JP2007053351A - Rare earth permanent magnet, its manufacturing method, and permanent magnet rotary machine - Google Patents

Rare earth permanent magnet, its manufacturing method, and permanent magnet rotary machine Download PDF

Info

Publication number
JP2007053351A
JP2007053351A JP2006198935A JP2006198935A JP2007053351A JP 2007053351 A JP2007053351 A JP 2007053351A JP 2006198935 A JP2006198935 A JP 2006198935A JP 2006198935 A JP2006198935 A JP 2006198935A JP 2007053351 A JP2007053351 A JP 2007053351A
Authority
JP
Japan
Prior art keywords
magnet
rare earth
permanent magnet
magnet body
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006198935A
Other languages
Japanese (ja)
Other versions
JP4656325B2 (en
Inventor
Koji Miyata
浩二 宮田
Koichi Hirota
晃一 廣田
Hajime Nakamura
中村  元
Takehisa Minowa
武久 美濃輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2006198935A priority Critical patent/JP4656325B2/en
Publication of JP2007053351A publication Critical patent/JP2007053351A/en
Application granted granted Critical
Publication of JP4656325B2 publication Critical patent/JP4656325B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • Y02T10/641

Abstract

<P>PROBLEM TO BE SOLVED: To provide R-Fe-B system sintered magnet with a small eddy current, a high residual magnetic flux density, and a high coercive force which is suitable for a permanent magnet rotary machine, and to provide the permanent magnet rotary machine using this magnet. <P>SOLUTION: A method of manufacturing a rare earth permanent magnet comprises the steps of providing a plurality of slits on at least one front surface of a sintered magnet body consisting of R<SP>1</SP>-Fe-B system composition (R<SP>1</SP>is one sort or two sorts or more chosen from rare earth elements containing Y and Sc); and carrying out a heat treatment of the magnet body and powder at a temperature below a sintering temperature of the magnet in vacuum or in an inert gas, in the state where there exists the powder containing one sort or two sorts or more chosen from an oxide of R<SP>2</SP>, a fluoride of R<SP>3</SP>, and an oxyfluoride of R<SP>4</SP>(R<SP>2</SP>, R<SP>3</SP>and R<SP>4</SP>are one sort or two sorts or more chosen from the rare elements containing Y and Sc) on a front surface of the magnet body. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、焼結磁石体の残留磁束密度の低減を抑制しながら保磁力を増大させたR−Fe−B系希土類永久磁石、及びその製造方法、並びに高速回転を行う電気自動車用モータや発電機、FAモータ等に最適な永久磁石回転機に関する。   The present invention relates to an R-Fe-B rare earth permanent magnet having an increased coercive force while suppressing a reduction in residual magnetic flux density of a sintered magnet body, a method for manufacturing the same, a motor for electric vehicles that performs high-speed rotation, and power generation. The present invention relates to a permanent magnet rotating machine suitable for a machine, FA motor and the like.

Nd−Fe−B系永久磁石は、その優れた磁気特性のために、ますます用途が広がってきている。近年、モータや発電機などの回転機の分野においても、機器の軽量短小化、高性能化、省エネルギー化に伴い、Nd−Fe−B系永久磁石を利用した永久磁石回転機が開発されている。回転機中の永久磁石は、巻き線や鉄心の発熱により高温に曝され、更に巻き線からの反磁界により極めて減磁しやすい状況下にある。このため、耐熱性、耐減磁性の指標となる保磁力が一定以上あり、磁力の大きさの指標となる残留磁束密度ができるだけ高いNd−Fe−B系焼結磁石が要求されている。   Nd-Fe-B permanent magnets are increasingly used because of their excellent magnetic properties. In recent years, in the field of rotating machines such as motors and generators, permanent magnet rotating machines using Nd-Fe-B permanent magnets have been developed along with reductions in weight, size, performance, and energy saving of equipment. . The permanent magnet in the rotating machine is exposed to a high temperature due to the heat generated by the winding and the iron core, and is in a state where it is very easily demagnetized by the demagnetizing field from the winding. For this reason, there is a demand for Nd—Fe—B sintered magnets that have a coercive force that is an index of heat resistance and demagnetization resistance at a certain level and that has as high a residual magnetic flux density as possible that is an index of the magnitude of magnetic force.

Nd−Fe−B系焼結磁石の残留磁束密度増大は、Nd2Fe14B化合物の体積率増大と結晶配向度向上により達成され、これまでに種々のプロセスの改善が行われてきている。保磁力の増大に関しては、結晶粒の微細化を図る、Nd量を増やした組成合金を用いる、あるいは効果のある元素を添加する等、様々なアプローチがある中で、現在最も一般的な手法はDyやTbでNdの一部を置換した組成合金を用いることである。Nd2Fe14B化合物のNdをこれらの元素で置換することで、化合物の異方性磁界が増大し、保磁力も増大する。一方で、DyやTbによる置換は化合物の飽和磁気分極を減少させる。従って、上記手法で保磁力の増大を図る限りでは残留磁束密度の低下は避けられない。 The increase in the residual magnetic flux density of the Nd—Fe—B based sintered magnet has been achieved by increasing the volume fraction of the Nd 2 Fe 14 B compound and improving the degree of crystal orientation, and various processes have been improved so far. Regarding the increase in coercive force, among the various approaches such as refinement of crystal grains, use of a composition alloy with an increased Nd amount, or addition of an effective element, the most common method at present is A composition alloy in which a part of Nd is substituted with Dy or Tb is used. By substituting Nd of the Nd 2 Fe 14 B compound with these elements, the anisotropic magnetic field of the compound increases and the coercive force also increases. On the other hand, substitution with Dy or Tb reduces the saturation magnetic polarization of the compound. Therefore, as long as the coercive force is increased by the above method, a decrease in residual magnetic flux density is inevitable.

Nd−Fe−B系焼結磁石は、結晶粒界面で逆磁区の核が生成する外部磁界の大きさが保磁力となる。逆磁区の核生成には結晶粒界面の構造が強く影響しており、界面近傍における結晶構造の乱れが磁気的な構造の乱れを招き、逆磁区の生成を助長する。一般的には、結晶界面から5nm程度の深さまでの磁気的構造が保磁力の増大に寄与していると考えられている(非特許文献1:K. −D. Durst and H. Kronmuller, “THE COERCIVE FIELD OF SINTERED AND MELT−SPUN NdFeB MAGNETS”, Journal of Magnetism and Magnetic Materials 68 (1987) 63−75)。本発明者らは、結晶粒の界面近傍のみにわずかなDyやTbを濃化させ、界面近傍のみの異方性磁界を増大させることで、残留磁束密度の低下を抑制しつつ保磁力を増大できることを見出している(特許文献1:特公平5−31807号公報)。更に、Nd2Fe14B化合物組成合金と、DyあるいはTbに富む合金を別に作製した後に混合して焼結する製造方法を確立している(特許文献2:特開平5−21218号公報)。この方法では、DyあるいはTbに富む合金は焼結時に液相となり、Nd2Fe14B化合物を取り囲むように分布する。その結果、化合物の粒界近傍でのみNdとDyあるいはTbが置換され、残留磁束密度の低下を抑制しつつ効果的に保磁力を増大できる。 In the Nd—Fe—B based sintered magnet, the coercive force is the magnitude of the external magnetic field generated by the nucleus of the reverse magnetic domain at the crystal grain interface. The structure of the crystal grain interface strongly influences the nucleation of the reverse magnetic domain, and the disorder of the crystal structure in the vicinity of the interface causes the disorder of the magnetic structure and promotes the generation of the reverse magnetic domain. In general, it is considered that a magnetic structure from a crystal interface to a depth of about 5 nm contributes to an increase in coercive force (Non-Patent Document 1: K.-D. Durst and H. Kronmuller, “ THE COERCIVE FIELD OF SINTERED AND MELT-SPUN NdFeB MAGNETS ", Journal of Magnetics and Magnetic Materials 68 (1987) 63-75). The present inventors concentrated a small amount of Dy and Tb only in the vicinity of the crystal grain interface, and increased the anisotropy magnetic field only in the vicinity of the interface, thereby increasing the coercive force while suppressing the decrease in the residual magnetic flux density. (Patent Document 1: Japanese Patent Publication No. 5-31807). Furthermore, a manufacturing method has been established in which an Nd 2 Fe 14 B compound composition alloy and an alloy rich in Dy or Tb are separately manufactured and then mixed and sintered (Patent Document 2: JP-A-5-21218). In this method, an alloy rich in Dy or Tb becomes a liquid phase during sintering and is distributed so as to surround the Nd 2 Fe 14 B compound. As a result, Nd and Dy or Tb are replaced only near the grain boundary of the compound, and the coercive force can be effectively increased while suppressing a decrease in the residual magnetic flux density.

しかし、上記方法では2種の合金微粉末を混合した状態で1,000〜1,100℃という高温で焼結するために、DyあるいはTbがNd2Fe14B結晶粒の界面のみでなく内部まで拡散しやすい。実際に得られる磁石の組織観察からは結晶粒界表層部で界面から深さ1〜2μm程度まで拡散しており、拡散した領域を体積分率に換算すると60%以上となる。また、結晶粒内への拡散距離が長くなるほど界面近傍におけるDyあるいはTbの濃度は低下してしまう。結晶粒内への過度な拡散を極力抑えるには焼結温度を低下させることが有効であるが、これは同時に焼結による緻密化を阻害するため現実的な手法となり得ない。ホットプレスなどで応力を印加しながら低温で焼結する方法では、緻密化は可能であるが、生産性が極端に低くなるという問題がある。 However, in the above method, since two kinds of alloy fine powders are mixed and sintered at a high temperature of 1,000 to 1,100 ° C., Dy or Tb is not only the interface of Nd 2 Fe 14 B crystal grains but also the inside. Easy to diffuse. From the observation of the structure of the actually obtained magnet, it is diffused from the interface to a depth of about 1 to 2 μm at the grain boundary surface layer portion, and when the diffused region is converted into a volume fraction, it becomes 60% or more. Further, the longer the diffusion distance into the crystal grain, the lower the concentration of Dy or Tb in the vicinity of the interface. Although it is effective to lower the sintering temperature in order to suppress excessive diffusion into the crystal grains as much as possible, this cannot be a practical method because it simultaneously inhibits densification by sintering. In the method of sintering at a low temperature while applying stress by hot pressing or the like, densification is possible, but there is a problem that productivity becomes extremely low.

一方、焼結磁石を小型に加工した後、磁石表面にDyやTbをスパッタによって被着させ、磁石を焼結温度より低い温度で熱処理することにより粒界部にのみDyやTbを拡散させて保磁力を増大させる方法が報告されている(非特許文献2:K. T. Park, K. Hiraga and M. Sagawa, “Effect of Metal−Coating and Consecutive Heat Treatment on Coercivity of Thin Nd−Fe−B Sintered Magnets”, Proceedings of the Sixteen International Workshop on Rare−Earth Magnets and Their Applications, Sendai, p.257 (2000)、非特許文献3:町田憲一、川嵜尚志、鈴木俊治、伊東正浩、堀川高志、“Nd−Fe−B系焼結磁石の粒界改質と磁気特性”、粉体粉末冶金協会講演概要集 平成16年度春季大会、p.202参照)。この方法では、更に効率的にDyやTbを粒界に濃化できるため、残留磁束密度の低下をほとんど伴わずに保磁力を増大させることが可能である。また、磁石の比表面積が大きい、即ち磁石体が小さいほど供給されるDyやTbの量が多くなるので、この方法は小型あるいは薄型の磁石へのみ適用可能である。しかし、スパッタ等による金属膜の被着には生産性が悪いという問題があった。   On the other hand, after processing the sintered magnet to a small size, Dy and Tb are deposited on the magnet surface by sputtering, and the magnet is heat-treated at a temperature lower than the sintering temperature to diffuse Dy and Tb only at the grain boundary part. A method for increasing the coercive force has been reported (Non-Patent Document 2: K. T. Park, K. Hiraga and M. Sagawa, "Effect of Metal-Coating and Conscientious Heat Treatment on Co-Circency of T Sintered Magnets ", Proceedings of the Sixteen International Works on Rare-Earth Magnets and Ther Application , Sendai, p. 257 (2000), Non-Patent Document 3: Kenichi Machida, Naoshi Kawamata, Toshiharu Suzuki, Masahiro Ito, Takashi Horikawa, “Granular boundary modification and magnetic properties of Nd—Fe—B based sintered magnet”, Summary of Powder and Powder Metallurgy Association, 2004 Spring Meeting, p. 202). In this method, since Dy and Tb can be concentrated more efficiently at the grain boundary, the coercive force can be increased with almost no decrease in the residual magnetic flux density. Moreover, since the amount of Dy and Tb supplied increases as the specific surface area of the magnet increases, that is, the magnet body decreases, this method is applicable only to small or thin magnets. However, there has been a problem that the productivity is poor when depositing a metal film by sputtering or the like.

また、近年10kW以上の大容量の回転機にもNd−Fe−B系焼結磁石が使用されるようになった。Nd−Fe−B系焼結磁石の電気抵抗は100〜200μΩ・cmの導体であり、磁石に生じる渦電流やそれに伴う発熱が、磁石の大きさの2乗で大きくなるために大容量回転機においては問題となっている。渦電流低減のために有効な手段は、鉄心に使われる電磁鋼板のように薄板化して絶縁積層することであるが、細分化したセグメント磁石を接着固化して所要の大きさの磁石とする方法は、磁石の製造工程が増加し、製造コストの増加や磁石重量歩留まりの低下を招く。また、セグメント磁石を接着固化せず小磁石のまま用いることも考えられるが、磁石間の反発力に抗して小磁石をロータに組込み固着することは難しい。   In recent years, Nd—Fe—B based sintered magnets have also been used in large capacity rotating machines of 10 kW or more. The Nd-Fe-B sintered magnet has a resistance of 100 to 200 μΩ · cm, and the eddy current generated in the magnet and the accompanying heat generation increase with the square of the size of the magnet. Is a problem. An effective means for reducing eddy currents is to thin and insulate and laminate like a magnetic steel sheet used for iron cores, but a method of bonding and solidifying segmented segment magnets into a magnet of the required size. Increases the manufacturing process of the magnet, leading to an increase in manufacturing cost and a decrease in magnet weight yield. Although it is conceivable to use the segment magnet as it is without bonding and solidifying the segment magnet, it is difficult to incorporate and fix the small magnet into the rotor against the repulsive force between the magnets.

特公平5−31807号公報Japanese Patent Publication No. 5-31807 特開平5−21218号公報JP-A-5-21218 K. −D. Durst and H. Kronmuller, “THE COERCIVE FIELD OF SINTERED AND MELT−SPUN NdFeB MAGNETS”, Journal of Magnetism and Magnetic Materials 68 (1987) 63−75K. -D. Durst and H.M. Kronmuller, “THE COERCIVE FIELD OF SINTERED AND MELT-SPUN NdFeB MAGNETS”, Journal of Magnetics and Magnetic Materials 68 (1987) 63-75. K. T. Park, K. Hiraga and M. Sagawa, “Effect of Metal−Coating and Consecutive Heat Treatment on Coercivity of Thin Nd−Fe−B Sintered Magnets”, Proceedings of the Sixteen International Workshop on Rare−Earth Magnets and Their Applications, Sendai, p.257 (2000)K. T.A. Park, K.M. Hiraga and M.M. Sagawa, "Effect of Metal-Coating and Consecutive Heat Treatment on Coercivity of Thin Nd-Fe-B Sintered Magnets", Proceedings of the Sixteen International Workshop on Rare-Earth Magnets and Their Applications, Sendai, p. 257 (2000) 町田憲一、川嵜尚志、鈴木俊治、伊東正浩、堀川高志、“Nd−Fe−B系焼結磁石の粒界改質と磁気特性”、粉体粉末冶金協会講演概要集 平成16年度春季大会、p.202Kenichi Machida, Naoshi Kawamata, Toshiharu Suzuki, Masahiro Ito, Takashi Horikawa, “Granular boundary modification and magnetic properties of Nd—Fe—B based sintered magnets”, Summary of Powder and Powder Metallurgy Association 2004 Spring Meeting, p . 202

本発明は、上述した従来の問題点に鑑みなされたもので、永久磁石回転機に適した渦電流が小さく保磁力の大きなR−Fe−B系希土類永久磁石(RはY及びScを含む希土類元素から選ばれる1種又は2種以上)及びその製造方法、並びにこの磁石を用いた永久磁石回転機を提供することを目的とするものである。   The present invention has been made in view of the above-described conventional problems, and is an R—Fe—B rare earth permanent magnet having a small eddy current and a large coercive force suitable for a permanent magnet rotating machine (R is a rare earth containing Y and Sc). It is an object of the present invention to provide a permanent magnet rotating machine using one or two or more selected from elements), a method for producing the same, and this magnet.

本発明者らは、Nd−Fe−B系焼結磁石に代表されるR1−Fe−B系焼結磁石に対し、R2の酸化物、R3のフッ化物、R4の酸フッ化物から選ばれる1種又は2種以上を含有する粉末(なお、R1〜R4はY及びScを含む希土類元素から選ばれる1種又は2種以上)を磁石表面に存在させた状態で加熱することで、粉末に含まれていたR2、R3又はR4が磁石体に吸収され、残留磁束密度の減少を著しく抑制しながら保磁力を増大し得ることを見出した。この場合、特にR3のフッ化物又はR4の酸フッ化物を用いた場合、R3又はR4がフッ素と共に磁石体に高効率に吸収され、残留磁束密度が高く、保磁力の大きな焼結磁石が得られること、更に、磁石体に複数のスリットを入れることで、実質的に磁石表面積を大きくしてR2、R3又はR4の吸収率を高めることができ、しかもスリットは、磁石体を永久磁石回転機に組み込んだ際の渦電流低減にも有効であることを知見したものである。 The inventors of the present invention have compared R 1 -Fe-B sintered magnets represented by Nd—Fe—B based sintered magnets with respect to R 2 oxides, R 3 fluorides, and R 4 oxyfluorides. The powder containing one or more selected from the above (wherein R 1 to R 4 are one or more selected from rare earth elements including Y and Sc) is heated in a state of being present on the magnet surface. Thus, it has been found that R 2 , R 3 or R 4 contained in the powder is absorbed by the magnet body, and the coercive force can be increased while significantly suppressing the decrease in the residual magnetic flux density. In this case, in particular, when R 3 fluoride or R 4 oxyfluoride is used, R 3 or R 4 is absorbed into the magnet body together with fluorine with high efficiency, the residual magnetic flux density is high, and the coercive force is large. The magnet can be obtained, and further, by inserting a plurality of slits in the magnet body, the surface area of the magnet can be substantially increased to increase the absorption rate of R 2 , R 3 or R 4. It has been found that it is also effective in reducing eddy currents when the body is incorporated into a permanent magnet rotating machine.

即ち、本発明は、以下の希土類永久磁石、その製造方法、並びに永久磁石回転機を提供する。
請求項1:
1−Fe−B系組成(R1はY及びScを含む希土類元素から選ばれる1種又は2種以上)からなる焼結磁石体に対し、当該磁石体の少なくとも1つの表面に複数のスリットを設け、R2の酸化物、R3のフッ化物、R4の酸フッ化物から選ばれる1種又は2種以上(R2、R3、R4はY及びScを含む希土類元素から選ばれる1種又は2種以上)を含有する粉末を当該磁石体の表面に存在させた状態で、当該磁石体及び粉末を当該磁石の焼結温度以下の温度で真空又は不活性ガス中において熱処理を施すことを特徴とする希土類永久磁石の製造方法。
請求項2:
1−Fe−B系組成(R1はY及びScを含む希土類元素から選ばれる1種又は2種以上)からなる焼結磁石体に対し、R2の酸化物、R3のフッ化物、R4の酸フッ化物から選ばれる1種又は2種以上(R2、R3、R4はY及びScを含む希土類元素から選ばれる1種又は2種以上)を含有する粉末を当該磁石体の表面に存在させた状態で、当該磁石体及び粉末を当該磁石体の焼結温度以下の温度で真空又は不活性ガス中において熱処理を施し、次いで当該磁石体の少なくとも1つの表面に複数のスリットを設けることを特徴とする希土類永久磁石の製造方法。
請求項3:
焼結磁石体のスリット形成面に形成された各スリット間の間隔がそれぞれ10mm以下であり、各スリットの最深部とスリット形成面に対して反対側の面との間の距離がそれぞれ5mm以下である請求項1又は2記載の希土類永久磁石の製造方法。
請求項4:
熱処理される焼結磁石体が、最大部の寸法が100mm以下で、かつ磁気異方性化した方向の寸法が10mm以下の形状を有する請求項1,2又は3記載の希土類永久磁石の製造方法。
請求項5:
2の酸化物、R3のフッ化物、R4の酸フッ化物から選ばれる1種又は2種以上を含有する粉末の磁石体表面に対する存在量が、この磁石体の表面から距離1mm以内の当該磁石体を取り囲む空間内における平均的な占有率で10容積%以上である請求項1乃至4のいずれか1項記載の希土類永久磁石の製造方法。
請求項6:
2の酸化物、R3のフッ化物、R4の酸フッ化物から選ばれる1種又は2種以上を含有する粉末の平均粒子径が100μm以下である請求項1乃至5のいずれか1項記載の希土類永久磁石の製造方法。
請求項7:
2の酸化物、R3のフッ化物、R4の酸フッ化物から選ばれる1種又は2種以上(R2、R3、R4はY及びScを含む希土類元素から選ばれる1種又は2種以上)のR2、R3、R4に10原子%以上のDy及び/又はTbが含まれることを特徴とする請求項1乃至6のいずれか1項記載の希土類永久磁石の製造方法。
請求項8:
3のフッ化物及び/又はR4の酸フッ化物を含有する粉末を用い、R3及び/又はR4と共にフッ素を焼結磁石体に吸収させた請求項1乃至7のいずれか1項記載の希土類永久磁石の製造方法。
請求項9:
前記R3のフッ化物及び/又はR4の酸フッ化物を含有する粉末において、R3及び/又はR4に10原子%以上のDy及び/又はTbが含まれ、かつR3及び/又はR4におけるNdとPrの合計濃度が前記R1におけるNdとPrの合計濃度より低いことを特徴とする請求項8記載の希土類永久磁石の製造方法。
請求項10:
前記R3のフッ化物及び/又はR4の酸フッ化物を含有する粉末において、R3のフッ化物とR4の酸フッ化物が合計で10質量%以上含まれ、残部にR5の炭化物、窒化物、酸化物、水酸化物、水素化物から選ばれる1種又は2種以上(R5はY及びScを含む希土類元素から選ばれる1種又は2種以上)を含むことを特徴とする請求項8又は9記載の希土類永久磁石の製造方法。
請求項11:
上記熱処理後、更に低温で時効処理を施すことを特徴とする請求項1乃至10のいずれか1項記載の希土類永久磁石の製造方法。
請求項12:
2の酸化物、R3のフッ化物、R4の酸フッ化物から選ばれる1種又は2種以上(R2、R3、R4はY及びScを含む希土類元素から選ばれる1種又は2種以上)からなる平均粒子径が100μm以下の粉末を水系又は有機系の溶媒に分散させたスラリーとして前記磁石体表面に存在させることを特徴とする請求項1乃至11のいずれか1項記載の希土類永久磁石の製造方法。
請求項13:
上記焼結磁石体を、アルカリ、酸又は有機溶剤のいずれか1種以上により洗浄した後、上記粉末を磁石体表面に存在させて上記熱処理を行うことを特徴とする請求項1乃至12のいずれか1項記載の希土類永久磁石の製造方法。
請求項14:
上記焼結磁石体の表面層をショットブラストで除去した後、上記粉末を磁石体表面に存在させて上記熱処理を行うことを特徴とする請求項1乃至12のいずれか1項記載の希土類永久磁石の製造方法。
請求項15:
熱処理後の最終処理として、アルカリ、酸又は有機溶剤のいずれか1種以上による洗浄処理、研削処理、又はメッキもしくは塗装処理を行うことを特徴とする請求項1乃至14のいずれか1項記載の希土類永久磁石の製造方法。
請求項16:
請求項1乃至15のいずれか1項記載の製造方法により得られた希土類永久磁石。
請求項17:
請求項1乃至15のいずれか1項記載の製造方法によって得られた希土類永久磁石を組み込んだ永久磁石回転機において、当該磁石体のスリットが磁気異方性化した方向に対し直角な面に設けられたことを特徴とする永久磁石回転機。
請求項18:
希土類永久磁石の表面に設けたスリットに非導電性物質を充填してなる請求項17記載の永久磁石回転機。
That is, the present invention provides the following rare earth permanent magnet, method for producing the same, and permanent magnet rotating machine.
Claim 1:
For a sintered magnet body having an R 1 -Fe-B composition (R 1 is one or more selected from rare earth elements including Y and Sc), a plurality of slits are formed on at least one surface of the magnet body One or more selected from oxides of R 2 , fluorides of R 3 , and oxyfluorides of R 4 (R 2 , R 3 , R 4 are selected from rare earth elements including Y and Sc) The magnet body and the powder are subjected to heat treatment in a vacuum or an inert gas at a temperature lower than the sintering temperature of the magnet in a state where the powder containing one or more kinds is present on the surface of the magnet body. A method for producing a rare earth permanent magnet.
Claim 2:
For a sintered magnet body having an R 1 -Fe-B composition (R 1 is one or more selected from rare earth elements including Y and Sc), an oxide of R 2 , a fluoride of R 3 , A magnet containing a powder containing one or more selected from oxyfluorides of R 4 (R 2 , R 3 , R 4 are one or more selected from rare earth elements including Y and Sc) The magnet body and the powder are heat-treated in a vacuum or an inert gas at a temperature lower than the sintering temperature of the magnet body, and then a plurality of slits are formed on at least one surface of the magnet body. A method for producing a rare earth permanent magnet.
Claim 3:
The interval between the slits formed on the slit forming surface of the sintered magnet body is 10 mm or less, and the distance between the deepest part of each slit and the surface opposite to the slit forming surface is 5 mm or less. The method for producing a rare earth permanent magnet according to claim 1 or 2.
Claim 4:
The method for producing a rare earth permanent magnet according to claim 1, 2 or 3, wherein the sintered magnet body to be heat-treated has a shape in which the dimension of the maximum part is 100 mm or less and the dimension in the direction of magnetic anisotropy is 10 mm or less. .
Claim 5:
The abundance of the powder containing one or more selected from R 2 oxide, R 3 fluoride, and R 4 oxyfluoride with respect to the surface of the magnet body is within a distance of 1 mm from the surface of the magnet body. The method for producing a rare earth permanent magnet according to any one of claims 1 to 4, wherein an average occupation ratio in a space surrounding the magnet body is 10% by volume or more.
Claim 6:
Oxide of R 2, fluoride of R 3, any one of claims 1 to 5 mean particle size of the powder containing one or more kinds selected from an acid fluoride of R 4 is 100μm or less The manufacturing method of the rare earth permanent magnet of description.
Claim 7:
One or more selected from R 2 oxide, R 3 fluoride, R 4 oxyfluoride (R 2 , R 3 , R 4 are one selected from rare earth elements including Y and Sc, or The method for producing a rare earth permanent magnet according to any one of claims 1 to 6, wherein R 2 , R 3 and R 4 of 2 or more types include 10 atomic% or more of Dy and / or Tb. .
Claim 8:
The powder containing R 3 fluoride and / or R 4 oxyfluoride, and fluorine is absorbed into the sintered magnet body together with R 3 and / or R 4. Manufacturing method of rare earth permanent magnets.
Claim 9:
In powders containing fluoride and / or oxyfluoride of R 4 of the R 3, R 3 and / or R 4 to 10 atomic% or more Dy and / or Tb is included, and R 3 and / or R 9. The method for producing a rare earth permanent magnet according to claim 8, wherein the total concentration of Nd and Pr in 4 is lower than the total concentration of Nd and Pr in R 1 .
Claim 10:
Wherein in the powder comprising a fluoride and / or oxyfluoride of R 4 in R 3, oxyfluoride of fluoride and R 4 in R 3 are contained more than 10 wt% in total, carbide R 5 to the remainder, One or more selected from nitrides, oxides, hydroxides, and hydrides (R 5 is one or more selected from rare earth elements including Y and Sc). Item 10. A method for producing a rare earth permanent magnet according to Item 8 or 9.
Claim 11:
The method for producing a rare earth permanent magnet according to any one of claims 1 to 10, wherein after the heat treatment, an aging treatment is further performed at a low temperature.
Claim 12:
One or more selected from R 2 oxide, R 3 fluoride, R 4 oxyfluoride (R 2 , R 3 , R 4 are one selected from rare earth elements including Y and Sc, or 12. The powder according to claim 1, wherein a powder having an average particle size of 100 μm or less is dispersed on a surface of the magnet body as a slurry dispersed in an aqueous or organic solvent. Manufacturing method of rare earth permanent magnets.
Claim 13:
13. The sintered magnet body is washed with one or more of alkali, acid, or organic solvent, and then the heat treatment is performed with the powder being present on the surface of the magnet body. A method for producing a rare earth permanent magnet according to claim 1.
Claim 14:
13. The rare earth permanent magnet according to claim 1, wherein after the surface layer of the sintered magnet body is removed by shot blasting, the heat treatment is performed with the powder being present on the surface of the magnet body. Manufacturing method.
Claim 15:
The final treatment after the heat treatment is performed by a cleaning treatment, a grinding treatment, or a plating or coating treatment with at least one of an alkali, an acid, and an organic solvent. A method for producing a rare earth permanent magnet.
Claim 16:
A rare earth permanent magnet obtained by the production method according to any one of claims 1 to 15.
Claim 17:
The permanent magnet rotating machine incorporating the rare earth permanent magnet obtained by the manufacturing method according to any one of claims 1 to 15, wherein the slit of the magnet body is provided on a plane perpendicular to the direction of magnetic anisotropy. A permanent magnet rotating machine characterized by that.
Claim 18:
The permanent magnet rotating machine according to claim 17, wherein a slit provided on the surface of the rare earth permanent magnet is filled with a nonconductive material.

本発明によれば、永久磁石回転機に適した渦電流が小さく高い残留磁束密度と高い保磁力を有するR−Fe−B系焼結磁石及びこの磁石を用いた永久磁石回転機を提供することができる。   According to the present invention, an R—Fe—B sintered magnet having a small eddy current and a high residual magnetic flux density and a high coercive force suitable for a permanent magnet rotating machine and a permanent magnet rotating machine using this magnet are provided. Can do.

本発明は、永久磁石回転機に適した渦電流が小さく高い残留磁束密度と高い保磁力を有するR−Fe−B系焼結磁石及びこの磁石を用いた永久磁石回転機に関するものである。本発明の希土類永久磁石は、R1−Fe−B系組成からなる焼結磁石体表面にスリットを入れ、後述する希土類元素の酸化物、フッ化物又は酸フッ化物を供給して熱処理を行うもの、及び希土類永久磁石はR1−Fe−B系組成からなる焼結磁石体表面に、後述する希土類元素の酸化物、フッ化物又は酸フッ化物を供給して熱処理したものにスリットを入れるものがある。 The present invention relates to an R—Fe—B sintered magnet having a small eddy current and high residual magnetic flux density and high coercive force suitable for a permanent magnet rotating machine, and a permanent magnet rotating machine using this magnet. The rare earth permanent magnet of the present invention has a slit formed on the surface of a sintered magnet body composed of an R 1 —Fe—B composition, and supplies a rare earth element oxide, fluoride or oxyfluoride described later to perform heat treatment. , And rare earth permanent magnets that have slits formed on the surface of a sintered magnet body having an R 1 —Fe—B composition and supplied with a rare earth element oxide, fluoride, or oxyfluoride, which will be described later, and heat-treated. is there.

ここで、R1−Fe−B系焼結磁石体は、常法に従い、母合金を粗粉砕、微粉砕、成形、焼結させることにより得ることができる。 Here, the R 1 —Fe—B based sintered magnet body can be obtained by roughly pulverizing, finely pulverizing, forming and sintering the mother alloy according to a conventional method.

なお、本発明において、R及びR1はいずれもY及びScを含む希土類元素から選ばれるものを意味するが、Rは主に得られた磁石体に関して使用し、R1は主に出発原料に関して用いる。 In the present invention, R and R 1 are both selected from rare earth elements including Y and Sc. R is mainly used for the obtained magnet body, and R 1 is mainly used for the starting material. Use.

母合金は、R1、Fe、Bを含有する。R1はY及びScを含む希土類元素から選ばれる1種又は2種以上で、具体的にはY、Sc、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Yb及びLuが挙げられ、好ましくはNd、Pr、Dyを主体とする。これらY及びScを含む希土類元素は合金全体の10〜15原子%、特に12〜15原子%であることが好ましく、更に好ましくはR1中にNdとPrあるいはそのいずれか1種を10原子%以上、特に50原子%以上含有することが好適である。Bは3〜15原子%、特に4〜8原子%含有することが好ましい。その他、Al、Cu、Zn、In、Si、P、S、Ti、V、Cr、Mn、Ni、Ga、Ge、Zr、Nb、Mo、Pd、Ag、Cd、Sn、Sb、Hf、Ta、Wの中から選ばれる1種又は2種以上を0〜11原子%、特に0.1〜5原子%含有してもよい。残部はFe及びC、N、O等の不可避的な不純物であるが、Feは50原子%以上、特に65原子%以上含有することが好ましい。また、Feの一部、例えばFeの0〜40原子%、特に0〜15原子%をCoで置換しても差支えない。 The mother alloy contains R 1 , Fe, and B. R 1 is one or more selected from rare earth elements including Y and Sc, specifically, Y, Sc, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er , Yb, and Lu, preferably Nd, Pr, and Dy. These rare earth elements including Y and Sc are preferably 10 to 15 atomic%, particularly 12 to 15 atomic% of the whole alloy, more preferably 10% by atom of Nd and Pr or any one of them in R 1. As mentioned above, it is suitable to contain especially 50 atomic% or more. B is preferably contained in an amount of 3 to 15 atomic%, particularly 4 to 8 atomic%. In addition, Al, Cu, Zn, In, Si, P, S, Ti, V, Cr, Mn, Ni, Ga, Ge, Zr, Nb, Mo, Pd, Ag, Cd, Sn, Sb, Hf, Ta, One or two or more kinds selected from W may be contained in an amount of 0 to 11 atomic%, particularly 0.1 to 5 atomic%. The balance is inevitable impurities such as Fe and C, N, and O, but Fe is preferably contained in an amount of 50 atomic% or more, particularly 65 atomic% or more. Further, a part of Fe, for example, 0 to 40 atomic%, particularly 0 to 15 atomic% of Fe may be substituted with Co.

母合金は原料金属あるいは合金を真空あるいは不活性ガス、好ましくはAr雰囲気中で溶解したのち、平型やブックモールドに鋳込む、あるいはストリップキャストにより鋳造することで得られる。また、本系合金の主相であるR2Fe14B化合物組成に近い合金と焼結温度で液相助剤となるRリッチな合金とを別々に作製し、粗粉砕後に秤量混合する、いわゆる2合金法も本発明には適用可能である。但し、主相組成に近い合金に対して、鋳造時の冷却速度や合金組成に依存してα−Fe相が残存しやすく、R2Fe14B化合物相の量を増やす目的で必要に応じて均質化処理を施す。その条件は真空あるいはAr雰囲気中で700〜1,200℃で1時間以上熱処理する。この場合、主相組成に近い合金はストリップキャスト法にて得ることもできる。液相助剤となるRリッチな合金については上記鋳造法のほかに、いわゆる液体急冷法やストリップキャスト法も適用できる。 The mother alloy can be obtained by melting a raw metal or alloy in a vacuum or an inert gas, preferably in an Ar atmosphere, and then casting it in a flat mold or a book mold, or by strip casting. Also, an alloy close to the R 2 Fe 14 B compound composition that is the main phase of this alloy and an R-rich alloy that becomes a liquid phase aid at the sintering temperature are separately prepared, and are weighed and mixed after coarse pulverization. A two alloy method is also applicable to the present invention. However, for an alloy close to the main phase composition, the α-Fe phase tends to remain depending on the cooling rate at the time of casting and the alloy composition, and as necessary for the purpose of increasing the amount of R 2 Fe 14 B compound phase. Apply homogenization. The conditions are heat treatment at 700 to 1,200 ° C. for 1 hour or more in vacuum or Ar atmosphere. In this case, an alloy close to the main phase composition can also be obtained by strip casting. In addition to the above casting method, a so-called liquid quenching method or strip casting method can be applied to the R-rich alloy serving as the liquid phase aid.

更に、以下に述べる粉砕工程において、R1の炭化物、窒化物、酸化物、水酸化物のうち少なくとも1種あるいはこれらの混合物又は複合物を0.005〜5質量%の範囲で合金粉末と混合することも可能である。 Further, in the pulverization step described below, at least one of R 1 carbide, nitride, oxide and hydroxide, or a mixture or composite thereof is mixed with the alloy powder in the range of 0.005 to 5% by mass. It is also possible to do.

上記合金は、通常0.05〜3mm、特に0.05〜1.5mmに粗粉砕される。粗粉砕工程にはブラウンミルあるいは水素粉砕が用いられ、ストリップキャストにより作製された合金の場合は水素粉砕が好ましい。粗粉は、例えば高圧窒素を用いたジェットミルにより通常0.2〜30μm、特に0.5〜20μmに微粉砕される。微粉末は磁界中圧縮成形機で成形され、焼結炉に投入される。焼結は真空あるいは不活性ガス雰囲気中、通常900〜1,250℃、特に1,000〜1,100℃で行われる。   The alloy is generally coarsely pulverized to 0.05 to 3 mm, particularly 0.05 to 1.5 mm. Brown mill or hydrogen pulverization is used for the coarse pulverization process, and hydrogen pulverization is preferable in the case of an alloy produced by strip casting. The coarse powder is usually finely pulverized to 0.2 to 30 μm, particularly 0.5 to 20 μm, for example, by a jet mill using high-pressure nitrogen. The fine powder is formed by a compression molding machine in a magnetic field and put into a sintering furnace. Sintering is usually performed at 900 to 1,250 ° C, particularly 1,000 to 1,100 ° C in a vacuum or an inert gas atmosphere.

ここで得られた焼結磁石は、正方晶R2Fe14B化合物を主相として60〜99体積%、特に好ましくは80〜98体積%含有し、残部は0.5〜20体積%のRに富む相、0〜10体積%のBに富む相及び不可避的不純物により生成した、あるいは添加による炭化物、窒化物、酸化物、水酸化物のうち少なくとも1種あるいはこれらの混合物又は複合物からなる。 The sintered magnet obtained here contains 60 to 99% by volume, particularly preferably 80 to 98% by volume of a tetragonal R 2 Fe 14 B compound as a main phase, and the balance is 0.5 to 20% by volume of R. A phase rich in 0, 10% by volume of B, and inevitable impurities, or at least one of carbides, nitrides, oxides and hydroxides, or a mixture or composite thereof. .

本発明において、磁石表面に存在させたR2の酸化物、R3のフッ化物、R4の酸フッ化物から選ばれる1種又は2種以上を含有する粉末から磁石体へのR2、R3又はR4の吸収を高めるために、得られた焼結ブロックを所定形状に研削する際に、表面に複数のスリットを入れて比表面積を大きくする。 In the present invention, R 2 , R from the powder containing one or more selected from the R 2 oxide, R 3 fluoride, and R 4 oxyfluoride present on the magnet surface to the magnet body. In order to increase the absorption of 3 or R 4 , when the obtained sintered block is ground into a predetermined shape, a plurality of slits are put on the surface to increase the specific surface area.

この場合、スリットの形成態様は特に限定されるものではなく、焼結磁石体の形成等に応じて種々選定することができる。例えば、焼結磁石体が直方体形状の場合は、図1(A)〜(C)に示すように、図において焼結磁石体1のスリット形成面1aの幅方向両側縁部に対しスリット2の長さ方向両端部を離間させて、又は離間させることなく側縁部から切り込み形成した態様を採用し得るが、勿論これに制限されるものではない。
なお、焼結磁石体のスリット形成面に図1(A)〜(D)の如くスリットを形成した場合(但し、図1(A)〜(C)はそれぞれ異なる態様でスリットが形成されたスリット形成面を示す平面図であり、図1(D)は縦断面図である)、スリット2最深部とスリット形成面1aに対し、反対側の面1bとの間の距離D1及びスリット2の長さ方向端部とこれに対向する面1c又は1dとの間の距離D2はいずれも5mm以下、より好ましくは3mm以下、特に好ましくは1mm以下であることがよく、また図においてスリット2と平行な面1e,1fとこれに隣接するスリット2aとの間隔D3及び互いに隣接するスリット2間の間隔D4は、いずれも10mm以下、より好ましくは6mm以下、特に好ましくは2mm以下であることがよい。この場合、上記距離D1は通常0.4mm以上であることが好ましく、距離D2は0mmであってもよい。また、間隔D3,D4はそれぞれ0.4mm以上であることが好ましい。
In this case, the formation mode of the slit is not particularly limited, and can be variously selected according to the formation of the sintered magnet body. For example, when the sintered magnet body has a rectangular parallelepiped shape, as shown in FIGS. 1 (A) to 1 (C), the slits 2 are formed on both side edges of the slit forming surface 1a of the sintered magnet body 1 in the figure. Although it is possible to adopt a mode in which both end portions in the length direction are separated or formed by cutting from the side edge portions without being separated from each other, it is of course not limited thereto.
In addition, when slits are formed on the slit forming surface of the sintered magnet body as shown in FIGS. 1A to 1D (however, FIGS. 1A to 1C are slits in which slits are formed in different modes. FIG. 1D is a longitudinal sectional view), and the distance D 1 between the deepest part of the slit 2 and the surface 1b opposite to the slit forming surface 1a and the slit 2 The distance D 2 between the end in the length direction and the surface 1c or 1d facing the end is preferably 5 mm or less, more preferably 3 mm or less, particularly preferably 1 mm or less. The distance D 3 between the parallel surfaces 1 e and 1 f and the slit 2 a adjacent to the parallel surfaces 1 e and 1 f and the distance D 4 between the adjacent slits 2 are 10 mm or less, more preferably 6 mm or less, and particularly preferably 2 mm or less. Is good. In this case, the distance D 1 is usually preferably 0.4 mm or more, and the distance D 2 may be 0 mm. The distances D 3 and D 4 are each preferably 0.4 mm or more.

このようにスリットを形成することにより、図1(E)に示したように、磁石の表面及びスリット部分から磁石内部に至る最大距離Lを5mm以下にすることができ、これによって磁石全体をR2の酸化物、R3のフッ化物又はR4の酸フッ化物で均一にかつ効率よく熱処理、浸透させることができる。なお、Lはより好ましくは3mm以下、特に好ましくは1mm以下である。 By forming the slit in this way, as shown in FIG. 1E, the maximum distance L from the surface of the magnet and the slit portion to the inside of the magnet can be reduced to 5 mm or less. Heat treatment and permeation can be performed uniformly and efficiently with 2 oxides, fluoride of R 3 or oxyfluoride of R 4 . Note that L is more preferably 3 mm or less, and particularly preferably 1 mm or less.

このように、スリットと磁石面との距離関係を設定することにより、スリットによる表面積も増えて、磁石全体において吸収処理が起きやすい領域になったものである。ここで、スリットが形成されない場合、図1(F)の焼結磁石体表面の各外縁部から5mm以上の中央領域3が吸収処理が起こり難い領域であるが、上記のようにスリットを形成することにより、表面からの吸収処理が起こる領域が増大したものである。   Thus, by setting the distance relationship between the slit and the magnet surface, the surface area due to the slit also increases, and the entire magnet is easily subjected to absorption treatment. Here, when the slit is not formed, the central region 3 of 5 mm or more from each outer edge portion of the surface of the sintered magnet body in FIG. 1 (F) is a region where the absorption treatment hardly occurs, but the slit is formed as described above. As a result, the region where the absorption treatment from the surface occurs is increased.

なお、上述したスリットは、焼結前の成形体の段階で形成することができる。   In addition, the slit mentioned above can be formed in the stage of the molded object before sintering.

ここで、スリットのない状態での焼結ブロックの最大部の寸法が100mm以下、好ましくは50mm以下で、かつ磁気異方性化した方向の寸法が10mm以下、好ましくは5mm以下である場合には、本発明の磁石表面に存在させたR2の酸化物、R3のフッ化物、R4の酸フッ化物から選ばれる1種又は2種以上を含有する粉末から磁石体にR2、R3又はR4を吸収させる熱処理を行った後で、磁石表面に複数のスリットを入れても、前述のスリットを入れた後に熱処理を行う方法と同様の効果を得ることができる。即ち、渦電流が小さく、高い残留磁束密度と高い保磁力を有することができる。なお上記最大部の寸法及び磁気異方性化した方向の寸法の下限は特に制限されず、適宜選定されるが、上記形状の最大部の寸法は1mm以上であり、磁気異方性化した方向の寸法は0.5mm以上とすることができるが、上記距離D1,D2、間隔D3,D4の下限値を与えるように、また上記距離Lを有するような大きさに選定し得る。 Here, when the dimension of the maximum part of the sintered block without a slit is 100 mm or less, preferably 50 mm or less, and the dimension in the direction of magnetic anisotropy is 10 mm or less, preferably 5 mm or less. oxide of R 2 to the magnet surface was present in the present invention, R 2 fluoride of R 3, a powder containing one or more kinds selected from an acid fluoride of R 4 to the magnet body, R 3 Alternatively, even if a plurality of slits are formed on the magnet surface after heat treatment for absorbing R 4 , the same effect as the method of performing heat treatment after inserting the slits can be obtained. That is, an eddy current is small, and it can have a high residual magnetic flux density and a high coercive force. The lower limit of the dimension of the maximum part and the direction of magnetic anisotropy is not particularly limited and is appropriately selected, but the dimension of the maximum part of the shape is 1 mm or more and the direction of magnetic anisotropy. Can be selected to a size that gives the lower limit of the distances D 1 and D 2 and the distances D 3 and D 4 and that has the distance L. .

本発明では、従来の渦電流を小さくするための方法である細分化した磁石を接着固化して所要の大きさの磁石にする(分割磁石)のではなく、セグメント磁石にスリットを入れるだけであり、分割磁石の接着、組立工程をなくして製造コストを抑えることができる。スリットの幅は、磁束をロスさせないために、1mm以下の狭い幅にするのが好ましい。焼結前の成形体や焼結体にスリットを入れる方法として内周又は外周切断機やワイヤーソーやウォータジェットなどで加工して溝を形成するため、切断歯の厚みを考慮すると、望ましくは0.8mm以下であり、一方、スリット幅の下限は幾らでもよいが、加工機の制約から0.05mm以上が実際的である。   In the present invention, the conventional method for reducing eddy currents is not to bond and solidify a segmented magnet into a magnet of the required size (split magnet), but only to slit the segment magnet. The manufacturing cost can be reduced by eliminating the bonding and assembling steps of the split magnets. The width of the slit is preferably a narrow width of 1 mm or less so as not to lose the magnetic flux. As a method of forming a slit in a green body before sintering or a sintered body, a groove is formed by processing with an inner or outer peripheral cutting machine, a wire saw, a water jet, or the like. On the other hand, the lower limit of the slit width may be any number, but 0.05 mm or more is practical due to the limitations of the processing machine.

研削加工された磁石体表面にはR2の酸化物、R3のフッ化物、R4の酸フッ化物から選ばれる1種又は2種以上を含有する粉末を存在させる。なお、R2、R3、R4はY及びScを含む希土類元素から選ばれる1種又は2種以上で、それぞれR2、R3、R4中10原子%以上、より好ましくは20原子%以上、特に40原子%以上のDy又はTbを含むことが好ましい。この場合、前記R3のフッ化物及び/又はR4の酸フッ化物を含有する粉末において、R3及び/又はR4に10原子%以上のDy及び/又はTbが含まれ、かつR3及び/又はR4におけるNdとPrの合計濃度が前記R1におけるNdとPrの合計濃度より低いことが本発明の目的から好ましい。 A powder containing one or more selected from R 2 oxide, R 3 fluoride, and R 4 oxyfluoride is present on the surface of the ground magnet body. R 2 , R 3 , and R 4 are one or more selected from rare earth elements including Y and Sc, and each of R 2 , R 3 , and R 4 is 10 atom% or more, more preferably 20 atom%. As described above, it is particularly preferable to contain 40 atomic% or more of Dy or Tb. In this case, the powder containing fluoride and / or oxyfluoride of R 4 of the R 3, R 3 and / or R 4 to 10 atomic% or more Dy and / or Tb is included, and R 3 and It is preferable from the object of the present invention that the total concentration of Nd and Pr in R 4 is lower than the total concentration of Nd and Pr in R 1 .

磁石表面空間における粉末の存在率は高いほど吸収されるR2、R3又はR4量が多くなるので、本発明における効果を達成させるために、上記粉末の存在率は、磁石表面から距離1mm以内の磁石を取り囲む空間内での平均的な値で10容積%以上が好ましく、更に好ましくは40容積%以上である。 The higher the abundance ratio of the powder in the magnet surface space, the more R 2 , R 3, or R 4 is absorbed. Therefore, in order to achieve the effect of the present invention, the abundance ratio of the powder is 1 mm from the magnet surface. The average value in the space surrounding the inner magnet is preferably 10% by volume or more, and more preferably 40% by volume or more.

粉末を存在させる方法(粉末処理方法)としては、例えば、R2の酸化物、R3のフッ化物、R4の酸フッ化物から選ばれる1種又は2種以上を含有する微粉末を水あるいは有機溶剤に分散させ、このスラリーに磁石体を浸した後に熱風や真空により乾燥させる、あるいは自然乾燥させる方法が挙げられる。この他にスプレーによる塗布等も可能である。いずれの具体的手法にせよ、非常に簡便にかつ大量に処理できることが特徴といえる。上記微粉末の粒子径はR2、R3又はR4成分が磁石に吸収される際の反応性に影響を与え、粒子が小さいほど反応にあずかる接触面積が増大する。本発明における効果をより効果的に達成させるためには、存在させる粉末の平均粒子径は100μm以下、好ましくは10μm以下が望ましい。その下限は特に制限されないが1nm以上が好ましい。なお、この平均粒子径は、例えばレーザー回折法などによる粒度分布測定装置等を用いて質量平均値D50(即ち、累積質量が50%となるときの粒子径又はメジアン径)などとして求めることができる。 As a method for making the powder exist (powder processing method), for example, a fine powder containing one or more selected from R 2 oxide, R 3 fluoride, and R 4 oxyfluoride is used as water or Examples include a method of dispersing in an organic solvent and immersing the magnet body in this slurry, followed by drying with hot air or vacuum, or natural drying. In addition, application by spraying is also possible. Whatever the specific method, it can be said that it can be processed very easily and in large quantities. The particle size of the fine powder affects the reactivity when the R 2 , R 3 or R 4 component is absorbed by the magnet, and the smaller the particle, the greater the contact area involved in the reaction. In order to achieve the effect of the present invention more effectively, the average particle size of the powder to be present is 100 μm or less, preferably 10 μm or less. The lower limit is not particularly limited, but is preferably 1 nm or more. The average particle diameter can be obtained as a mass average value D 50 (that is, a particle diameter or a median diameter when the cumulative mass is 50%) using a particle size distribution measuring device using a laser diffraction method, for example. it can.

本発明におけるR2の酸化物、R3のフッ化物、R4の酸フッ化物とは、好ましくはそれぞれR2 23、R33、R4OFであるが、これ以外のR2n、R3n、R4mn(m、nは任意の正数)や、金属元素によりR2、R3、R4の一部を置換したあるいは安定化されたもの等、本発明の効果を達成することができるR2と酸素を含む酸化物、R3とフッ素を含むフッ化物、R4と酸素とフッ素を含む酸フッ化物を指す。 Oxide of R 2 in the present invention, fluoride of R 3, and oxyfluoride of R 4, preferably each R 2 2 O 3, R 3 F 3, R 4 is a OF, other than this R 2 O n , R 3 F n , R 4 O m F n (m, n are arbitrary positive numbers), or a part of R 2 , R 3 , R 4 substituted or stabilized by a metal element, etc. , An oxide containing R 2 and oxygen capable of achieving the effects of the present invention, a fluoride containing R 3 and fluorine, and an oxyfluoride containing R 4 , oxygen and fluorine.

この場合、磁石表面に存在させる粉末は、R2の酸化物、R3のフッ化物、R4の酸フッ化物、あるいはこれらの混合物を含有し、この他にR5(R5はY及びScを含む希土類元素から選ばれる1種又は2種以上)の炭化物、窒化物、水酸化物、水素化物のうち少なくとも1種あるいはこれらの混合物又は複合物を含んでもよく、またR3のフッ化物及び/又はR4の酸フッ化物を用いる場合、R5の酸化物を含んでもよい。更に、粉末の分散性や化学的・物理的吸着を促進するために、ホウ素、窒化ホウ素、シリコン、炭素などの微粉末やステアリン酸などの有機化合物を含むこともできる。本発明の効果を高効率に達成するには、R2の酸化物、R3のフッ化物、R4の酸フッ化物、あるいはこれらの混合物が粉末全体に対して10質量%以上、好ましくは20質量%以上含まれる。特には、主成分として、R2の酸化物、R3のフッ化物、R4の酸フッ化物が、粉末全体に対して50質量%以上、より好ましくは70質量%以上、更に好ましくは90質量%以上含有することが推奨される。 In this case, the powder to be present on the magnet surface contains an oxide of R 2 , a fluoride of R 3, an oxyfluoride of R 4 , or a mixture thereof, in addition to R 5 (R 5 is Y and Sc). 1 type or 2 or more types selected from rare earth elements containing), carbides, nitrides, hydroxides, hydrides, or a mixture or composite thereof, and R 3 fluoride and When the acid fluoride of R 4 is used, the oxide of R 5 may be included. Furthermore, in order to promote the dispersibility of the powder and chemical / physical adsorption, fine powders such as boron, boron nitride, silicon, and carbon, and organic compounds such as stearic acid can also be included. In order to achieve the effect of the present invention with high efficiency, the oxide of R 2 , the fluoride of R 3 , the oxyfluoride of R 4 , or a mixture thereof is 10 mass% or more, preferably 20 More than mass% is contained. In particular, R 2 oxide, R 3 fluoride, and R 4 oxyfluoride as main components are 50% by mass or more, more preferably 70% by mass or more, and still more preferably 90% by mass with respect to the whole powder. % Or more is recommended.

2の酸化物、R3のフッ化物、R4の酸フッ化物、あるいはこれらの混合物からなる粉末を磁石表面に存在させた状態で、磁石と粉末は真空あるいはアルゴン(Ar)、ヘリウム(He)等の不活性ガス雰囲気中で熱処理される(以後、この処理を吸収処理と称する)。吸収処理温度は磁石体の焼結温度以下である。処理温度の限定理由は以下のとおりである。 In a state where a powder composed of an oxide of R 2 , a fluoride of R 3, an oxyfluoride of R 4 , or a mixture thereof is present on the surface of the magnet, the magnet and the powder may be vacuum, argon (Ar), helium (He And the like (hereinafter, this treatment is referred to as absorption treatment). The absorption treatment temperature is lower than the sintering temperature of the magnet body. The reasons for limiting the treatment temperature are as follows.

即ち、当該焼結磁石の焼結温度(TS℃と称する)より高い温度で処理すると、(1)焼結磁石の組織が変質し、高い磁気特性が得られなくなる、(2)熱変形により加工寸法が維持できなくなる、(3)拡散させたRが磁石の結晶粒界面だけでなく内部にまで拡散してしまい残留磁束密度が低下する、等の問題が生じるために、処理温度は焼結温度以下、好ましくは(TS−10)℃以下とする。なお、温度の下限は適宜選定されるが、通常350℃以上である。吸収処理時間は1分〜100時間である。1分未満では吸収処理が完了せず、100時間を超えると、焼結磁石の組織が変質する、不可避的な酸化や成分の蒸発が磁気特性に悪い影響を与えるといった問題が生じやすい。より好ましくは5分〜8時間、特に10分〜6時間である。 That is, if the sintered magnet is processed at a temperature higher than the sintering temperature (referred to as T S ° C), (1) the structure of the sintered magnet is altered and high magnetic properties cannot be obtained. The processing temperature cannot be maintained. (3) The diffused R diffuses not only into the crystal grain interface of the magnet but also into the interior, resulting in a decrease in residual magnetic flux density. Temperature or lower, preferably (T S −10) ° C. or lower. In addition, although the minimum of temperature is selected suitably, it is 350 degreeC or more normally. Absorption treatment time is 1 minute to 100 hours. If it is less than 1 minute, the absorption treatment is not completed, and if it exceeds 100 hours, the structure of the sintered magnet is altered, and problems such as inevitable oxidation and evaporation of components adversely affect the magnetic properties. More preferably, it is 5 minutes to 8 hours, particularly 10 minutes to 6 hours.

以上のような吸収処理により、磁石内の希土類に富む粒界相成分に、磁石表面に存在させた粉末に含まれていたR2、R3又はR4が濃化し、このR2、R3又はR4がR2Fe14B主相粒子の表層部付近で置換される。また、粉末にR3のフッ化物又はR4の酸フッ化物が含まれている場合、この粉末に含まれているフッ素は、その一部がR3又はR4と共に磁石内に吸収されることにより、R3又はR4の粉末からの供給と磁石の結晶粒界における拡散を著しく高める。 By the absorption treatment as described above, R 2 , R 3 or R 4 contained in the powder present on the magnet surface is concentrated in the rare earth-rich grain boundary phase component in the magnet, and this R 2 , R 3 is concentrated. Alternatively, R 4 is substituted in the vicinity of the surface layer portion of the R 2 Fe 14 B main phase particle. In addition, when the powder contains R 3 fluoride or R 4 oxyfluoride, a part of the fluorine contained in the powder is absorbed in the magnet together with R 3 or R 4. Significantly increases the supply from the R 3 or R 4 powder and the diffusion at the grain boundaries of the magnet.

2の酸化物、R3のフッ化物及びR4の酸フッ化物に含まれる希土類元素は、Y及びScを含む希土類元素から選ばれる1種又は2種以上であるが、上記表層部に濃化して結晶磁気異方性を高める効果の特に大きい元素はDy、Tbであるので、粉末に含まれている希土類元素としてはDy及びTbの割合が合計で10原子%以上であることが好適である。更に好ましくは20原子%以上である。また、R2、R3、R4におけるNdとPrの合計濃度が、R1のNdとPrの合計濃度より低いことが好ましい。 The rare earth element contained in the oxide of R 2 , the fluoride of R 3 and the oxyfluoride of R 4 is one or more selected from the rare earth elements including Y and Sc. Since elements that have a particularly large effect of increasing crystal magnetic anisotropy are Dy and Tb, the rare earth elements contained in the powder preferably have a total ratio of Dy and Tb of 10 atomic% or more. is there. More preferably, it is 20 atomic% or more. Further, the total concentration of Nd and Pr in R 2 , R 3 and R 4 is preferably lower than the total concentration of Nd and Pr in R 1 .

この吸収処理の結果、残留磁束密度の低減をほとんど伴わずにR−Fe−B系焼結磁石の保磁力が効率的に増大される。   As a result of this absorption treatment, the coercive force of the R—Fe—B based sintered magnet is efficiently increased with little reduction in residual magnetic flux density.

上記吸収処理は、例えば上記粉末を水や有機溶剤に分散させたスラリーに焼結磁石体を投入するなどして、該焼結磁石体表面に上記粉末を付着させた状態で熱処理させることによって行うことができ、この場合、上記吸収処理において、磁石は粉末に覆われ、磁石同士は離れて存在するので、高温での熱処理であるにもかかわらず、吸収処理後に磁石同士が溶着することがない。更に、粉末も熱処理後に磁石に固着することもないため、熱処理用容器に大量に磁石を投入して処理することが可能であり、本発明による製造方法は生産性にも優れていることがわかる。   The absorption treatment is performed by, for example, putting a sintered magnet body into a slurry in which the powder is dispersed in water or an organic solvent, and performing a heat treatment with the powder adhered to the surface of the sintered magnet body. In this case, in the above absorption treatment, the magnets are covered with powder, and the magnets are separated from each other, so that the magnets are not welded after the absorption treatment despite the heat treatment at a high temperature. . Furthermore, since the powder does not stick to the magnet after the heat treatment, it can be processed by putting a large amount of magnets in the heat treatment container, and it can be seen that the production method according to the present invention is excellent in productivity. .

また、吸収処理後、時効処理を施すことが好ましい。この時効処理としては、吸収処理温度未満、好ましくは200℃以上で吸収処理温度より10℃低い温度以下、更に好ましくは350℃以上で吸収処理温度より10℃低い温度以下であることが望ましい。また、その雰囲気は真空あるいはAr、He等の不活性ガス中であることが好ましい。時効処理の時間は1分〜10時間、好ましくは10分〜5時間、特に30分〜2時間である。   Moreover, it is preferable to perform an aging treatment after the absorption treatment. The aging treatment is desirably less than the absorption treatment temperature, preferably 200 ° C. or more and 10 ° C. or less, more preferably 350 ° C. or more and 10 ° C. or less. The atmosphere is preferably in a vacuum or an inert gas such as Ar or He. The time for aging treatment is 1 minute to 10 hours, preferably 10 minutes to 5 hours, particularly 30 minutes to 2 hours.

なお、上記粉末を焼結磁石体に存在させる前の上述した焼結磁石体の研削加工時において、研削加工機の冷却液に水系のものを用いる、あるいは加工時に研削面が高温に曝される場合、被研削面に酸化膜が生じやすく、この酸化膜が粉末から磁石体へのR2、R3又はR4成分の吸収反応を妨げることがある。このような場合には、アルカリ、酸あるいは有機溶剤のいずれか1種以上を用いて洗浄する、あるいはショットブラストを施して、その酸化膜を除去することで適切な吸収処理ができる。 In addition, at the time of grinding of the above-described sintered magnet body before the powder is present in the sintered magnet body, a water-based one is used as the coolant of the grinding machine, or the grinding surface is exposed to a high temperature during processing. In this case, an oxide film is likely to be formed on the surface to be ground, and this oxide film may hinder the absorption reaction of the R 2 , R 3 or R 4 component from the powder to the magnet body. In such a case, an appropriate absorption treatment can be carried out by removing the oxide film by washing with one or more of alkali, acid or organic solvent, or by performing shot blasting.

アルカリとしては、ピロリン酸カリウム、ピロリン酸ナトリウム、クエン酸カリウム、クエン酸ナトリウム、酢酸カリウム、酢酸ナトリウム、シュウ酸カリウム、シュウ酸ナトリウム等、酸としては、塩酸、硝酸、硫酸、酢酸、クエン酸、酒石酸等、有機溶剤としては、アセトン、メタノール、エタノール、イソプロピルアルコールなどを使用することができる。この場合、上記アルカリや酸は、磁石体を浸食しない適宜濃度の水溶液として使用することができる。   As alkali, potassium pyrophosphate, sodium pyrophosphate, potassium citrate, sodium citrate, potassium acetate, sodium acetate, potassium oxalate, sodium oxalate, etc., acids include hydrochloric acid, nitric acid, sulfuric acid, acetic acid, citric acid, As the organic solvent such as tartaric acid, acetone, methanol, ethanol, isopropyl alcohol and the like can be used. In this case, the alkali or acid can be used as an aqueous solution having an appropriate concentration that does not erode the magnet body.

更には、上記焼結磁石体の表面層を上記粉末を焼結磁石体に存在させる前にショットブラストで除去することもできる。   Furthermore, the surface layer of the sintered magnet body can be removed by shot blasting before the powder is present in the sintered magnet body.

また、上記吸収処理あるいはそれに続く時効処理を施した磁石に対して、アルカリ、酸あるいは有機溶剤のいずれか1種以上により洗浄したり、実用形状に研削することもできる。更には、かかる吸収処理、時効処理、洗浄又は研削後にメッキ又は塗装を施すこともできる。   Further, the magnet subjected to the above-described absorption treatment or subsequent aging treatment can be washed with one or more of alkali, acid or organic solvent, or ground into a practical shape. Furthermore, plating or coating can be applied after such absorption treatment, aging treatment, washing or grinding.

本発明のスリットは、磁石表面に存在させたR2の酸化物、R3のフッ化物、R4の酸フッ化物から選ばれる1種又は2種以上を含有する粉末から磁石体へのR2、R3又はR4の吸収を高めるため以外に、永久磁石回転機に組み込まれた際には、永久磁石に生ずる渦電流を低減する働きがある。回転機において磁石に渦電流が生じる原因は、磁石と対向する電機子のスロットの相対位置が変化し、スロット部分で磁石内の磁束が時間変化することが1つの原因である。また、電機子で作る磁束の歪みが大きな場合も渦電流の原因である。渦電流は磁束変化を妨げる向きに導体上に発生する電流であり、磁石の磁束は磁気異方性化した方向に通り、渦電流は磁気異方性化した方向に対し直角な面に流れるので、スリットは渦電流経路を分断するために磁気異方性化した方向に対し直角な面に入れるのが効果的である。更に、渦電流経路が細長くなる方向にスリットを入れるとより効果が高まる。 Slits of the present invention, the oxide of R 2 which was present on the magnet surface, R 2 of a fluoride of R 3, a powder containing one or more kinds selected from an acid fluoride of R 4 to the magnet body In addition to increasing the absorption of R 3 or R 4 , when incorporated in a permanent magnet rotating machine, it functions to reduce eddy currents generated in the permanent magnet. One cause of the eddy current generated in the magnet in the rotating machine is that the relative position of the slot of the armature facing the magnet changes, and the magnetic flux in the magnet changes over time in the slot portion. In addition, when the distortion of magnetic flux generated by the armature is large, it is also a cause of eddy current. The eddy current is a current generated on the conductor in a direction that prevents the magnetic flux change. The magnetic flux of the magnet passes in the direction of magnetic anisotropy, and the eddy current flows in a plane perpendicular to the direction of magnetic anisotropy. In order to break the eddy current path, it is effective to put the slit in a plane perpendicular to the direction of magnetic anisotropy. Furthermore, if a slit is made in the direction in which the eddy current path becomes elongated, the effect is further enhanced.

スリットのない状態での焼結ブロックの最大部の寸法が100mm以下、好ましくは50mm以下で、かつ磁気異方性化した方向の寸法が10mm以下、好ましくは5mm以下である場合には、スリットのない磁石体に対して本発明の磁石表面に存在させたR2の酸化物、R3のフッ化物、R4の酸フッ化物から選ばれる1種又は2種以上を含有する粉末から磁石体にR2、R3又はR4を吸収させることができる。この場合は吸収処理を行った後で磁石表面に複数のスリットを入れれば、永久磁石回転機に組み込まれた永久磁石に生ずる渦電流を低減することができる。 When the dimension of the maximum part of the sintered block without a slit is 100 mm or less, preferably 50 mm or less, and the dimension in the direction of magnetic anisotropy is 10 mm or less, preferably 5 mm or less, From a powder containing one or more selected from the R 2 oxide, R 3 fluoride, and R 4 oxyfluoride present on the magnet surface of the present invention to a non-magnetic body R 2 , R 3 or R 4 can be absorbed. In this case, if a plurality of slits are formed on the magnet surface after the absorption treatment, eddy currents generated in the permanent magnet incorporated in the permanent magnet rotating machine can be reduced.

スリットを設けることによりセグメント磁石の機械的強度が低下する。特に回転機にこの磁石を用いた場合は、高速回転で磁石に大きな遠心力が働くため、機械特性が良好でなければ磁石が破損して飛散してしまう。このような問題を解決するにはスリットに接着剤や樹脂等の非導電性物質を充填することにより機械強度の低下を補うのが好ましい。上記接着剤は耐熱性と接着強度を両立できるものが望ましく、例えばエポキシ系やアクリル系接着剤が挙げられる。   By providing the slit, the mechanical strength of the segment magnet is lowered. In particular, when this magnet is used in a rotating machine, a large centrifugal force acts on the magnet at high speed rotation, so that the magnet is damaged and scattered unless mechanical characteristics are good. In order to solve such a problem, it is preferable to compensate for a decrease in mechanical strength by filling the slit with a nonconductive material such as an adhesive or a resin. The adhesive preferably has both heat resistance and adhesive strength, and examples thereof include epoxy and acrylic adhesives.

以上のようにして得られた永久磁石材料は、永久磁石回転機に適した渦電流が小さく高い残留磁束密度と高い保磁力を有するR−Fe−B系焼結磁石及びこの磁石を用いた永久磁石回転機として利用できる。   The permanent magnet material obtained as described above is an R—Fe—B sintered magnet having a small eddy current suitable for a permanent magnet rotating machine, a high residual magnetic flux density and a high coercive force, and a permanent using this magnet. It can be used as a magnet rotating machine.

以下、本発明の具体的態様について実施例をもって詳述するが、本発明の内容はこれに限定されるものではない。なお、下記例で、酸化Dy又はフッ化Dyによる磁石表面空間の占有率(存在率)は、粉末処理後の磁石質量増と粉末物質の真密度より算出した。   Hereinafter, specific embodiments of the present invention will be described in detail with reference to examples, but the content of the present invention is not limited thereto. In the following examples, the occupation ratio (existence ratio) of the magnet surface space by oxidation Dy or fluoride Dy was calculated from the increase in magnet mass after powder treatment and the true density of the powder substance.

[実施例1,2及び比較例1,2]
純度99質量%以上のNd、Co、Al、Feメタルとフェロボロンを所定量秤量してAr雰囲気中で高周波溶解し、この合金溶湯をAr雰囲気中で銅製単ロールに注湯するいわゆるストリップキャスト法により薄板状の合金とした。得られた合金の組成はNdが13.5原子%、Coが1.0原子%、Alが0.5原子%、Bが5.8原子%、Feが残部であり、これを合金Aと称する。合金Aに水素を吸蔵させた後、真空排気を行いながら500℃まで加熱して部分的に水素を放出させる、いわゆる水素粉砕により30メッシュ以下の粗粉とした。更に純度99質量%以上のNd、Tb、Fe、Co、Al、Cuメタルとフェロボロンを所定量秤量し、Ar雰囲気中で高周波溶解した後、鋳造した。得られた合金の組成はNdが20原子%、Tbが10原子%、Feが24原子%、Bが6原子%、Alが1原子%、Cuが2原子%、Coが残部であり、これを合金Bと称する。合金Bは窒素雰囲気中、ブラウンミルを用いて30メッシュ以下に粗粉砕した。
[Examples 1 and 2 and Comparative Examples 1 and 2]
Nd, Co, Al, Fe metal having a purity of 99% by mass or more and ferroboron are weighed in predetermined amounts and melted at high frequency in an Ar atmosphere, and this molten alloy is poured into a single copper roll in an Ar atmosphere by a so-called strip casting method A thin plate-like alloy was used. The composition of the obtained alloy is 13.5 atomic% Nd, 1.0 atomic% Co, 0.5 atomic% Al, 5.8 atomic% B, and the balance Fe. Called. The alloy A was occluded with hydrogen and then heated to 500 ° C. while being evacuated to partially release hydrogen, so that a coarse powder of 30 mesh or less was obtained by so-called hydrogen pulverization. Further, Nd, Tb, Fe, Co, Al, Cu metal having a purity of 99% by mass or more and ferroboron were weighed in predetermined amounts, melted by high frequency in an Ar atmosphere, and then cast. The composition of the resulting alloy is Nd 20 atom%, Tb 10 atom%, Fe 24 atom%, B 6 atom%, Al 1 atom%, Cu 2 atom%, and Co remaining. Is referred to as Alloy B. Alloy B was coarsely pulverized to 30 mesh or less using a brown mill in a nitrogen atmosphere.

続いて、合金A粉末を90質量%、合金B粉末を10質量%秤量して、窒素置換したVブレンダー中で30分間混合した。この混合粉末は高圧窒素ガスを用いたジェットミルにて、粉末の質量中位粒径4μmに微粉砕された。得られた混合微粉末を窒素雰囲気下15kOeの磁界中で配向させながら、約1ton/cm2の圧力で成形した。次いで、この成形体をAr雰囲気の焼結炉内に投入し、1,060℃で2時間焼結し、71mm×46mm×厚み21mm(磁気異方性化した方向)の磁石ブロックを作製した。磁石ブロックはダイヤモンドカッターにより70mm×45mm×20mm(磁気異方性化した方向)に全面研削加工した。同時に磁気異方性化した方向に対し直角な70mm×45mmの面に70mm方向に幅0.5mm、深さ15mmのスリットを4.5mm間隔でつけた。研削加工された磁石体をアルカリ溶液で洗浄した後、酸洗浄して乾燥させた。各洗浄の前後には純水による洗浄工程が含まれている。 Subsequently, 90% by mass of the alloy A powder and 10% by mass of the alloy B powder were weighed and mixed for 30 minutes in a nitrogen-substituted V blender. This mixed powder was finely pulverized to a mass median particle size of 4 μm by a jet mill using high-pressure nitrogen gas. The obtained mixed fine powder was molded at a pressure of about 1 ton / cm 2 while being oriented in a magnetic field of 15 kOe under a nitrogen atmosphere. Next, this compact was put into a sintering furnace in an Ar atmosphere and sintered at 1,060 ° C. for 2 hours to produce a magnet block of 71 mm × 46 mm × thickness 21 mm (direction of magnetic anisotropy). The magnet block was ground to 70 mm × 45 mm × 20 mm (direction of magnetic anisotropy) with a diamond cutter. At the same time, slits having a width of 0.5 mm and a depth of 15 mm in the 70 mm direction were formed at intervals of 4.5 mm on a 70 mm × 45 mm surface perpendicular to the direction of magnetic anisotropy. The ground magnet body was washed with an alkaline solution, and then washed with an acid and dried. A cleaning process with pure water is included before and after each cleaning.

次に、平均粉末粒径が5μmのフッ化ディスプロシウムを質量分率50%でエタノールと混合し、これに超音波を印加しながら磁石体を1分間浸した。引き上げた磁石は直ちに熱風により乾燥させた。この時のフッ化ディスプロシウムによる磁石表面空間の占有率は45%であった。これにAr雰囲気中900℃で1時間という条件で吸収処理を施し、更に500℃で1時間時効処理して急冷することで、磁石体を得た。これを磁石体M1と称する。   Next, dysprosium fluoride having an average powder particle size of 5 μm was mixed with ethanol at a mass fraction of 50%, and the magnet body was immersed for 1 minute while applying ultrasonic waves thereto. The magnet pulled up was immediately dried with hot air. The occupation ratio of the magnet surface space by dysprosium fluoride at this time was 45%. This was subjected to an absorption treatment at 900 ° C. for 1 hour in an Ar atmosphere, and further subjected to an aging treatment at 500 ° C. for 1 hour, followed by rapid cooling to obtain a magnet body. This is referred to as a magnet body M1.

比較のためにスリットなしの磁石体に熱処理のみ施したもの、及びスリット入り磁石体に熱処理のみを施したものも作製した。これをP1、P2と称する。   For comparison, a magnet body without slits subjected only to heat treatment and a magnet body including slits subjected only to heat treatment were also produced. These are referred to as P1 and P2.

磁石体M1、P1、P2の磁気特性を表1に示した。ディスプロシウムの吸収処理を施していない磁石(P1とP2)の保磁力に対して本発明による磁石M1は400kAm-1の保磁力増大が認められる。また、残留磁束密度の低下は5mTであった。比較のために、合金AのNdの一部をDyで置換した組成合金を用いて磁石を作製し、400kAm-1の保磁力増大を図ったところ、残留磁束密度は50mT低下した。 Table 1 shows the magnetic characteristics of the magnet bodies M1, P1, and P2. The magnet M1 according to the present invention has an increase in coercive force of 400 kAm −1 with respect to the coercive force of the magnets (P1 and P2) not subjected to the dysprosium absorption treatment. The decrease in residual magnetic flux density was 5 mT. For comparison, when a magnet was prepared using a composition alloy in which a part of Nd of alloy A was replaced with Dy and the coercive force was increased by 400 kAm −1 , the residual magnetic flux density was reduced by 50 mT.

磁石体M1のSEMによる反射電子像とEPMAにより、磁石にはDy及びFが観察された。処理前の磁石にはDy及びFは含まれていないので、磁性体M1におけるDy及びFの存在は、本発明の吸収処理によるものである。吸収されたDyは結晶粒界近傍にのみ濃化している。一方、フッ素(F)も粒界部に存在し、処理前から磁石内に含まれている不可避的不純物である酸化物と結合して酸フッ化物を形成している。このDyの分布により、残留磁束密度の低下を最小限に抑えながら保磁力を増大させることが可能となった。   Dy and F were observed in the magnet from the backscattered electron image and EPMA of the magnet body M1. Since the magnet before processing does not contain Dy and F, the presence of Dy and F in the magnetic body M1 is due to the absorption processing of the present invention. The absorbed Dy is concentrated only in the vicinity of the crystal grain boundary. On the other hand, fluorine (F) is also present in the grain boundary part, and forms an oxyfluoride by being combined with an oxide that is an inevitable impurity contained in the magnet before the treatment. This Dy distribution makes it possible to increase the coercive force while minimizing the decrease in residual magnetic flux density.

M1、P2と同じ形状のスリット入りの磁石体に対し、平均粉末粒径が5μmのフッ化テルビウムを質量分率50%でエタノールと混合し、これに超音波を印加しながら磁石体を1分間浸した。引き上げた磁石は直ちに熱風により乾燥させた。この時のフッ化テルビウムによる磁石表面空間の占有率は45%であった。これにAr雰囲気中900℃で1時間という条件で吸収処理を施し、更に500℃で1時間時効処理して急冷することで、磁石体を得た。これを磁石体M2と称する。   For a magnet body with slits having the same shape as M1 and P2, terbium fluoride with an average powder particle size of 5 μm is mixed with ethanol at a mass fraction of 50%, and the magnet body is held for 1 minute while applying ultrasonic waves thereto. Soaked. The magnet pulled up was immediately dried with hot air. At this time, the occupation ratio of the magnet surface space by terbium fluoride was 45%. This was subjected to an absorption treatment at 900 ° C. for 1 hour in an Ar atmosphere, and further subjected to an aging treatment at 500 ° C. for 1 hour, followed by rapid cooling to obtain a magnet body. This is referred to as a magnet body M2.

磁石体M2の磁気特性も表1に併記した。テルビウムの吸収処理を施していない磁石(P1とP2)の保磁力に対して本発明による磁石M2は600kAm-1の保磁力増大が認められる。また、残留磁束密度の低下は5mTであった。 The magnetic properties of the magnet body M2 are also shown in Table 1. The magnet M2 according to the present invention has a coercive force increase of 600 kAm −1 with respect to the coercive force of the magnets (P1 and P2) not subjected to the terbium absorption treatment. The decrease in residual magnetic flux density was 5 mT.

Figure 2007053351
Figure 2007053351

[実施例1−1,2−1及び比較例1−1,2−1]
実施例1,2の磁石M1、M2及び比較例1,2の磁石P1、P2を永久磁石モータに組み込んだ時のモータ特性について説明する。永久磁石モータは図2に示す埋め込み磁石構造型モータである。ロータは、0.5mmの電磁鋼板を積層したものに永久磁石が埋め込まれた4極構造で、ロータヨーク11の寸法は外径312mm、高さ180mmとなっている。永久磁石12の寸法は、幅70mm、磁気異方性化方向の寸法20mm、軸方向の寸法180mmである。焼結磁石で長さ180mmの磁石は作製し難いので、今回は長さ45mmの磁石をエポキシ系接着剤で4個貼り合せた。ステータは、0.5mmの電磁鋼板を積層した6スロット構造で、各ティースには集中巻きでコイルが60ターン巻かれており、コイル13はU相,V相,W相の3相Y結線となっている。図2に示すU,V,Wの添え字の+と−はコイルの巻き方向を示すもので、+は紙面に対し出る方向、−は入る方向を意味する。ステータヨーク14の寸法は外径520mm、内径315mm、高さ180mmとなっている。ロータとステータの空隙は1.5mmである。ロータとステータの位置関係が図2の状態で、U相に余弦波の交流電流、V相にU相より120°位相の進んだ交流電流、W相にU相より240°位相の進んだ交流電流を流すことで、永久磁石の磁束とコイルの磁束の相互作用でロータは反時計回りに回転する。埋め込み磁石構造型では、各相の電流の位相を制御することで更に大きなトルクを発生するという特徴をもつ。更に、残留磁束密度の大きいR−Fe−B系焼結磁石を用いるとモータは高出力高効率になるので家電用、産業用、自動車の駆動用など幅広い分野で使われている。図2のモータの場合、回転数2,400rpm、各相の実効値電流50Aで、電流の位相制御を行わない場合のトルクが370Nmであったが、進み電流位相40°で駆動すると490Nmまでトルクが増加する。しかし、進み電流によってコイルから永久磁石に対向する磁束が増え、永久磁石は減磁しやすい状況に置かれ、減磁しないためにはある程度の保磁力が必要になる。また、永久磁石を通る磁束はロータの回転と共に時々刻々変化しており、この磁場変動により磁石内部に渦電流が発生する。渦電流損失は大きさの2乗に比例するので、今回のように断面が70mm×45mmの磁石では問題になる。更に、進み電流によってコイルから永久磁石に対向する磁束が増えると磁石の渦電流損失が増えてしまう。このような理由から、永久磁石回転機に適した渦電流が小さく保磁力の大きなR−Fe−B系焼結磁石が望まれている。
[Examples 1-1 and 2-1 and Comparative Examples 1-1 and 2-1]
The motor characteristics when the magnets M1 and M2 of Examples 1 and 2 and the magnets P1 and P2 of Comparative Examples 1 and 2 are incorporated in a permanent magnet motor will be described. The permanent magnet motor is an embedded magnet structure type motor shown in FIG. The rotor has a quadrupole structure in which permanent magnets are embedded in a laminate of 0.5 mm electromagnetic steel plates. The rotor yoke 11 has an outer diameter of 312 mm and a height of 180 mm. The permanent magnet 12 has a width of 70 mm, a magnetic anisotropy direction of 20 mm, and an axial direction of 180 mm. Since it is difficult to produce a 180 mm long magnet with sintered magnets, four 45 mm long magnets were bonded together with an epoxy adhesive. The stator is a 6-slot structure in which 0.5 mm electromagnetic steel sheets are laminated. Each coil has concentrated windings and 60 turns of the coil, and the coil 13 has a U-phase, V-phase, and W-phase three-phase Y connection. It has become. The subscripts + and − of U, V, and W shown in FIG. 2 indicate the winding direction of the coil, + means the direction of exiting from the page, and − means the direction of entry. The dimensions of the stator yoke 14 are an outer diameter of 520 mm, an inner diameter of 315 mm, and a height of 180 mm. The gap between the rotor and the stator is 1.5 mm. With the positional relationship between the rotor and the stator shown in FIG. 2, an AC current with a cosine wave in the U phase, an AC current with a 120 ° phase advance from the U phase in the V phase, and an AC current with a 240 ° phase advance in the W phase from the U phase. By passing an electric current, the rotor rotates counterclockwise due to the interaction between the magnetic flux of the permanent magnet and the magnetic flux of the coil. The embedded magnet structure type has a feature that a larger torque is generated by controlling the phase of the current of each phase. Furthermore, when an R—Fe—B sintered magnet having a large residual magnetic flux density is used, the motor has high output and high efficiency, so that it is used in a wide range of fields such as home appliances, industrial use, and automobile driving. In the case of the motor of FIG. 2, the torque is 370 Nm when the rotational speed is 2,400 rpm, the effective current 50 A for each phase, and the phase control of the current is not performed. Will increase. However, the magnetic flux that opposes the permanent magnet from the coil increases due to the advance current, and the permanent magnet is placed in a state where it is easy to demagnetize. Further, the magnetic flux passing through the permanent magnet changes every moment with the rotation of the rotor, and eddy currents are generated inside the magnet due to this magnetic field fluctuation. Since the eddy current loss is proportional to the square of the magnitude, a problem arises with a magnet having a cross section of 70 mm × 45 mm as in this case. Furthermore, if the magnetic flux facing the permanent magnet from the coil increases due to the advance current, the eddy current loss of the magnet increases. For these reasons, an R—Fe—B based sintered magnet having a small eddy current and a large coercive force suitable for a permanent magnet rotating machine is desired.

磁石M1、M2、P1、P2の表面にエポキシ塗装を行い、45mm方向をエポキシ系接着剤で4枚貼り合せてM1,M2,P2のスリットにエポキシ系接着剤を充填した後、着磁したものを図2のロータに組み込んだ。磁石M1,M2,P2それぞれを4枚貼り合せた状態の磁石を図3、磁石P1を4枚貼り合せた状態を図4に示す。図3と図4の寸法は本実施例と比較例では、幅W=70mm、厚さT=20mm、長さL=180mm、スリットの深さTS=15mm、スリット間の間隔LS=4.5mmである。磁石M1、M2、P1、P2を組み込んだモータをそれぞれMM1、MM2、MP1、MP2とする。各相に実効値電流50A、電流位相40°、2,400rpmで1時間連続運転し、運転直後のトルクと連続運転の後、十分冷えた状態で再度運転した時のトルクの比から、永久磁石の減磁量を評価した。結果を表2にまとめた。実施例のMM1とMM2については減磁が起こっていない。しかし、比較例のMP1とMP2は永久磁石の保磁力が低く減磁してしまっている。MP1については渦電流による発熱の影響が加わって更に大きく減磁してしまった。   The magnets M1, M2, P1, and P2 are coated with epoxy, 45mm direction is bonded with epoxy adhesive, the slits of M1, M2, and P2 are filled with epoxy adhesive, and then magnetized Was incorporated into the rotor of FIG. FIG. 3 shows a state where four magnets M1, M2 and P2 are bonded together, and FIG. 4 shows a state where four magnets P1 are bonded together. 3 and 4 show the width W = 70 mm, the thickness T = 20 mm, the length L = 180 mm, the slit depth TS = 15 mm, and the interval LS between slits LS = 4.5 mm in the present embodiment and the comparative example. It is. Motors incorporating magnets M1, M2, P1, and P2 are designated as MM1, MM2, MP1, and MP2, respectively. Permanent magnet based on the ratio of torque immediately after operation for 1 hour at RMS current 50A, current phase 40 °, 2,400 rpm for each phase, and torque when it is restarted in a sufficiently cooled state after continuous operation The amount of demagnetization was evaluated. The results are summarized in Table 2. No demagnetization has occurred in the MM1 and MM2 of the example. However, MP1 and MP2 of the comparative example are demagnetized because the coercive force of the permanent magnet is low. MP1 was further demagnetized due to the effect of heat generation by eddy current.

Figure 2007053351
Figure 2007053351

[実施例3,4及び比較例3,4]
実施例1、2と同様な方法で図5に示すような幅80mm、高さ45mm、磁気異方性方向の最大厚み10mmのC形磁石を半分にした形状の磁石体を作製し、図6のようにクシ歯状に幅0.5mm、深さ70mmのスリット2を4.5mm間隔で設けた。
次に、平均粉末粒径が5μmのフッ化ディスプロシウムを質量分率50%でエタノールと混合し、これに超音波を印加しながら磁石体を1分間浸した。引き上げた磁石は直ちに熱風により乾燥させた。この時のフッ化ディスプロシウムによる磁石表面空間の占有率は45%であった。これにAr雰囲気中900℃で1時間という条件で吸収処理を施し、更に500℃で1時間時効処理して急冷することで、磁石体を得た。これを磁石体M3と称する。また、フッ化ディスプロシウムの代わりにフッ化テルビウムを用いて同様の熱処理をしたものをM4とした。比較のためにスリット加工前の磁石体に熱処理のみ施したもの、及びスリット入り磁石体に熱処理のみを施したものも作製した。これをP3、P4と称する。
[Examples 3 and 4 and Comparative Examples 3 and 4]
A magnet body having a shape obtained by halving a C-shaped magnet having a width of 80 mm, a height of 45 mm, and a maximum thickness of 10 mm in the magnetic anisotropy direction as shown in FIG. Like this, slits 2 having a width of 0.5 mm and a depth of 70 mm were provided in a comb-like shape at intervals of 4.5 mm.
Next, dysprosium fluoride having an average powder particle size of 5 μm was mixed with ethanol at a mass fraction of 50%, and the magnet body was immersed for 1 minute while applying ultrasonic waves thereto. The magnet pulled up was immediately dried with hot air. The occupation ratio of the magnet surface space by dysprosium fluoride at this time was 45%. This was subjected to an absorption treatment at 900 ° C. for 1 hour in an Ar atmosphere, and further subjected to an aging treatment at 500 ° C. for 1 hour to rapidly cool, thereby obtaining a magnet body. This is referred to as a magnet body M3. Moreover, what carried out the same heat processing using terbium fluoride instead of dysprosium fluoride was set to M4. For comparison, a magnet body that had been subjected only to heat treatment on the magnet body before slit processing and a magnet body that had been subjected to only heat treatment were also produced. These are referred to as P3 and P4.

磁石体M3、M4、P3、P4の磁気特性を表3に示した。ディスプロシウムの吸収処理を施した本発明による磁石M3は、処理していない磁石(P3とP4)の保磁力に対して450kAm-1の保磁力増大が認められる。また、残留磁束密度の低下は5mTであった。テルビウムの吸収処理を施した本発明による磁石M4は、650kAm-1の保磁力増大が認められる。また、残留磁束密度の低下は5mTであった。 Table 3 shows the magnetic characteristics of the magnet bodies M3, M4, P3, and P4. In the magnet M3 according to the present invention subjected to the dysprosium absorption treatment, a coercive force increase of 450 kAm −1 is recognized with respect to the coercivity of the untreated magnets (P3 and P4). The decrease in residual magnetic flux density was 5 mT. In the magnet M4 according to the present invention subjected to the terbium absorption treatment, an increase in coercive force of 650 kAm −1 is recognized. The decrease in residual magnetic flux density was 5 mT.

Figure 2007053351
Figure 2007053351

[実施例3−1,4−1及び比較例3−1,4−1]
実施例3,4の磁石M3、M4及び比較例3,4の磁石P3、P4を永久磁石モータに組み込んだ時のモータ特性について説明する。永久磁石モータは図7に示す表面磁石構造型モータである。ロータは、0.5mmの電磁鋼板を積層したロータヨーク21の表面にC形の永久磁石22が置かれた4極構造で、ロータ寸法は外径312mm、高さ180mmとなっている。永久磁石22の寸法は、幅160mm、磁気異方性化した方向の寸法は中央部分で10mm、端部で3mm、軸方向の寸法180mmである。焼結磁石で幅160mmや長さ180mmの磁石は作製し難いので、今回は幅方向に2個、長さ方向に4個、合計8個のセグメントをエポキシ系接着剤で貼り合せた。ステータは実施例1−1で説明したものと同じ物であり、詳細の説明は省略する。実効値電流50A、電流位相0°、2,400rpmで390Nmのトルクを発生させた。表面磁石構造型モータは、入力電流に対しトルクが線形に変化しトルクや回転数の制御性が非常に良いので、高精度制御を求められる家電用、産業用、自動車用など幅広い分野で使われている。しかし、表面磁石構造型では、永久磁石にはコイルからの反磁界が直接入るので減磁しやすい状況に置かれ、減磁しないためにはある程度の保磁力が必要になる。また、磁石内部の磁束がロータが回転すると対向するステータのスロット部分で急激な変化を起こすので、磁石内部に大きな渦電流が発生する。渦電流損失は大きさの2乗に比例するので、今回のように断面が80mm×45mmの磁石では問題になる。このような理由から、渦電流が小さく保磁力の大きなR−Fe−B系焼結磁石が望まれている。
[Examples 3-1, 4-1 and Comparative examples 3-1, 4-1]
The motor characteristics when the magnets M3 and M4 of Examples 3 and 4 and the magnets P3 and P4 of Comparative Examples 3 and 4 are incorporated in a permanent magnet motor will be described. The permanent magnet motor is a surface magnet structure type motor shown in FIG. The rotor has a quadrupole structure in which a C-shaped permanent magnet 22 is placed on the surface of a rotor yoke 21 in which 0.5 mm electromagnetic steel plates are laminated. The rotor has an outer diameter of 312 mm and a height of 180 mm. The dimensions of the permanent magnet 22 are 160 mm in width, the dimension in the direction of magnetic anisotropy is 10 mm at the center, 3 mm at the end, and 180 mm in the axial direction. Since it is difficult to produce a magnet having a width of 160 mm and a length of 180 mm with a sintered magnet, this time, two segments in the width direction and four in the length direction were bonded together with an epoxy adhesive. The stator is the same as that described in Example 1-1, and detailed description thereof is omitted. A torque of 390 Nm was generated at an effective current of 50 A, a current phase of 0 °, and 2,400 rpm. Surface magnet structured motors are used in a wide range of fields such as home appliances, industrial applications, and automobiles where high-precision control is required because the torque varies linearly with the input current and the controllability of torque and rotation speed is very good. ing. However, in the surface magnet structure type, since the demagnetizing field from the coil directly enters the permanent magnet, the permanent magnet is easily demagnetized. In order not to demagnetize, some coercive force is required. In addition, when the magnetic flux inside the magnet rotates, the abrupt change occurs in the slot portion of the facing stator, so that a large eddy current is generated inside the magnet. Since the eddy current loss is proportional to the square of the size, a problem arises with a magnet having a cross section of 80 mm × 45 mm as in this case. For these reasons, an R—Fe—B based sintered magnet having a small eddy current and a large coercive force is desired.

磁石M3、M4、P3、P4の表面にエポキシ塗装を行い、エポキシ系接着剤で8枚貼り合せて図8,図9に示すようなC形磁石を作った。更にM3,M4,P4のスリットにはエポキシ系接着剤を充填した。これを着磁し、図7のロータに組み込んだ。なお、図8は磁石M3,M4,P4それぞれを8枚貼り合せた状態で、図9は磁石P3を8枚貼り合せた状態である。本実施例では磁石の幅が160mmと大きかったので幅方向が2分割された構造であるが、100mm以下のものであれば幅方向に分割のないC形磁石にスリットを入れたものでもよい。図8と図9の寸法は本実施例と比較例では、W=160mm、T=10mm、L=180mm、スリットWS=140mm、スリット間の間隔LS=4.5mmである。磁石M3、M4、P3、P4を組み込んだモータをそれぞれMM3、MM4、MP3、MP4とする。実効値電流50A、電流位相0°、2,400rpmで1時間連続運転し、運転直後のトルクと連続運転の後、十分冷えた状態で再度運転した時のトルクの比から、永久磁石の減磁量を評価した。結果を表4にまとめた。比較例のMP3とMP4は永久磁石の保磁力が低く、大きな減磁が起こってしまった。MP3については渦電流による発熱の影響が加わって更に大きく減磁してしまった。これに対し、実施例のMM3で約8%の減磁が起こった。このモータで減磁を起こさないためには更に保磁力が大きな材料が必要であることが分かる。そこで実施例のMM3より大きな保磁力を得ているMM4を用いると、全く減磁が起こっていない。   Epoxy coating was performed on the surfaces of the magnets M3, M4, P3, and P4, and eight sheets were bonded with an epoxy adhesive to form a C-shaped magnet as shown in FIGS. Further, the M3, M4, and P4 slits were filled with an epoxy adhesive. This was magnetized and incorporated into the rotor of FIG. 8 shows a state in which eight magnets M3, M4, and P4 are bonded, and FIG. 9 shows a state in which eight magnets P3 are bonded. In the present embodiment, the width of the magnet is as large as 160 mm, so that the width direction is divided into two. However, if it is 100 mm or less, a C-shaped magnet that is not divided in the width direction may be slit. The dimensions of FIGS. 8 and 9 are W = 160 mm, T = 10 mm, L = 180 mm, slit WS = 140 mm, and the interval LS between slits LS = 4.5 mm in this embodiment and the comparative example. The motors incorporating the magnets M3, M4, P3, and P4 are referred to as MM3, MM4, MP3, and MP4, respectively. The permanent magnet is demagnetized from the ratio of the torque immediately after operation for 1 hour at an effective current of 50 A, current phase of 0 °, 2,400 rpm, and the torque at the time of continuous operation after the operation is sufficiently cooled. The amount was evaluated. The results are summarized in Table 4. In the comparative examples MP3 and MP4, the coercive force of the permanent magnet was low, and a large demagnetization occurred. MP3 was further demagnetized due to the effect of heat generation by eddy current. On the other hand, about 8% demagnetization occurred in the MM3 of the example. It can be seen that a material having a larger coercive force is necessary to prevent demagnetization by this motor. Therefore, when MM4 having a coercive force larger than that of MM3 of the embodiment is used, no demagnetization occurs.

Figure 2007053351
Figure 2007053351

なお、上記実施例は永久磁石モータであるが、永久磁石発電機も同じ構造であり、本発明の効果は同様である。   In addition, although the said Example is a permanent magnet motor, a permanent magnet generator is also the same structure and the effect of this invention is the same.

焼結磁石体へのスリット形成態様を示し、(A)〜(C)は平面図、(D)は断面図、(E)は磁石体にR2の酸化物、R3のフッ化物、R4の酸フッ化物が均一に効率よく熱処理、浸透される領域(距離L)を示す説明図、(F)はスリットがない磁石に吸収処理した場合の概念図である。The slit formation aspect to a sintered magnet body is shown, (A)-(C) are top views, (D) is a sectional view, (E) is an oxide of R 2 , fluoride of R 3 , R 4 is an explanatory view showing a region (distance L) where the oxyfluoride of 4 is uniformly and efficiently heat-treated and permeated, and FIG. 実施例の4極6スロットの埋め込み磁石構造型モータの説明図である。It is explanatory drawing of the 4 pole 6 slot embedded magnet structure type motor of an Example. 本発明により作製された磁石体M1,M2と比較例P2を接着した図2のモータに使用する平板状永久磁石の斜視図である。It is a perspective view of the flat permanent magnet used for the motor of FIG. 2 which adhere | attached the magnet bodies M1 and M2 produced by this invention, and the comparative example P2. 比較例P1を接着した図2のモータに使用する平板状永久磁石の斜視図である。It is a perspective view of the flat permanent magnet used for the motor of FIG. 2 which adhered the comparative example P1. 本発明により作製された磁石体M3,M4と比較例P4の磁石形状を説明する斜視図である。It is a perspective view explaining the magnet shape of magnet bodies M3 and M4 produced by the present invention, and comparative example P4. 比較例P3の磁石形状を説明する斜視図である。It is a perspective view explaining the magnet shape of comparative example P3. 実施例の4極6スロットの表面磁石構造型モータの説明図である。It is explanatory drawing of the surface magnet structure type motor of the 4 pole 6 slot of an Example. 本発明により作製された磁石体M3,M4と比較例P4を接着した図7のモータに使用するC形永久磁石の斜視図である。It is a perspective view of the C-shaped permanent magnet used for the motor of FIG. 7 which adhere | attached the magnet bodies M3 and M4 produced by this invention, and the comparative example P4. 比較例P3を接着した図7のモータに使用するC形永久磁石の斜視図である。It is a perspective view of the C-shaped permanent magnet used for the motor of FIG. 7 which adhere | attached comparative example P3.

符号の説明Explanation of symbols

1 焼結磁石体
1a スリット形成面
1b スリット形成面と反対の面
2 スリット
3 吸収処理が起こり難い領域
11、21 ロータヨーク
12、22 永久磁石
13 コイル
14 ステータヨーク
DESCRIPTION OF SYMBOLS 1 Sintered magnet body 1a Slit formation surface 1b The surface opposite to a slit formation surface 2 Slit 3 The area | region 11 in which an absorption process does not occur easily 11, Rotor yoke 12, 22 Permanent magnet 13 Coil 14 Stator yoke

Claims (18)

1−Fe−B系組成(R1はY及びScを含む希土類元素から選ばれる1種又は2種以上)からなる焼結磁石体に対し、当該磁石体の少なくとも1つの表面に複数のスリットを設け、R2の酸化物、R3のフッ化物、R4の酸フッ化物から選ばれる1種又は2種以上(R2、R3、R4はY及びScを含む希土類元素から選ばれる1種又は2種以上)を含有する粉末を当該磁石体の表面に存在させた状態で、当該磁石体及び粉末を当該磁石の焼結温度以下の温度で真空又は不活性ガス中において熱処理を施すことを特徴とする希土類永久磁石の製造方法。 For a sintered magnet body having an R 1 -Fe-B composition (R 1 is one or more selected from rare earth elements including Y and Sc), a plurality of slits are formed on at least one surface of the magnet body One or more selected from oxides of R 2 , fluorides of R 3 , and oxyfluorides of R 4 (R 2 , R 3 , R 4 are selected from rare earth elements including Y and Sc) The magnet body and the powder are subjected to heat treatment in a vacuum or an inert gas at a temperature lower than the sintering temperature of the magnet in a state where the powder containing one or more kinds is present on the surface of the magnet body. A method for producing a rare earth permanent magnet. 1−Fe−B系組成(R1はY及びScを含む希土類元素から選ばれる1種又は2種以上)からなる焼結磁石体に対し、R2の酸化物、R3のフッ化物、R4の酸フッ化物から選ばれる1種又は2種以上(R2、R3、R4はY及びScを含む希土類元素から選ばれる1種又は2種以上)を含有する粉末を当該磁石体の表面に存在させた状態で、当該磁石体及び粉末を当該磁石体の焼結温度以下の温度で真空又は不活性ガス中において熱処理を施し、次いで当該磁石体の少なくとも1つの表面に複数のスリットを設けることを特徴とする希土類永久磁石の製造方法。 For a sintered magnet body having an R 1 -Fe-B composition (R 1 is one or more selected from rare earth elements including Y and Sc), an oxide of R 2 , a fluoride of R 3 , A magnet containing a powder containing one or more selected from oxyfluorides of R 4 (R 2 , R 3 , R 4 are one or more selected from rare earth elements including Y and Sc) The magnet body and the powder are heat-treated in a vacuum or an inert gas at a temperature lower than the sintering temperature of the magnet body, and then a plurality of slits are formed on at least one surface of the magnet body. A method for producing a rare earth permanent magnet. 焼結磁石体のスリット形成面に形成された各スリット間の間隔がそれぞれ10mm以下であり、各スリットの最深部とスリット形成面に対して反対側の面との間の距離がそれぞれ5mm以下である請求項1又は2記載の希土類永久磁石の製造方法。   The interval between the slits formed on the slit forming surface of the sintered magnet body is 10 mm or less, and the distance between the deepest part of each slit and the surface opposite to the slit forming surface is 5 mm or less. The method for producing a rare earth permanent magnet according to claim 1 or 2. 熱処理される焼結磁石体が、最大部の寸法が100mm以下で、かつ磁気異方性化した方向の寸法が10mm以下の形状を有する請求項1,2又は3記載の希土類永久磁石の製造方法。   The method for producing a rare earth permanent magnet according to claim 1, 2 or 3, wherein the sintered magnet body to be heat-treated has a shape in which the dimension of the maximum part is 100 mm or less and the dimension in the direction of magnetic anisotropy is 10 mm or less. . 2の酸化物、R3のフッ化物、R4の酸フッ化物から選ばれる1種又は2種以上を含有する粉末の磁石体表面に対する存在量が、この磁石体の表面から距離1mm以内の当該磁石体を取り囲む空間内における平均的な占有率で10容積%以上である請求項1乃至4のいずれか1項記載の希土類永久磁石の製造方法。 The abundance of the powder containing one or more selected from R 2 oxide, R 3 fluoride, and R 4 oxyfluoride with respect to the surface of the magnet body is within a distance of 1 mm from the surface of the magnet body. The method for producing a rare earth permanent magnet according to any one of claims 1 to 4, wherein an average occupation ratio in a space surrounding the magnet body is 10% by volume or more. 2の酸化物、R3のフッ化物、R4の酸フッ化物から選ばれる1種又は2種以上を含有する粉末の平均粒子径が100μm以下である請求項1乃至5のいずれか1項記載の希土類永久磁石の製造方法。 Oxide of R 2, fluoride of R 3, any one of claims 1 to 5 mean particle size of the powder containing one or more kinds selected from an acid fluoride of R 4 is 100μm or less The manufacturing method of the rare earth permanent magnet of description. 2の酸化物、R3のフッ化物、R4の酸フッ化物から選ばれる1種又は2種以上(R2、R3、R4はY及びScを含む希土類元素から選ばれる1種又は2種以上)のR2、R3、R4に10原子%以上のDy及び/又はTbが含まれることを特徴とする請求項1乃至6のいずれか1項記載の希土類永久磁石の製造方法。 One or more selected from R 2 oxide, R 3 fluoride, R 4 oxyfluoride (R 2 , R 3 , R 4 are one selected from rare earth elements including Y and Sc, or The method for producing a rare earth permanent magnet according to any one of claims 1 to 6, wherein R 2 , R 3 and R 4 of 2 or more types include 10 atomic% or more of Dy and / or Tb. . 3のフッ化物及び/又はR4の酸フッ化物を含有する粉末を用い、R3及び/又はR4と共にフッ素を焼結磁石体に吸収させた請求項1乃至7のいずれか1項記載の希土類永久磁石の製造方法。 The powder containing R 3 fluoride and / or R 4 oxyfluoride, and fluorine is absorbed into the sintered magnet body together with R 3 and / or R 4. Manufacturing method of rare earth permanent magnets. 前記R3のフッ化物及び/又はR4の酸フッ化物を含有する粉末において、R3及び/又はR4に10原子%以上のDy及び/又はTbが含まれ且つR3及び/又はR4におけるNdとPrの合計濃度が前記R1におけるNdとPrの合計濃度より低いことを特徴とする請求項8記載の希土類永久磁石の製造方法。 In powders containing fluoride and / or oxyfluoride of R 4 of the R 3, and includes the R 3 and / or R 4 to more than 10 atomic% Dy and / or Tb R 3 and / or R 4 The method for producing a rare earth permanent magnet according to claim 8, wherein the total concentration of Nd and Pr in said is lower than the total concentration of Nd and Pr in said R 1 . 前記R3のフッ化物及び/又はR4の酸フッ化物を含有する粉末において、R3のフッ化物とR4の酸フッ化物が合計で10質量%以上含まれ、残部にR5の炭化物、窒化物、酸化物、水酸化物、水素化物から選ばれる1種又は2種以上(R5はY及びScを含む希土類元素から選ばれる1種又は2種以上)を含むことを特徴とする請求項8又は9記載の希土類永久磁石の製造方法。 Wherein in the powder comprising a fluoride and / or oxyfluoride of R 4 in R 3, oxyfluoride of fluoride and R 4 in R 3 are contained more than 10 wt% in total, carbide R 5 to the remainder, One or more selected from nitrides, oxides, hydroxides, and hydrides (R 5 is one or more selected from rare earth elements including Y and Sc). Item 10. A method for producing a rare earth permanent magnet according to Item 8 or 9. 上記熱処理後、更に低温で時効処理を施すことを特徴とする請求項1乃至10のいずれか1項記載の希土類永久磁石の製造方法。   The method for producing a rare earth permanent magnet according to any one of claims 1 to 10, wherein after the heat treatment, an aging treatment is further performed at a low temperature. 2の酸化物、R3のフッ化物、R4の酸フッ化物から選ばれる1種又は2種以上(R2、R3、R4はY及びScを含む希土類元素から選ばれる1種又は2種以上)からなる平均粒子径が100μm以下の粉末を水系又は有機系の溶媒に分散させたスラリーとして前記磁石体表面に存在させることを特徴とする請求項1乃至11のいずれか1項記載の希土類永久磁石の製造方法。 One or more selected from R 2 oxide, R 3 fluoride, R 4 oxyfluoride (R 2 , R 3 , R 4 are one selected from rare earth elements including Y and Sc, or 12. The powder according to claim 1, wherein a powder having an average particle size of 100 μm or less is dispersed on a surface of the magnet body as a slurry dispersed in an aqueous or organic solvent. Manufacturing method of rare earth permanent magnets. 上記焼結磁石体を、アルカリ、酸又は有機溶剤のいずれか1種以上により洗浄した後、上記粉末を磁石体表面に存在させて上記熱処理を行うことを特徴とする請求項1乃至12のいずれか1項記載の希土類永久磁石の製造方法。   13. The sintered magnet body is washed with one or more of alkali, acid, or organic solvent, and then the heat treatment is performed with the powder being present on the surface of the magnet body. A method for producing a rare earth permanent magnet according to claim 1. 上記焼結磁石体の表面層をショットブラストで除去した後、上記粉末を磁石体表面に存在させて上記熱処理を行うことを特徴とする請求項1乃至12のいずれか1項記載の希土類永久磁石の製造方法。   13. The rare earth permanent magnet according to claim 1, wherein after the surface layer of the sintered magnet body is removed by shot blasting, the heat treatment is performed by causing the powder to exist on the surface of the magnet body. Manufacturing method. 熱処理後の最終処理として、アルカリ、酸又は有機溶剤のいずれか1種以上による洗浄処理、研削処理、又はメッキもしくは塗装処理を行うことを特徴とする請求項1乃至14のいずれか1項記載の希土類永久磁石の製造方法。   The final treatment after the heat treatment is performed by a cleaning treatment, a grinding treatment, or a plating or coating treatment with at least one of an alkali, an acid, and an organic solvent. A method for producing a rare earth permanent magnet. 請求項1乃至15のいずれか1項記載の製造方法により得られた希土類永久磁石。   A rare earth permanent magnet obtained by the production method according to any one of claims 1 to 15. 請求項1乃至15のいずれか1項記載の製造方法によって得られた希土類永久磁石を組み込んだ永久磁石回転機において、当該磁石体のスリットが磁気異方性化した方向に対し直角な面に設けられたことを特徴とする永久磁石回転機。   The permanent magnet rotating machine incorporating the rare earth permanent magnet obtained by the manufacturing method according to any one of claims 1 to 15, wherein the slit of the magnet body is provided on a plane perpendicular to the direction of magnetic anisotropy. A permanent magnet rotating machine characterized by that. 希土類永久磁石の表面に設けたスリットに非導電性物質を充填してなる請求項17記載の永久磁石回転機。

The permanent magnet rotating machine according to claim 17, wherein a slit provided on the surface of the rare earth permanent magnet is filled with a non-conductive substance.

JP2006198935A 2005-07-22 2006-07-21 Rare earth permanent magnet, manufacturing method thereof, and permanent magnet rotating machine Active JP4656325B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006198935A JP4656325B2 (en) 2005-07-22 2006-07-21 Rare earth permanent magnet, manufacturing method thereof, and permanent magnet rotating machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005212265 2005-07-22
JP2006198935A JP4656325B2 (en) 2005-07-22 2006-07-21 Rare earth permanent magnet, manufacturing method thereof, and permanent magnet rotating machine

Publications (2)

Publication Number Publication Date
JP2007053351A true JP2007053351A (en) 2007-03-01
JP4656325B2 JP4656325B2 (en) 2011-03-23

Family

ID=37917561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006198935A Active JP4656325B2 (en) 2005-07-22 2006-07-21 Rare earth permanent magnet, manufacturing method thereof, and permanent magnet rotating machine

Country Status (1)

Country Link
JP (1) JP4656325B2 (en)

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007097306A (en) * 2005-09-29 2007-04-12 Meidensha Corp Permanent magnet type motor
WO2007119553A1 (en) * 2006-04-14 2007-10-25 Shin-Etsu Chemical Co., Ltd. Process for producing rare-earth permanent magnet material
JP2007287874A (en) * 2006-04-14 2007-11-01 Shin Etsu Chem Co Ltd Process for producing rare earth permanent magnet material
WO2008032426A1 (en) * 2006-09-15 2008-03-20 Intermetallics Co., Ltd. PROCESS FOR PRODUCING SINTERED NdFeB MAGNET
JP2008251992A (en) * 2007-03-30 2008-10-16 Tdk Corp Sintered body of magnet
WO2008139690A1 (en) * 2007-05-01 2008-11-20 Intermetallics Co., Ltd. Process for production of ndfeb sintered magnets
WO2008146937A1 (en) * 2007-05-28 2008-12-04 Toyota Jidosha Kabushiki Kaisha Rotor for magnet-embedded motor and magnet-embedded motor
JP2009142081A (en) * 2007-12-06 2009-06-25 Toyota Motor Corp Permanent magnet and method of manufacturing the same, and rotor and ipm motor
JP2009254092A (en) * 2008-04-04 2009-10-29 Shin Etsu Chem Co Ltd Rotor for permanent magnet rotating machine
JP2010004647A (en) * 2008-06-19 2010-01-07 Daikin Ind Ltd Rotor
WO2010052862A1 (en) 2008-11-06 2010-05-14 インターメタリックス株式会社 Method for producing rare earth sintered magnet and powder container for rare earth sintered magnet production
JP2010252463A (en) * 2009-04-14 2010-11-04 Jfe Steel Corp Stator core and motor
US7883587B2 (en) 2006-11-17 2011-02-08 Shin-Etsu Chemical Co., Ltd. Method for preparing rare earth permanent magnet
KR20110036508A (en) * 2009-10-01 2011-04-07 신에쓰 가가꾸 고교 가부시끼가이샤 Assembling method of rotor for ipm type permanent magnet rotating machine
JP2011078270A (en) * 2009-10-01 2011-04-14 Shin-Etsu Chemical Co Ltd Rotor for permanent magnet rotary machine
JP2011078269A (en) * 2009-10-01 2011-04-14 Shin-Etsu Chemical Co Ltd Rotor for axial gap type permanent magnet rotary machine
US7955443B2 (en) 2006-04-14 2011-06-07 Shin-Etsu Chemical Co., Ltd. Method for preparing rare earth permanent magnet material
JP2012125139A (en) * 2010-09-29 2012-06-28 Hitachi Metals Ltd Coupling device and manufacturing method of coupling device
US8211327B2 (en) 2004-10-19 2012-07-03 Shin-Etsu Chemical Co., Ltd. Preparation of rare earth permanent magnet material
US8231740B2 (en) 2006-04-14 2012-07-31 Shin-Etsu Chemical Co., Ltd. Method for preparing rare earth permanent magnet material
JP2012172622A (en) * 2011-02-23 2012-09-10 Mitsubishi Electric Corp Hermetic compressor
US8562756B2 (en) 2008-01-11 2013-10-22 Intermetallics Co., Ltd. NdFeB sintered magnet and method for producing the same
US8638017B2 (en) 2009-09-18 2014-01-28 Shin-Etsu Chemical Co., Ltd. Rotor for permanent magnet rotating machine
JP2014017956A (en) * 2012-07-09 2014-01-30 Toyota Motor Corp Divided permanent magnet and method of manufacturing the same
WO2014034854A1 (en) 2012-08-31 2014-03-06 信越化学工業株式会社 Production method for rare earth permanent magnet
WO2014034851A1 (en) 2012-08-31 2014-03-06 信越化学工業株式会社 Production method for rare earth permanent magnet
WO2014034849A1 (en) 2012-08-31 2014-03-06 信越化学工業株式会社 Production method for rare earth permanent magnet
JP2014146627A (en) * 2013-01-25 2014-08-14 Aichi Elec Co Permanent magnet and permanent magnet manufacturing method
JP2014147151A (en) * 2013-01-25 2014-08-14 Aichi Elec Co Permanent magnet motor
US8829758B2 (en) 2012-03-06 2014-09-09 Mitsubishi Electric Corporation Rotary electric machine
JP2015119617A (en) * 2013-12-18 2015-06-25 現代自動車株式会社 Embedded type permanent magnet synchronous motor
JP2015154051A (en) * 2014-02-19 2015-08-24 信越化学工業株式会社 Method for manufacturing rare earth permanent magnet
KR20150098229A (en) 2014-02-19 2015-08-27 신에쓰 가가꾸 고교 가부시끼가이샤 Electrodepositing apparatus and preparation of rare earth permanent magnet
JP2016111312A (en) * 2014-12-02 2016-06-20 現代自動車株式会社Hyundai Motor Company Manufacturing method of split type and incomplete split type non-magnetized permanent magnets and incomplete split type non-magnetized permanent magnet
US9385563B2 (en) 2012-12-12 2016-07-05 Hyundai Motor Company Rotor permanent magnet apparatus for drive motor based on temperature distribution
US9589714B2 (en) 2009-07-10 2017-03-07 Intermetallics Co., Ltd. Sintered NdFeB magnet and method for manufacturing the same
JP2018157667A (en) * 2017-03-16 2018-10-04 株式会社安川電機 Permanent magnet for rotary electric machine, rotary electric machine, manufacturing method of permanent magnet for rotary electric machine
US10790076B2 (en) 2015-04-28 2020-09-29 Shin-Etsu Chemical Co., Ltd. Method for producing rare-earth magnets, and rare-earth-compound application device
US10832864B2 (en) 2015-04-28 2020-11-10 Shin-Etsu Chemical Co., Ltd. Method for producing rare-earth magnets, and rare-earth-compound application device
US10854382B2 (en) 2015-04-28 2020-12-01 Shin-Etsu Chemical Co., Ltd. Method for producing rare-earth magnets, and slurry application device
US10861645B2 (en) 2015-04-28 2020-12-08 Shin-Etsu Chemical Co., Ltd. Method for producing rare-earth magnets, and slurry application device
US10916372B2 (en) 2015-04-28 2021-02-09 Shin-Etsu Chemical Co., Ltd. Method for producing rare-earth magnets, and rare-earth-compound application device
US10943731B2 (en) 2015-04-28 2021-03-09 Shin-Etsu Chemical Co., Ltd. Method for producing rare-earth magnets, and rare-earth-compound application device
US11084059B2 (en) 2015-04-28 2021-08-10 Shin-Etsu Chemical Co., Ltd. Method for producing rare-earth magnet
CN116721860A (en) * 2023-08-08 2023-09-08 乳源瑶族自治县力强磁铁制品有限公司 Sintering process and special equipment for producing neodymium-iron-boron motor magnet
JP7445850B2 (en) 2020-01-07 2024-03-08 ボマテック マネジメント アーゲー Permanent magnet used in electrical machines and having one or more grooves

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04328804A (en) * 1991-04-26 1992-11-17 Sumitomo Special Metals Co Ltd Corrosion-proof permanent magnet and manufacture thereof
JPH06244011A (en) * 1992-12-26 1994-09-02 Sumitomo Special Metals Co Ltd Corrosion-resistant rare earth magnet and manufacture thereof
JP2005011973A (en) * 2003-06-18 2005-01-13 Japan Science & Technology Agency Rare earth-iron-boron based magnet and its manufacturing method
JP2005139554A (en) * 2001-06-18 2005-06-02 Shin Etsu Chem Co Ltd Heat-resistant coated member
JP2005175138A (en) * 2003-12-10 2005-06-30 Japan Science & Technology Agency Heat-resisting rare earth magnet and its manufacturing method
JP2005198365A (en) * 2003-12-26 2005-07-21 Neomax Co Ltd Rare earth permanent magnet for motor, and its manufacturing method
JP4450239B2 (en) * 2004-10-19 2010-04-14 信越化学工業株式会社 Rare earth permanent magnet material and manufacturing method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04328804A (en) * 1991-04-26 1992-11-17 Sumitomo Special Metals Co Ltd Corrosion-proof permanent magnet and manufacture thereof
JPH06244011A (en) * 1992-12-26 1994-09-02 Sumitomo Special Metals Co Ltd Corrosion-resistant rare earth magnet and manufacture thereof
JP2005139554A (en) * 2001-06-18 2005-06-02 Shin Etsu Chem Co Ltd Heat-resistant coated member
JP2005011973A (en) * 2003-06-18 2005-01-13 Japan Science & Technology Agency Rare earth-iron-boron based magnet and its manufacturing method
JP2005175138A (en) * 2003-12-10 2005-06-30 Japan Science & Technology Agency Heat-resisting rare earth magnet and its manufacturing method
JP2005198365A (en) * 2003-12-26 2005-07-21 Neomax Co Ltd Rare earth permanent magnet for motor, and its manufacturing method
JP4450239B2 (en) * 2004-10-19 2010-04-14 信越化学工業株式会社 Rare earth permanent magnet material and manufacturing method thereof

Cited By (85)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8211327B2 (en) 2004-10-19 2012-07-03 Shin-Etsu Chemical Co., Ltd. Preparation of rare earth permanent magnet material
US8377233B2 (en) 2004-10-19 2013-02-19 Shin-Etsu Chemical Co., Ltd. Preparation of rare earth permanent magnet material
JP2007097306A (en) * 2005-09-29 2007-04-12 Meidensha Corp Permanent magnet type motor
US7955443B2 (en) 2006-04-14 2011-06-07 Shin-Etsu Chemical Co., Ltd. Method for preparing rare earth permanent magnet material
JP2007284738A (en) * 2006-04-14 2007-11-01 Shin Etsu Chem Co Ltd Method for producing rare earth permanent magnet material
US8075707B2 (en) 2006-04-14 2011-12-13 Shin-Etsu Chemical Co., Ltd. Method for preparing rare earth permanent magnet material
JP4605396B2 (en) * 2006-04-14 2011-01-05 信越化学工業株式会社 Method for producing rare earth permanent magnet material
JP2007287874A (en) * 2006-04-14 2007-11-01 Shin Etsu Chem Co Ltd Process for producing rare earth permanent magnet material
US8231740B2 (en) 2006-04-14 2012-07-31 Shin-Etsu Chemical Co., Ltd. Method for preparing rare earth permanent magnet material
WO2007119553A1 (en) * 2006-04-14 2007-10-25 Shin-Etsu Chemical Co., Ltd. Process for producing rare-earth permanent magnet material
WO2008032426A1 (en) * 2006-09-15 2008-03-20 Intermetallics Co., Ltd. PROCESS FOR PRODUCING SINTERED NdFeB MAGNET
JP5226520B2 (en) * 2006-09-15 2013-07-03 インターメタリックス株式会社 Manufacturing method of NdFeB sintered magnet
JPWO2008032426A1 (en) * 2006-09-15 2010-01-21 インターメタリックス株式会社 Manufacturing method of NdFeB sintered magnet
US7883587B2 (en) 2006-11-17 2011-02-08 Shin-Etsu Chemical Co., Ltd. Method for preparing rare earth permanent magnet
JP2008251992A (en) * 2007-03-30 2008-10-16 Tdk Corp Sintered body of magnet
US8801870B2 (en) 2007-05-01 2014-08-12 Intermetallics Co., Ltd. Method for making NdFeB sintered magnet
JPWO2008139690A1 (en) * 2007-05-01 2010-07-29 インターメタリックス株式会社 NdFeB-based sintered magnet manufacturing method
JP5363314B2 (en) * 2007-05-01 2013-12-11 インターメタリックス株式会社 NdFeB-based sintered magnet manufacturing method
WO2008139690A1 (en) * 2007-05-01 2008-11-20 Intermetallics Co., Ltd. Process for production of ndfeb sintered magnets
JPWO2008146937A1 (en) * 2007-05-28 2010-08-19 トヨタ自動車株式会社 Rotor for embedded magnet motor and embedded magnet motor
WO2008146937A1 (en) * 2007-05-28 2008-12-04 Toyota Jidosha Kabushiki Kaisha Rotor for magnet-embedded motor and magnet-embedded motor
JP2009142081A (en) * 2007-12-06 2009-06-25 Toyota Motor Corp Permanent magnet and method of manufacturing the same, and rotor and ipm motor
US20100244608A1 (en) * 2007-12-06 2010-09-30 Toyota Jidosha Kabushiki Kaisha Permanent magnet, manufacturing method thereof, and rotor and ipm motor
JP4497198B2 (en) * 2007-12-06 2010-07-07 トヨタ自動車株式会社 Permanent magnet and method for manufacturing the same, and rotor and IPM motor
US8497613B2 (en) * 2007-12-06 2013-07-30 Toyota Jidosha Kabushiki Kaisha Permanent magnet, manufacturing method thereof, and rotor and IPM motor
US10854380B2 (en) 2008-01-11 2020-12-01 Daido Steel Co., Ltd. NdFeB sintered magnet and method for producing the same
US8562756B2 (en) 2008-01-11 2013-10-22 Intermetallics Co., Ltd. NdFeB sintered magnet and method for producing the same
JP2009254092A (en) * 2008-04-04 2009-10-29 Shin Etsu Chem Co Ltd Rotor for permanent magnet rotating machine
JP2010004647A (en) * 2008-06-19 2010-01-07 Daikin Ind Ltd Rotor
JP5690141B2 (en) * 2008-11-06 2015-03-25 インターメタリックス株式会社 Rare earth sintered magnet manufacturing method and powder filled container for manufacturing rare earth sintered magnet
WO2010052862A1 (en) 2008-11-06 2010-05-14 インターメタリックス株式会社 Method for producing rare earth sintered magnet and powder container for rare earth sintered magnet production
JP2010252463A (en) * 2009-04-14 2010-11-04 Jfe Steel Corp Stator core and motor
US9589714B2 (en) 2009-07-10 2017-03-07 Intermetallics Co., Ltd. Sintered NdFeB magnet and method for manufacturing the same
US8638017B2 (en) 2009-09-18 2014-01-28 Shin-Etsu Chemical Co., Ltd. Rotor for permanent magnet rotating machine
KR101678221B1 (en) 2009-10-01 2016-11-21 신에쓰 가가꾸 고교 가부시끼가이샤 Assembling method of rotor for ipm type permanent magnet rotating machine
US8823235B2 (en) 2009-10-01 2014-09-02 Shin-Etsu Chemical Co., Ltd. Rotor for axial gap-type permanent magnetic rotating machine
KR20110036508A (en) * 2009-10-01 2011-04-07 신에쓰 가가꾸 고교 가부시끼가이샤 Assembling method of rotor for ipm type permanent magnet rotating machine
JP2011078270A (en) * 2009-10-01 2011-04-14 Shin-Etsu Chemical Co Ltd Rotor for permanent magnet rotary machine
KR101680900B1 (en) * 2009-10-01 2016-11-29 신에쓰 가가꾸 고교 가부시끼가이샤 Rotor for axial gap-type permanent magnetic rotating machine
JP2011078269A (en) * 2009-10-01 2011-04-14 Shin-Etsu Chemical Co Ltd Rotor for axial gap type permanent magnet rotary machine
JP2011078268A (en) * 2009-10-01 2011-04-14 Shin-Etsu Chemical Co Ltd Method of assembling rotor for ipm-type permanent magnet rotary machine
JP2012125139A (en) * 2010-09-29 2012-06-28 Hitachi Metals Ltd Coupling device and manufacturing method of coupling device
JP2012172622A (en) * 2011-02-23 2012-09-10 Mitsubishi Electric Corp Hermetic compressor
US8829758B2 (en) 2012-03-06 2014-09-09 Mitsubishi Electric Corporation Rotary electric machine
JP2014017956A (en) * 2012-07-09 2014-01-30 Toyota Motor Corp Divided permanent magnet and method of manufacturing the same
EP2892063A4 (en) * 2012-08-31 2016-04-20 Shinetsu Chemical Co Production method for rare earth permanent magnet
US10181377B2 (en) 2012-08-31 2019-01-15 Shin-Etsu Chemical Co., Ltd. Production method for rare earth permanent magnet
JP2014063997A (en) * 2012-08-31 2014-04-10 Shin Etsu Chem Co Ltd Method for producing rare earth permanent magnet
JP2014063996A (en) * 2012-08-31 2014-04-10 Shin Etsu Chem Co Ltd Method for producing rare earth permanent magnet
KR20150048232A (en) 2012-08-31 2015-05-06 신에쓰 가가꾸 고교 가부시끼가이샤 Production method for rare earth permanent magnet
KR20150048233A (en) 2012-08-31 2015-05-06 신에쓰 가가꾸 고교 가부시끼가이샤 Production method for rare earth permanent magnet
KR20150052153A (en) 2012-08-31 2015-05-13 신에쓰 가가꾸 고교 가부시끼가이샤 Production method for rare earth permanent magnet
WO2014034851A1 (en) 2012-08-31 2014-03-06 信越化学工業株式会社 Production method for rare earth permanent magnet
WO2014034854A1 (en) 2012-08-31 2014-03-06 信越化学工業株式会社 Production method for rare earth permanent magnet
WO2014034849A1 (en) 2012-08-31 2014-03-06 信越化学工業株式会社 Production method for rare earth permanent magnet
JP2014063998A (en) * 2012-08-31 2014-04-10 Shin Etsu Chem Co Ltd Method for producing rare earth permanent magnet
US10179955B2 (en) 2012-08-31 2019-01-15 Shin-Etsu Chemical Co., Ltd. Production method for rare earth permanent magnet
US10138564B2 (en) 2012-08-31 2018-11-27 Shin-Etsu Chemical Co., Ltd. Production method for rare earth permanent magnet
EP2894642A4 (en) * 2012-08-31 2016-04-20 Shinetsu Chemical Co Production method for rare earth permanent magnet
US9385563B2 (en) 2012-12-12 2016-07-05 Hyundai Motor Company Rotor permanent magnet apparatus for drive motor based on temperature distribution
JP2014147151A (en) * 2013-01-25 2014-08-14 Aichi Elec Co Permanent magnet motor
JP2014146627A (en) * 2013-01-25 2014-08-14 Aichi Elec Co Permanent magnet and permanent magnet manufacturing method
JP2015119617A (en) * 2013-12-18 2015-06-25 現代自動車株式会社 Embedded type permanent magnet synchronous motor
KR20150098229A (en) 2014-02-19 2015-08-27 신에쓰 가가꾸 고교 가부시끼가이샤 Electrodepositing apparatus and preparation of rare earth permanent magnet
JP2015154051A (en) * 2014-02-19 2015-08-24 信越化学工業株式会社 Method for manufacturing rare earth permanent magnet
US9845545B2 (en) 2014-02-19 2017-12-19 Shin-Etsu Chemical Co., Ltd. Preparation of rare earth permanent magnet
US10017871B2 (en) 2014-02-19 2018-07-10 Shin-Etsu Chemical Co., Ltd. Electrodepositing apparatus and preparation of rare earth permanent magnet
US10526715B2 (en) 2014-02-19 2020-01-07 Shin-Etsu Chemical Co., Ltd. Preparation of rare earth permanent magnet
EP2919241A2 (en) 2014-02-19 2015-09-16 Shin-Etsu Chemical Co., Ltd. Electrodepositing apparatus and preparation of rare earth permanent magnet
EP2913832A1 (en) 2014-02-19 2015-09-02 Shin-Etsu Chemical Co., Ltd. Preparation of rare earth permanent magnet
KR20150098196A (en) 2014-02-19 2015-08-27 신에쓰 가가꾸 고교 가부시끼가이샤 Preparation of rare earth permanent magnet
JP2016111312A (en) * 2014-12-02 2016-06-20 現代自動車株式会社Hyundai Motor Company Manufacturing method of split type and incomplete split type non-magnetized permanent magnets and incomplete split type non-magnetized permanent magnet
US10916372B2 (en) 2015-04-28 2021-02-09 Shin-Etsu Chemical Co., Ltd. Method for producing rare-earth magnets, and rare-earth-compound application device
US10832864B2 (en) 2015-04-28 2020-11-10 Shin-Etsu Chemical Co., Ltd. Method for producing rare-earth magnets, and rare-earth-compound application device
US10790076B2 (en) 2015-04-28 2020-09-29 Shin-Etsu Chemical Co., Ltd. Method for producing rare-earth magnets, and rare-earth-compound application device
US10854382B2 (en) 2015-04-28 2020-12-01 Shin-Etsu Chemical Co., Ltd. Method for producing rare-earth magnets, and slurry application device
US10861645B2 (en) 2015-04-28 2020-12-08 Shin-Etsu Chemical Co., Ltd. Method for producing rare-earth magnets, and slurry application device
US10943731B2 (en) 2015-04-28 2021-03-09 Shin-Etsu Chemical Co., Ltd. Method for producing rare-earth magnets, and rare-earth-compound application device
US11084059B2 (en) 2015-04-28 2021-08-10 Shin-Etsu Chemical Co., Ltd. Method for producing rare-earth magnet
US11424072B2 (en) 2015-04-28 2022-08-23 Shin-Etsu Chemical Co., Ltd. Method for producing rare-earth magnets, and rare-earth-compound application device
JP2018157667A (en) * 2017-03-16 2018-10-04 株式会社安川電機 Permanent magnet for rotary electric machine, rotary electric machine, manufacturing method of permanent magnet for rotary electric machine
US11158445B2 (en) 2017-03-16 2021-10-26 Kabushiki Kaisha Yaskawa Denki Permanent magnet for rotating electrical machine, rotating electrical machine, method for producing permanent magnet for rotating electrical machine
JP7445850B2 (en) 2020-01-07 2024-03-08 ボマテック マネジメント アーゲー Permanent magnet used in electrical machines and having one or more grooves
CN116721860A (en) * 2023-08-08 2023-09-08 乳源瑶族自治县力强磁铁制品有限公司 Sintering process and special equipment for producing neodymium-iron-boron motor magnet
CN116721860B (en) * 2023-08-08 2023-12-08 乳源瑶族自治县力强磁铁制品有限公司 Sintering process and special equipment for producing neodymium-iron-boron motor magnet

Also Published As

Publication number Publication date
JP4656325B2 (en) 2011-03-23

Similar Documents

Publication Publication Date Title
JP4656325B2 (en) Rare earth permanent magnet, manufacturing method thereof, and permanent magnet rotating machine
JP4737431B2 (en) Permanent magnet rotating machine
KR101245465B1 (en) Rare-earth permanent magnet, process for preparing the same and permanent magnet rotating machine
JP5262643B2 (en) Nd-based sintered magnet and manufacturing method thereof
JP5251219B2 (en) Rotor for permanent magnet rotating machine
JP5493663B2 (en) Assembling method of rotor for IPM type permanent magnet rotating machine
US8638017B2 (en) Rotor for permanent magnet rotating machine
US6984271B2 (en) Rare earth magnet, process for producing same, and motor using rare earth magnet
JP2004031781A (en) Rare earth magnet, its manufacturing method and motor using the same
JP4919109B2 (en) Permanent magnet rotating machine and method for manufacturing permanent magnet segment for permanent magnet rotating machine
KR101638090B1 (en) Rotor for permanent magnet type rotary machine
JP2011019401A (en) Method of manufacturing permanent magnet segment for permanent magnet rotating machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101214

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4656325

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150