JP2005142328A - Heat transmission apparatus - Google Patents

Heat transmission apparatus Download PDF

Info

Publication number
JP2005142328A
JP2005142328A JP2003376693A JP2003376693A JP2005142328A JP 2005142328 A JP2005142328 A JP 2005142328A JP 2003376693 A JP2003376693 A JP 2003376693A JP 2003376693 A JP2003376693 A JP 2003376693A JP 2005142328 A JP2005142328 A JP 2005142328A
Authority
JP
Japan
Prior art keywords
heat
heat transfer
transfer means
transfer device
electronic circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003376693A
Other languages
Japanese (ja)
Inventor
Kunio Fujijo
邦雄 藤條
Masaoki Ino
正興 井野
Masao Fujii
雅雄 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Kinki University
Original Assignee
Mitsubishi Electric Corp
Kinki University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Kinki University filed Critical Mitsubishi Electric Corp
Priority to JP2003376693A priority Critical patent/JP2005142328A/en
Publication of JP2005142328A publication Critical patent/JP2005142328A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat transmission apparatus which can reduce a difference (variation) in temperature between electronic circuit components as small as possible and can effectively dissipate the heat generated by heating elements. <P>SOLUTION: The heat transmission apparatus comprises the heating elements 2, a heat radiator 3, and heat transmitting means 7 which are formed of a material having both thermal conductivity and resiliency and are arranged in a space between the heating elements 2 and the heat dissipator 3 so as to be in close contact with both of them. Each of the heat transmitting means 7 is formed of a different material having both a thermal conductivity and a resiliency, and has a flat elliptical cross-sectional shape or has a cylindrical shape. Each of the heat transmitting means has a space by removing part of the body, and is attached between the heating element 2 and the heat dissipator 3 in close contact with them, with the internal space being located nearly at the center of the contact face with the heating element or the heat dissipator. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、発熱体と放熱体の間に設置した熱伝導性のよい熱伝達装置に関するものである。     The present invention relates to a heat transfer device having good thermal conductivity installed between a heat generator and a heat radiator.

図15は、従来の熱伝達装置である冷却装置の構成を示す断面図である。図15において、1は配線板(電子回路基板ともいう)、2は配線板上に装着および配線接合されたICなどの電子回路部品である。3は水冷あるいは空冷される放熱体である。4は伝熱マットであり、5a、5bは伝熱マット膜で、変形自在な材料で構成されている。6は熱媒体であり、例えば水などの液体が封入されている。伝熱マット4は、電子回路部品群2と放熱体3の間隙に設置されており、その自在に変形することから、凸凹のある電子回路部品群2と放熱体3に密着する。電子回路部品群2で発生した熱は、伝熱マット4の伝熱マット膜5aに熱伝導で伝わり、次に熱媒体6中に対流熱伝達で伝わる。そして低温の放熱体6側の伝熱マット膜5bに対流熱伝達で伝わり、伝熱マット膜5bを経て、放熱体3に放熱される。伝熱マット4は、自在に変形できることから、凸凹のある電子回路部品群2と放熱体3との接触性をよくでき、いわゆる接触熱抵抗を軽減できる特徴を有する(例えば、特許文献1参照)。   FIG. 15 is a cross-sectional view showing a configuration of a cooling device which is a conventional heat transfer device. In FIG. 15, reference numeral 1 denotes a wiring board (also referred to as an electronic circuit board), and 2 denotes an electronic circuit component such as an IC mounted on the wiring board and connected to the wiring board. Reference numeral 3 denotes a heat radiator that is water-cooled or air-cooled. 4 is a heat transfer mat, and 5a and 5b are heat transfer mat films, which are made of a deformable material. Reference numeral 6 denotes a heat medium in which a liquid such as water is enclosed. The heat transfer mat 4 is installed in the gap between the electronic circuit component group 2 and the heat radiating body 3, and is freely deformed. Therefore, the heat transfer mat 4 is in close contact with the uneven electronic circuit component group 2 and the heat radiating body 3. The heat generated in the electronic circuit component group 2 is transferred to the heat transfer mat film 5a of the heat transfer mat 4 by heat conduction, and then transferred to the heat medium 6 by convection heat transfer. Then, the heat is transferred to the heat transfer mat film 5b on the low temperature heat dissipating body 6 by convection heat transfer, and is radiated to the heat dissipating body 3 through the heat transfer mat film 5b. Since the heat transfer mat 4 can be freely deformed, the contact between the electronic circuit component group 2 having unevenness and the heat radiating body 3 can be improved, and so-called contact heat resistance can be reduced (see, for example, Patent Document 1). .

実公昭62−10621号公報Japanese Utility Model Publication No. 62-10621

ところで、上記従来の熱伝達装置である伝熱マットにおいては、伝熱マット膜5a、5bが破損すると、熱媒体6が漏洩するという欠点があった。また、発熱する電子回路部品群2から放熱体3への熱の移動が、熱媒体6の対流熱伝達で行われるため、半導体技術の進展に伴い増大する発熱量を有する電子回路部品の冷却に十分対応できないという欠点があった。
このような欠点を解決する方法として、例えば、図16に示すように、市販されている熱伝導性のシート状のラバー51を電子回路部品群2と放熱体3の間に用いることが考えられる。しかしながら、このようなシート状のラバー51では、図16に示すような、凸凹のある複数の電子回路部品2の場合、シート状のラバー51を介在させても、なお放熱体3とシート状のラバー51の間に空隙52が存在する。なお、電子回路部品群2の凸凹は、最大で500μm程度が想定される。また、対象とする電子装置としては、おおよそ200〜300mm角の配線板上に、10〜20個程度のLSIなどの電子回路部品が設置されたものを想定している。このため、図17に示すように、電子回路部品群2と放熱体3の間の据付熱抵抗が電子回路部品間でおおいにばらつくことになる。ここで、据付熱抵抗R[K/W]とは、電子回路部品1個の発熱量をQ[W]、電子回路部品の表面温度をTj(℃)、放熱体3の表面温度をTh(℃)とすると、次式で定義される値である。
R=(Tj−Th)/Q (1)
据付熱抵抗Rがばらつくと言うことは、電子回路部品の発熱量Qと放熱体3の表面温度Thがどの部品も同じとすると、電子回路部品の表面温度Tj、すなわち、電子回路部品の中心部温度がばらつくことを意味する。一般的に、電子回路部品はその温度上昇によって、故障率が異なり、温度上昇が大きい部品ほど動作が不安定になると同時に壊れ易くなる。従って、温度上昇が異なる複数の電子回路部品からなる配線板1では、その動作が不安定になると同時に、配線板1としての故障率も増大することになる。
By the way, in the heat transfer mat which is the said conventional heat transfer apparatus, when the heat transfer mat films 5a and 5b are damaged, there is a defect that the heat medium 6 leaks. Further, since heat is transferred from the heat generating electronic circuit component group 2 to the heat radiating body 3 by convective heat transfer of the heat medium 6, the cooling of the electronic circuit components having a heat generation amount that increases with the progress of semiconductor technology. There was a drawback that it could not cope sufficiently.
As a method for solving such a drawback, for example, as shown in FIG. 16, it is conceivable to use a commercially available heat conductive sheet-like rubber 51 between the electronic circuit component group 2 and the radiator 3. . However, in such a sheet-like rubber 51, in the case of a plurality of uneven electronic circuit components 2 as shown in FIG. 16, even if the sheet-like rubber 51 is interposed, the radiator 3 and the sheet-like rubber are still present. There is a gap 52 between the rubbers 51. The unevenness of the electronic circuit component group 2 is assumed to be about 500 μm at maximum. In addition, the target electronic device is assumed to be one in which about 10 to 20 electronic circuit components such as LSIs are installed on a wiring board of about 200 to 300 mm square. For this reason, as shown in FIG. 17, the installation thermal resistance between the electronic circuit component group 2 and the radiator 3 greatly varies between the electronic circuit components. Here, the installed thermal resistance R [K / W] means that the heat generation amount of one electronic circuit component is Q [W], the surface temperature of the electronic circuit component is Tj (° C.), and the surface temperature of the radiator 3 is Th ( C)), the value is defined by the following formula.
R = (Tj−Th) / Q (1)
The fact that the installed thermal resistance R varies means that if the heat generation amount Q of the electronic circuit component and the surface temperature Th of the radiator 3 are the same, the surface temperature Tj of the electronic circuit component, that is, the center of the electronic circuit component It means that the temperature varies. In general, the failure rate of an electronic circuit component differs depending on the temperature rise, and the component having a large temperature rise becomes unstable and easily broken. Therefore, in the wiring board 1 composed of a plurality of electronic circuit components having different temperature rises, the operation becomes unstable and the failure rate as the wiring board 1 also increases.

この発明は、上記のような従来のものの欠点を解決するためになされたもので、発熱体と放熱体の間の間隙に、両者に密着されて設置され、熱伝導性とバネ性を兼ね備えた材料からなり、電子回路部品間の温度差(ばらつき)を極力少なくすると同時に発熱体の熱を効果的に放熱できる熱伝達装置を提供するものである。   This invention was made in order to solve the above-mentioned drawbacks of the conventional one, and was installed in close contact with both in the gap between the heating element and the heat dissipation element, and had both thermal conductivity and spring property. It is an object of the present invention to provide a heat transfer device that is made of a material and that can reduce the temperature difference (variation) between electronic circuit components as much as possible and at the same time effectively dissipate the heat of the heating element.

この発明に係る熱伝達装置は、発熱体、放熱体、および両者の間隙に、両者に密着して設置され、熱伝導性とバネ性を兼ね備えた材料からなる熱伝達手段を備えたものである。   A heat transfer device according to the present invention is provided with a heat transfer unit made of a material having both heat conductivity and spring property, which is installed in close contact with both of a heating element, a heat dissipation element, and a gap between them. .

この発明は以上説明したとおり、発熱体と放熱体との間隙に、熱伝導性とバネ性を有する熱伝達手段を密着させて置くことにより、熱輸送能力を増大させ、また、電子回路部品間の温度差(ばらつき)を抑えることにより発熱体の熱を効果的に放熱できる。   As described above, the present invention increases the heat transport capability by placing the heat transfer means having heat conductivity and spring property in close contact with the gap between the heat generating element and the heat radiating element, and between the electronic circuit components. By suppressing the temperature difference (variation), the heat of the heating element can be radiated effectively.

実施の形態1.
図1及び図2はこの発明を実施するための実施の形態1における熱伝達装置及び熱伝達手段を示すものである。図1において、1は配線板(電子回路基板ともいう)、2は配線板1上に装着および配線接合されたICなどの電子回路部品である。3は水冷あるいは空冷される放熱体である。7はこの発明になる熱伝達手段であり、熱伝導性とバネ性を兼ね備えた材料、例えばリン青銅、ステンレス板などからなる。この熱伝達手段7は、発熱体である電子回路部品群2と放熱体3の間に密着されて設置されている場合は、図1のように変形し、それ自身が持つバネ特性により、発熱体である電子回路部品群2と放熱体3の対抗面に強力にその圧接力で密着させている。そして、熱伝達手段7単独では、例えば、図2のように円筒状となっている。図1のように、熱伝達手段7が電子回路部品群2と放熱体3の間に密着された状態では、発熱体である電子回路部品群2からの熱は、熱伝達手段7に伝わり、放熱体3に至る極めて単純な熱移動形式となっている。また、図15に示した従来例のような熱媒体6の漏れなどの心配もない。また、この発明になる熱伝達手段7では、それ自身が持つバネ性ゆえに、最大で500μm程度の凸凹がある電子回路部品群2にも自在に変形して追従することができる。なお、回路部品の配線板への実装では、おおよそ最大500μm程度の凸凹が想定されるが、この発明になる熱伝達装置では、それ以上の凸凹にも追従できる。また、対象とする電子装置としては、おおよそ200〜300mm角の配線板上に、10〜20個程度のLSIなどの電子回路部品が設置されたものを想定している。なお、パソコンなど、大きい発熱量を有するCPUなどの冷却にもこの発明になる熱伝達装置が使用できることはいうまでもない。
Embodiment 1 FIG.
1 and 2 show a heat transfer device and heat transfer means in Embodiment 1 for carrying out the present invention. In FIG. 1, reference numeral 1 denotes a wiring board (also referred to as an electronic circuit board), and 2 denotes an electronic circuit component such as an IC mounted on the wiring board 1 and wire-bonded. Reference numeral 3 denotes a heat radiator that is water-cooled or air-cooled. Reference numeral 7 denotes a heat transfer means according to the present invention, which is made of a material having both thermal conductivity and spring property, such as phosphor bronze, stainless steel plate and the like. When the heat transfer means 7 is installed in close contact between the electronic circuit component group 2 and the heat dissipating body 3 which are heat generating elements, the heat transferring means 7 is deformed as shown in FIG. The electronic circuit component group 2 that is a body and the heat radiating body 3 are strongly adhered to each other by the pressure contact force. The heat transfer means 7 alone has, for example, a cylindrical shape as shown in FIG. As shown in FIG. 1, in a state where the heat transfer means 7 is in close contact between the electronic circuit component group 2 and the heat radiating body 3, heat from the electronic circuit component group 2 that is a heating element is transferred to the heat transfer means 7. It is an extremely simple heat transfer system that reaches the radiator 3. Further, there is no concern about leakage of the heat medium 6 as in the conventional example shown in FIG. In addition, the heat transfer means 7 according to the present invention can freely deform and follow the electronic circuit component group 2 having irregularities of about 500 μm at the maximum because of its own spring property. In the mounting of the circuit component on the wiring board, the unevenness of about 500 μm at the maximum is assumed, but the heat transfer device according to the present invention can follow the unevenness more than that. In addition, the target electronic device is assumed to be one in which about 10 to 20 electronic circuit components such as LSIs are installed on a wiring board of about 200 to 300 mm square. It goes without saying that the heat transfer device according to the present invention can also be used for cooling a CPU having a large calorific value such as a personal computer.

実施の形態2.
図3及び図4はこの発明の実施の形態2における熱伝達手段及び熱伝達装置を示すものである。熱伝達手段7を別の形状、すなわち、扁平楕円形状に構成されたものである。この扁平楕円形状は、バネ特性を確保するためと、破損の危険性を回避するために、両端部を鋭角とせずに円弧状7aとし、かつ上面中央部を切り離して間隙8を形成している。この間隙8は熱伝達手段7を板状の材料で作成する場合にできるものである。また間隙8は発熱体2と放熱体3の間隙に密着して設置された状態では、図4のように変形してほぼ閉じられることになる。また、熱伝達手段7自身のバネ特性で、発熱体2と放熱体3の両者を強力に圧接する。なお、図2に示した円筒状の熱伝達手段7において、その途中が図3に示すように切り離して間隙8を形成していても良い。ただし、図4に示したように、間隙8は必ず、発熱体2あるいは放熱体3の接触面のほぼ中央部に位置する必要がある。例えば、図5のように間隙8が一方の側面に位置すると、発熱体2で発生した熱は、熱移動が一方の側面では間隙8で遮断され、他方の側面のみしか熱移動ができない。
現在、入手できる、熱伝導性とバネ性を兼ね備えた材料として、前述したうように、例えば、リン青銅、ステンレスなどが考えられる。一般に、このような材料は温度上昇とともに膨張するため、図2、又は図3に示した形状の熱伝達手段7では、発熱体2および放熱体3との圧接力が増大するという利点がある。
ところで、熱伝導性とバネ性を兼ね備えた材料の熱伝導率は、リン青銅が84(W/m・K)、ステンレスが16(W/m・K)で、熱伝導性に優れた銅の398(W/m・K)に比べて、極めて小さい。
Embodiment 2. FIG.
3 and 4 show a heat transfer means and a heat transfer device in Embodiment 2 of the present invention. The heat transfer means 7 is configured in another shape, that is, a flat elliptical shape. In order to ensure spring characteristics and avoid the risk of breakage, this flat oval shape has a circular arc shape 7a instead of an acute angle at both ends, and a gap 8 is formed by separating the center of the upper surface. . This gap 8 can be formed when the heat transfer means 7 is made of a plate-like material. Further, when the gap 8 is installed in close contact with the gap between the heat generating element 2 and the heat radiating element 3, it is deformed as shown in FIG. Moreover, both the heat generating body 2 and the heat radiating body 3 are strongly pressed by the spring characteristics of the heat transfer means 7 itself. In the cylindrical heat transfer means 7 shown in FIG. 2, the gap 8 may be formed by cutting off the middle as shown in FIG. 3. However, as shown in FIG. 4, the gap 8 must be positioned almost at the center of the contact surface of the heating element 2 or the radiator 3. For example, when the gap 8 is positioned on one side as shown in FIG. 5, the heat generated in the heating element 2 is blocked by the gap 8 on one side, and can move only on the other side.
As described above, phosphor bronze, stainless steel, and the like are conceivable as materials that are currently available and have both thermal conductivity and spring property. In general, since such a material expands with an increase in temperature, the heat transfer means 7 having the shape shown in FIG. 2 or FIG. 3 has an advantage that the pressure contact force between the heat generator 2 and the heat radiator 3 increases.
By the way, the thermal conductivity of a material having both thermal conductivity and spring property is 84 (W / m · K) for phosphor bronze and 16 (W / m · K) for stainless steel. Very small compared to 398 (W / m · K).

実施の形態3.
図6及び図7はこの発明の実施の形態3における熱伝達手段を示すものである。熱伝導性材料からなる部品9とバネ性材料からなる部品10の異種材料から熱伝達手段7が構成されている。また、熱伝導性材料からなる部品9は、図1又は図4のように、発熱体2と放熱体3の間隙に密着して設置される場合は、図6又は図7のように外周側に位置するように構成される。これにより、図8に示すように、発熱体2と放熱体3に熱的に強固にバネ性材料からなる部品10によって内部から圧接され、密着されることになる。この実施の形態3においては、熱伝導性材料からなる部品9として銅板を用い、バネ性材料からなる部品10としてステンレス板を用い、いずれの部品も厚さ0.1mmのものとする。銅板が熱を主に伝えることから、銅板の厚みは厚いほど据付熱抵抗は低減できる。ただし、あまり厚いと弾力性がなくなるため、その厚さには限界がある。この発明が対象とする電子回路部品の冷却では1mm以下となる。また、ステンレス板のバネ性も、板の厚さTと長さLに影響される。板厚をT、長さをLとすると、バネ性は、L/T3に比例して大きくなる。本実験結果によれば、L/T3=27×10である。
図7の実施の形態3では、熱伝導性材料からなる部品9とバネ性材料からなる部品10とは、一体化される必要はない。そのため、分離・分解が可能となり、再利用などリサイクル性が優れたものとすることができる。
Embodiment 3 FIG.
6 and 7 show heat transfer means in Embodiment 3 of the present invention. The heat transfer means 7 is composed of different materials of the component 9 made of a heat conductive material and the component 10 made of a spring material. Further, when the component 9 made of a heat conductive material is installed in close contact with the gap between the heat generating element 2 and the heat radiating element 3 as shown in FIG. 1 or FIG. 4, the outer peripheral side as shown in FIG. 6 or FIG. It is comprised so that it may be located in. As a result, as shown in FIG. 8, the heat generating body 2 and the heat radiating body 3 are pressed and intimately contacted from the inside by the component 10 made of a spring material that is thermally strong. In the third embodiment, a copper plate is used as the component 9 made of a heat conductive material, a stainless plate is used as the component 10 made of a spring material, and all the components have a thickness of 0.1 mm. Since the copper plate mainly conducts heat, the installation thermal resistance can be reduced as the thickness of the copper plate increases. However, if the thickness is too thick, the elasticity is lost, and the thickness is limited. The cooling of the electronic circuit component targeted by the present invention is 1 mm or less. The spring property of the stainless steel plate is also affected by the thickness T and length L of the plate. When the plate thickness is T and the length is L, the spring property is increased in proportion to L 3 / T 3 . According to the result of this experiment, L 3 / T 3 = 27 × 10 6 .
In the third embodiment shown in FIG. 7, the component 9 made of a heat conductive material and the component 10 made of a spring material need not be integrated. Therefore, separation / decomposition is possible, and recyclability such as reuse can be improved.

実施の形態4.
図9はこの発明の実施の形態4における熱伝達装置を示すものである。一つの発熱体2と放熱体3の間隙に複数個の熱伝達手段7が密着されて設置されている。熱伝導性材料からなる部品9を通して熱が伝わる流路が多くなるので、熱輸送能力が一段と増大する。
Embodiment 4 FIG.
FIG. 9 shows a heat transfer device according to Embodiment 4 of the present invention. A plurality of heat transfer means 7 are installed in close contact with a gap between one heat generating body 2 and the heat radiating body 3. Since the number of channels through which heat is transmitted through the component 9 made of a heat conductive material increases, the heat transport capability is further increased.

実施の形態5.
図10及び図11はこの発明の実施の形態5における熱伝達装置及び熱伝達手段を示すものである。この実施の形態5における熱伝達手段7は、図11に示すように、単一材料からなる円弧状の熱伝達手段又は異種の複合材料からなる円弧状の熱伝達手段である。この円弧状の熱伝達手段7を図10に示すように、多数の熱伝達手段7が発熱体2と放熱体3の間隙に設置できることから、熱輸送能力が一段と増大する。
なお、上述した異種材料で構成される熱伝達手段7において、発熱体2から熱伝達される熱によって熱伝達手段7が温度上昇すると、熱伝達手段7が熱膨張し、熱伝達手段7と発熱体2および放熱体3のその密着性が更に良くなる。特に、バネ性材料10の熱膨張率が熱伝導性材料9のそれに比して大きい場合には、熱伝導性材料9の発熱体2と放熱体3への圧接力が増大し、接触熱抵抗が低くできるという利点がある。
上述した例では、熱伝達手段7が単独で存在する場合について述べたが、発熱体2あるいは放熱体3に直接接合されていてもよい。接合されていると、熱伝達手段7と発熱体2あるいは放熱体3との接触熱低下の低減がはかれると同時に、熱伝達手段の実装(着脱など)が容易になるという利点がある。
Embodiment 5 FIG.
10 and 11 show a heat transfer device and heat transfer means in Embodiment 5 of the present invention. As shown in FIG. 11, the heat transfer means 7 in the fifth embodiment is an arc-shaped heat transfer means made of a single material or an arc-shaped heat transfer means made of a different kind of composite material. As shown in FIG. 10, the arc-shaped heat transfer means 7 can be installed in the gap between the heat generating body 2 and the heat radiating body 3, so that the heat transport capability is further increased.
In the heat transfer means 7 composed of the above-described different materials, when the temperature of the heat transfer means 7 rises due to the heat transferred from the heating element 2, the heat transfer means 7 thermally expands, and the heat transfer means 7 and the heat transfer means 7 generate heat. The adhesion between the body 2 and the heat radiating body 3 is further improved. In particular, when the thermal expansion coefficient of the spring material 10 is larger than that of the heat conductive material 9, the pressure contact force of the heat conductive material 9 to the heat generating body 2 and the heat radiating body 3 increases, and the contact thermal resistance. Has the advantage of being low.
In the example described above, the case where the heat transfer means 7 is present alone has been described. However, the heat transfer means 7 may be directly joined to the heat generator 2 or the heat radiator 3. Bonding has the advantage that the contact heat reduction between the heat transfer means 7 and the heating element 2 or the heat radiating body 3 can be reduced, and at the same time, mounting (detaching and the like) of the heat transfer means becomes easy.

実施の形態6.
図12及び図13はこの発明の実施の形態6における熱伝達手段を示すものである。この 実施の形態6における熱伝達手段7は、発熱体、及び放熱体に密着する面側に、その密着性を良くするために、柔らかくて薄い熱伝導性介在物11が接合されている。この熱伝導性介在物11としては、例えば、熱伝導性のよいアルミナ粉末などのフィラーが混入された高分子材料などが適している。熱伝導性介在物11の厚みは、その熱抵抗が無視できる程度に薄いことが望ましい。
Embodiment 6 FIG.
12 and 13 show heat transfer means in Embodiment 6 of the present invention. In the heat transfer means 7 according to the sixth embodiment, a soft and thin heat conductive inclusion 11 is joined to the heat generating body and the surface side in close contact with the heat radiating body in order to improve the adhesion. As this heat conductive inclusion 11, for example, a polymer material mixed with a filler such as alumina powder having good heat conductivity is suitable. It is desirable that the thickness of the heat conductive inclusion 11 is so thin that its thermal resistance can be ignored.

図14は、この発明の実施の形態3になる熱伝達手段7と、市販の熱伝導性シート状ラバー51と、電子回路部品と放熱体の間に何も介在しない(空気)の場合の据付熱抵抗Rの実験結果の一例を示したものである。この実験例では、250mm角の配線板上に電子回路部品2が16個のLSI(LSI11〜LSI44、1個のLSIの放熱体への接触面積は30×30mm)が装着された場合であり、水で冷却された放熱体3を用いた実験が行われた場合の結果である。この発明になる熱伝達手段7では、そのバネ性と熱伝導性により、電子回路部品2の凸凹に追随して、据付熱抵抗Rのばらつきが小さくなっているのがわかる。また、据付熱抵抗の値自体も小さくなっている。この実験例では、最小の据付熱抵抗は2[K/W]となっている。これは電子回路部品と放熱体とに空隙ができたためである。この空隙はおおよそ
R=G/(k・A)
より計算すると、47μmに相当する。最大値は8.6[K/W]で、これは200μmに相当する。ここで、Gは平均的な空隙距離、kは空気の熱伝導率、Aは回路部品の見かけの接触面積である。
空気のデータで、2.0[K/W]という最小値を示している。16個の回路部品に放熱体を設置すると、どれか1個は接触が最もよくなる。他は何らかの空隙を持つことになる。最も接触のよいのが、2.0[K/W]である。この発明の実施の形態3では、回路部品と放熱体の熱の伝導路は、両端の円弧状部7aから上方に向かう図3の矢印2個所のみである。このため、図9に示すように、複数個の熱伝達手段を用いると、熱の伝導路が増加し、据付熱抵抗が減少することになる。最終的には、空気のデータで最小値を示す2.0[K/W]に全ての回路部品が到達することになる。更に、回路部品、放熱体、熱伝達手段の各接触面に、熱伝導性のグリースなどを薄く塗布し、空隙を無くす工夫をすることで、据付熱抵抗の軽減が図れる。
FIG. 14 shows an installation in the case where there is nothing (air) between the heat transfer means 7, the commercially available heat conductive sheet rubber 51, and the electronic circuit component and the heat radiating body according to the third embodiment of the present invention. An example of the experimental result of thermal resistance R is shown. In this experimental example, the electronic circuit component 2 is mounted with 16 LSIs (LSI 11 to LSI 44, the contact area of one LSI to the heat sink is 30 × 30 mm) on a 250 mm square wiring board, It is a result at the time of experiment using the heat radiator 3 cooled with water. It can be seen that in the heat transfer means 7 according to the present invention, the variation in the installation thermal resistance R is small following the unevenness of the electronic circuit component 2 due to its springiness and thermal conductivity. Also, the value of the installed thermal resistance itself is small. In this experimental example, the minimum installation thermal resistance is 2 [K / W]. This is because a gap is formed between the electronic circuit component and the heat radiating body. This gap is approximately R = G / (k · A)
More calculated corresponds to 47 μm. The maximum value is 8.6 [K / W], which corresponds to 200 μm. Here, G is the average gap distance, k is the thermal conductivity of air, and A is the apparent contact area of the circuit component.
The minimum value of 2.0 [K / W] is shown in the air data. If a radiator is installed on 16 circuit components, one of them will have the best contact. Others will have some void. The best contact is 2.0 [K / W]. In the third embodiment of the present invention, the heat conduction paths of the circuit component and the heat dissipating body are only the two arrows in FIG. 3 directed upward from the arcuate portions 7a at both ends. For this reason, as shown in FIG. 9, when a plurality of heat transfer means are used, the heat conduction path increases and the installation thermal resistance decreases. Eventually, all the circuit components will reach 2.0 [K / W], which indicates the minimum value in the air data. Furthermore, the thermal resistance of installation can be reduced by thinly applying heat conductive grease or the like to the contact surfaces of the circuit components, the heat radiating body, and the heat transfer means to eliminate gaps.

この発明の実施の形態1における熱伝達装置を示す断面図である。It is sectional drawing which shows the heat transfer apparatus in Embodiment 1 of this invention. この発明の実施の形態1における熱伝達手段の斜視図である。It is a perspective view of the heat transfer means in Embodiment 1 of this invention. この発明の実施の形態2における熱伝達手段を示す斜視図である。It is a perspective view which shows the heat transfer means in Embodiment 2 of this invention. この発明の実施の形態2における熱伝達装置を示す断面図である。It is sectional drawing which shows the heat transfer apparatus in Embodiment 2 of this invention. この発明の実施の形態2における熱伝達装置の欠点を説明するための断面図である。It is sectional drawing for demonstrating the fault of the heat transfer apparatus in Embodiment 2 of this invention. この発明の実施の形態3における熱伝達手段の断面図である。It is sectional drawing of the heat transfer means in Embodiment 3 of this invention. この発明の実施の形態3における熱伝達手段の断面図である。It is sectional drawing of the heat transfer means in Embodiment 3 of this invention. この発明の実施の形態3における熱伝達装置を示す断面図である。It is sectional drawing which shows the heat transfer apparatus in Embodiment 3 of this invention. この発明の実施の形態4における熱伝達装置を示す断面図である。It is sectional drawing which shows the heat transfer apparatus in Embodiment 4 of this invention. この発明の実施の形態5における熱伝達装置を示す断面図である。It is sectional drawing which shows the heat transfer apparatus in Embodiment 5 of this invention. この発明の実施の形態5における熱伝達手段の斜視図である。It is a perspective view of the heat transfer means in Embodiment 5 of this invention. この発明の実施の形態6における熱伝達手段の断面図である。It is sectional drawing of the heat transfer means in Embodiment 6 of this invention. この発明の実施の形態6における熱伝達手段の断面図である。It is sectional drawing of the heat transfer means in Embodiment 6 of this invention. この発明の実施の形態3になる熱伝達手段と市販の熱伝導性シートラバーの据付熱抵抗を比較した実験例である。It is the experiment example which compared the installation heat resistance of the heat transfer means which becomes Embodiment 3 of this invention, and a commercially available heat conductive sheet rubber. 従来の熱伝達装置を示す断面図である。It is sectional drawing which shows the conventional heat transfer apparatus. 従来の熱伝導性シートラバーを用いた熱伝達装置を示す断面図である。It is sectional drawing which shows the heat transfer apparatus using the conventional heat conductive sheet rubber. 従来の熱伝導性シートラバーを用いた熱伝達装置の据付熱抵抗を示す特性図である。It is a characteristic view which shows the installation thermal resistance of the heat transfer apparatus using the conventional heat conductive sheet rubber.

符号の説明Explanation of symbols

1 発熱体である電子回路部品
2 配線板
3 放熱体
7 熱伝達手段
7a 円弧状部
8 間隙
9 熱伝導性材料からなる部品
10 バネ性材料からなる部品
11 熱伝導性介在物
DESCRIPTION OF SYMBOLS 1 Electronic circuit component which is a heat generating body 2 Wiring board 3 Heat radiating body 7 Heat transfer means 7a Arc-shaped part 8 Gap 9 Parts consisting of heat conductive material 10 Parts consisting of spring-like material 11 Thermal conductive inclusion

Claims (9)

発熱体、放熱体、および両者の間隙に、両者に密着して設置され、熱伝導性とバネ性を兼ね備えた材料からなる熱伝達手段を備えた熱伝達装置。   A heat transfer device including a heat generating body, a heat dissipating body, and a heat transfer means that is installed in close contact with both and is made of a material having both heat conductivity and spring property. 熱伝導性とバネ性を兼ね備えた材料が、異種の材料からなる請求項1記載の熱伝達装置。   The heat transfer device according to claim 1, wherein the material having both thermal conductivity and spring property is made of different materials. 熱伝導性材料とバネ性材料とからなり、熱伝導性材料が発熱体と放熱体に密着して設置されていることを特徴とする請求項2記載の熱伝達装置。   3. The heat transfer device according to claim 2, wherein the heat transfer device comprises a heat conductive material and a spring material, and the heat conductive material is disposed in close contact with the heating element and the heat dissipation element. 熱伝達手段が扁平楕円形又は円筒状で、その一部が切り離されて間隙を有し、この間隙が発熱体あるいは放熱体の接触面のほぼ中央に位置して密着されていることを特徴とする請求項1又は請求項2記載の熱伝達装置。   The heat transfer means is a flat oval or cylindrical shape, a part of which is cut off to have a gap, and this gap is closely located at the center of the contact surface of the heating element or radiator. The heat transfer device according to claim 1 or 2. 熱伝導性材料が発熱体あるいは放熱体のどちらかに接合されていることを特徴とする請求項3記載の熱伝達装置   4. The heat transfer device according to claim 3, wherein the heat conductive material is bonded to either the heat generating body or the heat radiating body. 一つの発熱体と放熱体の間隙に、複数個の熱伝達手段が密着して設置されたことを特徴とする請求項1〜請求項3のいずれかに記載の熱伝達装置。   The heat transfer device according to any one of claims 1 to 3, wherein a plurality of heat transfer means are installed in close contact with a gap between one heat generating body and the heat dissipating body. 熱伝導性とバネ性を兼ね備えた材料で構成された熱伝達手段の各材料が温度上昇によって膨張することを特徴とする請求項1又は請求項2記載の熱伝達装置。   The heat transfer device according to claim 1 or 2, wherein each material of the heat transfer means made of a material having both heat conductivity and spring property expands due to temperature rise. 熱伝導性とバネ性を兼ね備えた材料で構成された熱伝達手段のバネ性材料でできた部品が熱伝導性材料できた部品に比して、その熱膨張率が大きいことを特徴とする請求項7記載の熱伝達装置。   A component made of a spring material of a heat transfer means composed of a material having both heat conductivity and spring property has a higher coefficient of thermal expansion than a component made of a heat conductive material. Item 8. The heat transfer device according to Item 7. 熱伝導性とバネ性を兼ね備えた材料で構成された熱伝達手段の、発熱体と放熱体に接触する面に、熱伝導性介在物を接合したことを特徴とする請求項1又は請求項2記載の熱伝達装置。   3. A heat-conducting inclusion is bonded to a surface of the heat transfer means made of a material having both heat conductivity and spring property, which is in contact with the heating element and the heat dissipation element. The heat transfer device described.
JP2003376693A 2003-11-06 2003-11-06 Heat transmission apparatus Pending JP2005142328A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003376693A JP2005142328A (en) 2003-11-06 2003-11-06 Heat transmission apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003376693A JP2005142328A (en) 2003-11-06 2003-11-06 Heat transmission apparatus

Publications (1)

Publication Number Publication Date
JP2005142328A true JP2005142328A (en) 2005-06-02

Family

ID=34687655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003376693A Pending JP2005142328A (en) 2003-11-06 2003-11-06 Heat transmission apparatus

Country Status (1)

Country Link
JP (1) JP2005142328A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7239514B2 (en) * 2005-12-06 2007-07-03 Industrial Design Laboratories Inc. Heat transfer structure for electronic devices
JP2008034474A (en) * 2006-07-26 2008-02-14 Sharp Corp Heat transfer sheet and substrate device
JP2013026212A (en) * 2011-07-22 2013-02-04 Lg Innotek Co Ltd Backlight unit and display device using the same
JP2016015420A (en) * 2014-07-02 2016-01-28 Necエンジニアリング株式会社 Heat conduction member
JP2016171142A (en) * 2015-03-11 2016-09-23 富士通株式会社 Electronic apparatus
KR101733531B1 (en) * 2015-09-30 2017-05-08 아리투스주식회사 A heat dissipation system having a heat dissipation tube of a multilayer structure film
JP2017162963A (en) * 2016-03-09 2017-09-14 株式会社デンソー Electronic device
JP2020136607A (en) * 2019-02-25 2020-08-31 信越ポリマー株式会社 Heat radiation structure, and device including the same
JP2021034508A (en) * 2019-08-22 2021-03-01 信越ポリマー株式会社 Heat dissipation structure and battery with the same
JPWO2019244881A1 (en) * 2018-06-20 2021-03-18 信越ポリマー株式会社 Heat dissipation structure, manufacturing method of heat dissipation structure and battery

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7239514B2 (en) * 2005-12-06 2007-07-03 Industrial Design Laboratories Inc. Heat transfer structure for electronic devices
JP2008034474A (en) * 2006-07-26 2008-02-14 Sharp Corp Heat transfer sheet and substrate device
KR101824038B1 (en) * 2011-07-22 2018-01-31 엘지이노텍 주식회사 display apparatus
JP2013026212A (en) * 2011-07-22 2013-02-04 Lg Innotek Co Ltd Backlight unit and display device using the same
JP2016015420A (en) * 2014-07-02 2016-01-28 Necエンジニアリング株式会社 Heat conduction member
JP2016171142A (en) * 2015-03-11 2016-09-23 富士通株式会社 Electronic apparatus
KR101733531B1 (en) * 2015-09-30 2017-05-08 아리투스주식회사 A heat dissipation system having a heat dissipation tube of a multilayer structure film
JP2017162963A (en) * 2016-03-09 2017-09-14 株式会社デンソー Electronic device
WO2017154923A1 (en) * 2016-03-09 2017-09-14 株式会社デンソー Electronic device
JPWO2019244881A1 (en) * 2018-06-20 2021-03-18 信越ポリマー株式会社 Heat dissipation structure, manufacturing method of heat dissipation structure and battery
JP7144514B2 (en) 2018-06-20 2022-09-29 信越ポリマー株式会社 Heat dissipation structure, method for manufacturing heat dissipation structure, and battery
JP2020136607A (en) * 2019-02-25 2020-08-31 信越ポリマー株式会社 Heat radiation structure, and device including the same
JP2021034508A (en) * 2019-08-22 2021-03-01 信越ポリマー株式会社 Heat dissipation structure and battery with the same
JP7254661B2 (en) 2019-08-22 2023-04-10 信越ポリマー株式会社 Heat dissipation structure and battery with same

Similar Documents

Publication Publication Date Title
US9222735B2 (en) Compliant multilayered thermally-conductive interface assemblies
JP5165017B2 (en) Electronic equipment cooling structure
US20100321897A1 (en) Compliant multilayered thermally-conductive interface assemblies
TWI342486B (en) Heat-dissipation module and electronic apparatus having the same
JP2011000884A (en) Suitable multilayer heat conductive intermediate structure, and memory module equipped with the same
JPH10242354A (en) Heat conducting member and electronic device employing it
JP2003188323A (en) Graphite sheet and its manufacturing method
JP2009231757A (en) Radiation member and circuit substrate device
US20100212869A1 (en) Heat dissipation device
JP2005057088A (en) Heat-conductive member of multilayer structure and electronic apparatus using it
JP2005142328A (en) Heat transmission apparatus
JP2007324016A (en) Induction heating apparatus
TWI645588B (en) Thermal and thermal structure of semiconductor
JP2008028283A (en) Heat conductor
TW201201000A (en) Heat dissipation apparatus
JP2009059760A (en) Heat dissipation structure of electronic circuit board
JP4529703B2 (en) Heat dissipation structure and heat dissipation parts
JP4542443B2 (en) Heat transfer device
JP2016184658A (en) Cooling device, and device
TWI285083B (en) Multi-chips heat radiator
US20090151908A1 (en) Cooling Module
JP2012146828A (en) Heat radiation structure and heat radiation member
JP2004200533A (en) Heat radiation structure of device
JP5480123B2 (en) Heat dissipation structure
TWM243001U (en) Heat dissipation