JP2005135752A - Oxygen reduction catalyst for fuel cell - Google Patents

Oxygen reduction catalyst for fuel cell Download PDF

Info

Publication number
JP2005135752A
JP2005135752A JP2003370811A JP2003370811A JP2005135752A JP 2005135752 A JP2005135752 A JP 2005135752A JP 2003370811 A JP2003370811 A JP 2003370811A JP 2003370811 A JP2003370811 A JP 2003370811A JP 2005135752 A JP2005135752 A JP 2005135752A
Authority
JP
Japan
Prior art keywords
oxygen reduction
catalyst
less
fuel
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003370811A
Other languages
Japanese (ja)
Other versions
JP4679815B2 (en
Inventor
Kenichiro Ota
健一郎 太田
Nobuyuki Kamiya
信行 神谷
Shigenori Mitsushima
重徳 光島
Akimitsu Ishihara
顕光 石原
Oumarou Savadogo
サバドゴ オマロウ
Kensan Ri
建燦 李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2003370811A priority Critical patent/JP4679815B2/en
Publication of JP2005135752A publication Critical patent/JP2005135752A/en
Application granted granted Critical
Publication of JP4679815B2 publication Critical patent/JP4679815B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide an oxygen reduction catalyst for a direct type fuel cell to carry out an oxygen reduction reaction of high efficiency in such a state that a liquid fuel such as methanol is cross-leaked. <P>SOLUTION: An electrode catalyst having inactivity and high oxygen reduction catalyst activity against oxidation reaction of a cross-leaked fuel is provided. To be concrete, the oxygen reduction catalyst contains palladium of 30 atom% or more and 95 atom% or less, one or more of transition metal element of 5 atom% or more and 70 atom% or less, having standard oxidation reduction potential of 0 V or less, chosen from cobalt, chrome, molybdenum, and tantalum. Preferably, palladium of 40 atom% or more and 70 atom% or less is contained. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、電気化学触媒、特に、液体燃料を直接燃料とする直接形燃料電池の空気極触媒に関する。   The present invention relates to an electrochemical catalyst, and more particularly, to an air electrode catalyst of a direct fuel cell using liquid fuel as a direct fuel.

燃料及び酸素含有ガスの供給及び集電を担うセパレータ間に、イオン伝導体である電解質の両側に多孔質の燃料酸化触媒層と酸素還元触媒層を接合した電極−電解質接合体を挟んで構成される燃料電池の中で、メタノールを初めとする炭素及び水素を含む液体燃料を直接燃料とする直接形燃料電池(例えば、特許文献1,2)は、構造が単純であることから、携帯用途、移動電源、分散電源への応用が進められている。   An electrode-electrolyte assembly is formed by sandwiching a porous fuel oxidation catalyst layer and an oxygen reduction catalyst layer on both sides of the electrolyte, which is an ionic conductor, between separators that supply and collect fuel and oxygen-containing gas. Among direct fuel cells (for example, Patent Documents 1 and 2) that directly use liquid fuel containing methanol and carbon and hydrogen, such as methanol, the structure is simple. Applications to mobile power sources and distributed power sources are being promoted.

直接形燃料電池の電解質膜にはパーフルオロエチレンスルホン酸膜に代表されるプロトン交換性の高分子膜が用いられている。この電解質膜は含水することによりプロトン伝導性を発現する。したがって、メタノールなどの水溶性燃料を用いる場合、電解質膜内に燃料が染み込んで、空気極の触媒上で直接化学的に燃焼するため、燃料利用率及び空気極の電位が低下するため、エネルギー変換効率が著しく低くなるという問題点がある。   A proton-exchangeable polymer membrane typified by a perfluoroethylene sulfonic acid membrane is used for the electrolyte membrane of the direct fuel cell. This electrolyte membrane exhibits proton conductivity when it contains water. Therefore, when using a water-soluble fuel such as methanol, the fuel soaks into the electrolyte membrane and directly chemically burns on the catalyst of the air electrode, so that the fuel utilization rate and the potential of the air electrode decrease, so energy conversion. There is a problem that the efficiency is remarkably lowered.

燃料の透過(クロスリーク)によるエネルギー変換効率の低下を抑制する手段として、燃料の透過を抑制した電解質膜の開発が行われている(例えば、特許文献2、3、4)。また、酸素極にPdまたはPd合金としてRu,Rh,Os,Ir,Pt,Au,Agなど水素より酸化されにくい遷移金属との合金を用いたもの(特許文献5)や、負極の燃料及び水との接触面と正極の酸素含有気体との接触面の間のいずれかの位置に、Pd膜またはPd合金膜を配置したもの(特許文献6)も開発されている。   As means for suppressing a decrease in energy conversion efficiency due to fuel permeation (cross leak), an electrolyte membrane that suppresses fuel permeation has been developed (for example, Patent Documents 2, 3, and 4). Also, an oxygen electrode using Pd or an alloy with a transition metal that is less oxidized than hydrogen, such as Ru, Rh, Os, Ir, Pt, Au, Ag, as a Pd alloy (Patent Document 5), fuel and water for the negative electrode A device in which a Pd film or a Pd alloy film is disposed at any position between the contact surface with the oxygen-containing gas and the contact surface with the oxygen-containing gas of the positive electrode (Patent Document 6) has also been developed.

特開2003−123786号公報JP 2003-123786 A 特開平11−144745号公報Japanese Patent Laid-Open No. 11-144745 特開2002−184427号公報JP 2002-184427 A 特開2003−257453号公報JP 2003-257453 A 特開2001−256982号公報JP 2001-256882 A 特開2002−231265号公報JP 2002-231265 A

上記のように、電解質膜の開発が行われているが、パーフルオロエチレンスルホン酸膜と同程度の高いイオン伝導度と安定性を持ちながら、なおかつ燃料の透過度のみを十分に低下させることは困難である。また、これらの新規電解質膜であってもプロトン伝導の媒体が水である以上はある程度の燃料の透過は避けられない。そこで、本発明は、メタノールなどの液体燃料がクロスリークした状態で高効率の酸素還元反応を行うための直接形燃料電池用酸素還元触媒を提供することを目的とする。   As described above, the development of electrolyte membranes has been carried out, but it is possible to sufficiently reduce only the fuel permeability while having the same high ionic conductivity and stability as perfluoroethylene sulfonic acid membranes. Have difficulty. Further, even with these new electrolyte membranes, a certain amount of fuel permeation is inevitable as long as the proton conducting medium is water. Accordingly, an object of the present invention is to provide an oxygen reduction catalyst for a direct fuel cell for performing a highly efficient oxygen reduction reaction in a state where a liquid fuel such as methanol is cross leaked.

本発明は、イオン伝導性電解質膜の両側に酸化反応触媒と酸素還元反応触媒を配置して構成され、酸化反応触媒での酸化反応用の燃料として炭素及び水素を含む液体燃料を供給する直接形燃料電池用の酸素還元反応触媒を提供する。本発明の酸素還元反応触媒を用いる場合、上記の新規電解質膜との併用を妨げるものではないが、必ずしも燃料の透過を抑制する必要は無い。図1に、その概念図を示す。横軸は電極電位であり、空気極での反応について示してある。電極Aは、例えば白金の如く、酸素還元反応、燃料の酸化反応の両
者に活性な触媒を、電極Bは酸素還元反応に活性であり、燃料の酸化反応に不活性な本発明の電極触媒を用いた電極を示す。
The present invention is configured by arranging an oxidation reaction catalyst and an oxygen reduction reaction catalyst on both sides of an ion conductive electrolyte membrane, and supplying a liquid fuel containing carbon and hydrogen as a fuel for the oxidation reaction in the oxidation reaction catalyst. An oxygen reduction reaction catalyst for a fuel cell is provided. When the oxygen reduction reaction catalyst of the present invention is used, the combined use with the above novel electrolyte membrane is not hindered, but it is not always necessary to suppress fuel permeation. FIG. 1 shows a conceptual diagram thereof. The horizontal axis represents the electrode potential, and shows the reaction at the air electrode. Electrode A is an active catalyst for both oxygen reduction reaction and fuel oxidation reaction, such as platinum. Electrode B is an active electrode catalyst for the oxygen reduction reaction and inactive for fuel oxidation reaction. The electrode used is shown.

なお、この例では電極Aの方がBよりも酸素還元は触媒活性が高いとして記述した。すなわち、触媒上に燃料が存在しない場合の電極の性能は図1中、電極A酸素(破線)、電極B酸素(実線)で示される如く、酸素の理論平衡電位に対して高い電位では酸化反応(酸素発生)、低い電位では還元反応(酸素還元)の曲線で表される。燃料電池の空気極反応では同じ還元電流を高い電位で得るほうが、エネルギー変換効率は高いため、酸素還元触媒活性は電極Aの方が高い。   In this example, the electrode A is described as having higher catalytic activity for oxygen reduction than B. That is, the performance of the electrode when no fuel is present on the catalyst is shown in FIG. 1 as indicated by electrode A oxygen (dashed line) and electrode B oxygen (solid line). (Oxygen generation), a low potential is represented by a reduction reaction (oxygen reduction) curve. In the air electrode reaction of the fuel cell, obtaining the same reduction current at a higher potential results in higher energy conversion efficiency, so that the oxygen reduction catalytic activity of electrode A is higher.

一方、触媒上に燃料が存在すると、燃料の酸化反応が同時に進行する。電極A燃料(破線)及び電極B燃料(実線)で示した曲線は、それぞれの電極上での燃料の反応を示す。透過Aで示される電流値が電解質膜を透過する燃料の量で決定される電極A上での酸化反応の電流値であり、電極Bは燃料の酸化に対して不活性であるため、電流は流れない。このとき、燃料の酸化に不活性な電極Bの性能は変化せず、実線で表されるのに対して、電極Aでは等しい電位における電極A燃料の酸化電流と電極A酸素の還元電流の和である電極A和(一転鎖線)で示した曲線の特性まで、性能が低下する。したがって、燃料が透過する条件では電極Bの方が電気化学的に活性な触媒であり、なおかつ燃料の損失も無い良好な触媒であることが分かる。   On the other hand, when fuel is present on the catalyst, the oxidation reaction of the fuel proceeds simultaneously. The curves indicated by the electrode A fuel (dashed line) and the electrode B fuel (solid line) indicate the reaction of the fuel on the respective electrodes. The current value indicated by permeation A is the current value of the oxidation reaction on electrode A determined by the amount of fuel permeating the electrolyte membrane, and since electrode B is inactive against fuel oxidation, the current is Not flowing. At this time, the performance of the electrode B that is inactive to the oxidation of the fuel does not change and is represented by a solid line, whereas in the electrode A, the sum of the oxidation current of the electrode A fuel and the reduction current of the electrode A oxygen at the same potential. The performance is lowered to the characteristic of the curve indicated by the electrode A sum (one-dot chain line). Therefore, it can be seen that the electrode B is an electrochemically active catalyst under the conditions where the fuel permeates, and is a good catalyst with no fuel loss.

酸性電解質中の酸素還元触媒としては、Kim KINOSHITA、“Electrochemical Oxygen Technology”、John Wiley & Sons、Inc. 1992年、54ページ等の各種総説に示される如く、白金及び白金に遷移金属を添加した白金系の合金触媒が一般的に使用されるが、白金のほかには、白金族であるパラジウム、ルテニウム、ロジウム、イリジウムなどが酸素還元触媒能を有することが知られており、この中でもパラジウムが白金に次いで酸素還元触媒能が高いとされている。   Oxygen reduction catalysts in acidic electrolytes include platinum and platinum with transition metals added as shown in various reviews such as Kim KINOSHITA, “Electrochemical Oxygen Technology”, John Wiley & Sons, Inc. 1992, p. 54. In general, platinum-based alloy catalysts such as palladium, ruthenium, rhodium, and iridium are known to have oxygen reduction catalytic ability. Among these, palladium is platinum. Next, it is said that the oxygen reduction catalytic ability is high.

本発明者らは、パラジウムに遷移金属、とくに標準酸化還元電位0V以下の遷移金属を添加することにより、メタノールを初めとする燃料の酸化に対して不活性でかつ純粋なパラジウムと比較して高い酸素還元触媒能を有する電極触媒を得ることができることを見出した。ここで、標準酸化還元電位とはAllen. J. Bard、Larry R. Faulkner、”Electrochemical Methods”、John Wiley & Sons、Inc. 1980年、700ページ等の電気化学に関する専門書に記載される水素の酸化還元反応を基準とした酸化還元のポテンシャルを表す指標であり、標準酸化還元電位0V以下の物質は平衡論的に水素より酸化されやすいことを意味する。   By adding a transition metal, particularly a transition metal having a standard oxidation-reduction potential of 0 V or less, to the palladium, the present inventors are inert to the oxidation of fuels including methanol and are higher than pure palladium. It has been found that an electrode catalyst having oxygen reduction catalytic ability can be obtained. Here, the standard oxidation-reduction potential is defined as the hydrogen oxidation described in specialist books on electrochemistry such as Allen. J. Bard, Larry R. Faulkner, “Electrochemical Methods”, John Wiley & Sons, Inc. 1980, page 700. It is an index representing the redox potential based on the redox reaction, and means that a substance having a standard redox potential of 0 V or less is more easily oxidized than hydrogen in terms of equilibrium.

パラジウムは水素を吸蔵する金属として知られる。一方、標準酸化還元電位0V以下の遷移金属は燃料が存在する環境においても、単独では酸化物の状態で安定な物質であることを意味し、酸素を吸着しやすく、メタノールを初めとする炭素及び水素を含む燃料を吸着し難く、燃料を酸化するための触媒とはならない。したがって、標準酸化還元電位の高い白金、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、金などを添加した触媒では、添加元素が燃料の酸化触媒として働くのに対して、標準酸化還元電位0V以下の遷移金属は燃料の酸化能力が無いために酸素還元反応の選択率が高くなる。また、酸素を還元する反応による生成物は水であるので、パラジウムが水素を、標準酸化還元電位0V以下の遷移金属が酸素を捕捉することにより酸素還元反応の触媒能が高い。   Palladium is known as a metal that stores hydrogen. On the other hand, a transition metal having a standard oxidation-reduction potential of 0 V or less means that it is a stable substance in an oxide state alone even in an environment where fuel exists, and it is easy to adsorb oxygen, and carbon such as methanol and carbon. It is difficult to adsorb fuel containing hydrogen, and it does not become a catalyst for oxidizing fuel. Therefore, in the catalyst with platinum, ruthenium, rhodium, palladium, osmium, iridium, gold, etc. with high standard oxidation-reduction potential, the additive element works as an oxidation catalyst for fuel, whereas the transition with standard oxidation-reduction potential of 0 V or less Since metal does not have the ability to oxidize fuel, the selectivity of the oxygen reduction reaction is increased. In addition, since the product resulting from the reaction of reducing oxygen is water, palladium has hydrogen and a transition metal having a standard oxidation-reduction potential of 0 V or less has high catalytic ability for the oxygen reduction reaction.

上記の酸素還元反応触媒の組成としては30原子%以上かつ95原子%以下のパラジウムと、5原子%以上70原子%以下の遷移金属原子を含むことが好ましい。前記の遷移金属元素としては、コバルト、クロム、ニッケル、モリブデン、タンタルのうち、一つ以上の元素を含むことが好ましい。なかでも、40原子%以上かつ70原子%以下のパラジウムを含む酸素還元
反応触媒が酸素還元反応に対する触媒活性が高く、燃料の酸化に対して不活性な触媒である。
The composition of the oxygen reduction reaction catalyst preferably contains 30 atomic% or more and 95 atomic% or less of palladium and 5 atomic% or more and 70 atomic% or less of a transition metal atom. The transition metal element preferably contains one or more elements of cobalt, chromium, nickel, molybdenum, and tantalum. Among them, an oxygen reduction reaction catalyst containing 40 atomic% or more and 70 atomic% or less of palladium has a high catalytic activity for the oxygen reduction reaction and is an inactive catalyst for fuel oxidation.

これらのパラジウムを含む酸素還元反応触媒の特徴を表す別の指標として、燃料の酸化反応と電気化学的な酸素還元反応が競争反応として進行する条件において、酸素還元反応の選択率が高いことを考えることができる。図1に示した原理に基づいて表現すると、酸素還元反応の速度が支配的である限界拡散電流の5%から10%程度の任意の電流密度において、電解質に燃料が存在する場合と、しない場合の電位が変わらないこと、具体的には1リットル当たり0.1モルの硫酸水溶液中での前記任意の電流密度での電位に対し、1リットル当たり0.1モルの硫酸と0.1モルのメタノールの電解質中での前記任意の電流密度における電位の比が90%以上かつ100%以下であることと定義できる。   As another index expressing the characteristics of these oxygen-reducing catalysts containing palladium, it is considered that the selectivity of the oxygen-reducing reaction is high under the condition that the oxidation reaction of the fuel and the electrochemical oxygen-reducing reaction proceed as a competitive reaction. be able to. When expressed based on the principle shown in FIG. 1, when the fuel is present in the electrolyte and when it is not present at an arbitrary current density of 5% to 10% of the limiting diffusion current where the rate of the oxygen reduction reaction is dominant In the electrolyte of 0.1 mol sulfuric acid and 0.1 mol methanol per liter with respect to the potential at the above arbitrary current density in 0.1 mol sulfuric acid aqueous solution per liter. It can be defined that the ratio of the potential at the arbitrary current density is 90% or more and 100% or less.

以上の合金触媒を合成する方法として、パラジウムと遷移金属をターゲットとして炭素製電極基板上にスパッタして合金を得る方法、白金系の合金触媒を合成する方法として 特開平05-182672号公報、特開平06-124712号公報記載の方法に準じて、塩化パラジウム酸及び塩化コバルトの混合溶液と担体炭素の混合液に還元剤を加えて担体炭素上に触媒を析出させる方法などがあるが、本発明は合金触媒の合成方法を限定するものではない。   As a method of synthesizing the above alloy catalyst, a method of obtaining an alloy by sputtering on a carbon electrode substrate using palladium and a transition metal as a target, and a method of synthesizing a platinum-based alloy catalyst are disclosed in JP-A-05-182672. According to the method described in Kaihei 06-124712, there is a method in which a reducing agent is added to a mixed solution of chloropalladium acid and cobalt chloride and a mixed solution of carrier carbon to deposit a catalyst on the supported carbon, etc. Does not limit the synthesis method of the alloy catalyst.

以上の酸素還元電極触媒はイオン伝導性電解質膜中を燃料が透過しやすいメタノールを初めとするアルコール系の水溶性の液体燃料、具体的にはメタノール、エタノール、グリコール、アセタールなどを燃料とする直接形燃料電池、特に酸化反応の活性化エネルギーが小さいメタノールを燃料とする直接形燃料電池のエネルギー変換効率の向上に有効である。   The above-mentioned oxygen reduction electrode catalyst is an alcohol-based water-soluble liquid fuel such as methanol that can easily pass through the ion-conducting electrolyte membrane, specifically, methanol, ethanol, glycol, acetal, etc. This is effective in improving the energy conversion efficiency of a direct fuel cell using methanol as a fuel, particularly a fuel having a small activation energy for oxidation reaction.

以上の結果から明らかなように、パラジウムと遷移金属元素を含む本発明の酸素還元触媒は燃料のメタノールなど、水溶性液体燃料の酸化反応に対して不活性でありながら、酸素還元反応の触媒活性が高いため、直接形燃料電池の性能向上、すなわち、発電効率の向上に資することは明白である。よって、本発明は、クロスリークした燃料の酸化反応に対して不活性かつ高い酸素還元触媒活性を有する電極触媒を供することができる。   As is clear from the above results, the oxygen reduction catalyst of the present invention containing palladium and a transition metal element is inactive with respect to the oxidation reaction of a water-soluble liquid fuel such as methanol of fuel, but the catalytic activity of the oxygen reduction reaction. Therefore, it is obvious that it contributes to improving the performance of the direct fuel cell, that is, improving the power generation efficiency. Therefore, the present invention can provide an electrode catalyst that is inactive with respect to the oxidation reaction of the cross leaked fuel and has a high oxygen reduction catalytic activity.

以下、本発明を、その実施の形態に基づいて説明する。
スパッタ法にて直径5mmのグラッシーカーボン上に酸素還元反応触媒を製作した。ターゲットにはパラジウムを用い、添加する遷移金属元素として、コバルト、クロム、ニッケル、モリブデン及びタンタル片を適宜パラジウム上に乗せて酸素還元反応触媒の組成を変化させた。スパッタ時のヘリウム圧は1×10-5Pa以下とした。
Hereinafter, the present invention will be described based on the embodiments.
An oxygen reduction reaction catalyst was fabricated on glassy carbon with a diameter of 5 mm by sputtering. Palladium was used as a target, and as a transition metal element to be added, cobalt, chromium, nickel, molybdenum and tantalum pieces were appropriately placed on palladium to change the composition of the oxygen reduction reaction catalyst. The helium pressure during sputtering was 1 × 10 −5 Pa or less.

水晶振動式膜厚計を用いて、スパッタ量を計測し、酸素還元反応触媒の膜の厚さがおよそ1μmの電極を作製した。作製した触媒の組成はエネルギー分散蛍光X線法により定量した。以上の手順で作製した本発明の電極と、比較のための、直径1mmの白金線を熱王水及び純水で洗浄した比較電極について、電気化学的に酸素還元触媒能を評価した。   The amount of spatter was measured using a quartz vibration type film thickness meter, and an electrode having an oxygen reduction reaction catalyst film thickness of about 1 μm was produced. The composition of the prepared catalyst was quantified by energy dispersive fluorescent X-ray method. The oxygen reduction catalytic ability of the electrode of the present invention produced by the above procedure and a comparative electrode obtained by washing a platinum wire having a diameter of 1 mm with hot aqua regia and pure water for comparison were evaluated electrochemically.

電解質として純水にH2SO4とCH3OHがそれぞれ0.1mol dm-3となるように添加したH2SO4+CH3OH電解質及びH2SO4が0.1mol dm-3となるように添加したH2SO4電解質を用いた。基準電極として可逆水素電極、対極に白金黒付き白金電極を用いた。30℃、酸素雰囲気中における5mV s-1の電位走査を行い、本発明の電極と比較電極について評価した。 H 2 SO 4 + CH 3 OH electrolyte added to pure water so that H 2 SO 4 and CH 3 OH are each 0.1 mol dm -3 and H 2 SO 4 are 0.1 mol dm -3 as electrolytes. Added H 2 SO 4 electrolyte was used. A reversible hydrogen electrode was used as a reference electrode, and a platinum electrode with platinum black was used as a counter electrode. A potential scan of 5 mV s −1 in an oxygen atmosphere at 30 ° C. was performed to evaluate the electrode of the present invention and the comparative electrode.

図2に、H2SO4電解質中での酸素還元反応の評価結果を示す。ここでは、本発明の酸素還元反応触媒として、パラジウムが60原子%、遷移金属としてコバルト、クロム、ニッケ
ル、モリブデン、タンタルの何れかを40原子%含む電極触媒をスパッタした電極を用いた。比較として白金電極及びパラジウムのみをグラッシーカーボン上にスパッタした電極の評価結果も示した。
FIG. 2 shows the evaluation result of the oxygen reduction reaction in the H 2 SO 4 electrolyte. Here, an electrode obtained by sputtering an electrode catalyst containing 60 atomic% of palladium and 40 atomic% of cobalt, chromium, nickel, molybdenum, or tantalum as a transition metal was used as the oxygen reduction reaction catalyst of the present invention. For comparison, evaluation results of a platinum electrode and an electrode obtained by sputtering only palladium on glassy carbon are also shown.

この評価は、空気極側にメタノールなどの燃料が存在しない水素−酸素形燃料電池の空気極を模擬している。図の縦軸で負の電流が酸素還元反応の速度を示す。電位(横軸)が高いときに大きな酸素還元電流が得られる電極ほど活性が高い。すなわち、この図から比較電極である白金が一番酸素還元触媒能が高く、ついで本発明のパラジウムと各種遷移金属を含む電極触媒、最も酸素還元触媒能が低いのがパラジウムのみをスパッタしたものとなっている。   This evaluation simulates the air electrode of a hydrogen-oxygen fuel cell in which no fuel such as methanol exists on the air electrode side. On the vertical axis of the figure, a negative current indicates the rate of the oxygen reduction reaction. The higher the potential (horizontal axis), the higher the activity of the electrode that can obtain a large oxygen reduction current. That is, from this figure, platinum as a reference electrode has the highest oxygen reduction catalytic ability, then the electrode catalyst containing palladium and various transition metals of the present invention, and the lowest oxygen reduction catalytic ability is the one with only palladium sputtered. It has become.

図3に、同じ電極をH2SO4+CH3OH電解質で評価した結果を示す。本試験条件は直接形燃料電池の空気極の環境、すなわち、本発明の酸素還元触媒の使用環境を模擬したものである。比較の白金電極では電流値が0となる電位が0.8Vであり、0.8V以上では酸化電流が検出された。H2SO4電解質での結果と比較すると、図1の概念図に示したように、メタノールの酸化電流により酸素還元電位が低下していることを示す。 FIG. 3 shows the results of evaluating the same electrode with H 2 SO 4 + CH 3 OH electrolyte. This test condition simulates the environment of the air electrode of the direct fuel cell, that is, the use environment of the oxygen reduction catalyst of the present invention. In the comparison platinum electrode, the potential at which the current value becomes 0 was 0.8 V, and an oxidation current was detected at 0.8 V or more. Compared with the results with the H 2 SO 4 electrolyte, as shown in the conceptual diagram of FIG. 1, it is shown that the oxygen reduction potential is lowered by the oxidation current of methanol.

これに対して、本発明のパラジウムと各種遷移金属元素を含む電極触媒及び比較のためのパラジウムのみの電極触媒ではメタノールの酸化を示す酸化電流(図3での正方向の電流)は認められない。酸素還元の触媒能は高いものから、本発明のパラジウムと各種遷移金属元素を含む電極触媒、比較の白金電極、パラジウムのみの電極の順であり、本発明のパラジウムと各種遷移金属元素を含む電極触媒が空気極に燃料が透過する直接形燃料電池の環境で非常に高い酸素還元触媒能を持つことが確認できた。   In contrast, the electrocatalyst containing palladium and various transition metal elements of the present invention and the palladium-only electrocatalyst for comparison do not show an oxidation current (positive current in FIG. 3) indicating methanol oxidation. . From the high catalytic ability of oxygen reduction, the electrode catalyst containing palladium and various transition metal elements of the present invention, the comparative platinum electrode, and the electrode containing only palladium, and the electrode containing palladium and various transition metal elements of the present invention. It was confirmed that the catalyst has a very high oxygen reduction catalytic ability in the environment of a direct fuel cell in which the fuel permeates the air electrode.

図4には、図2及び図3と同様の試験を行い、触媒中のパラジウムの原子%に対して0.1mA cm-2の還元電流(図2、図3中で-0.1mA cm-2)を示す電位で定義する有効酸素還元電位をプロットした例を示す。塗りつぶしのプロットがH2SO4電解質中、白抜きのプロットがH2SO4+CH3OH電解質での測定結果である。 In FIG. 4, the same test as in FIGS. 2 and 3 was performed, and a reduction current of 0.1 mA cm −2 with respect to atomic% of palladium in the catalyst (−0.1 mA cm −2 in FIGS. 2 and 3). The example which plotted the effective oxygen reduction potential defined by the electric potential which shows is shown. The solid plot is the measurement result in the H 2 SO 4 electrolyte, and the white plot is the measurement result in the H 2 SO 4 + CH 3 OH electrolyte.

H2SO4電解質中での測定結果から、パラジウムと遷移金属元素からなる酸素還元触媒は30原子%以上かつ95原子%以下の広い範囲でパラジウム単体より高い触媒能を有すること、特に、H2SO4+CH3OH電解質に代表されるような燃料が存在する条件で高い酸素還元触媒活性を示すこと、これらの遷移金属元素としてコバルト、クロム、ニッケル、モリブデン、タンタルが良好な特性を示すこと、パラジウムが40原子%以上かつ70原子%以下の領域が特に触媒活性が高く、白金以上の活性を示すことが明らかとなった。 From the measurement results in the H 2 SO 4 electrolyte, the oxygen reduction catalyst composed of palladium and a transition metal element has higher catalytic ability than palladium alone in a wide range of 30 atomic% or more and 95 atomic% or less, particularly H 2 High oxygen reduction catalytic activity in the presence of fuel such as SO 4 + CH 3 OH electrolyte, and cobalt, chromium, nickel, molybdenum and tantalum as these transition metal elements have good characteristics In addition, it has been clarified that the region where palladium is 40 atomic% or more and 70 atomic% or less has particularly high catalytic activity and exhibits activity higher than that of platinum.

図5に、触媒中のパラジウムの原子%に対して図4にプロットしたH2SO4電解質中での有効酸素還元電位に対するH2SO4+CH3OH電解質での有効酸素還元電位の比をプロットして示す。図1に示した概念からも明らかなとおり、図5に示す比が1に近いほど燃料の酸化反応と比較して、酸素還元反応の選択性が高いことを示す。すなわち、本指標は触媒の選択性を示したものである。 FIG. 5 shows the ratio of the effective oxygen reduction potential in the H 2 SO 4 + CH 3 OH electrolyte to the effective oxygen reduction potential in the H 2 SO 4 electrolyte plotted in FIG. 4 against the atomic% of palladium in the catalyst. Plotted. As is clear from the concept shown in FIG. 1, the closer the ratio shown in FIG. 5 is to 1, the higher the selectivity of the oxygen reduction reaction compared to the fuel oxidation reaction. That is, this index indicates the selectivity of the catalyst.

ここで、図5で選択性が高い触媒は図4より見てH2SO4+CH3OH電解質中での有効酸素還元電位が高い、すなわち、優れた酸素還元触媒活性を示すことは明らかである。即ち、パラジウムを含む酸素還元触媒を燃料が共存する条件で使用する場合には選択性が高い電極触媒が優れた活性を有し、その評価基準として1リットル当たり0.1モルの硫酸水溶液中での酸素還元反応の限界拡散電流の5%以上、10%以下の任意の電流密度における電位に対し、1リットル当たり0.1モルの硫酸と0.1モルのメタノールの電解質中での前記任意の電流密度における電位の比が90%以上かつ100%以下であることがわかる。 Here, it is clear that the catalyst having high selectivity in FIG. 5 has a high effective oxygen reduction potential in the H 2 SO 4 + CH 3 OH electrolyte as shown in FIG. 4, that is, exhibits excellent oxygen reduction catalytic activity. is there. That is, when an oxygen reduction catalyst containing palladium is used under the condition where the fuel coexists, an electrode catalyst having high selectivity has an excellent activity. Ratio of the potential at any current density in an electrolyte of 0.1 mol sulfuric acid and 0.1 mol methanol per liter with respect to the potential at an arbitrary current density of 5% to 10% of the limiting diffusion current of the reduction reaction Is 90% or more and 100% or less.

本発明は、直接形燃料電池の高効率化に寄与するものであり、携帯機器、非常用、分散型システムなどの電源として幅広く利用できるものである。   The present invention contributes to increasing the efficiency of a direct fuel cell, and can be widely used as a power source for portable devices, emergency, distributed systems and the like.

本発明の酸素還元触媒の概念を示す図である。It is a figure which shows the concept of the oxygen reduction catalyst of this invention. H2SO4電解質中での酸素還元反応の評価結果の一例を示す図である。Is a diagram showing an example of evaluation results of the oxygen reduction reaction at the H 2 SO 4 electrolyte. H2SO4+CH3OH電解質中での酸素還元反応の評価結果の一例を示す図である。Is a diagram showing an example of evaluation results of the oxygen reduction reaction in H 2 SO 4 + CH 3 OH electrolyte. 本発明の酸素還元触媒に含まれるパラジウムの原子%と0.1mA cm-2の酸素還元電流が得られる電位の関係を示す図である。It is a figure which shows the relationship between the atomic% of palladium contained in the oxygen reduction catalyst of the present invention and the potential at which an oxygen reduction current of 0.1 mA cm −2 is obtained. 本発明の酸素還元触媒に含まれるパラジウムの原子%と図4のH2SO4電解質中での電位に対するH2SO4+CH3OH電解質中での電位の比を示す図である。FIG. 5 is a graph showing the ratio of the potential in the H 2 SO 4 + CH 3 OH electrolyte to the atomic% of palladium contained in the oxygen reduction catalyst of the present invention and the potential in the H 2 SO 4 electrolyte of FIG. 4.

Claims (5)

イオン伝導性電解質膜の両側に酸化反応触媒と酸素還元反応触媒を配置して構成され、酸化反応触媒での酸化反応用の燃料として炭素及び水素を含む液体燃料を供給する直接形燃料電池用酸素還元触媒において、30原子%以上かつ95原子%以下のパラジウムと、5原子%以上70原子%以下の遷移金属元素を含み、該遷移金属元素が標準酸化還元電位0V以下の元素であることを特徴とする酸素還元反応触媒。 Oxygen for a direct fuel cell, which is configured by arranging an oxidation reaction catalyst and an oxygen reduction reaction catalyst on both sides of an ion conductive electrolyte membrane and supplying a liquid fuel containing carbon and hydrogen as a fuel for the oxidation reaction in the oxidation reaction catalyst In the reduction catalyst, comprising 30 atomic% or more and 95 atomic% or less of palladium and 5 atomic% or more and 70 atomic% or less of transition metal element, the transition metal element is an element having a standard oxidation-reduction potential of 0 V or less An oxygen reduction reaction catalyst. 前記遷移金属元素がコバルト、クロム、ニッケル、モリブデン、タンタルのうち、一つ以上の元素であることを特徴とする請求項1記載の酸素還元反応触媒。 2. The oxygen reduction reaction catalyst according to claim 1, wherein the transition metal element is one or more elements of cobalt, chromium, nickel, molybdenum, and tantalum. 請求項1又は2記載の酸素還元反応触媒において、40原子%以上かつ70原子%以下のパラジウムを含むことを特徴とする酸素還元反応触媒。 3. The oxygen reduction reaction catalyst according to claim 1, comprising 40 atomic% or more and 70 atomic% or less of palladium. 4. イオン伝導性電解質膜の両側に酸化反応触媒と酸素還元反応触媒を配置して構成され、酸化反応触媒での酸化反応用の燃料として炭素及び水素を含む液体燃料を供給する直接形燃料電池において,パラジウムに標準酸化還元電位0V以下の遷移金属元素を5原子%以上70原子%以下含有させた合金を酸素還元触媒として用いることによって、1リットル当たり0.1モルの硫酸水溶液中での酸素還元反応の限界拡散電流の5%以上、10%以下の任意の電流密度における電位に対し、1リットル当たり0.1モルの硫酸と0.1モルのメタノールの電解質中での前記任意の電流密度における電位の比が90%以上かつ100%以下であるようにしたこと特徴とする直接形燃料電池。 In a direct type fuel cell configured by arranging an oxidation reaction catalyst and an oxygen reduction reaction catalyst on both sides of an ion conductive electrolyte membrane and supplying liquid fuel containing carbon and hydrogen as fuel for the oxidation reaction in the oxidation reaction catalyst, Limit of oxygen reduction reaction in 0.1 mol sulfuric acid aqueous solution per liter by using as an oxygen reduction catalyst an alloy containing transition metal element of 5 to 70 atom% with standard oxidation-reduction potential of 0V or less in palladium The ratio of the potential at the arbitrary current density in the electrolyte of 0.1 mol sulfuric acid and 0.1 mol methanol per liter is 90% or more with respect to the potential at an arbitrary current density of 5% or more and 10% or less of the diffusion current. A direct fuel cell characterized by being 100% or less. 請求項4の直接形燃料電池において、前記遷移金属元素がコバルト、クロム、ニッケル、モリブデン、タンタルのうち、一つ以上の元素であることを特徴とする直接形燃料電池。 5. The direct fuel cell according to claim 4, wherein the transition metal element is one or more of cobalt, chromium, nickel, molybdenum, and tantalum.
JP2003370811A 2003-10-30 2003-10-30 Direct fuel cell Expired - Fee Related JP4679815B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003370811A JP4679815B2 (en) 2003-10-30 2003-10-30 Direct fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003370811A JP4679815B2 (en) 2003-10-30 2003-10-30 Direct fuel cell

Publications (2)

Publication Number Publication Date
JP2005135752A true JP2005135752A (en) 2005-05-26
JP4679815B2 JP4679815B2 (en) 2011-05-11

Family

ID=34647709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003370811A Expired - Fee Related JP4679815B2 (en) 2003-10-30 2003-10-30 Direct fuel cell

Country Status (1)

Country Link
JP (1) JP4679815B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008135380A (en) * 2006-10-26 2008-06-12 Univ Waseda Cathode catalyst for fuel cell, its manufacturing method and fixation method, and fuel cell
JP2009512128A (en) * 2005-10-07 2009-03-19 イリカ テクノロジーズ リミテッド Palladium alloy catalyst for fuel cell cathode
JP2012091109A (en) * 2010-10-27 2012-05-17 Ne Chemcat Corp Reduction catalyst comprising palladium-gold alloy
WO2013021681A1 (en) 2011-08-09 2013-02-14 昭和電工株式会社 Method for manufacturing catalyst for direct-liquid fuel cell, catalyst manufactured thereby and application thereof
CN103811774A (en) * 2014-02-28 2014-05-21 南京工业大学 Electrocatalyst with mixed precious metal and perovskite oxides
CN104258853A (en) * 2014-08-27 2015-01-07 中国科学院大连化学物理研究所 Gold-iridium bifunctional oxygen electrode catalyst, preparation method and applications thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103402633B (en) 2011-01-20 2017-03-01 昭和电工株式会社 The manufacture method of catalyst carrier, the manufacture method of composite catalyst, composite catalyst and the fuel cell using this composite catalyst
CN103094584B (en) * 2013-02-01 2015-09-30 武汉理工大学 Nanometer sandwich structure fuel cell non-precious metal catalyst, membrane electrode and preparation method

Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62246926A (en) * 1986-04-18 1987-10-28 Toyota Central Res & Dev Lab Inc Dedoping of high-molecular compound
JPH04141233A (en) * 1990-09-29 1992-05-14 Stonehard Assoc Inc Electrode catalyst
JPH05182672A (en) * 1992-01-07 1993-07-23 Matsushita Electric Ind Co Ltd Manufacture of electrode for ion-exchange membrane fuel cell and ion-exchange membrane fuel cell
JPH06124712A (en) * 1992-10-12 1994-05-06 Fuji Electric Co Ltd Catalyst for phosphoric acid fuel cell and manufacture of the catalyst
JPH0866632A (en) * 1994-08-27 1996-03-12 Tanaka Kikinzoku Kogyo Kk Anode electrode catalyst for high-molecular solid electrolytic type fuel cell
JPH10162839A (en) * 1996-11-28 1998-06-19 Toshiba Corp Fuel electrode for fuel cell, and manufacture thereof
JPH11144745A (en) * 1997-11-06 1999-05-28 Asahi Glass Co Ltd Solid high molecular electrolyte type methanol fuel cell
JPH11144751A (en) * 1997-11-10 1999-05-28 Ne Chemcat Corp Direct type dimethylether fuel cell, direct type layered dimethylether fuel cell system, power generating method and electrode catalyst for the fuel cell
JP2000173626A (en) * 1998-12-07 2000-06-23 Japan Storage Battery Co Ltd Electrode for fuel cell and manufacture thereof
JP2001256982A (en) * 2000-03-13 2001-09-21 Equos Research Co Ltd Electrode for fuel cell and fuel cell
JP2002100373A (en) * 2000-06-23 2002-04-05 Wautekku Kk Manufacturing method of catalyzed porous carbon electrode for fuel cell
JP2002184427A (en) * 2000-12-12 2002-06-28 Japan Science & Technology Corp Proton conductive substance
JP2002231254A (en) * 2000-11-30 2002-08-16 Plug Power Inc Fuel cell electrode
JP2002231265A (en) * 2001-01-29 2002-08-16 Japan Pionics Co Ltd Fuel cell
JP2002246039A (en) * 2001-02-16 2002-08-30 Seijiro Suda Liquid fuel cell
JP2003077521A (en) * 2001-08-31 2003-03-14 Foundation For Advancement Of Science & Technology Fuel cell
JP2003086192A (en) * 2001-09-11 2003-03-20 Toshiba International Fuel Cells Corp Fuel cell and its manufacturing method
JP2003123786A (en) * 2001-10-10 2003-04-25 Yuasa Corp Membrane/electrode binder for direct methanol fuel cell
JP2003203642A (en) * 2002-01-04 2003-07-18 Nitto Denko Corp Fuel cell
JP2003226901A (en) * 2002-02-05 2003-08-15 Hitachi Maxell Ltd Binary alloy fine particle and production method therefor
JP2003226905A (en) * 2001-11-26 2003-08-15 Basf Ag Oxidation-insensitive polymer-stabilized noble metal colloid, heterogeneous noble metal catalyst, process for preparing noble metal colloid solution, and use of the noble metal colloid or solution thereof
JP2003257453A (en) * 2001-12-27 2003-09-12 Toray Ind Inc High polymer solid electrolyte, manufacturing method therefor, and solid high polymer type fuel cell by use of the same
JP2004253385A (en) * 2003-02-19 2004-09-09 Samsung Sdi Co Ltd Catalyst for cathode of fuel battery

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62246926A (en) * 1986-04-18 1987-10-28 Toyota Central Res & Dev Lab Inc Dedoping of high-molecular compound
JPH04141233A (en) * 1990-09-29 1992-05-14 Stonehard Assoc Inc Electrode catalyst
JPH05182672A (en) * 1992-01-07 1993-07-23 Matsushita Electric Ind Co Ltd Manufacture of electrode for ion-exchange membrane fuel cell and ion-exchange membrane fuel cell
JPH06124712A (en) * 1992-10-12 1994-05-06 Fuji Electric Co Ltd Catalyst for phosphoric acid fuel cell and manufacture of the catalyst
JPH0866632A (en) * 1994-08-27 1996-03-12 Tanaka Kikinzoku Kogyo Kk Anode electrode catalyst for high-molecular solid electrolytic type fuel cell
JPH10162839A (en) * 1996-11-28 1998-06-19 Toshiba Corp Fuel electrode for fuel cell, and manufacture thereof
JPH11144745A (en) * 1997-11-06 1999-05-28 Asahi Glass Co Ltd Solid high molecular electrolyte type methanol fuel cell
JPH11144751A (en) * 1997-11-10 1999-05-28 Ne Chemcat Corp Direct type dimethylether fuel cell, direct type layered dimethylether fuel cell system, power generating method and electrode catalyst for the fuel cell
JP2000173626A (en) * 1998-12-07 2000-06-23 Japan Storage Battery Co Ltd Electrode for fuel cell and manufacture thereof
JP2001256982A (en) * 2000-03-13 2001-09-21 Equos Research Co Ltd Electrode for fuel cell and fuel cell
JP2002100373A (en) * 2000-06-23 2002-04-05 Wautekku Kk Manufacturing method of catalyzed porous carbon electrode for fuel cell
JP2002231254A (en) * 2000-11-30 2002-08-16 Plug Power Inc Fuel cell electrode
JP2002184427A (en) * 2000-12-12 2002-06-28 Japan Science & Technology Corp Proton conductive substance
JP2002231265A (en) * 2001-01-29 2002-08-16 Japan Pionics Co Ltd Fuel cell
JP2002246039A (en) * 2001-02-16 2002-08-30 Seijiro Suda Liquid fuel cell
JP2003077521A (en) * 2001-08-31 2003-03-14 Foundation For Advancement Of Science & Technology Fuel cell
JP2003086192A (en) * 2001-09-11 2003-03-20 Toshiba International Fuel Cells Corp Fuel cell and its manufacturing method
JP2003123786A (en) * 2001-10-10 2003-04-25 Yuasa Corp Membrane/electrode binder for direct methanol fuel cell
JP2003226905A (en) * 2001-11-26 2003-08-15 Basf Ag Oxidation-insensitive polymer-stabilized noble metal colloid, heterogeneous noble metal catalyst, process for preparing noble metal colloid solution, and use of the noble metal colloid or solution thereof
JP2003257453A (en) * 2001-12-27 2003-09-12 Toray Ind Inc High polymer solid electrolyte, manufacturing method therefor, and solid high polymer type fuel cell by use of the same
JP2003203642A (en) * 2002-01-04 2003-07-18 Nitto Denko Corp Fuel cell
JP2003226901A (en) * 2002-02-05 2003-08-15 Hitachi Maxell Ltd Binary alloy fine particle and production method therefor
JP2004253385A (en) * 2003-02-19 2004-09-09 Samsung Sdi Co Ltd Catalyst for cathode of fuel battery

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009512128A (en) * 2005-10-07 2009-03-19 イリカ テクノロジーズ リミテッド Palladium alloy catalyst for fuel cell cathode
US8334081B2 (en) 2005-10-07 2012-12-18 Ilika Technologies Ltd. Metal alloy catalysts for fuel cell cathodes
US8790841B2 (en) 2005-10-07 2014-07-29 Ilika Technologies Ltd. Metal alloy catalysts for fuel cell cathodes
JP2008135380A (en) * 2006-10-26 2008-06-12 Univ Waseda Cathode catalyst for fuel cell, its manufacturing method and fixation method, and fuel cell
JP2012091109A (en) * 2010-10-27 2012-05-17 Ne Chemcat Corp Reduction catalyst comprising palladium-gold alloy
WO2013021681A1 (en) 2011-08-09 2013-02-14 昭和電工株式会社 Method for manufacturing catalyst for direct-liquid fuel cell, catalyst manufactured thereby and application thereof
KR20140053284A (en) 2011-08-09 2014-05-07 쇼와 덴코 가부시키가이샤 Method for manufacturing catalyst for direct-liquid fuel cell, catalyst manufactured thereby and application thereof
US9379390B2 (en) 2011-08-09 2016-06-28 Showa Denko K.K. Process for producing catalyst for direct-liquid fuel cell, catalyst produced by the process and uses thereof
CN103811774A (en) * 2014-02-28 2014-05-21 南京工业大学 Electrocatalyst with mixed precious metal and perovskite oxides
CN104258853A (en) * 2014-08-27 2015-01-07 中国科学院大连化学物理研究所 Gold-iridium bifunctional oxygen electrode catalyst, preparation method and applications thereof

Also Published As

Publication number Publication date
JP4679815B2 (en) 2011-05-11

Similar Documents

Publication Publication Date Title
JP5270098B2 (en) Improved electrode
Munoz et al. Palladium–copper electrocatalyst for the promotion of the electrochemical oxidation of polyalcohol fuels in the alkaline direct alcohol fuel cell
Ünlü et al. Analysis of double layer and adsorption effects at the alkaline polymer electrolyte-electrode interface
Sarwar et al. Effect of Co‐Ni ratio in graphene based bimetallic electro‐catalyst for methanol oxidation
JP5528630B2 (en) Fuel cell with cathode electrode using iron redox couple
US20090068505A1 (en) Electrocatalyst for Alcohol Oxidation at Fuel Cell Anodes
US9825307B2 (en) Anode-side catalyst composition for fuel cells, and membrane electrode assembly (MEA) for solid polymer fuel cells which comprises same
Jackson et al. Assessing electrocatalyst hydrogen activity and CO tolerance: Comparison of performance obtained using the high mass transport ‘floating electrode’technique and in electrochemical hydrogen pumps
JP5055557B2 (en) Oxygen reduction electrode for direct fuel cell
Prabhuram et al. Methanol adsorbates on the DMFC cathode and their effect on the cell performance
JP5110557B2 (en) Performance evaluation method and search method for electrode catalyst for fuel cell
Garsany et al. Oxygen reduction reaction kinetics of SO2-contaminated Pt3Co and Pt/Vulcan carbon electrocatalysts
WO2007136140A1 (en) Method for evaluating performance of electrode catalyst for battery, method for exploring electrode catalyst for battery, electrode catalyst for battery, and fuel battery using the electrode catalyst
JP4679815B2 (en) Direct fuel cell
US20100068591A1 (en) Fuel cell catalyst, fuel cell cathode and polymer electrolyte fuel cell including the same
JP2002231257A (en) Electrode catalyst for fuel cell and method of manufacturing the same
JP2009238442A (en) Method of manufacturing ptru catalyst, catalyst manufactured by the manufacturing method, and fuel cell and membrane electrode assembly using the catalyst
Apblett et al. Direct glucose fuel cell: noble metal catalyst anode polymer electrolyte membrane fuel cell with glucose fuel
JP2006179427A (en) Electrode catalyst for fuel cell, and the fuel cell
JP2007149687A (en) Fuel composition for fuel cell and fuel cell using same
JP6187962B2 (en) Anode catalyst for alkaline direct ethanol fuel cell, alkaline direct ethanol fuel cell provided with the catalyst, method for producing the catalyst, and method for improving output of alkaline direct ethanol fuel cell
Zhang Electrocatalysis for direct alcohol–alkaline fuel cells
Suzuki et al. Effect of Carbonate Ion Species on Direct Ammonia Fuel Cell Employing Anion Exchange Membrane
JP2008091264A (en) Cathode for fuel cell and solid polymer electrolyte fuel cell equipped with this
JP4210184B2 (en) Fuel cell and liquid fuel for the fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090831

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100806

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110202

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350