JP2005139554A - Heat-resistant coated member - Google Patents

Heat-resistant coated member Download PDF

Info

Publication number
JP2005139554A
JP2005139554A JP2004320468A JP2004320468A JP2005139554A JP 2005139554 A JP2005139554 A JP 2005139554A JP 2004320468 A JP2004320468 A JP 2004320468A JP 2004320468 A JP2004320468 A JP 2004320468A JP 2005139554 A JP2005139554 A JP 2005139554A
Authority
JP
Japan
Prior art keywords
oxide
rare earth
earth element
heat
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004320468A
Other languages
Japanese (ja)
Other versions
JP4171916B2 (en
Inventor
Yasushi Takai
康 高井
Noriaki Hamaya
典明 浜谷
Masami Kaneyoshi
正実 金吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2004320468A priority Critical patent/JP4171916B2/en
Publication of JP2005139554A publication Critical patent/JP2005139554A/en
Application granted granted Critical
Publication of JP4171916B2 publication Critical patent/JP4171916B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat-resistant coated member having good heat resistance, corrosion resistance and non-reactivity, and suitably used as a part for sintering or heat-treating metals or ceramics in a vacuum, an inert atmosphere or a reducing atmosphere. <P>SOLUTION: The heat-resistant coated member is constituted so that a substrate composed of a material selected from among Mo, Ta, W, Zr, Al, Ti, carbon, and alloys, oxide ceramics, non-oxide ceramics and carbide materials thereof, is covered with a layer containing a rare earth-containing oxide as the main component. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、特に、真空、不活性雰囲気又は還元雰囲気下において金属又はセラミックスの焼結又は熱処理を行う際に使用する耐熱性被覆部材に関するものである。   The present invention particularly relates to a heat-resistant covering member used when sintering or heat-treating a metal or ceramic in a vacuum, an inert atmosphere or a reducing atmosphere.

粉末冶金製品は、一般に主合金にバインダー相を形成する粉末を混ぜ合わせ、混合物の混練、加圧成形、及び焼結、後加工により製造される。ここで、焼結工程においては、真空雰囲気中や不活性ガス雰囲気中で、1000℃〜1600℃の高温で焼結が行われる。   Powder metallurgy products are generally manufactured by mixing a powder that forms a binder phase with a main alloy, kneading the mixture, pressing, sintering, and post-processing. Here, in the sintering step, sintering is performed at a high temperature of 1000 ° C. to 1600 ° C. in a vacuum atmosphere or an inert gas atmosphere.

一般の超硬合金の製造過程では、炭化タングステンとコバルト、炭化チタン、炭化タンタル等の固溶体を粉砕、混合した後、乾燥、造粒工程を経て造粒粉を作製し、次いでプレス成形を行う。その後、脱ワックス、予備焼結、焼結、加工等により超硬合金製品ができる。   In the manufacturing process of a general cemented carbide, a solid solution such as tungsten carbide and cobalt, titanium carbide, tantalum carbide, etc. is pulverized and mixed, then dried and granulated to produce granulated powder, and then press-molded. Thereafter, a cemented carbide product can be obtained by dewaxing, pre-sintering, sintering, processing and the like.

焼結は超硬合金の液相出現温度(WC−Co系の三元共晶温度は1298℃)以上で行われる。通常は1350〜1550℃の温度範囲である。焼結で大切なことは、目的とする炭素量を正確に含有した超硬合金を安定して焼結しうるように雰囲気を制御することである。   Sintering is performed at a liquid phase appearance temperature (WC-Co ternary eutectic temperature of 1298 ° C.) or higher of the cemented carbide. Usually, it is a temperature range of 1350-1550 degreeC. What is important for sintering is to control the atmosphere so that a cemented carbide containing the exact amount of carbon can be sintered stably.

超硬材料を1500℃近辺で焼結する場合、カーボン製のトレー上に載せられた成形体試料がトレーと反応する問題がある。即ち、カーボンが試料に浸透して試料強度の低下を招く、いわゆる浸炭現象が起こる問題である。このような問題を回避するためにトレー材質を選定したり、トレー表面部に成形体試料と反応しない材料のバリアー層を設ける手段が採られている。例えば、超硬合金材料の焼結の場合、ジルコニアやアルミナ、酸化イットリウム等のセラミック粉が使われている。これらのセラミック粉をトレー上に散布し、敷粉として使用したり、セラミック粉を溶剤に混ぜてトレー上にスプレー塗布したり、粘度の高いスラリーを塗布したり、或いは、溶射法などによりトレー上に緻密なセラミック皮膜を付着させた被膜を形成させることが行われており(特許文献1:特表2000−509102号公報参照)、トレー表面部にこれらの酸化物層、いわゆるバリアー層を設けることで、試料との反応も防止していた。   When the cemented carbide material is sintered at around 1500 ° C., there is a problem that a molded body sample placed on a carbon tray reacts with the tray. That is, there is a problem that a so-called carburization phenomenon occurs in which carbon penetrates into a sample and causes a decrease in sample strength. In order to avoid such a problem, means for selecting a tray material or providing a barrier layer made of a material that does not react with the molded body sample on the surface of the tray is employed. For example, in the case of sintering a cemented carbide material, ceramic powder such as zirconia, alumina, yttrium oxide is used. Disperse these ceramic powders on the tray and use it as a bed powder, mix ceramic powder with a solvent and spray it onto the tray, apply a slurry with high viscosity, or spray the powder onto the tray. It is practiced to form a film in which a dense ceramic film is adhered to the surface (see Patent Document 1: Japanese Patent Publication No. 2000-509102), and these oxide layers, so-called barrier layers, are provided on the surface of the tray. Thus, reaction with the sample was also prevented.

しかし、このようなバリアー層を形成しても、トレーと反応が起こり、1、2回の焼結によりバリアー層に割れ、剥がれが発生していた。   However, even when such a barrier layer was formed, the reaction with the tray occurred, and the barrier layer was cracked and peeled off by sintering once or twice.

この場合、皮膜が剥がれることで、カーボントレーと試料との反応が起こりやすくなる。また、焼結の際、皮膜が剥がれ、微細化して成形体試料に混入する恐れを生ずるため、新たなトレーを使用しなくてはならない。   In this case, the reaction between the carbon tray and the sample is likely to occur due to the peeling of the film. In addition, a new tray must be used because the film is peeled off during sintering and may be refined and mixed into the molded body sample.

上記の理由から、特に焼結用トレーとして用いる場合、試料とバリアー層が反応しないこと、そして、バリアー層とトレーとが反応せず、剥がれないことが求められ、粉末冶金製品を焼結する場合、何度使用しても試料とバリアー層が反応せず、バリアー層とトレー基板が剥がれない高寿命のトレー材料が望まれている。   For the above reasons, especially when used as a sintering tray, it is required that the sample and the barrier layer do not react, and the barrier layer and the tray do not react and do not peel off. A long-life tray material is desired in which the sample and the barrier layer do not react with each other and the barrier layer and the tray substrate do not peel off.

特表2000−509102号公報Special Table 2000-509102

本発明は、上記事情を改善するためになされたもので、特に真空、不活性雰囲気又は還元雰囲気下で金属又はセラミックスを焼結又は熱処理を行う際に耐熱性、耐蝕性、非反応性に優れ、しかも安価な被覆部材を提供することを目的とする。   The present invention was made to improve the above circumstances, and is particularly excellent in heat resistance, corrosion resistance, and non-reactivity when sintering or heat treating a metal or ceramic in a vacuum, an inert atmosphere or a reducing atmosphere. And it aims at providing a cheap covering member.

本発明者は、上記目的を達成するため鋭意検討を行った結果、Mo、Ta、W、Zr、Al、Ti、カーボン及びそれらの合金並びにそれらの酸化物系セラミックス、非酸化物系セラミックス及び炭化物系材料から選ばれる材質にて形成された基材に希土類元素含有酸化物を主成分とする層を被覆することにより得られる耐熱性被覆部材が、特に、真空、不活性雰囲気又は還元雰囲気下で金属又はセラミックスの焼結又は熱処理を行う際に、優れた耐熱性、耐蝕性、非反応性を与えることを知見し、本発明をなすに至った。   As a result of intensive studies to achieve the above object, the present inventor has found that Mo, Ta, W, Zr, Al, Ti, carbon and alloys thereof, and oxide ceramics, non-oxide ceramics and carbides thereof. A heat-resistant covering member obtained by coating a base material made of a material selected from a system material with a rare earth element-containing oxide as a main component, particularly in a vacuum, an inert atmosphere or a reducing atmosphere It has been found that excellent heat resistance, corrosion resistance and non-reactivity are imparted when sintering or heat treatment of metal or ceramics, and the present invention has been made.

従って、本発明は、下記耐熱性被覆部材を提供する。
(1)Mo,Ta,W,Zr,Al,Ti,カーボン及びそれらの合金並びにそれらの酸化物系セラミックス、非酸化物系セラミックス及び炭化物系材料から選ばれる材質を有する基材が、Dy,Ho,Er,Tb,Gd,Tm,Yb,Lu,Eu及びSmから選ばれる1種以上の元素の酸化物からなる希土類元素含有酸化物、又はDy,Ho,Er,Tb,Gd,Tm,Yb,Lu,Eu及びSmから選ばれる1種以上の元素の酸化物からなる希土類元素含有酸化物とAl,Si,Zn,Fe,Ti,Mn,V及びYから選ばれる1種以上の金属の酸化物とからなる希土類元素含有酸化物の層で被覆されていることを特徴とする耐熱性被覆部材。
(2)Mo,Ta,W,Zr,Al,Ti,カーボン及びそれらの合金並びにそれらの酸化物系セラミックス、非酸化物系セラミックス及び炭化物系材料から選ばれる材質を有する基材が、Yb,Er,Eu及びSmから選ばれる1種以上の元素の酸化物からなる希土類元素含有酸化物、又はYb,Er,Eu及びSmから選ばれる1種以上の元素の酸化物からなる希土類元素含有酸化物とAl,Si,Zn,Fe,Ti,Mn,V及びYから選ばれる1種以上の金属の酸化物とからなる希土類元素含有酸化物の層で被覆されていることを特徴とする耐熱性被覆部材。
(3)Mo,Ta,W,Zr,Al,Ti,カーボン及びそれらの合金並びにそれらの酸化物系セラミックス、非酸化物系セラミックス及び炭化物系材料から選ばれる材質を有する基材が、Yb酸化物、又はYb酸化物とAl,Si,Zn,Fe,Ti,Mn,V及びYから選ばれる1種以上の金属の酸化物とからなる希土類元素含有酸化物の層で被覆されていることを特徴とする耐熱性被覆部材。
(4)カーボン基材が、Dy,Ho,Er,Tb,Gd,Tm,Yb,Lu,Eu及びSmから選ばれる1種以上の元素の酸化物からなる希土類元素含有酸化物、又はDy,Ho,Er,Tb,Gd,Tm,Yb,Lu,Eu及びSmから選ばれる1種以上の元素の酸化物からなる希土類元素含有酸化物とAl,Si,Zn,Fe,Ti,Mn,V及びYから選ばれる1種以上の金属の酸化物とからなる希土類元素含有酸化物の層で被覆されていることを特徴とする耐熱性被覆部材。
(5)カーボン基材が、Yb,Eu及びSmから選ばれる1種以上の元素の酸化物からなる希土類元素含有酸化物、又はYb,Eu及びSmから選ばれる1種以上の元素の酸化物からなる希土類元素含有酸化物とAl,Si,Zn,Fe,Ti,Mn,V及びYから選ばれる1種以上の金属の酸化物とからなる希土類元素含有酸化物の層で被覆されていることを特徴とする耐熱性被覆部材。
(6)カーボン基材が、Yb酸化物、又はYb酸化物からなるYb含有酸化物とAl,Si,Zn,Fe,Ti,Mn,V及びYから選ばれる1種以上の金属の酸化物とからなる希土類元素含有酸化物の層で被覆されていることを特徴とする耐熱性被覆部材。
(7)カーボン基材の密度が1.5g/cm3以上である(1)〜(6)のいずれかに記載の耐熱性被覆部材。
(8)上記希土類元素含有酸化物の層の厚さが0.02mm以上0.4mm以下であることを特徴とする(1)〜(7)のいずれかに記載の耐熱性被覆部材。
(9)上記希土類含有酸化物の層上に、短周期型周期律表において3A族〜8族までの元素から選ばれる1種以上の元素の化合物の層を単層又は複数層積層させたことを特徴とする(1)〜(8)のいずれかに記載の耐熱性被覆部材。
(10)真空、不活性雰囲気又は還元雰囲気下での金属又はセラミックスの焼結に用いる(1)〜(9)のいずれかに記載の耐熱性被覆部材。
Accordingly, the present invention provides the following heat-resistant covering member.
(1) A base material having a material selected from Mo, Ta, W, Zr, Al, Ti, carbon and alloys thereof and oxide ceramics, non-oxide ceramics, and carbide materials thereof is Dy, Ho. , Er, Tb, Gd, Tm, Yb, Lu, Eu, and Sm, or a rare earth element-containing oxide composed of an oxide of one or more elements selected from Dm, Ho, Er, Tb, Gd, Tm, Yb, Rare earth element-containing oxides composed of oxides of one or more elements selected from Lu, Eu and Sm and oxides of one or more metals selected from Al, Si, Zn, Fe, Ti, Mn, V and Y A heat-resistant covering member characterized by being coated with a rare earth element-containing oxide layer.
(2) A substrate having a material selected from Mo, Ta, W, Zr, Al, Ti, carbon and alloys thereof, and oxide ceramics, non-oxide ceramics, and carbide materials thereof is Yb, Er. , A rare earth element-containing oxide composed of an oxide of one or more elements selected from Eu, Sm, or a rare earth element-containing oxide composed of an oxide of one or more elements selected from Yb, Er, Eu, and Sm A heat-resistant covering member coated with a rare earth element-containing oxide layer made of an oxide of one or more metals selected from Al, Si, Zn, Fe, Ti, Mn, V and Y .
(3) A substrate having a material selected from Mo, Ta, W, Zr, Al, Ti, carbon and alloys thereof and oxide ceramics, non-oxide ceramics and carbide materials thereof is a Yb oxide. Or a rare earth element-containing oxide layer comprising Yb oxide and one or more metal oxides selected from Al, Si, Zn, Fe, Ti, Mn, V, and Y. A heat-resistant covering member.
(4) The rare earth element-containing oxide composed of an oxide of one or more elements selected from Dy, Ho, Er, Tb, Gd, Tm, Yb, Lu, Eu and Sm, or Dy, Ho. , Er, Tb, Gd, Tm, Yb, Lu, Eu and Sm, and rare earth element-containing oxides composed of oxides of one or more elements selected from Al, Si, Zn, Fe, Ti, Mn, V and Y A heat-resistant covering member characterized by being coated with a rare earth element-containing oxide layer comprising one or more metal oxides selected from the group consisting of:
(5) From a rare earth element-containing oxide composed of an oxide of one or more elements selected from Yb, Eu and Sm, or an oxide of one or more elements selected from Yb, Eu and Sm. And a rare earth element-containing oxide layer composed of a rare earth element-containing oxide and one or more metal oxides selected from Al, Si, Zn, Fe, Ti, Mn, V, and Y. A heat-resistant covering member characterized.
(6) The carbon base material is a Yb oxide or a Yb-containing oxide composed of a Yb oxide and an oxide of one or more metals selected from Al, Si, Zn, Fe, Ti, Mn, V, and Y. A heat-resistant covering member which is coated with a rare earth element-containing oxide layer.
(7) The heat resistant coating member according to any one of (1) to (6), wherein the density of the carbon substrate is 1.5 g / cm 3 or more.
(8) The heat-resistant covering member according to any one of (1) to (7), wherein the rare earth element-containing oxide layer has a thickness of 0.02 mm to 0.4 mm.
(9) A single layer or a plurality of layers of a compound of one or more elements selected from elements from Group 3A to Group 8 in the short-period periodic table are laminated on the rare earth-containing oxide layer. The heat-resistant covering member according to any one of (1) to (8).
(10) The heat-resistant covering member according to any one of (1) to (9), which is used for sintering metal or ceramics in a vacuum, an inert atmosphere, or a reducing atmosphere.

本発明の耐熱性被覆部材は、耐熱性、耐蝕性、非反応性が良好で、真空、不活性雰囲気又は還元雰囲気下での金属又はセラミックスを焼結又は熱処理するのに有効に用いられるものである。   The heat-resistant coated member of the present invention has good heat resistance, corrosion resistance, and non-reactivity, and is effectively used for sintering or heat-treating metals or ceramics in a vacuum, an inert atmosphere or a reducing atmosphere. is there.

以下、本発明につき更に詳しく説明する。
本発明の耐熱性被覆部材は、特に、真空、不活性雰囲気又は還元雰囲気下で、製品となる金属又はセラミックスの焼結又は熱処理を行う際に使用されるが、製品や使用温度や使用ガスの種類によって、被覆酸化物と基材の種類又は組み合わせを変えて、最適化する必要がある。
Hereinafter, the present invention will be described in more detail.
The heat-resistant covering member of the present invention is used when sintering or heat-treating a metal or ceramic as a product, particularly in a vacuum, an inert atmosphere or a reducing atmosphere. It is necessary to optimize by changing the type or combination of the coating oxide and the substrate depending on the type.

この場合、本発明の耐熱性被覆部材は、特に、金属の溶解ルツボや各種複合酸化物を製造・焼結するための治具として有効であり、例えばセッター(敷板)、サヤ、トレー、焼成こう鉢、金型といった部材及び装置が挙げられる。   In this case, the heat-resistant covering member of the present invention is particularly effective as a jig for producing and sintering a metal melting crucible and various composite oxides, for example, a setter (laying plate), a sheath, a tray, and a firing rod. Examples include members and devices such as bowls and molds.

これらの金属、セラミックスの焼結又は熱処理において使用される耐熱性及び耐蝕性のある部材を形成するための基材として、本発明ではMo、Ta、W、Zr、Al、Ti、カーボン及びそれらの合金並びにそれらの酸化物系、非酸化物系セラミックス及び炭化物系材料から選ばれる基材を用いるものである。   In the present invention, Mo, Ta, W, Zr, Al, Ti, carbon, and those as a base material for forming a member having heat resistance and corrosion resistance used in sintering or heat treatment of these metals and ceramics. A base material selected from alloys and oxide-based, non-oxide-based ceramics, and carbide-based materials thereof is used.

ここで、基材にカーボンを用いる場合には、カーボン基材の密度を1.5g/cm3以上、特に1.6〜1.9g/cm3とすることが好ましい。なお、カーボンの真密度は2.26g/cm3である。基材の密度が1.5g/cm3未満では、密度が小さいので熱衝撃には強いが、気孔率が高くなり、大気中の水分・炭酸ガスを吸着しやすく、真空下では吸着した水分・炭酸ガスを放出する場合がある。また、基材と皮膜の形成状態を高めるために酸化物層の熱膨張係数を4〜7×10-6以下にするとよい。 Here, in the case of using the carbon to the substrate, the density of the carbon substrate 1.5 g / cm 3 or more, particularly preferably a 1.6~1.9g / cm 3. The true density of carbon is 2.26 g / cm 3 . If the density of the substrate is less than 1.5 g / cm 3 , the density is small and strong against thermal shock, but the porosity is high and it is easy to adsorb moisture and carbon dioxide in the atmosphere. Carbon dioxide may be released. Moreover, in order to raise the formation state of a base material and a membrane | film | coat, it is good to make the thermal expansion coefficient of an oxide layer into 4-7 * 10 <-6> or less.

特に、YAG等の透光性セラミックスを焼結する場合、1500〜1800℃で、真空、不活性雰囲気又は弱い還元雰囲気下で処理するが、このように高温のために、基材物質と皮膜酸化物との反応、及び皮膜酸化物と製品との反応が起こりやすくなるので、基材物質と皮膜酸化物との反応、及び皮膜酸化物と製品との反応が共に起こりにくい組み合わせを選定することが重要である。特に1500℃以上になると、Alや希土類元素は、基材にカーボンを用いると、真空や還元雰囲気では炭化物になりやすい場合があるので、このような条件下では、基材としてMo、Ta、Wを用いて、皮膜酸化物に希土類元素含有酸化物を組み合わせた皮膜形成治具を用いることが好ましい。   In particular, when translucent ceramics such as YAG are sintered, they are treated at 1500 to 1800 ° C. under vacuum, inert atmosphere or weak reducing atmosphere. The reaction between the substrate material and the film oxide, and the reaction between the base material and the film oxide, and the reaction between the film oxide and the product are not likely to occur. is important. Particularly when the temperature is 1500 ° C. or higher, Al and rare earth elements may easily become carbides in a vacuum or a reducing atmosphere when carbon is used as the base material. Under such conditions, Mo, Ta, W are used as the base material. It is preferable to use a film forming jig in which a rare earth element-containing oxide is combined with a film oxide.

本発明の耐熱性被覆部材は、上述した基材を皮膜酸化物として希土類元素含有酸化物を主成分とする層で被覆したものである。   The heat-resistant covering member of the present invention is obtained by coating the above-described base material with a layer mainly containing a rare earth element-containing oxide as a film oxide.

ここで、本発明で用いる希土類元素含有酸化物は、原子番号57〜71までの希土類元素から選ばれる希土類元素を含有する酸化物である。このうち、La、Ce、Pr、Ndの軽希土類は1500℃前後で結晶構造の転移があるため、高温で使用する用途には、Dy、Ho、Er、Tm、Yb、Gd、Lu、Eu、Smから選ばれる少なくとも1種類以上の希土類元素を含有する酸化物で被覆されることが好ましく、更にはYb、Sm、Euから選ばれる1種類以上を含有する酸化物を用いることが好ましい。また、特に基材との密着力の点から、Ybを上記希土類元素を含む全金属元素の80原子%以上の割合で含む酸化物がよい。   Here, the rare earth element-containing oxide used in the present invention is an oxide containing a rare earth element selected from rare earth elements having atomic numbers of 57 to 71. Among these, light rare earths such as La, Ce, Pr, and Nd have a crystal structure transition at around 1500 ° C., so that they are used at high temperatures such as Dy, Ho, Er, Tm, Yb, Gd, Lu, Eu, It is preferable to coat with an oxide containing at least one kind of rare earth element selected from Sm, and it is more preferable to use an oxide containing one or more kinds selected from Yb, Sm, and Eu. In particular, from the viewpoint of adhesion with the substrate, an oxide containing Yb in a proportion of 80 atomic% or more of the total metal elements including the rare earth element is preferable.

希土類元素含有酸化物の他に、短周期型周期律表において3A族〜8族までの元素から選ばれる金属(但し、上記希土類元素を除く)の酸化物をこれら他の金属の単独酸化物換算で0〜20重量%、特に10重量%以下の割合で含有しても構わない。更に好ましくは、Al、Si、Zn、Fe、Ti、Mn、V及びYから選ばれる少なくとも1種類以上の金属の酸化物を含有していてもよい。この場合、これら希土類元素以外の金属は、希土類元素と複合酸化物を形成していても、これら金属の単独酸化物を形成し、希土類元素含有酸化物や上記複合酸化物と混合されていてもよい。   In addition to rare earth element-containing oxides, oxides of metals selected from elements from Group 3A to Group 8 in the short-period periodic table (excluding the rare earth elements mentioned above) are converted into single oxides of these other metals. It may be contained in a proportion of 0 to 20% by weight, particularly 10% by weight or less. More preferably, it may contain an oxide of at least one metal selected from Al, Si, Zn, Fe, Ti, Mn, V and Y. In this case, the metal other than the rare earth element may form a complex oxide with the rare earth element, or may form a single oxide of these metals and be mixed with the rare earth element-containing oxide or the complex oxide. Good.

用いる酸化物の粒径は、平均粒径10〜70μmの酸化物粒子がよく、上記の基材にアルゴン等の不活性雰囲気下でプラズマ溶射又はフレーム溶射して本発明の被覆部材を製造するものである。また必要により、溶射する前に、基材表面にブラスト処理等の表面加工を施してもよい。   Oxide particles having an average particle size of 10 to 70 μm are preferable as the particle size of the oxide to be used, and the coated member of the present invention is manufactured by plasma spraying or flame spraying on the above base material in an inert atmosphere such as argon. It is. If necessary, surface treatment such as blasting may be performed on the surface of the base material before spraying.

被覆される希土類元素含有酸化物を主成分とする層は1層単層でもよく、2層以上の複数層であってもよい。その総厚さは、0.02mm以上0.4mm以下がよい。より好ましくは0.1mm以上0.2mm以下が望ましい。0.02mm未満では、繰り返し使用した場合に、基材と焼結物質が反応する可能性がある。0.4mmを超えると、被覆酸化物膜内で熱衝撃により酸化物が剥離し、製品を汚染するおそれが生じる。   The layer mainly composed of the rare earth element-containing oxide to be coated may be a single layer or a plurality of layers of two or more layers. The total thickness is preferably 0.02 mm to 0.4 mm. More preferably, it is 0.1 mm or more and 0.2 mm or less. If it is less than 0.02 mm, the substrate and the sintered material may react when used repeatedly. If the thickness exceeds 0.4 mm, the oxide may be peeled off by thermal shock in the coated oxide film, and the product may be contaminated.

更に、本発明では、上記の希土類元素含有酸化物を主成分とする被膜上に短周期型周期律表の3A族〜8族までの元素から選ばれる1種類以上の元素の化合物からなる被膜層を単層又は複数層設けることができる。このような化合物としては、酸化物、窒化物等がよく、好ましくは、Yを含む希土類元素、Al、Ti、Zr、Mn等の元素からなる化合物の層がよい。但し、Y以外の希土類元素化合物としては、酸化物以外のもの、特に窒化物とする。   Furthermore, in the present invention, a coating layer comprising a compound of one or more elements selected from elements from Group 3A to Group 8 of the short-period periodic table on the coating containing the rare earth element-containing oxide as a main component. Can be provided as a single layer or multiple layers. As such a compound, an oxide, a nitride, or the like is preferable, and a layer of a compound including a rare earth element including Y, an element such as Al, Ti, Zr, or Mn is preferable. However, the rare earth element compounds other than Y are those other than oxides, particularly nitrides.

被膜層としては単層として換算した場合、0.01〜0.1mmの厚さになるように被覆することが望ましい。   As a coating layer, when converted into a single layer, it is desirable to coat so as to have a thickness of 0.01 to 0.1 mm.

また、本発明では、被覆物層(希土類元素含有酸化物を主成分とする層、この上に上記被覆層が形成されている場合は該被覆層)の表面粗さ(Ra)が2μm以上になるように形成し、必要により研磨等の表面加工を施してもよい。製造される焼結体の焼結性の点から、表面粗さ(Ra)は2μm以上30μm以下、更に好ましくは3〜10μmが望ましい。表面粗さ(Ra)が2μm未満では、被覆物層が平坦なため、被覆物層の上にある被処理物が焼結収縮するのを邪魔する場合がある。   Further, in the present invention, the surface roughness (Ra) of the coating layer (a layer containing a rare earth element-containing oxide as a main component, and the coating layer when the coating layer is formed thereon) is 2 μm or more. And may be subjected to surface processing such as polishing if necessary. From the viewpoint of the sinterability of the sintered body to be produced, the surface roughness (Ra) is preferably 2 μm or more and 30 μm or less, more preferably 3 to 10 μm. When the surface roughness (Ra) is less than 2 μm, since the coating layer is flat, it may interfere with the sintering shrinkage of the workpiece on the coating layer.

このようにして得られた部材を用いて上記の金属、セラミックスを1800℃以下、更に好ましくは900〜1700℃で1〜50時間加熱又は焼結することがよく、雰囲気は真空又は酸素分圧0.01MPa以下の不活性雰囲気又は還元雰囲気下であるのがよい。   It is preferable to heat or sinter the above metals and ceramics at 1800 ° C. or lower, more preferably 900 to 1700 ° C. for 1 to 50 hours using the member thus obtained. It is good to be in an inert atmosphere or reducing atmosphere of .01 MPa or less.

金属、セラミックスとしては焼結又は熱処理して得られるものであればよく、Cr合金、Mo合金、炭化タングステン、炭化珪素、窒化珪素、ホウ化チタン、希土類−アルミニウム複合酸化物、希土類−遷移金属合金、チタン合金、希土類元素含有酸化物、希土類複合酸化物等が挙げられ、特に炭化タングステン、希土類元素含有酸化物、希土類−アルミニウム複合酸化物、希土類−遷移金属合金の製造において、本発明の治具等の部材は有効である。具体的には、YAG等の透光性セラミックスや炭化タングステン等の超硬材、焼結磁石に用いるSm−Co系合金、Nd−Fe−B系合金、Sm−Fe−N系合金の製造や焼結磁歪材に用いるTb−Dy−Fe合金や焼結蓄冷材に用いるEr−Ni合金の製造において、本発明の治具等の部材は有効である。   Metals and ceramics may be those obtained by sintering or heat treatment. Cr alloy, Mo alloy, tungsten carbide, silicon carbide, silicon nitride, titanium boride, rare earth-aluminum composite oxide, rare earth-transition metal alloy , Titanium alloys, rare earth element-containing oxides, rare earth complex oxides, and the like. In particular, in the production of tungsten carbide, rare earth element-containing oxides, rare earth-aluminum complex oxides, rare earth-transition metal alloys, the jig of the present invention. Such a member is effective. Specifically, translucent ceramics such as YAG, cemented carbide materials such as tungsten carbide, Sm—Co alloys, Nd—Fe—B alloys, Sm—Fe—N alloys used for sintered magnets, In manufacturing a Tb—Dy—Fe alloy used for a sintered magnetostrictive material or an Er—Ni alloy used for a sintered regenerator material, the member such as the jig of the present invention is effective.

なお、不活性雰囲気としては、例えばAr又はN2ガス雰囲気であり、還元雰囲気としては、例えば不活性ガスとカーボンヒータを使用した雰囲気、不活性ガス及び数パーセントの水素ガス混入雰囲気を示す酸素分圧が0.01MPa以下であり、これらの雰囲気により、耐蝕性のある被覆部材が得られる。 The inert atmosphere is, for example, an Ar or N 2 gas atmosphere, and the reducing atmosphere is, for example, an atmosphere using an inert gas and a carbon heater, an oxygen content indicating an atmosphere containing an inert gas and several percent hydrogen gas. The pressure is 0.01 MPa or less, and a coating member having corrosion resistance can be obtained by these atmospheres.

以下、実施例、比較例及び参考例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。   EXAMPLES Hereinafter, although an Example, a comparative example, and a reference example are shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example.

[実施例1〜14、比較例1〜2]
50×50×5mmの形状のMo、Ta、カーボン基材を準備した。表面をプラズマ溶射する前に、ブラストで表面を荒らし、次いで、表1に示す所定の組成、平均粒径の希土類元素含有酸化物粒子を上記基材にアルゴン/水素でプラズマ溶射することにより、上記基材を希土類元素含有酸化物からなる層で被覆して、被覆部材を得た。
[Examples 1-14, Comparative Examples 1-2]
A Mo, Ta, and carbon base material having a shape of 50 × 50 × 5 mm was prepared. Before plasma spraying the surface, the surface is roughened by blasting, and then, the rare earth element-containing oxide particles having a predetermined composition and an average particle size shown in Table 1 are plasma sprayed with argon / hydrogen to the base material. The substrate was coated with a layer made of a rare earth element-containing oxide to obtain a coated member.

該被覆部材の物性値を測定した結果を表1に示す。組成はICP(セイコーSPS−4000)で、平均粒径はレーザ回折法(日機装FRA)で測定した。また、溶射皮膜の物性値を測定した結果を表2に示す。溶射膜厚さは光学顕微鏡で断面を撮影した写真から求めた。表面粗さ(Ra)は表面粗さ計(小阪研究所SE3500K)で測定した。   Table 1 shows the measurement results of the physical properties of the covering member. The composition was ICP (Seiko SPS-4000), and the average particle size was measured by a laser diffraction method (Nikkiso FRA). In addition, Table 2 shows the results of measuring physical properties of the thermal spray coating. The sprayed film thickness was determined from a photograph of a cross section taken with an optical microscope. The surface roughness (Ra) was measured with a surface roughness meter (Kosaka Laboratory SE3500K).

更に、カーボンヒータ炉で所定温度まで500℃/hrの速度で昇温し、所定時間保持した後、400℃/hrの速度で冷却した。これを2回繰り返した後の被覆部材の外観を観察した。結果を表2に示す。   Further, the temperature was raised to a predetermined temperature in a carbon heater furnace at a rate of 500 ° C./hr, held for a predetermined time, and then cooled at a rate of 400 ° C./hr. The appearance of the covering member after repeating this twice was observed. The results are shown in Table 2.

Figure 2005139554
Figure 2005139554

Figure 2005139554
Figure 2005139554

なお、実施例1〜14の治具は、カーボンヒータ炉で熱処理後も処理前と変化はなかった。一方、比較例1、2の治具は、カーボンヒータ炉での熱処理後、表面にひびが入ったり、酸化物が剥がれたりしており、腐食が起こっていた。   In addition, the jigs of Examples 1 to 14 were not changed after the heat treatment in the carbon heater furnace. On the other hand, after the heat treatment in the carbon heater furnace, the jigs of Comparative Examples 1 and 2 were cracked on the surface or the oxide was peeled off, and corrosion occurred.

[参考例]
0.84gの粉末状炭素(比表面積200m2/g)と0.01モルの表3に示す各原料希土類元素含有酸化物の粉末(平均粒径1〜2μm)とを、少量のエタノールとともに、乳鉢で十分粉砕混合し、真空乾燥機中で乾燥して混合粉末を得た。各混合粉末を、金型で加圧成形し、直径20mmのペレットとした。各ペレットを、アルゴン雰囲気中1420℃で2時間焼成した。焼成後のペレットを手早く打砕して粗粉とし、各試料について1.5gを密栓可能な試料瓶に採取した。これに純水0.1cm3ずつ加えて密栓した。しばらく置いて平衡に達したのち、試料瓶中の気体をガスクロマトグラフにかけ、アセチレンの定量を行った。結果を表3に示す。
[Reference example]
0.84 g of powdery carbon (specific surface area 200 m 2 / g) and 0.01 mol of each raw material rare earth element-containing oxide powder (average particle size of 1 to 2 μm) shown in Table 3, together with a small amount of ethanol, The mixture was sufficiently pulverized and mixed in a mortar and dried in a vacuum dryer to obtain a mixed powder. Each mixed powder was pressure-molded with a mold to obtain pellets having a diameter of 20 mm. Each pellet was fired at 1420 ° C. for 2 hours in an argon atmosphere. The fired pellets were quickly crushed into coarse powder, and 1.5 g of each sample was collected in a sample bottle capable of being sealed. To this, 0.1 cm 3 of pure water was added and sealed. After reaching equilibrium for a while, the gas in the sample bottle was subjected to gas chromatography to quantify acetylene. The results are shown in Table 3.

Figure 2005139554
Figure 2005139554

Yに代表される原子番号の比較的小さい金属酸化物に比べ、Er、Ybに代表される原子番号の比較的大きい希土類元素の酸化物は、アセチレンの生成が少ない。即ち、加水分解性の炭化物の生成が少ない。このことは、炭素上に希土類元素含有酸化物層を被覆した場合に加熱、冷却、大気開放のサイクルにより界面に炭化物が生じ、それが加水分解することによって皮膜の密着力が低下するという現象が起こりにくいことにつながる。希土類元素間の挙動の違いの原因の一つはイオン半径であり、イオン半径が小さい方が炭化物の生成又は加水分解のいずれか又は両方が起こりにくいのだと思料される。   Compared with a metal oxide having a relatively small atomic number represented by Y, a rare earth element oxide having a relatively large atomic number represented by Er and Yb produces less acetylene. That is, there is little production of hydrolyzable carbides. This is because when a rare earth element-containing oxide layer is coated on carbon, carbides are generated at the interface due to the cycle of heating, cooling, and opening to the atmosphere, and the adhesion of the film decreases due to hydrolysis. It leads to things that are hard to happen. One of the causes of the difference in behavior between rare earth elements is the ionic radius, and it is thought that the smaller the ionic radius, the less likely to occur either or both of the formation of carbide and the hydrolysis.

また、Yb23においてアセチレンの発生が特に少ないのは、イオン半径の小ささに加えてこの元素が一般の希土類元素と異なり酸化数2の状態を比較的取り易いことも関係していると思量できる。このことを検証するために、実施例6と同様にして作成した被覆部材を高真空中で、光高温計によって1500℃以上と観測されるまで高周波誘導加熱したところ、微量のYbOが脱離ガス中に含まれていた。 In addition, the generation of acetylene in Yb 2 O 3 is particularly small, in addition to the small ionic radius, this element is also related to the fact that it is relatively easy to take an oxidation number 2 state unlike ordinary rare earth elements. I can think of it. In order to verify this, the covering member prepared in the same manner as in Example 6 was subjected to high-frequency induction heating in a high vacuum until it was observed to be 1500 ° C. or higher by an optical pyrometer. It was included.

[実施例13]
実施例6と同様にカーボン基材を用意し、平均粒径40μmのYb23粒子をアルゴン/水素で溶射することにより、0.1mmの溶射被膜を形成した。更に、平均粒径40μmのEr23粒子を同雰囲気で供給しながら溶射し、0.2mmの被膜部材を形成した。
[Example 13]
A carbon base material was prepared in the same manner as in Example 6, and Yb 2 O 3 particles having an average particle diameter of 40 μm were sprayed with argon / hydrogen to form a 0.1 mm sprayed coating. Furthermore, thermal spraying was performed while supplying Er 2 O 3 particles having an average particle diameter of 40 μm in the same atmosphere to form a 0.2 mm coated member.

[実施例14]
Er23に代えて平均粒径60μmのY23を用いた以外は実施例13と同様にして0.2mmの被膜部材を得た。
[Example 14]
A 0.2 mm coated member was obtained in the same manner as in Example 13 except that Y 2 O 3 having an average particle size of 60 μm was used instead of Er 2 O 3 .

Claims (10)

Mo,Ta,W,Zr,Al,Ti,カーボン及びそれらの合金並びにそれらの酸化物系セラミックス、非酸化物系セラミックス及び炭化物系材料から選ばれる材質を有する基材が、Dy,Ho,Er,Tb,Gd,Tm,Yb,Lu,Eu及びSmから選ばれる1種以上の元素の酸化物からなる希土類元素含有酸化物、又はDy,Ho,Er,Tb,Gd,Tm,Yb,Lu,Eu及びSmから選ばれる1種以上の元素の酸化物からなる希土類元素含有酸化物とAl,Si,Zn,Fe,Ti,Mn,V及びYから選ばれる1種以上の金属の酸化物とからなる希土類元素含有酸化物の層で被覆されていることを特徴とする耐熱性被覆部材。   A base material having a material selected from Mo, Ta, W, Zr, Al, Ti, carbon and alloys thereof, oxide ceramics thereof, non-oxide ceramics, and carbide materials is used as Dy, Ho, Er, A rare earth element-containing oxide composed of an oxide of one or more elements selected from Tb, Gd, Tm, Yb, Lu, Eu and Sm, or Dy, Ho, Er, Tb, Gd, Tm, Yb, Lu, Eu And a rare earth element-containing oxide composed of an oxide of one or more elements selected from Sm and an oxide of one or more metals selected from Al, Si, Zn, Fe, Ti, Mn, V, and Y. A heat-resistant covering member which is covered with a rare earth element-containing oxide layer. Mo,Ta,W,Zr,Al,Ti,カーボン及びそれらの合金並びにそれらの酸化物系セラミックス、非酸化物系セラミックス及び炭化物系材料から選ばれる材質を有する基材が、Yb,Er,Eu及びSmから選ばれる1種以上の元素の酸化物からなる希土類元素含有酸化物、又はYb,Er,Eu及びSmから選ばれる1種以上の元素の酸化物からなる希土類元素含有酸化物とAl,Si,Zn,Fe,Ti,Mn,V及びYから選ばれる1種以上の金属の酸化物とからなる希土類元素含有酸化物の層で被覆されていることを特徴とする耐熱性被覆部材。   A substrate having a material selected from Mo, Ta, W, Zr, Al, Ti, carbon and alloys thereof and oxide ceramics, non-oxide ceramics, and carbide materials thereof is Yb, Er, Eu, and A rare earth element-containing oxide composed of an oxide of one or more elements selected from Sm, or a rare earth element-containing oxide composed of an oxide of one or more elements selected from Yb, Er, Eu and Sm, and Al, Si , Zn, Fe, Ti, Mn, V, and Y. A heat-resistant covering member coated with a layer of a rare earth element-containing oxide composed of an oxide of one or more metals selected from Y and Y. Mo,Ta,W,Zr,Al,Ti,カーボン及びそれらの合金並びにそれらの酸化物系セラミックス、非酸化物系セラミックス及び炭化物系材料から選ばれる材質を有する基材が、Yb酸化物、又はYb酸化物とAl,Si,Zn,Fe,Ti,Mn,V及びYから選ばれる1種以上の金属の酸化物とからなる希土類元素含有酸化物の層で被覆されていることを特徴とする耐熱性被覆部材。   A base material having a material selected from Mo, Ta, W, Zr, Al, Ti, carbon and alloys thereof, oxide ceramics thereof, non-oxide ceramics, and carbide materials is Yb oxide or Yb. Heat resistance characterized by being covered with a rare earth element-containing oxide layer comprising an oxide and an oxide of one or more metals selected from Al, Si, Zn, Fe, Ti, Mn, V and Y Covering member. カーボン基材が、Dy,Ho,Er,Tb,Gd,Tm,Yb,Lu,Eu及びSmから選ばれる1種以上の元素の酸化物からなる希土類元素含有酸化物、又はDy,Ho,Er,Tb,Gd,Tm,Yb,Lu,Eu及びSmから選ばれる1種以上の元素の酸化物からなる希土類元素含有酸化物とAl,Si,Zn,Fe,Ti,Mn,V及びYから選ばれる1種以上の金属の酸化物とからなる希土類元素含有酸化物の層で被覆されていることを特徴とする耐熱性被覆部材。   The carbon substrate is a rare earth element-containing oxide composed of an oxide of one or more elements selected from Dy, Ho, Er, Tb, Gd, Tm, Yb, Lu, Eu, and Sm, or Dy, Ho, Er, A rare earth element-containing oxide composed of an oxide of one or more elements selected from Tb, Gd, Tm, Yb, Lu, Eu, and Sm, and Al, Si, Zn, Fe, Ti, Mn, V, and Y A heat-resistant covering member characterized by being coated with a layer of a rare earth element-containing oxide comprising at least one metal oxide. カーボン基材が、Yb,Eu及びSmから選ばれる1種以上の元素の酸化物からなる希土類元素含有酸化物、又はYb,Eu及びSmから選ばれる1種以上の元素の酸化物からなる希土類元素含有酸化物とAl,Si,Zn,Fe,Ti,Mn,V及びYから選ばれる1種以上の金属の酸化物とからなる希土類元素含有酸化物の層で被覆されていることを特徴とする耐熱性被覆部材。   A rare earth element comprising a rare earth element-containing oxide comprising an oxide of one or more elements selected from Yb, Eu and Sm, or an oxide of one or more elements selected from Yb, Eu and Sm. It is covered with a layer of a rare earth element-containing oxide comprising an oxide containing and an oxide of one or more metals selected from Al, Si, Zn, Fe, Ti, Mn, V and Y. Heat-resistant covering member. カーボン基材が、Yb酸化物、又はYb酸化物からなるYb含有酸化物とAl,Si,Zn,Fe,Ti,Mn,V及びYから選ばれる1種以上の金属の酸化物とからなる希土類元素含有酸化物の層で被覆されていることを特徴とする耐熱性被覆部材。   The rare earth element in which the carbon substrate is composed of a Yb oxide or a Yb-containing oxide composed of a Yb oxide and an oxide of one or more metals selected from Al, Si, Zn, Fe, Ti, Mn, V, and Y. A heat-resistant covering member which is covered with an element-containing oxide layer. カーボン基材の密度が1.5g/cm3以上である請求項1〜6のいずれか1項に記載の耐熱性被覆部材。 Heat resistant coated member according to any one of claims 1 to 6 density of the carbon substrate is 1.5 g / cm 3 or more. 上記希土類元素含有酸化物の層の厚さが0.02mm以上0.4mm以下であることを特徴とする請求項1〜7のいずれか1項に記載の耐熱性被覆部材。   The heat-resistant covering member according to any one of claims 1 to 7, wherein the rare earth element-containing oxide layer has a thickness of 0.02 mm to 0.4 mm. 上記希土類含有酸化物の層上に、短周期型周期律表において3A族〜8族までの元素から選ばれる1種以上の元素の化合物の層を単層又は複数層積層させたことを特徴とする請求項1〜8のいずれか1項に記載の耐熱性被覆部材。   A layer of a compound of one or more elements selected from elements from Group 3A to Group 8 in the short-period periodic table is laminated on the rare earth-containing oxide layer in a single layer or a plurality of layers. The heat-resistant covering member according to any one of claims 1 to 8. 真空、不活性雰囲気又は還元雰囲気下での金属又はセラミックスの焼結に用いる請求項1〜9のいずれか1項に記載の耐熱性被覆部材。
The heat resistant covering member according to any one of claims 1 to 9, which is used for sintering metal or ceramics in a vacuum, an inert atmosphere or a reducing atmosphere.
JP2004320468A 2001-06-18 2004-11-04 Heat-resistant covering material Expired - Fee Related JP4171916B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004320468A JP4171916B2 (en) 2001-06-18 2004-11-04 Heat-resistant covering material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001183510 2001-06-18
JP2004320468A JP4171916B2 (en) 2001-06-18 2004-11-04 Heat-resistant covering material

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001354673A Division JP2003073794A (en) 2001-06-18 2001-11-20 Heat-resistant coated member

Publications (2)

Publication Number Publication Date
JP2005139554A true JP2005139554A (en) 2005-06-02
JP4171916B2 JP4171916B2 (en) 2008-10-29

Family

ID=34702679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004320468A Expired - Fee Related JP4171916B2 (en) 2001-06-18 2004-11-04 Heat-resistant covering material

Country Status (1)

Country Link
JP (1) JP4171916B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007053351A (en) * 2005-07-22 2007-03-01 Shin Etsu Chem Co Ltd Rare earth permanent magnet, its manufacturing method, and permanent magnet rotary machine
JP2007287875A (en) * 2006-04-14 2007-11-01 Shin Etsu Chem Co Ltd Process for producing rare earth permanent magnet material
JP2008285734A (en) * 2007-05-21 2008-11-27 Shin Etsu Chem Co Ltd Rare earth oxide-containing thermal-sprayed substrate, and method for producing the same
JP2012167372A (en) * 2012-02-29 2012-09-06 Shin-Etsu Chemical Co Ltd Method of manufacturing rare earth oxide-containing thermal spraying substrate and method of manufacturing laminated plate
KR101249729B1 (en) 2010-10-28 2013-04-02 경북대학교 산학협력단 Manufacturing method of mo-si-b alloy with high oxidation resistance and product of mo-si-b alloy by using the same
JP2015054812A (en) * 2013-09-13 2015-03-23 三井金属鉱業株式会社 Burning tool and method for producing the same
JP6360245B1 (en) * 2017-11-08 2018-07-18 新和工業株式会社 Sintering setter and method for producing the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007053351A (en) * 2005-07-22 2007-03-01 Shin Etsu Chem Co Ltd Rare earth permanent magnet, its manufacturing method, and permanent magnet rotary machine
JP4656325B2 (en) * 2005-07-22 2011-03-23 信越化学工業株式会社 Rare earth permanent magnet, manufacturing method thereof, and permanent magnet rotating machine
JP2007287875A (en) * 2006-04-14 2007-11-01 Shin Etsu Chem Co Ltd Process for producing rare earth permanent magnet material
JP4656323B2 (en) * 2006-04-14 2011-03-23 信越化学工業株式会社 Method for producing rare earth permanent magnet material
JP2008285734A (en) * 2007-05-21 2008-11-27 Shin Etsu Chem Co Ltd Rare earth oxide-containing thermal-sprayed substrate, and method for producing the same
KR101534448B1 (en) * 2007-05-21 2015-07-06 신에쓰 가가꾸 고교 가부시끼가이샤 Flame Spray Coating Substrate Containing Rare-Earth Oxide and Method for Preparing the Same
KR101249729B1 (en) 2010-10-28 2013-04-02 경북대학교 산학협력단 Manufacturing method of mo-si-b alloy with high oxidation resistance and product of mo-si-b alloy by using the same
JP2012167372A (en) * 2012-02-29 2012-09-06 Shin-Etsu Chemical Co Ltd Method of manufacturing rare earth oxide-containing thermal spraying substrate and method of manufacturing laminated plate
JP2015054812A (en) * 2013-09-13 2015-03-23 三井金属鉱業株式会社 Burning tool and method for producing the same
JP6360245B1 (en) * 2017-11-08 2018-07-18 新和工業株式会社 Sintering setter and method for producing the same
WO2019092894A1 (en) * 2017-11-08 2019-05-16 新和工業株式会社 Firing setter and production method therefor

Also Published As

Publication number Publication date
JP4171916B2 (en) 2008-10-29

Similar Documents

Publication Publication Date Title
JP2003073794A (en) Heat-resistant coated member
KR101313470B1 (en) Heat Resistant Coated Member, Making Method, and Treatment Using the Same
Nygren et al. On the preparation of bio-, nano-and structural ceramics and composites by spark plasma sintering
KR100756619B1 (en) Aluminum nitride sintered body, semiconductor manufacturing member, and method of manufacturing aluminum nitride sintered body
TW201018655A (en) Corrosion-resistant bonding agent&#39;s for bonding ceramic componets which are exposed to plasmas
JP4171916B2 (en) Heat-resistant covering material
CS275884B6 (en) Manufacturing process of self-supporting ceramic composite structure
EP1435501B1 (en) Heat-resistant coated member
JP2016502486A (en) Method for producing magnesia or magnesia spinel refractory material, and magnesia or magnesia spinel refractory material
WO2015025951A1 (en) Porous ceramic and method for producing same
JP2002371383A (en) Heat resistant coated member
JP2004190056A (en) Heat-resistant coated member
JP4081574B2 (en) Method for manufacturing heat-resistant coated member
JP6942788B2 (en) Paste composition, carbide sintered body and its manufacturing method, and refractory member
JP4189676B2 (en) Heat-resistant covering material
JP4069610B2 (en) Surface-coated silicon nitride sintered body
JP4716042B2 (en) Heat-resistant covering material
JP2009001485A (en) Heat-resistant coated member
JP2004010381A (en) Surface-coated silicon nitride sintered compact
Hur et al. Graded coatings by gradient temperature densification
WO1996040602A1 (en) Ceramic-coated support for powder metal sintering
JP2004332012A (en) Heat-resistant holder and heat-treating/sintering method
JP2003267782A (en) Aluminum nitride sintered compact and method for production thereof
JPH0226841A (en) Mold material for molding optical glass
JPH11310461A (en) Production of high-purity carbide ceramic part item

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080321

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080716

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080729

R150 Certificate of patent or registration of utility model

Ref document number: 4171916

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140822

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees