コバルト或いはニッケル、0≦x≦0.4,0≦y≦0.2であり、
(A)リチウム塩、マンガン塩とM塩を少なくとも一種類の溶剤と混合して開始溶液を形成する工程、そのうち、リチウム塩中に含まれるリチウムイオンのモル数:マンガン塩中に含まれるマンガンイオンのモル数:M塩中に含まれるMイオンのモル数=(1+x):(2−y):yとされる、
(B)バインダーを前述の開始溶液中に添加して懸濁溶液を形成する工程、
(C)該懸濁溶液を濾過して共沈生成物を得る工程、
(D)共沈生成物を更に仮焼及び熱処理する工程、
以上の(A)から(D)の工程を具えたことを特徴とする、リチウムイオン二次電池の正極材料の製造方法。
This is a method for producing a positive electrode material of a lithium ion battery represented by the general formula of Li 1 + x Mn 2 -y My O 4 , of which Li is lithium, Mn is manganese, M is magnesium, aluminum, chromium, iron , Cobalt or nickel, 0 ≦ x ≦ 0.4, 0 ≦ y ≦ 0.2,
(A) A step of mixing a lithium salt, a manganese salt and an M salt with at least one solvent to form an initiation solution, of which the number of moles of lithium ions contained in the lithium salt: manganese ions contained in the manganese salt The number of moles of: The number of moles of M ions contained in the M salt = (1 + x) :( 2-y): y.
(B) adding a binder into the aforementioned starting solution to form a suspension solution;
(C) filtering the suspension solution to obtain a coprecipitation product;
(D) a step of further calcining and heat-treating the coprecipitation product,
A method for producing a positive electrode material for a lithium ion secondary battery, comprising the steps (A) to (D).
請求項1記載のリチウムイオン二次電池の正極材料の製造方法において、リチウム塩がリチウムの硝酸塩、塩化物、水酸化物、炭酸塩、或いは酢酸塩とされることを特徴とする、リチウムイオン二次電池の正極材料の製造方法。   2. The method for producing a positive electrode material for a lithium ion secondary battery according to claim 1, wherein the lithium salt is lithium nitrate, chloride, hydroxide, carbonate, or acetate. A method for producing a positive electrode material for a secondary battery. 請求項1記載のリチウムイオン二次電池の正極材料の製造方法において、マンガン塩がマンガンの硝酸塩、塩化物、水酸化物、炭酸塩、或いは酢酸塩とされることを特徴とする、リチウムイオン二次電池の正極材料の製造方法。   2. The method for producing a positive electrode material for a lithium ion secondary battery according to claim 1, wherein the manganese salt is manganese nitrate, chloride, hydroxide, carbonate, or acetate. A method for producing a positive electrode material for a secondary battery. 請求項1記載のリチウムイオン二次電池の正極材料の製造方法において、M塩がマグネシウム、アルミニウム、クロム、鉄、コバルト或いはニッケルの硝酸塩、塩化物、水酸化物、炭酸塩、或いは酢酸塩とされることを特徴とする、リチウムイオン二次電池の正極材料の製造方法。   2. The method for producing a positive electrode material for a lithium ion secondary battery according to claim 1, wherein the M salt is magnesium, aluminum, chromium, iron, cobalt, or nickel nitrate, chloride, hydroxide, carbonate, or acetate. A method for producing a positive electrode material for a lithium ion secondary battery. 請求項1記載のリチウムイオン二次電池の正極材料の製造方法において、溶剤が水、メタノール、エタノール、プロピルアルコール或いはブタノールとされたことを特徴とする、リチウムイオン二次電池の正極材料の製造方法。   2. The method for producing a positive electrode material for a lithium ion secondary battery according to claim 1, wherein the solvent is water, methanol, ethanol, propyl alcohol, or butanol. . 請求項1記載のリチウムイオン二次電池の正極材料の製造方法において、バインダーがクエン酸、しゅう酸、或いは酒石酸とされたことを特徴とする、リチウムイオン二次電池の正極材料の製造方法。   2. The method for producing a positive electrode material for a lithium ion secondary battery according to claim 1, wherein the binder is citric acid, oxalic acid, or tartaric acid. 請求項1記載のリチウムイオン二次電池の正極材料の製造方法において、バインダーのモル数とリチウム塩中に含まれるリチウムイオンのモル数の比が1:1から5:1とされたことを特徴とする、リチウムイオン二次電池の正極材料の製造方法。   2. The method for producing a positive electrode material for a lithium ion secondary battery according to claim 1, wherein the ratio of the number of moles of the binder to the number of moles of the lithium ions contained in the lithium salt is 1: 1 to 5: 1. The manufacturing method of the positive electrode material of a lithium ion secondary battery. 請求項1記載のリチウムイオン二次電池の正極材料の製造方法において、バインダーのモル数とリチウム塩中に含まれるリチウムイオンのモル数の比が1:1から3:1とされたことを特徴とする、リチウムイオン二次電池の正極材料の製造方法。   2. The method for producing a positive electrode material for a lithium ion secondary battery according to claim 1, wherein the ratio of the number of moles of the binder to the number of moles of the lithium ions contained in the lithium salt is 1: 1 to 3: 1. The manufacturing method of the positive electrode material of a lithium ion secondary battery. 請求項1記載のリチウムイオン二次電池の正極材料の製造方法において、仮焼の温度が200℃から400℃とされたことを特徴とする、リチウムイオン二次電池の正極材料の製造方法。   2. The method for producing a positive electrode material for a lithium ion secondary battery according to claim 1, wherein the calcining temperature is 200 ° C. to 400 ° C. 3. 請求項1記載のリチウムイオン二次電池の正極材料の製造方法において、仮焼の時間が1時間から4時間とされたことを特徴とする、リチウムイオン二次電池の正極材料の製造方法。   2. The method for producing a positive electrode material for a lithium ion secondary battery according to claim 1, wherein the calcining time is 1 hour to 4 hours. 請求項1記載のリチウムイオン二次電池の正極材料の製造方法において、熱処理の温度が600℃から900℃とされたことを特徴とする、リチウムイオン二次電池の正極材料の製造方法。   2. The method for producing a positive electrode material for a lithium ion secondary battery according to claim 1, wherein the temperature of the heat treatment is set to 600 to 900.degree. 請求項1記載のリチウムイオン二次電池の正極材料の製造方法において、熱処理の時間が1時間から8時間とされたことを特徴とする、リチウムイオン二次電池の正極材料の製造方法。
2. The method for producing a positive electrode material for a lithium ion secondary battery according to claim 1, wherein the heat treatment time is 1 hour to 8 hours.
JP2003385050A 2003-11-14 2003-11-14 Method for producing positive electrode material for lithium ion secondary battery Expired - Fee Related JP4163595B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003385050A JP4163595B2 (en) 2003-11-14 2003-11-14 Method for producing positive electrode material for lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003385050A JP4163595B2 (en) 2003-11-14 2003-11-14 Method for producing positive electrode material for lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2005149885A true JP2005149885A (en) 2005-06-09
JP4163595B2 JP4163595B2 (en) 2008-10-08

Family

ID=34693260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003385050A Expired - Fee Related JP4163595B2 (en) 2003-11-14 2003-11-14 Method for producing positive electrode material for lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP4163595B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007145695A (en) * 2005-10-31 2007-06-14 Agc Seimi Chemical Co Ltd Method for producing lithium-containing multiple oxide
JP2007165026A (en) * 2005-12-09 2007-06-28 Daiken Kagaku Kogyo Kk Manufacturing method of positive active material for lithium ion secondary battery
KR100912095B1 (en) 2006-11-20 2009-08-13 한국지질자원연구원 Ion-exchange type lithium adsorbent using uf membrane filter and method for preparing the same
JP2010015959A (en) * 2007-07-30 2010-01-21 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery, manufacturing method, and nonaqueous electrolyte secondary battery using the same
CN114695885A (en) * 2020-12-30 2022-07-01 山东海科创新研究院有限公司 Positive electrode of high-nickel lithium ion battery and lithium ion battery
CN114715955A (en) * 2022-04-19 2022-07-08 湖南桑瑞新材料有限公司 Cobalt-free cathode material, preparation method thereof and lithium ion battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012148040A1 (en) 2011-04-28 2012-11-01 한국지질자원연구원 Porous manganese oxide-based lithium adsorbent having a spinel structure, and method for preparing same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007145695A (en) * 2005-10-31 2007-06-14 Agc Seimi Chemical Co Ltd Method for producing lithium-containing multiple oxide
JP2007165026A (en) * 2005-12-09 2007-06-28 Daiken Kagaku Kogyo Kk Manufacturing method of positive active material for lithium ion secondary battery
KR100912095B1 (en) 2006-11-20 2009-08-13 한국지질자원연구원 Ion-exchange type lithium adsorbent using uf membrane filter and method for preparing the same
JP2010015959A (en) * 2007-07-30 2010-01-21 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery, manufacturing method, and nonaqueous electrolyte secondary battery using the same
CN114695885A (en) * 2020-12-30 2022-07-01 山东海科创新研究院有限公司 Positive electrode of high-nickel lithium ion battery and lithium ion battery
CN114715955A (en) * 2022-04-19 2022-07-08 湖南桑瑞新材料有限公司 Cobalt-free cathode material, preparation method thereof and lithium ion battery
CN114715955B (en) * 2022-04-19 2023-11-03 湖南桑瑞新材料有限公司 Cobalt-free positive electrode material, preparation method thereof and lithium ion battery

Also Published As

Publication number Publication date
JP4163595B2 (en) 2008-10-08

Similar Documents

Publication Publication Date Title
JP7438922B2 (en) Lithium composite oxide for lithium secondary battery and method for producing the same
JP6845869B2 (en) Method for producing positive electrode active material for lithium secondary battery and lithium secondary battery positive electrode active material produced by this method.
JP6771419B2 (en) Lithium composite oxide for lithium secondary batteries and its manufacturing method
JP6875172B2 (en) Lithium composite oxide for lithium secondary batteries and its manufacturing method
JP7354184B2 (en) Lithium composite oxide for lithium secondary battery and method for producing the same
JP6793588B2 (en) Lithium composite oxide for lithium secondary batteries and its manufacturing method
JP3506397B2 (en) Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery using the same
JP2000306584A (en) Positive electrode active material for lithium secondary battery and its manufacture
JPH10321224A (en) Lithium battery positive electrode material and its manufacture
JP2000503622A (en) Method for producing mixed amorphous vanadium oxide and its use as electrode in rechargeable lithium batteries
JP7150911B2 (en) Lithium composite oxide for lithium secondary battery and method for producing the same
KR20180011049A (en) A positive electrode material, a lithium secondary battery using the same as a positive electrode
JP2002158007A (en) Lithium manganese nickel complex oxide, and manufacturing method of the same
JP4163595B2 (en) Method for producing positive electrode material for lithium ion secondary battery
JPH08319120A (en) Lithium double oxide, its production and lithium secondary battery
JP2001064020A (en) Production of lithium manganate
US7078127B2 (en) Method for producing positive electrode material of Li-ion secondary battery
KR101685460B1 (en) Manufacturing Method Of Positive Active Material For Lithium Secondary Battery To Form A Carbon Coating Layer By Using A Carboxylic Acid, The Positive Active Material By The Same And Lithium Secondary Battery Using The Positive Active Material
CN1285134C (en) Method for manufacturing lithiumi on secondary cell anode material
TWI253777B (en) Positive electrode material of lithium ion secondary battery
JP4487194B2 (en) Lithium secondary battery positive electrode active material, method for producing the same, and lithium secondary battery
JPH09110431A (en) Production of lithium-manganese oxide based on limno2
JP4009624B2 (en) Positive electrode material for lithium secondary battery and method for producing the same
WO2018181967A1 (en) Manganese oxide, production method therefor, and lithium secondary battery
JP2004186145A (en) Manufacturing method of lithium-chromium-manganese oxide of layered structure for lithium secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060320

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20060619

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20060622

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071220

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080724

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4163595

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees